Recent medical strategies rely on the search for effective antimicrobials as surface coatings to prevent and treat infections in humans and animals. Biosurfactants have recently been shown to have properties as antiadhesive and antibiofilm agents. Sophorolipids in particular are biosurfactant molecules known to act as therapeutic agents. This study aimed to evaluate antimicrobial properties of sophorolipids in medical-grade silicone discs using strains of clinical relevance. Sophorolipids were produced under fed batch conditions, ESI-MS analyses were carried out to confirm the congeners present in each formulation. Three different products were obtained SLA (acidic congeners), SL18 (lactonic congeners) and SLV (mixture of acidic and lactonic congeners) and were tested against Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 10145 and Candida albicans IHEM 2894. All three congener mixtures showed a biofilms disruption effect (> 0.1 % w/v) of 70 %, 75 % and 80 % for S. aureus, P. aeruginosa and C. albicans, respectively. On pre-coated silicone discs, biofilm formation of S. aureus was reduced by 75 % using SLA 0.8 % w/v. After 1.5 h the inhibition of C. albicans attachment was between 45-56 % whilst after 24 h incubation the percentage of inhibition for the cell attachment increased to 68-70 % when using SLA 0.8 % w/v. Finally, in co-incubation experiments SLA 0.05 % w/v significantly reduced the ability of S. aureus and C. albicans to form biofilms and to adhere to surfaces by 90-95 % at concentrations between 0.025-0.1 % w/v. In conclusion sophorolipids significantly reduced the cell attachment of both tested strains which suggests that these molecules could have a potential role as coating agents on medical grade silicone devices for the preventions of Gram positive bacteria and yeast infections.

The effect of sophorolipids against microbial biofilms on medical-grade silicone

Ceresa C.;Fracchia L.
Co-primo
;
2020-01-01

Abstract

Recent medical strategies rely on the search for effective antimicrobials as surface coatings to prevent and treat infections in humans and animals. Biosurfactants have recently been shown to have properties as antiadhesive and antibiofilm agents. Sophorolipids in particular are biosurfactant molecules known to act as therapeutic agents. This study aimed to evaluate antimicrobial properties of sophorolipids in medical-grade silicone discs using strains of clinical relevance. Sophorolipids were produced under fed batch conditions, ESI-MS analyses were carried out to confirm the congeners present in each formulation. Three different products were obtained SLA (acidic congeners), SL18 (lactonic congeners) and SLV (mixture of acidic and lactonic congeners) and were tested against Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 10145 and Candida albicans IHEM 2894. All three congener mixtures showed a biofilms disruption effect (> 0.1 % w/v) of 70 %, 75 % and 80 % for S. aureus, P. aeruginosa and C. albicans, respectively. On pre-coated silicone discs, biofilm formation of S. aureus was reduced by 75 % using SLA 0.8 % w/v. After 1.5 h the inhibition of C. albicans attachment was between 45-56 % whilst after 24 h incubation the percentage of inhibition for the cell attachment increased to 68-70 % when using SLA 0.8 % w/v. Finally, in co-incubation experiments SLA 0.05 % w/v significantly reduced the ability of S. aureus and C. albicans to form biofilms and to adhere to surfaces by 90-95 % at concentrations between 0.025-0.1 % w/v. In conclusion sophorolipids significantly reduced the cell attachment of both tested strains which suggests that these molecules could have a potential role as coating agents on medical grade silicone devices for the preventions of Gram positive bacteria and yeast infections.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0168165619309551-main de rienzo sophoro.pdf

file ad accesso aperto

Descrizione: paper def
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.54 MB
Formato Adobe PDF
3.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/108367
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 32
social impact