Purpose: Our goal was to evaluate the usefulness of apparent diffusion coefficient (ADC) ratios in discriminating true from false positives in multiparametric (mp) prostate MRI in clinical practice. Methods: We retrospectively evaluated 98 prostate lesions in a series of 73 patients who had undergone prostate mpMRI and standard 12-core prostatic biopsy in our institution from 2016 to 2018. Two experienced radiologists performed double blind ADC value quantifications of both MRI-identified lesions and apparently benign contralateral prostatic parenchyma in a circular region of interest (ROI) of ∼10 mm2. The ratios between the mean values of both measurements (i.e., ADC ratio mean) and between the minimum value of the lesion and the maximum value of the benign parenchyma (i.e., ADC ratio min-max) were automatically calculated. The malignancy of all lesions was determined through biopsy according to Gleason score (GS ≥ 6) and localization. Results: For Reader 1, the area under the ROC curve (AUC) of ADC ratio mean and ADC ratio min-max were 0.72 and 0.67, respectively, whereas for Reader 2 these values were 0.74 and 0.71, respectively. The best cut-off values for ADC ratio means were ≥ 0.5 (Reader 1) and ≥ 0.6 (Reader 2), with a sensitivity of 76.3 % and 84.2 % and a specificity of 51.7 % and 50 %, respectively. Moreover, based on a threshold of 0.6, no clinically significant prostate cancer (csPCa) was missed by Reader 1, while only one went unnoticed by Reader 2. Conclusion: The ADC ratio is a useful and moderately accurate complementary tool to diagnose prostate cancer in the mp-MRI.
Accuracy of ADC ratio in discriminating true and false positives in multiparametric prostatic MRI
Falaschi Z.;Lanzo G.;Attanasio S.;Valentini E.;Stecco A.;Carriero A.
2020-01-01
Abstract
Purpose: Our goal was to evaluate the usefulness of apparent diffusion coefficient (ADC) ratios in discriminating true from false positives in multiparametric (mp) prostate MRI in clinical practice. Methods: We retrospectively evaluated 98 prostate lesions in a series of 73 patients who had undergone prostate mpMRI and standard 12-core prostatic biopsy in our institution from 2016 to 2018. Two experienced radiologists performed double blind ADC value quantifications of both MRI-identified lesions and apparently benign contralateral prostatic parenchyma in a circular region of interest (ROI) of ∼10 mm2. The ratios between the mean values of both measurements (i.e., ADC ratio mean) and between the minimum value of the lesion and the maximum value of the benign parenchyma (i.e., ADC ratio min-max) were automatically calculated. The malignancy of all lesions was determined through biopsy according to Gleason score (GS ≥ 6) and localization. Results: For Reader 1, the area under the ROC curve (AUC) of ADC ratio mean and ADC ratio min-max were 0.72 and 0.67, respectively, whereas for Reader 2 these values were 0.74 and 0.71, respectively. The best cut-off values for ADC ratio means were ≥ 0.5 (Reader 1) and ≥ 0.6 (Reader 2), with a sensitivity of 76.3 % and 84.2 % and a specificity of 51.7 % and 50 %, respectively. Moreover, based on a threshold of 0.6, no clinically significant prostate cancer (csPCa) was missed by Reader 1, while only one went unnoticed by Reader 2. Conclusion: The ADC ratio is a useful and moderately accurate complementary tool to diagnose prostate cancer in the mp-MRI.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.