The Qfhs.ifa-5A allele, contributing to enhanced Fusarium head blight resistance in wheat, resides in a low-recombinogenic region of chromosome 5A close to the centromere. A nearisogenic RIL population segregating for the Qfhs.ifa-5A resistance allele was developed and among 3650 lines as few as four recombined within the pericentromeric C-5AS1-0.40 bin, yielding only a single recombination point. Genetic mapping of the pericentromeric region using a recombination-dependent approach was thus not successful. To facilitate fine-mapping the physically large Qfhs.ifa-5A interval, two gamma-irradiated deletion panels were generated: (i) seeds of line NIL3 carrying the Qfhs.ifa-5A resistance allele in an otherwise susceptible background were irradiated and plants thereof were selfed to obtain deletions in homozygous state and (ii) a radiation hybrid panel was produced using irradiated pollen of the wheat line Chinese Spring (CS) for pollinating the CS-nullisomic5Atetrasomic5B. In total, 5157 radiation selfing and 276 radiation hybrid plants were screened for deletions on 5AS and plants containing deletions were analysed using 102 5AS-specific markers. Combining genotypic information of both panels yielded an 817-fold map improvement (cR/cM) for the centromeric bin and was 389- fold increased across the Qfhs.ifa-5A interval compared to the genetic map, with an average map resolution of 0.77 Mb/cR. We successfully proved that the RH mapping technique can effectively resolve marker order in low-recombining regions, including pericentromeric intervals, and simultaneously allow developing an in vivo panel of sister lines differing for induced deletions across the Qfhs.ifa-5A interval that can be used for phenotyping.

High-resolution mapping of the pericentromeric region on wheat chromosome arm 5AS harbouring the Fusarium head blight resistance QTL Qfhs.ifa-5A

Giampiero Valè;
2018-01-01

Abstract

The Qfhs.ifa-5A allele, contributing to enhanced Fusarium head blight resistance in wheat, resides in a low-recombinogenic region of chromosome 5A close to the centromere. A nearisogenic RIL population segregating for the Qfhs.ifa-5A resistance allele was developed and among 3650 lines as few as four recombined within the pericentromeric C-5AS1-0.40 bin, yielding only a single recombination point. Genetic mapping of the pericentromeric region using a recombination-dependent approach was thus not successful. To facilitate fine-mapping the physically large Qfhs.ifa-5A interval, two gamma-irradiated deletion panels were generated: (i) seeds of line NIL3 carrying the Qfhs.ifa-5A resistance allele in an otherwise susceptible background were irradiated and plants thereof were selfed to obtain deletions in homozygous state and (ii) a radiation hybrid panel was produced using irradiated pollen of the wheat line Chinese Spring (CS) for pollinating the CS-nullisomic5Atetrasomic5B. In total, 5157 radiation selfing and 276 radiation hybrid plants were screened for deletions on 5AS and plants containing deletions were analysed using 102 5AS-specific markers. Combining genotypic information of both panels yielded an 817-fold map improvement (cR/cM) for the centromeric bin and was 389- fold increased across the Qfhs.ifa-5A interval compared to the genetic map, with an average map resolution of 0.77 Mb/cR. We successfully proved that the RH mapping technique can effectively resolve marker order in low-recombining regions, including pericentromeric intervals, and simultaneously allow developing an in vivo panel of sister lines differing for induced deletions across the Qfhs.ifa-5A interval that can be used for phenotyping.
File in questo prodotto:
File Dimensione Formato  
Buerstmayr_et_al-2018-Plant_Biotechnology_Journal.pdf

file ad accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 293.13 kB
Formato Adobe PDF
293.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/102050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact