We consider the eigenvalue problem for the Reissner-Mindlin system arising in the study of the free vibration modes of an elastic clamped plate. We provide quantitative estimates for the variation of the eigenvalues upon variation of the shape of the plate. We also prove analyticity results and establish Hadamard-type formulas. Finally, we address the problem of minimization of the eigenvalues in the case of isovolumetric domain perturbations. In the spirit of the Rayleigh conjecture for the biharmonic operator, we prove that balls are critical points with volume constraint for all simple eigenvalues and the elementary symmetric functions of multiple eigenvalues.
Shape Sensitivity Analysis of the Eigenvalues of the Reissner--Mindlin System
Davide Buoso;
2015-01-01
Abstract
We consider the eigenvalue problem for the Reissner-Mindlin system arising in the study of the free vibration modes of an elastic clamped plate. We provide quantitative estimates for the variation of the eigenvalues upon variation of the shape of the plate. We also prove analyticity results and establish Hadamard-type formulas. Finally, we address the problem of minimization of the eigenvalues in the case of isovolumetric domain perturbations. In the spirit of the Rayleigh conjecture for the biharmonic operator, we prove that balls are critical points with volume constraint for all simple eigenvalues and the elementary symmetric functions of multiple eigenvalues.File | Dimensione | Formato | |
---|---|---|---|
buoso, lamberti (2015).pdf
file disponibile agli utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
244.05 kB
Formato
Adobe PDF
|
244.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.