Malignant mesothelioma (MM) is an aggressive cancer associated with asbestos exposure. Studies of familial malignant pleural mesothelioma (MPM) have suggested the existence of a genetic predisposition. Information on the role of genetic risk factors in the development of MM has been growing in the last years, and both low- and high-risk genetic factors have been identified, but genetic factors alone (without any exposure to asbestos or other mineral fibers) have never been shown to induce MM. Low-risk genetic factors have been identified in studies that systematically analyzed the whole genome. When considered alone these low-risk genetic factors carry a relative risk of MPM that is 10- to 15-fold lower than that carried by asbestos exposure; however, a large number of these factors in combination may increase the impact of asbestos exposure. High-risk genetic factors include truncating variants in the tumor suppressor BAP1 and in other tumor suppressor genes belonging to DNA repair pathways. Heterozygous germline variants in these genes may favor carcinogenesis if a second somatic variant occurs that impairs the wild-type allele. This impairment can cause genetic instability due to the suppression of a specific DNA repair pathway, and transformation. This genetic predisposition may have translational consequences, as it may predict patient response to drugs that induce tumor-specific synthetic lethality.

Genetic predisposition for malignant mesothelioma: A concise review

Betti, Marta;Aspesi, Anna
;
Sculco, Marika;Magnani, Corrado;Dianzani, Irma
Ultimo
2019-01-01

Abstract

Malignant mesothelioma (MM) is an aggressive cancer associated with asbestos exposure. Studies of familial malignant pleural mesothelioma (MPM) have suggested the existence of a genetic predisposition. Information on the role of genetic risk factors in the development of MM has been growing in the last years, and both low- and high-risk genetic factors have been identified, but genetic factors alone (without any exposure to asbestos or other mineral fibers) have never been shown to induce MM. Low-risk genetic factors have been identified in studies that systematically analyzed the whole genome. When considered alone these low-risk genetic factors carry a relative risk of MPM that is 10- to 15-fold lower than that carried by asbestos exposure; however, a large number of these factors in combination may increase the impact of asbestos exposure. High-risk genetic factors include truncating variants in the tumor suppressor BAP1 and in other tumor suppressor genes belonging to DNA repair pathways. Heterozygous germline variants in these genes may favor carcinogenesis if a second somatic variant occurs that impairs the wild-type allele. This impairment can cause genetic instability due to the suppression of a specific DNA repair pathway, and transformation. This genetic predisposition may have translational consequences, as it may predict patient response to drugs that induce tumor-specific synthetic lethality.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1383574218300656-main.pdf

file disponibile agli utenti autorizzati

Descrizione: Articolo
Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/102967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact