This tutorial covers an introduction to Probabilistic Graphical Models (PGM), such as Bayesian Networks and Markov Random Fields, for reasoning under uncertainty in intelligent systems. Basic terminology, formal concepts, representational and inference issues will be discussed, starting from basic notions about probability theory, in such a way that the novice and the less skilled in the field will be able to follow the details. Further reading and software packages and frameworks will also be discussed

An Introduction to Probabilistic Graphical Models

Luigi Portinale
2024-01-01

Abstract

This tutorial covers an introduction to Probabilistic Graphical Models (PGM), such as Bayesian Networks and Markov Random Fields, for reasoning under uncertainty in intelligent systems. Basic terminology, formal concepts, representational and inference issues will be discussed, starting from basic notions about probability theory, in such a way that the novice and the less skilled in the field will be able to follow the details. Further reading and software packages and frameworks will also be discussed
File in questo prodotto:
File Dimensione Formato  
FLAIRS_37_25Camera_ready.pdf

file disponibile agli utenti autorizzati

Descrizione: paper
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 61.11 kB
Formato Adobe PDF
61.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/179083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact