We consider a partially hinged rectangular plate and its normal modes. The dynamical properties of the plate are influenced by the spectrum of the associated eigenvalue problem. In order to improve the stability of the plate, we place a certain amount of denser material in appropriate regions. If we look at the partial differential equation appearing in the model, this corresponds to insert a suitable weight coefficient inside the equation. A possible way to locate such regions is to study the eigenvalue problem associated to the aforementioned weighted equation. In this paper, we focus our attention essentially on the first eigenvalue and on its minimization in terms of the weight. We prove the existence of minimizing weights inside special classes and we try to describe them together with the corresponding eigenfunctions.
On the first frequency of reinforced partially hinged plates
Ferrero A.;
2021-01-01
Abstract
We consider a partially hinged rectangular plate and its normal modes. The dynamical properties of the plate are influenced by the spectrum of the associated eigenvalue problem. In order to improve the stability of the plate, we place a certain amount of denser material in appropriate regions. If we look at the partial differential equation appearing in the model, this corresponds to insert a suitable weight coefficient inside the equation. A possible way to locate such regions is to study the eigenvalue problem associated to the aforementioned weighted equation. In this paper, we focus our attention essentially on the first eigenvalue and on its minimization in terms of the weight. We prove the existence of minimizing weights inside special classes and we try to describe them together with the corresponding eigenfunctions.File | Dimensione | Formato | |
---|---|---|---|
9. E. Berchio, A. F., A. Ferrero, D. Ganguly, Commun. Contemp. Math.pdf
file disponibile solo agli amministratori
Licenza:
Copyright dell'editore
Dimensione
714.3 kB
Formato
Adobe PDF
|
714.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.