We present an extension to Continuous Time Bayesian Networks (CTBN) called Generalized CTBN (GCTBN). The formalism allows one to model continuous time delayed variables (with exponentially distributed transition rates), as well as non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. The usefulness of this kind of model is discussed through an example concerning the reliability of a simple component-based system. The interpretation of GCTBN is proposed in terms of Generalized Stochastic Petri Nets (GSPN); the purpose is twofold: to provide a well-defined semantics for GCTBNin terms of the underlying stochastic process, and to provide an actual mean to perform inference (both prediction and smoothing) on GCTBN.
Generalized Continuous Time Bayesian Networks and their GSPN Semantics
CODETTA RAITERI, Daniele;PORTINALE, Luigi
2010-01-01
Abstract
We present an extension to Continuous Time Bayesian Networks (CTBN) called Generalized CTBN (GCTBN). The formalism allows one to model continuous time delayed variables (with exponentially distributed transition rates), as well as non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. The usefulness of this kind of model is discussed through an example concerning the reliability of a simple component-based system. The interpretation of GCTBN is proposed in terms of Generalized Stochastic Petri Nets (GSPN); the purpose is twofold: to provide a well-defined semantics for GCTBNin terms of the underlying stochastic process, and to provide an actual mean to perform inference (both prediction and smoothing) on GCTBN.File | Dimensione | Formato | |
---|---|---|---|
codetta.pdf
file disponibile solo agli amministratori
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
218.35 kB
Formato
Adobe PDF
|
218.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.