We consider a partially hinged rectangular plate and its normal modes. There are two families of modes, longitudinal and torsional. We study the variation of the corresponding eigenvalues under domain deformations. We investigate the possibility of finding a shape functional able to quantify the torsional instability of the plate, namely how prone is the plate to transform longitudinal oscillations into torsional ones. This functional should obey several rules coming from both theoretical and practical evidences. We show that a simple functional obeying all the required rules does not exist and that the functionals available in literature are not reliable.
On the variation of longitudinal and torsional frequencies in a partially hinged rectangular plate
Buoso, Davide;
2018-01-01
Abstract
We consider a partially hinged rectangular plate and its normal modes. There are two families of modes, longitudinal and torsional. We study the variation of the corresponding eigenvalues under domain deformations. We investigate the possibility of finding a shape functional able to quantify the torsional instability of the plate, namely how prone is the plate to transform longitudinal oscillations into torsional ones. This functional should obey several rules coming from both theoretical and practical evidences. We show that a simple functional obeying all the required rules does not exist and that the functionals available in literature are not reliable.File | Dimensione | Formato | |
---|---|---|---|
bebuga.pdf
file disponibile agli utenti autorizzati
Dimensione
5.37 MB
Formato
Adobe PDF
|
5.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.