The pseudorapidity density of charged particles, dNch/dη, in p–Pb collisions has been measured at a centre-of-mass energy per nucleon–nucleon pair of sqrt(sNN) = 8.16 TeV at mid-pseudorapidity for non-single-diffractive events. The results cover 3.6 units of pseudorapidity, |η|<1.8. The dNch/dη value is 19.1±0.7 at |η|<0.5. This quantity divided by ⟨Npart⟩ / 2 is 4.73±0.20, where ⟨Npart⟩is the average number of participating nucleons, is 9.5% higher than the corresponding value for p–Pb collisions at sqrt(sNN) = 5.02 TeV. Measurements are compared with models based on different mechanisms for particle production. All models agree within uncertainties with data in the Pb-going side, while HIJING overestimates, showing a symmetric behaviour, and EPOS underestimates the p-going side of the dNch/dη distribution. Saturation-based models reproduce the distributions well for η>−1.3. The dNch/dη is also measured for different centrality estimators, based both on the charged-particle multiplicity and on the energy deposited in the Zero-Degree Calorimeters. A study of the implications of the large multiplicity fluctuations due to the small number of participants for systems like p–Pb in the centrality calculation for multiplicity-based estimators is discussed, demonstrating the advantages of determining the centrality with energy deposited near beam rapidity.
Charged-particle pseudorapidity density at mid-rapidity in p–Pb collisions at √sNN = 8.16 TeV
Cortese P.;Ramello L.;Sitta M.;
2019-01-01
Abstract
The pseudorapidity density of charged particles, dNch/dη, in p–Pb collisions has been measured at a centre-of-mass energy per nucleon–nucleon pair of sqrt(sNN) = 8.16 TeV at mid-pseudorapidity for non-single-diffractive events. The results cover 3.6 units of pseudorapidity, |η|<1.8. The dNch/dη value is 19.1±0.7 at |η|<0.5. This quantity divided by ⟨Npart⟩ / 2 is 4.73±0.20, where ⟨Npart⟩is the average number of participating nucleons, is 9.5% higher than the corresponding value for p–Pb collisions at sqrt(sNN) = 5.02 TeV. Measurements are compared with models based on different mechanisms for particle production. All models agree within uncertainties with data in the Pb-going side, while HIJING overestimates, showing a symmetric behaviour, and EPOS underestimates the p-going side of the dNch/dη distribution. Saturation-based models reproduce the distributions well for η>−1.3. The dNch/dη is also measured for different centrality estimators, based both on the charged-particle multiplicity and on the energy deposited in the Zero-Degree Calorimeters. A study of the implications of the large multiplicity fluctuations due to the small number of participants for systems like p–Pb in the centrality calculation for multiplicity-based estimators is discussed, demonstrating the advantages of determining the centrality with energy deposited near beam rapidity.File | Dimensione | Formato | |
---|---|---|---|
Acharya2019_Article_Charged-particlePseudorapidity.pdf
file ad accesso aperto
Descrizione: Articolo
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.