We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are critical domains.

Eigenvalues of polyharmonic operators on variable domains

Davide Buoso;
2013-01-01

Abstract

We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are critical domains.
File in questo prodotto:
File Dimensione Formato  
Preprint_Buoso_Lamberti_2013_poly-harmonic.pdf

file disponibile agli utenti autorizzati

Dimensione 270.26 kB
Formato Adobe PDF
270.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/109831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact