This paper explores the possibility of converting Fault Trees (FT) into the Generalized Stochastic Petri Net (GSPN) formalism. Starting from a slightly modified version of a conversion algorithm already appeared in the literature, the aim of the paper is to exploit the modeling and decision power of GSPN for both the qualitative and the quantitative analysis of the modeled system. The qualitative analysis resorts to structural properties and is based on a T-invariant analysis. In order to alleviate the state space explosion problem deriving from the quantitative analysis, the paper proposes a new formalism for FT, that is referred to as High Level FT (HLFT), in which replicated redundant units are folded and indexed. Starting from the HLFT formalism, a new conversion algorithm is provided that translates a HLFT into a Stochastic Well-formed Net (SWN). The computational saving of using SWN with respect to GSPN is carefully examined considering an example of a fault-tolerantmultiprocessor system.

Exploiting Petri Nets to support Fault Tree based dependability analysis

BOBBIO, Andrea;FRANCESCHINIS, Giuliana Annamaria;PORTINALE, Luigi
1999-01-01

Abstract

This paper explores the possibility of converting Fault Trees (FT) into the Generalized Stochastic Petri Net (GSPN) formalism. Starting from a slightly modified version of a conversion algorithm already appeared in the literature, the aim of the paper is to exploit the modeling and decision power of GSPN for both the qualitative and the quantitative analysis of the modeled system. The qualitative analysis resorts to structural properties and is based on a T-invariant analysis. In order to alleviate the state space explosion problem deriving from the quantitative analysis, the paper proposes a new formalism for FT, that is referred to as High Level FT (HLFT), in which replicated redundant units are folded and indexed. Starting from the HLFT formalism, a new conversion algorithm is provided that translates a HLFT into a Stochastic Well-formed Net (SWN). The computational saving of using SWN with respect to GSPN is carefully examined considering an example of a fault-tolerantmultiprocessor system.
File in questo prodotto:
File Dimensione Formato  
00796561.pdf

file disponibile solo agli amministratori

Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 197.28 kB
Formato Adobe PDF
197.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/29101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact