We consider the eigenvalues of the biharmonic operator subject to several homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show that simple eigenvalues and elementary symmetric functions of multiple eigenvalues are real analytic, and provide Hadamard-type formulas for the corresponding shape derivatives. After recalling the known results in shape optimization, we prove that balls are always critical domains under volume constraint.
Analyticity and criticality results for the eigenvalues of the biharmonic operator
BUOSO, DAVIDE
2016-01-01
Abstract
We consider the eigenvalues of the biharmonic operator subject to several homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show that simple eigenvalues and elementary symmetric functions of multiple eigenvalues are real analytic, and provide Hadamard-type formulas for the corresponding shape derivatives. After recalling the known results in shape optimization, we prove that balls are always critical domains under volume constraint.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
biharmonic survey.pdf
file disponibile agli utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
285.03 kB
Formato
Adobe PDF
|
285.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.