This paper introduces a unified approach to phase-type approximation in which the discrete and continuous phase-type models form a common model set. The models of this common set are assigned with a non-negative real parameter, the scale factor. The case when the scale factor is strictly positive results in discrete phase-type distributions and the scale factor represents the time elapsed in one step. If the scale factor is 0, the resulting class is the class of continuous phase-type distributions. Applying the above view, it is shown that there is no qualitative difference between the discrete and the continuous phase-type models. Based on this unified view of phase-type models one can choose the best phase-type approximation of a stochastic model by optimizing the scale factor.

The scale factor: A new degree of freedom in Phase Type approximation

BOBBIO, Andrea;
2002-01-01

Abstract

This paper introduces a unified approach to phase-type approximation in which the discrete and continuous phase-type models form a common model set. The models of this common set are assigned with a non-negative real parameter, the scale factor. The case when the scale factor is strictly positive results in discrete phase-type distributions and the scale factor represents the time elapsed in one step. If the scale factor is 0, the resulting class is the class of continuous phase-type distributions. Applying the above view, it is shown that there is no qualitative difference between the discrete and the continuous phase-type models. Based on this unified view of phase-type models one can choose the best phase-type approximation of a stochastic model by optimizing the scale factor.
2002
0769511015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/11386
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact