Neuroblastoma is the most common type of cancer in infants. In children this tumor is particularly aggressive; despite various new therapeutic approaches, it is associated with poor prognosis. Given the importance of endosomal-lysosomal proteolysis in cellular metabolism, we hypothesized that inhibition of lysosomal protease would impact negatively on neuroblastoma cell survival. Treatment with E-64 or CA074Me (2 specific inhibitors of cathepsin B) or with pepstatin A (a specific inhibitor of cathepsin D) was cytotoxic for 2 neuroblastoma cell lines having different degrees of malignancy. Cell death was associated with condensation and fragmentation of chromatin and externalization of plasma membrane phosphatidylserine, 2 hallmarks of apoptosis. Concomitant inhibition of the caspase cascade protected neuroblastoma cells from cathepsin inhibitor-induced cytotoxicity. These data indicate that prolonged inhibition of the lysosomal proteolytic pathway is incompatible with cell survival, leading to apoptosis of neuroblastoma cells, and that the cathepsin-mediated and caspase-mediated proteolytic systems are connected and cooperate in the regulation of such an event. Since modern antitumor chemotherapy is aimed at restoring the normal rate of apoptosis in neoplastic tissues, the demonstration that endosomal-lysosomal cathepsins are involved in this process may constitute a basis for novel strategies that include cathepsin inhibitors in the therapeutic regimen.

Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas

ISIDORO, Ciro
2002-01-01

Abstract

Neuroblastoma is the most common type of cancer in infants. In children this tumor is particularly aggressive; despite various new therapeutic approaches, it is associated with poor prognosis. Given the importance of endosomal-lysosomal proteolysis in cellular metabolism, we hypothesized that inhibition of lysosomal protease would impact negatively on neuroblastoma cell survival. Treatment with E-64 or CA074Me (2 specific inhibitors of cathepsin B) or with pepstatin A (a specific inhibitor of cathepsin D) was cytotoxic for 2 neuroblastoma cell lines having different degrees of malignancy. Cell death was associated with condensation and fragmentation of chromatin and externalization of plasma membrane phosphatidylserine, 2 hallmarks of apoptosis. Concomitant inhibition of the caspase cascade protected neuroblastoma cells from cathepsin inhibitor-induced cytotoxicity. These data indicate that prolonged inhibition of the lysosomal proteolytic pathway is incompatible with cell survival, leading to apoptosis of neuroblastoma cells, and that the cathepsin-mediated and caspase-mediated proteolytic systems are connected and cooperate in the regulation of such an event. Since modern antitumor chemotherapy is aimed at restoring the normal rate of apoptosis in neoplastic tissues, the demonstration that endosomal-lysosomal cathepsins are involved in this process may constitute a basis for novel strategies that include cathepsin inhibitors in the therapeutic regimen.
File in questo prodotto:
File Dimensione Formato  
Castino et al.2002.pdf

file disponibile solo agli amministratori

Tipologia: Abstract
Licenza: DRM non definito
Dimensione 222.25 kB
Formato Adobe PDF
222.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/11549
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 39
social impact