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"The next great era of awakening of human intellect may well
produce a method of understanding the qualitative content of
equations. Today we cannot. Today we cannot see that the
water flow equations contains such things as the barber pole
structure of turbulence that one sees between rotating
cylinders. Today we cannot see whether Schrodinger’s equation

contains frogs, musical composers, or morality—or whether it
does not. We cannot say whether something beyond it like God

Is needed, or not. And so we can all hold strong opinions

either way.”

Richard Feynman in Volume II, Section 41, page 12 of
"The Feynman Lectures on Physics”, 1964.



Abstract

Dynamical systems in nature such as turbulent atmospheric flows exhibit aregul
space-time fluctuations on different scales as can be readily noticedasual@b-
servation of, for example, a plume emanating from a fire or power-statiomelyim

It is the chaotic nature of turbulence that influences may aspects of our lives, oper
ating at many scales, from the vast to the small. There is a clear aedtefability

to make quantitative predictions. Such predictions are, however, exireiiffedult.

No theory will ever able to predict the exact concentration of a scalar atiauyar
location and time. All theories of turbulence are statistical theoktEnce the sci-
ence of turbulence is largely about making statistical predictions of chaotitetd

of the non-liner partial equations (known as Navier-Stokes equations).

The transport of scalar fields by turbulent flows is a common physical phenomenon.
The quantification of the fluctuations patterns and their influence on the turbulent
mixing of a contaminant for predictability purposes has not yet been achieved. There
are many case in which one is interested in the influence of a turbulent tyeloci
field on the distribution of some scalar quantity, say the distribution of teatye,
smoke, dye or concentration of a contaminant. If the scalar has no dynamic influence
on the flow then it can be referred to as a passive scalar. The scatdivisidthe
dynamics of the advecting velocity field depends on the transported field. That is,
for instance, the case of temperature, affecting the velocity via buoyanoyst

Models of turbulent dispersion often take a Lagrangian form which provides a nat-
ural framework for modelling, for example, dispersion from a point source which is
harder to model with an Eulerian approach. Typically, thousands of model particles
are followed through a given flow field and statistics such as the mean rtoace
tion are calculated from the ensemble of particles. The resolved part ofothe fl
field would, for realistic applications, normally be taken from a numericstiver
prediction model while the unresolved part of the motion is modelled by means of
random increments to the velocity of the particles. These models, which arenknow



as Lagrangian stochastic models (LSMs), can be rigorously formuldtsmirjson
(1987) have been very successful at reproducing observations. | investigate two
different aspects of the scalars fluctuations focused on passive and efti@esge-
spectively. The major aspects that distinguish buoyant and passive dispe&esibata
buoyant fluid particles create their own turbulent field in a turbulent enuient and

the exchange processes should be included in the dynamics. In both the cases, active
and passive, | considered the scalar fluctuations in term of the stdtstogrerties

of particle trajectories, i.e. using LSMs, from which the field charasties, i.e the
Eulerian description, can be readily obtained.

For the case of active scalar fluctuations, | present a hybrid Lagrangian stochas
tic model for buoyant plume rise from an isolated source that includes theseffect
of temperature fluctuations. The model is based on thaiMebster and Thomson
(2002) in that it is a coupling of a classical plume model in a crossflow with stochas
tic differential equations (SDESs) for the vertical velocity and tempeeatwhich are
themselves coupled). The novelty lies in the addition of the latter SDE. The root-
mean-square temperature is assumed to be proportional to the temperatueachffe
between the centreline temperature of the plume and the ambient temperature. The
constant of proportionality is tuned by comparison with equivalent statistoes fr
large-eddy simulations (LES) of buoyant plumes in a uniform crossflow and con-
stant stratification. The scalar concentration computed from the model is ceanpar
with the equivalent LES results and generally compares well both in terms of the
height reached by the plumes and their spread. The exception to this occurs when
the crossflow velocity becomes very weak. The model is extended to allow-for re
alistic profiles of ambient wind and temperature and the results are compahed
LES of the plume that emanated from the explosion and fire at the Buncefield oll
depot in 2005.

For the passive case, the prediction of concentration fluctuations of a diluée trac
is considered. Whereas the evaluation of mean concentration field is codsahere
almost closed matter, concentration fluctuations modelling is still an agement,
especially for models devoted to real turbulence. Modelling concentraticiudiuc
tions is fundamental to a great number of practical applications and play aniakssent
role in a great number of environmental issues, such as prediction of air pollution,
determination of reaction rates in turbulent chemical reactors, astimof odour
threshold and analysis of turbulent combustion. Only a few models are avaable t
calculate at least the second moment, such as direct numerical simul(&¥8s),

large eddy simulation (LES), two particles Lagrangian stochastic models and proba



bility density function (PDF) models. The available models are subject italions

such as applicability only in strongly idealised conditions (e.g. two-pasticied-

els), very elaborate numerical implementation (e.g. PDF models)and expeos-
putation (e.g. DNS), reduction of reliability for small-scale turbule(eg. LES).

A simple and effective method for predicting higher moments of concentration for
stationary release of contaminant is the fluctuating plume model (herein&fé). F

| use an offline approach of a FPM able to evaluate all the higher order moments of
the passive scalars only requiring the knowledge of the first one. In the fluctuationg
plume approach the total plume dispersion can be split into two independent compo-
nents, the meandering barycentre and the relative dispersion. While the megnderi
motion of the plume centroid has to be modelled, the relative dispersion, taking into
account the turbulent mixing and scalar dissipation, can be simply pararadteris
Being independent of the method used to obtain the mean concentration field, this
approach is an ideal offline tool to predict second and higher order concentration
moments. The model adaptability to different kinds of turbulence is shown by com-
paring its results first with analytical predictions present in the liteesfor homoge-
neous turbulence and then with two dispersion experiments in the neutral boundary
layers generated by a water and a wind tunnel simulations respectively.iipkcsi

ity of the numerical algorithm used to calculate the meandering centroid component
makes the model very fast and thus especially suitable for practical ajipfis.
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Introduction

The purpose of thesis is the application and the development of Lagrangian stochas-
tic models (LSMs hereinfater) to investigate active and passiMarsciuctuations

in a turbulent flow both in idealised (homogenous,) and real (inhomogeneous) con-
ditions. In chaptegl, | introduce the mathematical tools used in the statistical de-
scription of turbulence, as mean values, correlation function and spaatcions

in chapterl and the Lagrangian description of turbulence in chaptefhen | in-
troduce a theoretical framework for the turbulence focused on inhomogeneous tur-
bulent flows since they represent the real conditions of the atmosphere. Equations
for velocity and temperature correlations, spectra and structure functecsiasid-

ered in chapteB and sectior3.3 for isotropic turbulence, and in chaptédocally
isotropic turbulence along with the Kolmogorov similarity hyphoteses. In chépte

| describe the Lagrangian modelling and in particular the Lagrangian single particl
model (hereinafter SPM). For phenomena such as the turbulent transport or the ma-
terial surface deformation in a turbulent flow the Lagrangian frameworknsst a
natural choice. The Lagrangian approach consists in following the motion of fixed
fluid particles from a certain initial time. With fluid particle a flidlume whose

linear dimensions are far bigger than the mean distances between the moigcules
meant. In other words a fluid particle is a point of the fluid volume that is moving
inside of it following the equations of fluid mechanics. The Lagrangian description
Is related to individual fluid elements whose summation produces the total tarbule
flow. Typically, thousands of model particles are followed through a given fldd fie
and statistics such as the mean concentration are calculated from dmeaof
particles. The resolved part of the flow field would, for realistic apploretj nor-

mally be taken from a numerical weather prediction model while the unrespbmed

of the motion is modelled by means of random increments to the velocity of the
particles. The most exhaustive work about LSMs is dueltmmson (1987)who
proposed a complete theory for the one-particle dispersion in 3D turbulence based on



Introduction

the concept of Markovian stochastic process. i.e. a process were presentiated

to past and future to present, but past and future are statistically indepelmdigmnsg
frame, the dynamics of a passive tracer particle is described by a couptebést

tic differential equation: the turbulent increments velocity the Langevin eguati
and the Fokker-Planck equation, which determines the Eulerian probability density
function (PDF) of the stochastic process. In particuldrgmson (1987)applies the
well-mixed constraint to determine the drift term in the Langevin equaticm &
prescribed form for the Eulerian two-point velocity PDF. The so called metked
condition is fundamental constraint that a LSM has to sati$tyojnson (1987%)

This constraint physically implies that if the particles are initiallylivweixed they

will remain so during the flow evolution, that the solution of the Fokker- Planck
equation are compatible with the Eulerian equations and that direct and ilierse
fusion are equivalent. In sectidn2 | analise the previous theories in the context of

a rise of a buoyant plume.

In part§ll | discuss the application of Lagragian modelling to the active and pas-
sive scalars | developed. In chap®d present a hybrid Lagrangian stochastic
model for buoyant plume rise. Models of buoyant plumes have a long and suc-
cessful history originating with the work oMorton et al. (1956@)and [Priestley
(1956). These models describe the mean flow of the plume but do not take account
of fluctuations in the velocity and buoyancy of the plume. In most realistic disper
sion models that are used for operational purposes, as the LSMs, the Lagrangian
particles move independently of each other through the flow field. There is then an
inherent difficulty in modelling a coherent process such as buoyant plume rise using
single-particle LSMs: the motion of individual particles or fluid elements depends
on the buoyancy of all the fluid elements. Moreover, there is nothing to constrain
neighbouring model particles to be moving upwards with similar velocitieserdaev
authors have attempted to model buoyant plume rise using a Lagrangian approach
(e.g. Luhar and Britter (1992) [Anfossi et al. 1998 [Weil (1994}, [Heinz and van

Dop (1999), [Alessandrini et al. (2018)[Marro et al. (2014). Here | consider a
hybrid model introduced bwlebster and Thomson (20Q2) which the mean flow

Is calculated from a simple plume model (as will be described in seétirand

the fluctuations are calculated using an LSM/epster and Thomson (20Q02)nly
considered fluctuations in the velocity and not the temperature; here | trediumsth
tuations of the velocity and temperature. As a buoyant plume rises through-a strat
ified environment, its temperature decreases and will eventually equahtbhent
temperature. The momentum of the plume forces the plume to continue rising above
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this level until it is eventually brought to rest by the action of the negative/-buo
ancy forces. Accounting for fluctuations in temperature means that the Lagrangian
particles will experience different levels of neutral buoyancy. | thus guatie that

the final spread of the plume will be greater than that of a plume in the absence of
temperature fluctuations. The stochastic differential equation | considectiorse
6.11s similar to that considered bygn Dop (1992) | compare the results of the
model with the large-eddy simulations (LES) @fdvenish et al. (2010bjn section

6.4. | then apply the model to the case of a buoyant plume in a realistic atmosphere
in section6.5and compare the results with observations.

The prediction of concentration fluctuations in the framework of one-particle La-
grangian stochastic models is an open question. Knowledge of the concentration
fluctuations is often required. This is the case, for example, in olfactoramease

the chemistry of naturally emitted volatile organic compounds (VOC), asxame

ple anthropogenic VOC, ozone and NOx and the modelling of areleases of toxic,
flammable and explosive materials. If the dispersed scalar can be c@usittan-
reactive the methods that account for fluctuations are: the two-particle approach
[Thomson (199Q) the meandering plume approach (e.guhar et al. (200Q)
[Cassiani and Giostra (20Q2)and Lagrangian probability density function trans-
port methods ( e.g(assiani et al (2005B) Among these methods, the two-patrticle
approach seems currently confined to theoretical studies due to the diffignlties
parametrizing, or more generally, providing the necessary two-point coorekdtttis-

tics. The Lagrangian PDF method is more flexible and theoretically allow$éor t
computation of one-point concentration moments of any order. The main shortcom-
ing of this approach, frequently also referred to as the micromixing metbaskjani

et al (20054]) lies in the demand for every grid element to contain a large number of
particles throughout the whole simulation. Recently, very sophisticated new snodel
for concentration fluctuations has been developed. The volumetric particle model
proposed byCassiani (2012)does not consider the presence of particles not pass-
ing through the source and the micromixing is simulated as a change in volume of
the particles originally marked by the source. This approach considerably m@smi

the computational simulation time which is the same as a standard onegh#ticl
grangian dispersion modeKéplan (2013)introduce an additional particle variable,

the conditional average scalar concentration, over the particle’s vejeuita LSM.

In contrast to the particle’s scalar concentration which is conservedptigitional
average scalar concentration evolves in time. Following past suat@ssdelling

the dynamics of concentration variance as a diffusion-advection prodédaspf
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(2014]) calculate the concentration variance by assuming an appropriate distnibuti

of effective variance sources for a given mean concentration field.

Nevertheless, all the mentioned models has to be (even easily and yasiralllta-
neously implemented as an extension to an existing LS model. In ciyajppeesent

a simple and fast offline version of the fluctuating plume model (hereinfater) FPM
that does not require any Lagragian simulations. Hence the model is especially sui
able for pratical application.

The basic idea of a FPM is that absolute dispersion can be divided into two inde-
pendent parts: the meandering motion of the barycentre and the relative diffusion
around it (see section.1l). The meandering plume centroid is usually simulated in

a fixed coordinate system relative to the source; the internal mixing of the plume
i.e. the relative concentration PDF, can be parameterized on aveetatordinate
system around the barycentre as it is evaluated on a local reference framérst
technique providing the basis of a number of modelling studies on higher order con-
centration statistics igjifford (1959)] Gaussian meandering (or fluctuating) plume
model that assumes the fluctuations are produced solely by the meandering of the
ensemble-mean instantaneous plume. This model has been particularly successful
for predictions close to the source where meandering is the primary mechanrism re
sponsible for generating fluctuations, but it ignores the in-plume fluctuations that
dominate the overall fluctuation statistics in the far fieldked et al. (1994)and [Yee

and Wilson (2000)extended ifford (1959) model to include the in-plume fluc-
tuations by specifying them in terms of a Gamma PDF. Their model can very well
simulate the rich structure of concentration statistics observed ohdiedl labora-

tory experiments. Many meandering plume model applications have been esktrict
to neutral, near-neutral or stable flow conditions because of the difficulty of incor-
porating the inhomogeneous and skewed characteristics of the convective boundary
layer or a canopy layer vertical turbulence in the analytical frameworkeofriean-
dering plume approachLiihar et al. (200Q)significantly improved the FPM abil-

ity of describing less-idealized turbulence using a single particle modedi(tadter

SPM) to evaluate the PDF of the plume centroid for a contaminant in the corevecti
boundary layer.fuhar et al. (200Q)evaluated the instantaneous plume meandering
applying a linear relation to the one-particle trajectories. Henceltbkdr et al.
(2000)] model needs the trajectories of the centroids of each instantaneous plume
to compute the high order concentration fieldsanzese (2008eveloped a new
version of FPM where the equations of the centroid are derived from the single part
cle stochastic equations filtering out the turbulent kinetic energy (TKE). This model
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does not require an analytical form for the turbulent velocity PDF, becausedék ac
eration of the centroid is approximated by a simple quadratic functiadaltarini

et al. (2009) extended theHranzese (200Bgpproach, applying the FPM model

to the turbulent flow generated by a simulated candpgsiani and Giostra (2042)
proposed a linear contraction to derive the centroid position PDF from the roaan c
centration field derived from measurements or numerically evaluatethaadelax-

ing the need for Lagrangian modelling. 184ssiani and Giostra (20Q29pproach

the same linear transformation dfyhar et al. (200Q)is applied to a calculation
grid instead of trajectories, causing a compression of the PDF. Aftenleéihg the
centroid PDF, the concentration field is evaluated by parameterizing spherdion

of the cloud relative to its instantaneous centroid. Hence it is necessamp4o
vide an analytical expression for the relative position and concentration Bbds
the relative position variancel(ihar et al. (200Q)parameterize the relative verti-

cal position and concentration PDFs respectively as a skewed disinbalitained

as the linear combination of two reflected Gaussian PDFs and a gammbudistr
tion, whereasHranzese (200Bused a simple reflected Gaussian and a lognormal
distribution. [Cassiani and Giostra (20Q23ssumed that the skewness of the single
particle was equal to the skewness of the barycentre, howBPesiq and de Arel-
lano (2006) showed that this approximation is valid only close to the source when
dispersion is dominated by the meandering, but it is not true elsewhere. Hence they
gave a new expression for the relative skewness in order to improve the igsompa
with the measured data. Both iRranzese (2003and [Luhar et al. (200Q)mod-

els the relative variance is written to be consistent with ineriabe form at small
time and with Tfaylor (1921) limit at large time (in the vertical direction a further
interpolate expansion is considered including boundary reflections). The relative
concentration PDF requires the parameterisation of the relative fluasatten-

sity; the form used byGailis et al. (2007)is the only one dependent on height
and shows the best agreement with experimental data. In the FPM versidn that
propose the centroid PDF is calculated applying hagsiani and Giostra (20Q2)
approach (see sectioh3), choosing each time the input mean field most suitable
for the class of turbulence considered; the relative component is parametasize

in [Lubhar et al. (200Q)although the simple Gaussian relative vertical position PDF
of [Franzese (200B)ncluding multiple reflections at the boundaries is used here,
see sectio.1L The model is first applied in homogeneous and stationary turbulence
focusing the attention on the second moment of concentration; to this end, the model
is compared with the Lagrangian two analytical solutions for concentratioanci
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found by [Thomson (199Q)and [Ferrero and Mortarini (200F)[ Thomson (199Q)
chooses a Gaussian distribution for the relative separation PDF, wiiEegeero and
Mortarini (2005] choose a Richardson PDF more appropriate at very short times.
Then inhomogeneous turbulence is considered: first the model is applied to simulate
the water tunnel experiments of dispersion from a continuous point source in urban
canopy turbulence performed bisilig and Franzese (201&nd then to simulate the

new data-set ofNlironi (2013) and [Nironi et al. (2013) describing the evolution of

a fluctuating pollutant plume within a wind tunnel simulation of a neutral boundary
layer (in sectior?.4). | underline that the FPM introduced here worjs offlice, i.e. has
the capability for evaluating the concentration PDF without a simultaneous LSM,
given only a mean concentration field. The model is independent of the method used
for calculating the mean field. Three different evaluations of the mean $iefshsid-

ered to test the flexibility of the model: a simple SPM in homogenoeus turbulence,
a Gaussian model in the water boundary layer and an experimental data in the wind
tunnel bounday layer.

The dispersion of scalar in a turbulent boundary layer is a very important process
since it is of interest for both urban and agriculturalforest applications. bfdsie
research in this field has been devoted to understanding the behaviour of the mean
concentration of natural and anthropogenic substances. The same can be said for
the atmospheric scalar fields, e.g. the temperature field. In this franbek@iour

of the mean values is relatively well understood while the fluctuating behaviour of
the scalar is an open question especially for the buoyant scalars . The tenetaal
which run through all this thesis is Lagrangian modelling. It is the natural and most
powerful means to describe many interesting atmospheric processes harnldenaid

of such models better strategies for many environmental issues can be ddvelope
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Chapter 1

Mathematical description of turbulence

Both the spatial and temporale dependence of the instantaneous values of the fluid
dynamic fields habe a very compelx and confused nature. Moreover, if turbulent
flow is set up repeatdly under the same conditions, the exact values of these fields
will be different each time. The dependence on time of these fields consists of a
set of fluctations of diverse periods and amplitudes, superimposed upon each other
without any obvious regularity. The distributions of instantaneous values of the fluid
dynamic variables in space have a similar nature; they constitute a disbrekdre

of 3D fluctuations of diverse amplitude, wavelength and orientation. Due to this ex-
treme disorder and the sharp variation in time and space of the fields pf fluid dynam
guantities, in the study of turbulence it is necessary to use some method af-aver
ing which will enable to pass from the initial fluid dynamic fields to smootheregmor
regular mean values of the flow variables. These variables may then Istigated

by means of the usual methods of mathematical analysis.

The question of the definition of mean values is delicate one in the theory of turbu-
lence, and has a long history. In practice to determine the mean valuest ganes

ally use of time and space averaging over some interval of time or region «é gpa
needed. Also a more general space-time averaging of the funftignzs, x3,t) =

f(,t) has to be considered, and it is given by the equation

f(ml,xz,xrsﬂf)://// f(x1=C1, 2a—Co, 23— Ct—7)w(C1, G2, C3, 7)AC1 G 3T
- (1.0.1)



1.1. MEAN VALUES AND CORRELATION FUNCTION.

here the overbar indicates averaging and;, (>, (3) is some weighting nonnegative
function which satisfies the normalisation condition:

Fanmmn=[[[] wa(ga,cg,@m)dcld@dcng (10.2)

If the functionsw is equal td) outside of 4D region and takes a constant value within
it, then1.0.1lis simple average over a given region of space-time. Itis cleaf.tBak

will depend on the form of. Thus1.0.1gives rises to many different mean values
and it is necessary to discover which of these is the best.

1.1 Mean values and correlation function.

The use of time, space or space-time averaging defined by some equations of the
form 1.0.], is very convenient from a practical viewpoints, but leads to a great nuem-
ber of unavoidable difficulties in theoretical calculations. This type of averatasg

the great disadvantage that the question of the form iwfost suitable for the given
problem must be resolved each time before use. Hence it is desiderable yndaheor
turbulence to avoid the use of this type of averaging altogether, and to adopt instead
some other method of defining mean value, a method that has simpler properties and
Is more general. A convenient definiton of this type is found in the probability theory
treatment of the fields of fluid dynamic variables in a turbulent flow as randodsfiel

The basic feature of probability theory approach to the turbulence is the transition
from the consideration of a single turbulent flow to the consideration of a the-stati
tical ensemble of all similar flows created by some set of fixed extearaditions.

For turbulent folw, the effect of small uncontrollable dusturbances in the flow and
In initial condition leads to a situation in which, when an experiment is peréor

two times under the same conditions | shal obtain two different value of the teloci
u(z,t) and the other turbulent variables. If I now fix the external conditions and
repeat the experiemtn may times, then the arithmetic means of the valag@seobt

will be fairly stable. In this case the value about which the mean @ft) oscillates

is called probability mean of velocity and is denoted by the similo@l ¢). Le te me

call p(v/, v”) the probability that.(Z, t) will take the value in the range betweeh
andwu”. Usually this numbep(u’, v”) may be represented as an integral frohto

u” of some non-negative functigr(«) called probability density function (PDF of

u. Therefore the set of all for which p(u) # 0 will give the set of possibile values
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of u(Z,t). | shall call the actual value(,t) observed in one of the experiments
a sample value, or realisation. The fact of the existence of the PDF is sagsetim
expressed as:

P{u < u(Z,t) <u-+du} = p(u)du (1.1.2)

where the symbaP denote the probabilty of the conditions specified in the braces
being satisfied. The probability mean is:

u(r,t) = / up(u)du (1.1.2)
At the same time the probabilty mean of arbitrary functions(@f, ¢) is:
Flu(@ 1)) = / Fu)p(u)du (1.1.3)

Thus | may conclude that from a probabilistic viewpoint the value of velocity at a
point of a turbulent flow is a random variables described by a definite probabilty
distribution.

So far | have discussed only the value of velocity at a fixed pdiahd at a fixed
instantt. However, | may apply a similar approach to the whole field, i.e. to the
functionu(xy, zo, z3,t) Of the four variables. Repeating the experiment several times
under the same initial conditions, | shall obtain a new field every time. Hscel a
may speak of the ensemble of possible field8, t). Morevoer each individual field

is considered as representative chosen at random from this ensemble.

For the fieldu(Z, t) to be random it is necessary that, first, the val(g ¢) = u(M)

of this field at a fixed space-time point = (7, ¢) be a random variable. If | choose
two valuesu; (M;) anduy(Ms) the arithmetic mean of any function of these two
values should be also statistically stable. This means that for the wal(&s) and
us(Ms) there must exist a two-dimensional PDF defined by:

Pluy < ui(M) < uy + duy,us < ug(M) < ug + dus} = pagan, (U1, uz)duidusg

(1.1.4)
Moreover if My, M, ....., My are N arbitrary space-time points there must exist a
corresponding function oV variablespyy, ... sy (u1, -....,uy). This function is the

N-dimensional PDF of the values of té random variables, (/). This function
clearly must be non-negative and such taht the integral of each over ablexiis
equal to unity.

It is natural to assimw that in a turbulent flow also the fields of pressunsjtyeand
temperature will be also random fields. In this case each of this fieldhauk a

10



1.1. MEAN VALUES AND CORRELATION FUNCTION.

correpsonding multidimensional PDF. Moreover the different fluid dynamic fields in

a turbulent flow are statistically interconnected and account must be taaefor

thse fields there also exist a joint PDF of the values of one of the fields at some give
points of space-time, values of a sceond field at given point, values of thuigdiel

This it follows that if | have any function of hte fluid dynamic variables of a tuebiil

flow, i may determine its mean value as the integral of product of this functitm wi

the joint probability densities of all its arguments.

The mean value is understood as the mean taken over all the possible values of the
guantity under discussion. Thus to determine empirically mean values | should need
results of a large number of measurements carried out in a long series ofeepeat
similar experiments. In practice | generally do not have such a series aireeoes

and thus | am obliged to determine the mean from data of a single experiment. Then
normally simplified averaging over space interval or time are used. Tlae theat

the assumption of the existence of PDF does not eliminate by itself the problem of
the validity of using ordinary time or space mean values in the theory of turkmilenc
but only alters the formulation of the problem. Instead of investigating theiape
poroperties of particular methods of averaging, | must now discover how close the
empirical mean values obtained by these methods lie to the probability mkegn va
The position is completely analogous to that in ordinary statistical mechahesew

the theoretical mean over all possible states of the system (the ensegdig Mmay

also be replaced by the directly observed time-mean. | statisticahamcs it is

well known that such a change in generally made of the basis assumption that as
the averaging interval becomes infinetely great, the times means conveingecbr-
responding ensemble mean. In certan special cases, the validity of tinms@EEN

may be proved strictly and in all other cases it is adopted as an additfoghly

likely, hyphotesis, the ergodic hyphotesis. In theory of turbulence the concept of
convergence of time means to the corresponding probability mean is introduced also
as ergodic hyphotesis.

1.1.1 Moments of random variables

Bkl_mkN:ulfl ..... U%V:// u]fl ..... ulf\}vp(ul, ..... sun)duy.....duy  (1.1.5)

11



1.1. MEAN VALUES AND CORRELATION FUNCTION.

wherek, ..., ky are non-negative integers, the sum of which gives the order of the
moments. The moments of first order are the mean values. In addition | often use the
central moment, i.e. the moments of the deviationg0f...., uy from their mean
values:

Oy = (1 — 7)1 (uy — uy)*y (1.1.6)

Opening the brackets in the right sideXbfl.6it is easy to express;, ., in terms
of By, . k.. In particular foN = 1 | have:

by =0
by = By — B}
bs = By — 3B, By + 2B}
by = By — 4B, B3 + 6B; By — 3B} (1.1.7)

The moment, = o2 is called variance of: ando, = /02 os the standard devi-
ation ofu. Similarly the general second central momént= (u; — uy)(us — us)

Is called covariance af; andu,. If u; has some definite dimension, then the corre-
sponding moments (and central moments) will also have the same dimension. How-
ever adimensional ratios as= bf% ands = % are often used and called respectively

b2
skewness and kurtosis. ’ 2
Other combinations pf the moments of special interest are the cumulants that are
obtained by subtracting from the moments a special polynomial in the lower-order
moments. ForV = 1:

S1 =B
Sy = By — B? = by
S3 = B3 — 3B By + 2B} = by
Sy = By — 4B By — 3B3 + 12B} By — 6B} = by — 313 (1.1.8)

1.1.2 Moments of random fields

In the theory of turbulence | am concerned with random fields, i.e. random functions
u(M) of a space-time point/. Thekth order moments of such a field are the mean

12



1.1. MEAN VALUES AND CORRELATION FUNCTION.

values of product of values of the field
By w(My, ...y M) = u(My)...u( My) (1.1.9)

These moments depend of the coordinates of the points at which the values are taken.
However some of the points may coincide with each other; the number of different
points among them defines the type of the moments. In this frame, | shall distinguish
moments of one point, two points, etc, tupes. If the type of the moment is less than
its order, then the corresponding momepiS\/;)|%....[u(My)]*~ will be denoted

by the symbolB,, ... ...(Mi, ..., Mx) where the subscript groups referring to dif-
ferent points of space-time are separated by commas.

The mean values of the products of values of several random fields are called joint
moments of these fields.

When the arguments/,, ..., M, are arbitrary points of space.time | shall call the mo-
ments, space-time moments. Very frequently, in theory of turbuelnce, onaleonsi
only moments in which the values refer to same instant; these are cpded mo-
ments. Sometimes, | deal with time moments, i.e. mean values of prodet xiid
dynamic field at the same point. Hereforth when | speak simply of moments | shall
always mean space moments. In this thesis | shall often be dealing witlatamn
functions, i.e. one-point, two-point, second order moments. For instance two-point
momentB,, (M, Ms) = u(M;)vMs, is called cross-correlation function afand

v. Two-points moments of order greater than two will rpresent correlation fumsti

of some new fields which are products of the original fields; such two-points mo-
ments are called higher-order correlation functions. The corresponding difference
between a moment of ordérand a specially chosen combination of lower order mo-
ments will coincide exactly with the cumulants of the random variables disdusse
subsectiori.1.1 Therefore they are called the cumulants of ordef these fields.

The general concept of a random field was discussed and the main statistieal char
teristic of such fields. i.e. the mean values and the correlation functwoa imtro-
duced. For a full treatment of these functions | refeMmfiin and Yaglom (1979)
However when | consider the finer properties of turbulence, | find that this require
a new mathematical tool, the application of harmonic analysis, i.e. the egpaes

tion of functions by Fourier series or integrals. In application however | fretye
encounter non-periodic function which do not vanish at infinity nd which, strictly
speaking, cannot be represented by Fourier series or integrals. The point is that a
Fourier expansion, or spectral representation, of a special form, and witlara cle
physical interpretation, is possible for any stationary processes and homogeneous
random fields which, by definition, do not vanish at infinity. Again | do not aim to

13
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exaustively present the spectral representation of stationary and homogenlosus fie
in this thesis, and again | refer thpnin and Yaglom (1973 ¥or the full dissertation.

14



Chapter 2

Particle dispersion in a turbulent flow: the
Lagrangian description of turbulence

2.1 Definition of the variables.

In the Eulerian framework the motion of an incompressible fluid is charaetkat
time ¢ by the velocity fieldﬁ()?, t), i.e. by the values of the velocity vector in all
the pointsX = (X1, X», X3). In principle, known the initial conditiom( X, ¢) =
i(X,0)X), it is possible to determine the Eulerian variabl&sX, ¢) at each time

t > to. Nevertheless it is not suitable to use Eulerian variable to describe phaaome
as the turbulent transport or the material surface deformation in a turbuentHor
such phenomena the Lagrangian framework is almost a natural choice.

The Lagrangian approach consists in following the motion of fixed fluid particles
from a certain initial time t0. With fluid particle a fluid volume whose hneli-
mensions are far bigger than the mean distances between the molecules isilmeant
other words a fluid particle is a point of the fluid volume that is moving inside of it
following the equations of fluid mechanics. The Lagrangian description is related t
individual fluid elements whose summation produces the total turbulent flow.

In a Lagrangian framework for an incompressible flow the funciion: (@, t) which

for each time gives the coordinat& of every fluid particle, is identified by the value

of the parametefr. The equations of fluid dynamics allow to determine the values
of X = (&,t) for everyt > t, in terms of the fluid particles initial velocity values

15
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- =

V(X 1) = oV(Z,1)

pr (2.1.1)

t=to
The relation between Eulerian and Lagrangian variables is given by the exjoressi

X (Z,1)

= [X'(:z, t),t} (2.1.2)

The initial values of the spacial coordinat&sat timet = ¢, will be used as the fluid
particle Lagrangian parametelis,f()? ,10)-

In this description the two variable functidﬁ(f, t) describes a family of fluid parti-
cles trajectories that at tinte= t, are in all the possible pointsof the volume of the
fluid. Thus the Lagrangian framework consists in assigning a family of trajestori
that differs one from the other for the valueidaind wher¢ is the parameter.

9X(@,t) _ - [X’(f’ t),t} (2.1.3)

2.2 Statistics of the motion of a fluid particle.

A general method, suggested i§ojmogorov (1941), to obtain the statistics of the
motion of a fluid particle is based on changing the reference frame passing from
a fixed inertial set of coordinates) to a moving inertial reference framte whose
velocity (different for each realization) i8(,t,) and whose origin at = t; is

in 7. The coordinates’®) and the velocityy’ () in the new set are connected to
the coordinater and to the velocityii in the old frameS, by the following simple
relations:

— —

YO = X — 7 — @&, t)7V® = @ — @(z, t) (2.2.1)

with 7 = ¢t — t;.In the setS the macroscopical effects due (for example) to the
mean wind or to large scale factors do not exist, but only small scale phenomena
due to turbulence are considered,drnit is always possible to consider the field as
locally isotropic. The small scale properties of turbulence are studied thrtwagh t
relative motion of a single particle in small region of space and in shod tanges.
Moreover these are not correlated to the absolute motion of the fluid thatmymai

16



2.2. STATISTICS OF THE MOTION OF A FLUID PARTICLE.

determined by large scale perturbations. Let consider a fluid particle thvaisléa
at timet, and reache¥ ®)(r) = X — & — @(Z, t)7 at the timet, + 7 and has the
velocity V) (1) = V(Z,t, + 1) — (T, t) = AV,

In the S reference frame it is always possible considering, at least locally,alte fi
as isotropic and then tha,V statistics has to obey to the Kolmogorov similarity
hypothesis (Monin and Yaglom (1979). Thus the motion of the fluid particle has
an universal form governed by the parameterthe dissipation of kinetic energy,
andv, the fluid viscosity, (this is true only for time < T, with 7" : 0 large enough,
and for Re > Re..iticat WhereRe is the Reynolds number) and and it is possile to
write [Monin and Yaglom (197%)

(VEO(r)VE) (7)) = DM (7)d; (2.2.2)
and considering that (*)(r) = [ V) (7)dr:
Y)Y ®;(r) = / / (VO )V (ra)ydrdrs = 6 / ' DE(r')dr’
P " (2.2.3)

whereD* (7) is the Lagrangian velocity structure function. According to Kolmogorov
hypotheses (se& 1.2 and remembering that the Kolmogorov microscajes, and

T, for 7 < T}, simply are:
3\ 1/4
_ (’/_) (2.2.4)

€

vy = (ve)'/* (2.2.5)
7, = (%) v (2.2.6)

2.2.2can be expressed as:
DE(r) = v,ﬁﬁ(%) < T (2.2.7)

In the inertial subrange;, < 7 < Tj, equatior2.2.7becomes:
DY (1) = Cyer T L1 LT (2.2.8)

with Cj universal constant. In the inertial subrange the Lagrangian velocity structure
function is linear inr. Substituting equatio.2.8inside equatior?.2.6the inertial

range behaviour for the particle position is obtaineMofin and Yaglom (1973):
1

(YO (r)Y® (1)) = 500673513‘ (2.2.9)
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2.3 Spatial velocity difference statistics.

Let consider the statistics of the velocity difference between the pantdr + 7 at
timet:
Al = u(T + 7, t) — u(Z,t) (2.3.1)

For sufficiently smalf the PDF ofA,.« can be considered as homogeneous, isotropic
and stationary, furthermore, for locally homogeneous turbulef¢g,= 0 and the
second order moment tensor can be expressed in all the quasi-equilibrium range
through two scalar functions: the longitudinal structure functibng (), and the
lateral structure function) y (r):

o DLL(T) — DNN(T)

Dij(T, t) = 2 T+ DNN(T)(Sij (2.3.2)

These two structure functions can be defined as:

Dro(r) = (Ayur)? (2.3.3)

Dyn(r) = (Ayuy)? (2.3.4)

and are related (as a consequence of the continuity equation) by the formula:

dD
Dyn(r) = Drp(r) + rdDen(r) (2.3.5)
2 dr
Following the first Kolmogorov hypothesis:

2 T
DLL(T’) = UT} 5LL 5 (236)

r
DNN(T’) = UT]Q/BNN (;) (237)

In a small region of diameter < n friction will play a dominant role in the system
dynamics and the velocity components will only have a slight dependence on the
spatial coordinates. In this limit it is possible to expan@ + ) in Taylor series,

lLe. up(Z 4+ 7) = up () + Vug - 7+ ..., to obtain the following behaviour of the
structure functions (Nlonin and Yaglom (1979):

Drr(r) = Ar?, Dyn(r)y = A'r? r <y (2.3.8)

18
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with A and A" are non-dimensional constants. On the contrary in the inertial sub-
range, < r < L, the second Kolmogorov similarity hypothesis ensures that equa-
tions .3.7and2.3.7) do not depend on:

Dri(r) = CEPr2 Dyn(r) = C'é3r%3  n<r< L (2.3.9)

Here the statistics of particle pairs are not treated and | reféviemin and Yaglom
(1975] for their description.

2.4 Concentration fluctuations statistics.

Consider parcels of a passive contaminants released in a turbulent floine &1t
sence of molecular diffusion the parcel concentration is conserved. Hencestnegle
ing dissipation, the mean concentration of a passive contaminant observed in any
point of the flow can be evaluated integrating the concentration assigned tpaach
ticle at the source times the particle probability of reaching the observaton
([Monin and Yaglom (1973):

:// Py (z,t)2,t) S (2, t') d2'dt, (2.4.1)

whereS (2, t') is the source distribution, and (z,t|2’, ') is the probability density
function that a particle starting from positiahat timet’ reaches position at time
t. For the concentration covariance an analogous expression can be found:

C(z1,t1)C (29, t2) /// / Py (21, 29,t,t|21, 25,17,
(21,21)C (22, t2 s (21, 22, 1, |21, 25, 1), 1) (2.4.2)

S(z1,17)S (25, ty)dzydzydt) dt),

whereP, (z1, 2o, t, t|21, 25, 1], ) is the two-particle PDF that depends on the simul-
tanoeus motion of the particle pavpnin and Yaglom (1973) For equation2.4.1
and2.4.2to be consistent it is necessary that:

Pie, 12 1)) = / / Py(r. oot bt )debdt,  (2.4.3)

and

// Pi(z,t|2, tddt' =1 (2.4.4)
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2.4. CONCENTRATION FLUCTUATIONS STATISTICS.

Equation2.4.3ensures that integrating the two-particle PDF on all the possible po-
sition of the second patrticle the single particle PDF is obtained.

| am now interested in dividing the inertial contributes to the dynamics fromithe
cous one. It is useful to consider an inner region with eddies of the Kolmogorov
lenghtscale) size and an outer region with eddies of the inertial range size or larger.
If the separation between two particles,= |z1z2|, is larger thamny, then P2 is
mainly determined by the outer region dynamics, i.e. by eddies larger than the inte
gral lenght scald.. In order to define the concentration varianCé(z, t), | have to
evaluate théim.; .o_,. of equation2.4.2but this limit is discontinous. As a matter

of fact|z1z2| — 0 in the inner region mean'élnz—2| — 0, in the outer region means

2122

7— — 0, but the separation behaves in different ways in these two limits and so
a distinction has to be made. In realistic situations the smearing by mateilon
or finite measurement probe size make the definitiofi“gt, ¢) in terms of the outer
limit more appropriate. It is then possible to define the concentration varaece
aging the concentracion covariance. This definition links the theoretical on¢heith
instrumental smoothing:

EEWI_Z//‘/C(Zl)C(ZQ)d21d22:
v [ [ ][ mals sehsdntiah~ @as)
— 00 v,

~ // lim  Py(21, 20|21, 25)S(21)S(25)dz1dz)
—00 |21722‘/L*>O

where for simplicity the time dependence was dropped. The last step in equation

2.4.5assumes that the limit in the outer region is a good approximation of the inner

region averaging process. Thus the concentration variance can be defined as:

@:// Py(z|2], 259)S(21)S (25)d2 dz (2.4.6)

Equation2.4.6takes into account the effects of diffusion even if it has been derived
for a passive scalare with null diffusivity. The results obtained in thistloan

be extended to fluid particles whose molecular diffusivity has a finite value. The
following hypotheses have been assumed:

i) a volumeV, tale cheL >V, exists;

ii) diffusion makes(C'(z)C'(z + A)) less peaked nedk = 0;

i) the Peclet numberRe = % determines the importance of inertial terms in
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2.4. CONCENTRATION FLUCTUATIONS STATISTICS.

respect to the molecular diffusivity) is large; if this is not truean not be neglected;
Iv) the Schmidt numberyc = % = Z)is O(1), only if this constraint is satisfied
viscosity does not prevail on diffusivity and the ii) can be true, in other words this
hypothesis ensures that the voluigis larger than the peak width.
the peak width. If the diffusivity smearing process were ignored, the concemtrati
variance would be defined in the inner limit, where:

Em PQ(Zl, ZQ’Z{, Zé) = P1(21|Zi>5(21 - Zé) (247)

50
that states that if two particles are coincident they have the same PDF.tAdwus
concentration variance can be defined as:

C? = / Pi(2]2")S*()d? (2.4.8)
Equation2.4.8does not include turbulent mixing processes associated with relative
dispersion, while equatio?.4.6does. Purbin (1980) showed that:

c2<C? (2.4.9)

as long as equatioh.4.8correponds to neglect the interaction between the particles
and to evaluate the concentration fluctuations considering the motion of two indipen-
dent particles, the inequali.4.9states that the correlation between the particles re-
duces the concentration fluctuations. In the study of turbulence through Lagrangian
stochastic particle models the interest is focused on the inertial range wikeosity

and molecular diffusivity can be neglected. In the atmosphere the turbulent fluxes
are characterized by large Reynolds and Peclet numbers that ensure that the mea
concentration field is not influenced loyand x (unless very close to the source),
nevertheless this can not be exetend to the concentration fluctuations. Cargsideri
the motion of two patrticles in a turbulent flow whose Reynolds and Peclet number are
large it is evident that, when the particle are far enough one from the other, naslecul
diffusion is negligible compared with the turbulent effects and their moti@oms-
pletely uncorrelated, moreover, since viscosity acts only at the snaddlss@even the
viscous effects can be ignored. Nevertheless if the separati@tween the parti-

cles isO(n) molecular diffusion and viscosity have to be taken into account (if two
particles are coincident they can be divided only by molecular effects). Fdrathe
grangian modeling theory it is necessary that the separation between tietegart

a pair is larger than the Kolmogorov microscalén other words-/n must not tend

to zero. In the previous section it has been noticed thdt & 7 the time necessary
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2.4. CONCENTRATION FLUCTUATIONS STATISTICS.

to the two-particle separation to lie in the inertial subrange is infinitgjgb@s can

not separate. If the initial separation is in the dissipative subrange matemnd vis-

cous forces prevent the particles to separate and to be subjected to tiad fioers.

On the contrary in the inertial rang®?(t) et and then, even in the limih — 0

(A/L — 0) et — 0, the eddies can disperse the particles. In order to be able to use
Lagrangian modeling to describe the joint motion of particle pairs it is negetsar
find the minimum distance and the shorter timdgndt,, for which diffusivity and
viscosity can be neglected, it is necessary to find a limit in which thisies This

can be achieved by making the Reynolds number tend to infinity while keeping con-
stant the Schmidt number (hypothesis iv) and then ensuring-tisaalways larger
thann ( [Durbin (1980)):

Re — oo
(2.4.10)
ScO(1)
or, equivalently,
0
S (2.4.11)
ScO(1)
amd
A—0
A 2.4.12

If costraints2.4.11and2.4.12are satisfied the separation between the particles
lies in the inertial subrange. It is worth noticing that definitihd.6continues being
valid under these assumptionBurbin (1980). Hence, even dealing with passive
scalar with null diffusivity, the results can be extended to real moleauitsfinite
. The theory here presented is not valid in the nearby of the source, for ditance less
thand or for time shorther that,.
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Chapter 3

|sotropic turbulence

3.1 Equations for velocity correlations and spectra.

Turbulence is said to be homogeneous if all the fluid dynamic fields form homo-
geneous random fields. It is referred to be isotropic if all the fluid dynamic fields
form isotropic random fields. In this chapter | shall be concerned with isotropic
turbulence. No real turbulence can be exactly isotropic, but it is a maticainde-
alisation which is convenient only for the approximate descriptiomn of ceftpes

of flow.

Let me now derive the basic dynamic equations for the correlation functions of isop-
tropic turbulence. The mean valugz,t) should be zero in isotropic turbulence
(see Monin and Yaglom (1973), hence the velocity is the same as velocity fluctu-
ations, and the correlation tensBy; (7, t) = w;(Z, t)u;(Z + 7, t) should be the form:

T’Z'T'j
2

Byj(7t) = [Brr(7t) — Byn(T,t) =]—5 + Byn (7, 1)dy; (3.1.1)

,
whereBy (7, t) = ur(Z, t)ur (¥ + 7,t) and Byn (7, t) = un(Z, t)uy( +7,t). In
view of the continuity equation the functioty ; and B are related by:

Z@BLL(’I“, t)
2 or
The last formula shows that the tendey;(r,¢) is completely determined by a sin-

gle scalarr function of the two argumentandt¢. Morevoer, Monin and Yaglom
(1975]), it follows from continuity equation that in isotropic turbulence the velocity

BNN(T, t) = BLL(T, t) + (3.1.2)
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3.1. EQUATIONS FOR VELOCITY CORRELATIONS AND SPECTRA.

fields in uncorrelated with any scalar low variable, e.eg. the pre$igioie:

Byi(r,t) = By (r, t)% ) (3.1.3)

This relation is the simplest relation of the theory of isotropic turbulencehwtan

be verified experimentally.

let me now consider the dynamic equation 8y (+,¢). To find %BZ-J-(F,t | must
write down the Navier-Stokes equation for théh velocity component at the point
7 and thej-th velocity component at the poifit+ 7 = 2/, and multiply the first of
them by'; and the second fou;. | then add both equations together and take an
average Finally, the homogeneous turbuleﬁeeandfmc@ax’k can be replaced by

—-9_ and fracddr;,. This procedure leads to the basic dynamic equation realting the
second and the third velocity moments in homgeneous turbulence. Now | introduce
the assumption of isotropic turbulence. In that case the functippand 5;, must

be identically vanish and the tensor of second and third order can be expressed in
terms of B, and By 1, (the significance of3;; ; is clear from the notation). If |
substitutethe corresponding expressions in the equation obtained from the Navier-
Stokes equation | get the following equation that was first derived by von Karma
and Howarth (1938):

8BLL(7", t) (9
ot or

8BLL(7", t)

4
+ ) |:BLLL(7° t) + 2v o

(3.1.4)
The von Karman-Howarth equation plays a basic part in isoptropic turbulence.
In addition to3.1.4there is also an equation relating the spectral functioh, ¢)
(or the spectral energly(k, t) = 4rk*F(k, t)) with the third-order spectral function
F(k,t) which defines the Fourier transform of the tenspy;.. Hence the following
equation is merely a new form 8f1.4

OF (k. 1)
ot

This is the required spectral form of the von Karman-Howarth equation andlokescr
the time variation of the wave numbeérdistribution of turbulent energy. It has a
simple physical interpretation which is important for understanding the mechanis
of turbulent mixing as widely discussed iklfpnin and Yaglom (1979)

= 2kIy(k,t) — 2Uk*F (K, 1) (3.1.5)
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3.2. CORRELATIONS AND SPECTRA CONTAINING THE TEMPERATURE.

3.2 Correlations and spectra containing the temperature.

| consider isotropic turbulence in a temperature inhomogeneous fluid. In this case
also the temperature fluctuations form a homogeneous and isotropic random field.
Subject to the usual assumption than the velogity, ¢) is small in compariosn with

the sound velocity and the temperature changes are small in comparison with the
mean absolute temperature, | can assume that the dendity molecular viscosity

v = np and the temperature diffusivity = x./c,p can be regarded as constants. |
shall also adopt that that radiative heat transfer and the heating of the medium due
the kinetic energy dissipation can be neglected. The temperature fluctuations

will then satisfy the usual thermal conduction equation

oY o
E + Uaa—xa = XA19 (321)

which is precisely the same as a diffusion equation for a passive admixttire wi
molecular diffusion coefficieny. | note that, in the termal equatiéi2.1, | can in-
terprety as the deviation of temperature (or concentration) at given point from the
constant mean valué. Below | shall start with equatioB.2.1so that all the sub-
sequent discussion will be valid both for temperature and concentration of agassi

admixture. Multiplying equatio.2.1for the pointZz by ' = ¥ (5’) and the same

equation for the point’ by ¢ = ¢ (7), and adding the two term by term, | find after
taking average that in case of homogeneous turbulence
OByy(T,t) 0O 0?Byy (T, 1)

@t B 87}; [Bkﬁ’ﬁ(n t) B Bkﬁ’ﬁ(_r’ t)] + 2X 87%87%

(3.2.2)

where | consider) = 0, ¢ = ¢ andByy = Byy = [(9(Z) — ) () —V)]. |
shall adopt this convention henceforth. If the turbulence is isotropic, Bhefr) =
Byy(r) wherer = |r] and By 4(7,t) = Brgyg(r)™. In this case the equatidh2.2
assumes the form

331919(77, t) o 5’ 2 831%9 (T’, t)
T =2 E + ; BL19,19(T7 t) + XT (323)

The equatior.2.3 which plays the role of the von Karman-Howarth equation for
the temperaure field, was first established by Corrsin (1951). As in case wbrthe
Karman-Howarth equation, the Corrsin equati.3relates two unkown functions
Byyg(r,t) and By gy (r, t). Equation3.2.3can be transformed to a form containing the
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3.2. CORRELATIONS AND SPECTRA CONTAINING THE TEMPERATURE.

temperature spectrutiy, (k, t) (or the functionEyy(k,t) = EW(k,t) = Fyy(k,t))
and the functionf'.y (k, t) given by
k"

Fioa(k) = iFpoo(k) 7 (3.2.4)

where Fjy (k) is the Fourier transform of thr vectdg;y 4(7). In fact, if | take the
3D Fourier transform of all the terms $12.31 obtain

OF99(k,t) B} ) )
% = iKj | Fjoo(k,t) = Fjoo(—=k,t) — 2xk* Fya(k, t)} (3.2.5)
By 3.2.4 the last equation can be rewritten as
Fyyp(k,t
%&7) = Tyg(k, t) = 2xk* Fyo (K, t) (3.2.6)
Lyo(k,t) = —2kFLy9(k, )
or
E
%ik,t) = Tyo(k,t) = 2xk" Epo (k. 1) (3.2.7)

Tyy(k,t) = =87k Frgo(k,t)

where the term$yy(k,¢) and Tyy(k,t) represent the turbulent mixing. Equation
3.2.6(or 3.2.7) is the required spectral form &2.3 Equation3.2.7describes the
time variation of the wave-number distribution of the temperature fluctuatiens
tensity 92 = Byy(0), which is the natural measure of the inhomogenenity of the
temperature field)(z). This inhomogenenity measure will vary only under the ac-
tion of the thermal conduction which leads to an equation for the temperature field.
Turbulent mixing of the fluid which is producted by the velocity fi@ld?) will then

play a very important role: it will lead to a random approaches of particldswery
different temperature, i.e. it will produce large temperature gradientstigg in a
rapid enhancement of heat transfer due to the molecular thermal conduction. If | re-
formulate these physical ideas in terms of the spectrum language, this \aiil that
turbulent mixing (described by the terfyy(k, t) in 3.2.7) will give rise to a redistri-
bution of the temperature field disturbances over the wave number spectrunty,name
it will lead to a conversion of the intensitiés, (k) for small values of into the val-

ues of Ey, (k) for largek, without any effect of total intensity,~ Eyy(k)dk = V"2,

It is clear that the functioffyyy (k) shoud satisty the equation

/OO Tyg(k)dk = 0 (3.2.8)
0
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3.3. THE SIMPLEST CONSEQUENCES OF THE CORRELATION AND SPECTRAL
EQUATIONS.

In fact, using3.2.41 can readily show that the left-hand side &2.8is equal to

NG N2 (T . . .
()25 = 297D which vanishes beacause the turbulence is homogeneous.

Therefore, by integrating.2.7with respect td: | obtain

992 9 [ ®
= Eyg(k)dk = 2x k* Eyy(k)dk (3.2.9)
ot ot 0 0

as expected.

3.3 The simplest consequences of the correlation and spectral
equations.

In this section | analise some simple consequences of the s@&#oim particular |
focus on scalar fields, and especially on the temperaure field. In fact, thdddge

of the beahaviour of the temeprature field is needed in the LSM for buoyant plume
rise | shall present in chaptér The corresponding dissertation about velocity can
be found in Monin and Yaglom (1979)

3.3.1 Balance equation for energy and temperature fluctuations intensity

The equation for the correlation and spectral functions discussed in the s@&ion
involve functions of two variables, (or k) andt. These equations lead to a number
of predictions about the numerical values of parameters describing the turbuéence a
a whole, i.e. parameters independent @ndk. To obtain these results it is sulffi-
cient to expand some equations of sectto?.], and then equate the corresponding
coefficients on either side of the resulting equation. In particular, if | usexhe
pansion of the correlation function into a Taylor series in power, @fr the spectra
into a Taylor series in power d&f, | can obtain relations which have a clear physical
interpretation and therefore deserve special consideration. | now derive com
sequences from the Corrsin equati®@.3for the temperature correlation function.
Substitutingr = 0 into this equation, | obtain

d? 1292
i 6xBjy(0) = — !

(3.3.1)
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3.3. THE SIMPLEST CONSEQUENCES OF THE CORRELATION AND SPECTRAL
EQUATIONS.

where\? = _#2(0) Is the temperature microscale introduced by Corrsin (1951). As

usual | assumed that = 0 whered is the temperature fluctuation. The length scale
Ay can also ne determined from the formula

1 2 /00\° 2 /00\°
A_§:§<%> -2 <E) (3.3.2)

Equation3.3.1describes the rate of decrease of the mean square of temperature fluc-
tuations (the intensity of temperature fluctuations, or ther measure of the teomeer
inhomogenenity) due to the thermal conductivity. Expanding all the terr8s2i3

in series in powers of?, and equating the coefficients of on either side (multi-

plied by —3) | obtain the following equation for the rate of change of mean square
temperature gradient:

3d
—5&351@(0) = —5B1.4(0) — 5xBjy (0) (3.3.3)
The last term on the right-hand side is always negative. It decribes the seandhe
mean square temperature gradient due to molecular thermal diffusivity. Titerfins
of the right-hand side is always, since it describes the increase in the teomeer

gradient due to the inertial approach of fluid particles with very differenpterature.

3.3.2 Corrsin integrals.

The ordinary differential equation, which is obtained by expanding the partial differ-
ential equaior8.2.3in power series, describes the time variation of local character-
istic of isotropic turbulence at a fixed point in the flow. An equivalent equatam c
also be obtained by multiplying all teh term of spectral equaB@6by the corre-
sponding power ok and integrating over all values &f If, however, | expand all

the terms 0f3.2.6in a Taylor series ok, and equate the corresponding coefficients
on the right and left-hand sides, | obtain equations which have a completely differ
ent character. These new equations relate quantities characterizing theobelo&vi
spectral densities near the point= 0, i.e. they govern the asymptotic behaviour
of the longest wavelength components of the flow variables. Such quantities are
the integral characteristics of turbulence, and depend on the values of thiacorre
tion function for all the values of between zero and infinity. The corresponding
relations cannot, of course, be verified on the basis of measurements or anykether e
perimental data. The fact that any real turbulence can be regarded apisainly
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3.3. THE SIMPLEST CONSEQUENCES OF THE CORRELATION AND SPECTRAL
EQUATIONS.

in a finite region plays a decisive role in this context. Nevertheless, thastic
relations governing the behaviour of the spectral functions at low wave numbers are
interesting from the theoretical viewpoint. Assuming that the functigpsk) and

Fry (k) can be expanded in Taylor series in the neighborhood of the pain®, |

obtain from equatio’.2.6

df”

e 0= féﬁ) = const (3.3.4)
df
Y

where f,(f?) andg,(f) are the coefficient of” in the expansions dfyy (k) andFry 4 (k).
The first of these equations has the form of a conservation law and can be rewritten
in the form

/ r?Byy(r)dr = K = const (3.3.5)
0

This result can be simply obtained fra8m2.3 The quantityK” is sometimes called
Corrsin integral Let me multiply all the term ir8.2.3by 72, integrate the resulting
equation between = 0 andr = R and then letR tend to infinity. Assuming that
the integral3.3.5converges, i.eByy(r) tends ta) more rapidly than—3 asr — oo,

| obtain

/ r*Byy(r)dr = lim R — 00 [2R*Bry 9(R)] (3.3.6)
0

Hence it is clear that the conservation [&88.5will be valid provided only that the
integral on the left-hand side of this equation converges, and the funBiign(r)
tend to zero more rapidly than? asr — oc.
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Chapter 4

Locally isotropic turbulence.

4.1 General description of small-scale turbulence at large Rewlds
numbers.

4.1.1 Definition of locally isotropic turbulence.

Consider a small space-time region and a given central pgint,) in this region. |
can then define a moving inertial set of coordinates travelling with a consthoaity
u(z, o) relative to the fixed (or absolute) set such that at et its origin lies at

the pointz. Transition to this set of coordinates means that the usual coordinates
and timet can be replaced by’ — xy — u(xp, to)(t — to) andr = t — ty. The first of
these quantities clearly depends @y, ty) and is hence randomi(zy, to) is now
replaced by the relative velocity(, 7) = u(Z,t) — u(xp, tp). | can now formulate
the following basic defintion:

A given turbulence in a space-time regiéhis called locally isotropic if, for any
fixed valuei(zy, ty) = up, the multidimensional probability distribution for each
finite set of relative velocity(r;, 7.), k = 1, ..., n, which consists of the values of the
velocity(Z, t) at then + 1 points(zg, tg), ...., (45, t,) of G, IS

1) independent ofi;

ii) stationary (independent df, in G);

lilhomogeneous (independentgfin G);

Iv) isotropic (i.e. invariant under rotations and reflections in the space of vec¢jors
The turbulence with sufficiently large Reynolds number is always locally isotropic
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4.1. GENERAL DESCRIPTION OF SMALL-SCALE TURBULENCE AT LARGE REYNOL®
NUMBERS.

in any region whose linear dimension are less thaand whose time intervals are
less tharil;, = L/U. In other words, if | restrict the attention to vectofsand time
intervalst, such thatr, < L and7,. < Ty, then for Re > Re., the probability
distribution for any finite set of;(r;, 7) can be expected to be independetiphs
well as stationary, homgeneous and isotropic.

4.1.2 The Kolmogorov similarity hyphoteses.

| now explicitly define the IKolmogorov (1941) hyphoteses. Kolmogorov wrote
them for a probability distribution av space-time point&z, t), whereas to my pur-
poses it is sufficient to define them in space redifhaat fixed timet. | consider a
regionG within a turbulent flux and?®, (V... #(") are a set of pointsity. | define
now a new set of coordinates and the velocity differences as:

j=a—7" (4.1.1)

3(7) = Uz, t) — U@, t) (4.1.2)

and fy is the multidimensional PDF af at theN pointsg(?, ¢(V,... 7.

Definition of local homogeneity The turbulence is locally homogeneousaGh if

for each fixedV andy™ with n = 1, ..., N multidimensional PDFy is independent
of 7% and of U (7, ¢).

Definition of local isotropy. The turbulence is locally isotropic if¥, if it is locally
homogeneous and the PD is invariant under all rotations and translations of the
set of points.

Local isotropy hyphotesisWithin any turbulent flux with Re sufficiently high, the
turbulence is, in good approximation, locally isotropicifis sufficiently small (i.e.
Vn|y"| < L) and not in proximity of the bundaries of the flux or of the singularity.
First hypothesis of similarity For locally isoptropic turbulence, the PDFy is
uniquely determined by the viscosityand by the TKE dissipatioa

Second hypothesis of similaritylf the modulus of the vectorg™ and of their dif-
ferencey™ — y" (m # n) are large in respect to theKolmogorov scale, then the
PDF fy is uniquely determined by the TKE dissipatioand does not depend onthe
viscosityv. | notice that the hyphoteses refer to the velocity differences. The use of
the new set of coordinates allows to apply these hyphoteses to any turbulent flux.
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4.2. LOCAL STRUCTURE OF THE TEMPERATURE FIELD FOR HIGH REYNOLDS AND
PECLET NUMBERS.

4.2 Local structure of the temperature field for high Reynolds
and Peclet numbers.

| now consider isotropic turbulence in a velocity and temperature inhomogeneous
fluid. In this case also the temperature fluctuations form a homogeneous ans isotropic
random field. Subject to the usual assumption than the velagityt) is small in
comparison with the sound velocity and the temperature changes are small-in com
parison with the mean absolute temperature, | can assume that the dertbigy
molecular viscositys = np and the temperature diffusivity = x./c,p can be re-
garded as constants. | shall also adopt that that radiative heat transtaedmehting

of the medium due to the kinetic energy dissipation can be neglected. The tempera-
ture fluctuations’ (', t) will then satisfy the usual thermal conduction equation

00,
ot “Or,

which is precisely the same as a diffusion equation for a passive admixttire wi
molecular diffusion coefficieny. Below | shall start with equatioa.2.1so that all

the subsequent discussion will be valid both for temperature and concentration of
a passive admixture. | consider the structure of the concentrationéfi€ld) for

a dinamically passive admixture, mixed by locally isotropic turbulencéall sup-

pose thad(Z, t) is the temperature transported by the wandering fluid particles and it
has not appreciable effect on the turbulence. In other words, | shall considei force
convection in temperature-inhomogeneous fluids in the presence of developed tur-
bulence of dynamic origin. The similarity hypotheses are based on physical ideas
indicating that, for sufficiently high Reynolds numbers, the statistical sfateloc-

ity fluctuations in each sufficiently small space-time region is isotrepid quasi-
stationary, and it is completely defined by the parametaardv. It is natural to
expect that the temperature fluctuations due to the mixing of portions of fluid with
different initial temperatures will then be isotropic and stationary ialsspace-time
regions. Consequently the scalar fiéld’, ) can be regarded as locally isotropic.
However there is no reason to suppose that its statistical paramétdepand only

one andv. In fact, the evolution of temperature is described by the heat transfer
equation containing the molecular temperature diffusiyity x./c,p. Therefore it

is clear that the value of may affect the local structure of the scalar fiéld’, ¢).

This effect cannot be neglected: in the case of intensive turbulent mixing, malecula
thermal conductivity plays an important role, since the turbulent motion maydead

= YAV
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4.2. LOCAL STRUCTURE OF THE TEMPERATURE FIELD FOR HIGH REYNOLDS AND
PECLET NUMBERS.

approach of fluid volumes with very different temperatures, i.e. to a iapréase of
temperature gradients. However | must augnzemtandy by one further quantity

to obtain the complete set of parameters defining the statisitcal stateatifscale
temperature fluctuations. | shall now define this quantity. When | investibate
local structure of the velocity field(z, ¢) | assumed thakRe = LAUv (whereAU

is a tipical velocity difference over a distan€g¢ was sufficiently large, and consid-
ered the cascade process of fragmentation of macrostructural inhomogenédnities.
was noted that, of all the quantities characterizing large-scale turbul@mns, the

only one which affects sufficiently small disturbances is the rate of enemggfar

from large-scale to small-scale motions. This finally results in camerinto heat
through molecular viscosity. The temperature field can be considered in the same
way. | must, however, assume that both the Reynolds numbeand the Peclet
numberPe = LyAyU/x are large, wherd.y is the length over which there is an
appreciable change in the mean temperatlir@, andA,U is a typical change in

the mean velocity over the distandg (for Ly > L, | can replacelLy and AyU

with L andAU). The cascade quantity fragmentation of velocity-field disturbances
will also lead ti the fragmentation of macrostructural temperature inhonetes of
scaleL, into smaller-scale disturbances of the fiéld’, ¢). the typical temperature
fluctuation?’ = ¥ — 9 will therefore be a measure of the degree of inhomogene-
ity of the temperature field in such regions. Following Obukhov it is conveni@ent
take the quantityd = %p Iy ¥2d7 as a measure of the temperature inhomogeneity
in a volume V, i.e. to characterize the degree of temperature inhomogeneity of a
unit mass by the quantity’2/2 in analogy with the definition of the kinetic energy

@2 /2. Fragmentation of temperature inhomogeneities will result in the facthiat t
total measure of temperature inhomogeneity will increasingly concentrateatts
scale disturbances. However the quanﬂ_t%//Z will remain the same for all types

of change in temperature. In other words, the quanifty?2 satisfies a "conserva-

tion law” which is a consequence of the fact that the temperature, like thadkinet
energy, does not change during the inertial motion of the fluid particles. A change
in the degrre of temperature inhomogeneity can be produced only by molecular ther-
mal conduction, leading to an equalization of temperatures at neighboring points,
i.e. to a reduction in)2/2. Let ey be the mean "dissipation rate of temperature
inhomogeneities” i.e. the rate of reduction in the measure of temperature inhomo-
geneities?”2 /2 due to the moleculat thermal conduction. For large valuBofnd

Pe, the "temperature dissipation rate” will be almost entirely concerdraighe
smallest-scale disturbances, and will be equal to the "transport of the tatuiee
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inhomogeneity measure over the length scale spectrum”, i.e. it will be entiz t
increase per unit time in the contribution @?/2 associated with the small-scale
disturbances of scale<< min(Ly, L) and due to the fragmentation of large-scale
temperature field inhomogeneities by the turbulent motions. It is clear that the qua
tity £y may remain consntant in time if the large-scale inhomogeneities of ggale
are maintained by external heat sources which produce ixed distribution of mean
temperature. Unless this is sg, will depend ont. However the time variation of

ey Will be very slow in comparison with the characteristic time scalesufficiently
small-scale turbulent motions. Therefore, when | consider the statiptioperties

of small-scale temperature distrubance, the quanjityan be regarded as constant.
It will, in fact, characterize the macrostructural inhomogeneities atfichave an
important effect on local isotropic temperature fluctutations. The quamtity pro-
portional to the coefficienf and to the mean square of temperature gradient. In
fact, | can use the heat transfer equation to show that for sufficientlyvatgmel’,
such that | can neglect convective heat transfer through its boundary, the oeducti
in temperature-inhomogeneity measure will be described by

H —
e I R
dt v
Consequently, the specific (per unit of mass) rate of reduction is the temperature
inhomogeneity measure given by

(A = XZ (gi') (4.2.1)

For homogeneous turbulence, the mean convective transport of fluctudtiszero
not only after averaging over a large voluiiiebut also at each point. In the case
of locally isoptropic turbulence, therefore, the contribution of convecti@asjport

to the rate of change a¥2/2 will be determined only by the space derivatives of
very smooth large-scale components of the flow variables, i.e. it will bagileigl
throughout. This is associated with the fact that for lakgeand Pe | can neglect the
effect of molecular thermal conduction on the mean flow, so that the formla
can also written in the form

Y(AY)? = XZ (0:1: > (4.2.2)

This definition ofey will be used below. The form ofl.2.2is very close to the

expression for the energy dissipation rate- 5 (‘9“’ + au]) . The quantities
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4.2. LOCAL STRUCTURE OF THE TEMPERATURE FIELD FOR HIGH REYNOLDS AND
PECLET NUMBERS.

andey are also very close to each other in their physical significance. |l réneal
entropy balance equation in e temperature inhomogeneous fluid

Js Js ou,, 0 oT
pT (E + uaa—%> = 04 e + oz, (XCa:ca> (4.2.3)

whereo s is the viscous stress tensor. If | use the identity

10%9 0 (190 1 /90

¥ 922 T On (58@) T <8xz> (4.2.4)
and the fact that the mean absolute temperatusel, can be practically regarded as
constant, | may conclude thats equal tal, multiplied by the mean rate of increase
in entropy due to the internal friction (i.e. the molecular viscosity) anig equal to
T2 /c, multiplied by the mean rate of increase in entropy due to the molecular ther-
mal conduction. The quantit}/ is also found to have a simple physical meaning.
Obukhov (1949a) has shown that it is equalltgc, multiplied by the maximum
work which can be extracted from an inhomogeneously heated volutheough a
reversible transition of this volume into a stase of thermodynamic equilibrigm (
constant temperature). This provides an additional justification for companmg te
perature inhomogeneity measuilewith the kinetic energy of turbulence, and the
temperture dissipation ratg, with the energy dissipation rate The quantitysy
can also be determined from the quantitites characteristic of larde-$E@mn mo-
tion which is independent of the molecular transport coefficients. Siptas the
dimension of a square temperature divided by time, the order of magnitugean
be estimted from the relation

—\ 2
AyU (AY
£y ~ AU (A7) (4.2.5)
Ly
whereA,U and A9 are typical changes in the mean velocity and mean temperature
over the distances,y which is an analogous of the relation betweemandes. If |
suppose that. and L, are of the same order of magnitude (this is usually the case),

and setey ~ Kﬂ A5\2 Where Ky is interpreted as the effective eddy temperature

L

diffusivity, then it will follw that Ky ~ AU ~ K, as expected. | shall use the
length scalel., = min(L, Ly) which can be identified if. and with L if they
are of the same order of magnitude. For the statistical turbulence chasacseri
containing temperature, the quasi-equilibrium rangéwill then be defined by the
inequality! << Ly. The first similarity hyphotesis will now assume the following
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form. First similarity hyphotesis. In developed turbulence with sufficiently high
values ofRe and Pe, the multidimensional probability distributuions for velocity and
temperature differences at an arbitrary set of points in a spatial re§jiaf diameter

| << Ly are invariant under all rotations and translations of this set of points,
provided these transformations do not take it beyond the limits of the régiamd

are uniquely determined by the parameters/, ¢y and y. Let me to generalize

the second similarity hyphotesis to the case of probability distributions comgai
temperature differences. | note that, for sufficiently high valueB«qtthe molecular
theraml conducivity which is characterized pymay play an appreciable role only
for very small-scale disturbances. In fact, the ratio of the typicalasbf the terms

in the heat-transfer equation which describe the convection of heat and naolecul
thermal conduction is equal to the Peclet number. Therefore, the molecular therma
conduction is important only for disturbances with << 1. Itis natural to suppose
that the Peclet number decreases monotonically with decreasing lengtloistae
disturbances. Therefore, for a sufficiently large Peclet number of the mean flow
there should exist a subrange of length scales which are small in comparison wit
Lo and for which the Peclet number is much greater than unity. In this subrange,
all the statistical characteristics should be independent oft can be referred to

as theconvective subrangelf | attempt to determine the order of magnitude for
the lower limit of the convective subrange, | encounter a specific difficult caadec
with the presence of the two quantitie@ndy which have the same dimensions. It
follows that the dimensionless parameters of small-scale turbulencé wbrdain
temperature will, in general, be functions of the dimensionless parafeterv/y,

l.e. the Prandtl number. In particular, the ratio of the length scales of théesh
scale disturbances which are appreciably effected by molecular thesndctivity

to the Kolomogorov internal length scaje= (1/3/5)1/4 will also be the function of

the Prandtl number. therefore, the convective subrange of length scale isideterm
by inequalities of the forni., >> [ >> A\(Pr)n where\(z) is a universal function.
Instead of the length scaigl can use the so-called internal temperature length scale

= (/)" = n(pr) 34 (4.2.6)

However, the conclusion that for>> 7y | are necessarily within the limits of the
convective subrange cannot be regarded as justified, since the possibility afthegle
ing molecular conductivity in comparison with convection will also depend on the
velocity field which is affected by the viscosity However, these considerations are
important only in the limiting caseg << y andv >> x which appear to be rela-
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tively exotic. It will be shown there that when<< y, i.e.ny >> n, the convective
1/4

/ :
subrange exteds only to scales > (%2) = (777739)1/3. In the more usual situa-

tion, Pr ~ 1, the scaleg, n. and (m;g)”‘“’ are of the same order of magnitude, and
A(Pr) becomes a numerical coefficient of the order of unity. Thereforel’for 1,

the upper limits of the subranges in which the molecular friction or moleculantder
conductivity are still important may be regarded as coincident. Let ,e now conside
the intertial-convective subrangef length scaled,, >> [ >> ny = maz(n,n.)
which is the intersection of the convective and inertial subrange. For disiteba
with length scales lying in this subrange | can neglect both the internabfnietnd
molecular thermal conductivity. In other words | have the following hypothdsis.
second similarity hyphotesis. In developed turbulence with sufficiently higlesal
of Re and Pe, the multidimensional probability distributions for the velocity and
temperature differences at a set of points, such that all the distandestween the
points satisfy the inequalitiesy >> r; >> 1y = max(n,ny), are uniquely deter-
mined by the values of the parameterand ¢y. The similarity hyphoteses lead to
certain simple consequences with regard to the statistical chastictef the spatial
temperature differences) = J(Z + ) — ¥(Z) in turbulent flows with sufficiently
large Re and Pe. In particular, it follows from the first similarity hyphotesis that,
in the quasi-equilibrium range << Ly, the spatial temperature structure function
Dyyry = (Aid)? depends only on = |], and should be of the form

Dyg(r) = ege 2\ 2h ( ’ ”) (4.2.7)
M’ X

whereh(z; z) is an universal functions of the two variables. For sufficienlty small

the differencedA/ can be regarded as an aprroximately linear functiori gb that

Dyy(r) ~ r? for smallr andh(x; z) ~ 22 for smallz. | shall assume for simplicity

that the numbePr ~ 1 and, consequently, the scalkeandr, are of the same order

of magnitude. | then havi(x; Pr) ~ hox? for 2 << 1, andDyy(r) = hotr? for

13h3:P7
27 Ox2 ‘x 018

independent ofr. In fact, since according #.2.2(Ay)* = 2D 99(0) = = I have

r << ng. Itis readily shown that the numerical coefficignt =

8192

Dyy(r) = ar for r<<mn (4.2.8)

i.e. ho = 1/3 andh(z; Pr) ~ 2%/3 for << 1. In the other limiting case << 7y
(butr << Lg) | can use the second similarity hyphotesis, which leads to the result
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that, for suchr,
Dyy(r) = Cyege /3r2/? (4.2.9)

i.e. h(z; Pr) ~ Cyz*? for  >> 1 whereCy is a universal constant.
In addition to the structure functiofyy | can also consider the spectrum of local

isotropic temperature fieldyyy(k) = EY)(k), or corrispondently one-dimensional

spectrumEfﬁ)(k). Similarly to4.2.7, spectral equations have the form

ED(k) = ege 34340 (kng; Pr)
EM (k) = e9e 0\ (keny; Pr)
(4.2.10)

where the functiop™ (¢; Pr) andgogﬁ)(c; Pr) are related t&(z; Pr). The equation
4.2.9is equivalent to the ther two following equations:

ED (k) = BWgye 135/
E{ﬂ)(k) = B§ﬁ>5195_1/3k:_5/3
(4.2.11)

which are valid forl /L << k << 1/n,. Here B and” are universal constants
given by
oT'(1/3)

3(?)
B = - ~0.250

~ 0.4Cy

(4.2.12)

The formulas4.2.8 and 4.2.9 (the first of these represents themperature two-

thirds law) are due to Obukhov (1949a). Themperature five-thirds law.2.11]

which is equivalent t64.2.9 was given by Corrsin (1951b). The similarity hy-
photeses can be also used to obtain various expression for higher-order moments
of the differences\, v, and also the the higher-order joint momenta\ot) and A,

(the second momenk,vA,u is zero). Thus, for example, the third-order moment
Digo(T) = Ayui(A9)? is determined (Yaglom 1949b) by the scalar function

Drgo(r) = Ajur(A0)2 = ege Y434 (r /ng: Pr) (4.2.13)

wherei(r /ny; Pr) is a universal function and

Droo(r) = diege>x 3203 r << min(n, ny) (4.2.14)
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Dryg(r) = Diggr Lo >> 1 >> max(n,ny) (4.2.15)

However the two scalar function3; .y = (A,ur)?A0 andDyyy = (Ayuy)?A0
which define the third-order tensér;;y = A,u;Au; A0, are both equal to zero by
virtue of the general equatiail;y = 0. The situation is more complicated in case of
the time differences

A =9(Z,t+71) — (T, 1) (4.2.16)
If, however, | are concerned with time intervalgor frequenciesv) for which the
Taylor frozen turbulence hyphotesis is valid, then the corresponding characseris
can be readily reduced to those of the space differengéswhich were discussed

above. In particular, fony/u << 7 << Ly/uoru/Ly << w << u/ny, | have from
4.2.8 4.2.1Q and4.2.15

Dyy(1) = 0198198_1/3@2/37'2/3, Eﬁ(w) = Biﬁ)gﬁe_l/?’ﬂwgwﬂr’/?’ (4.2.17)

DL1919(7') = ATUL(ATﬁ)Q = Diegur (4.2.18)

In conclusion, | emphasize once again that all the above formulas are valid got onl
for the temperature, but also for the concentration of an arbitrary pashitare.
Therefore, the results given in this subsection will be valid, for examplethi®r
humidity or concentration of carbon dioxide in the atmosphere. The paragéers

ey Will, of course, have different values in all these cases.

4.2.1 Local statistical characteristics of turbulence in a thermally #atified
fluid.

It was assumed above that temperature behaves as if it were a passix&usgElm

l.e. it has no appreciable effect on the dynamics of turbulence. Howevée imt
portant case of temperature-inhomogeneous fluid in a ravitational field, the temper-
ature cannot be considered as a passive substance. In fact, in this casratan
fluctuations give rise to density fluctuations which are in turn affectd by ayya
Therefore, the temperature distribution generates a field of buoyant atmeier.e.,

it affects the flow dynamics. Consequently, in the case of a thermallyfigtmettuid,

the theory of similarity for small-properties of turbulence must be genexhlia

some way. | shall assume that the temperature inhomogeneities are snatiin c
parison with the mean temperature of medidm= 9, and that the motion of the
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medium is described by the Boussinesq equation of free convection. (Note that |
use the letter) for the temperature both when it is regarded to a passive admixture
and when it affects the flow dynamics). The equations of free convection difi@r f

the usual fluid dynamics equation for a temperature-inhomogeneous medium only
by the presence of an additional term (for the vertical velocity) describingubg-

ant acceleration, i.e—g3Y, whered = ¢ — ¥ is the temperature fluctuation,

Is the gravitational acceleration apds the thermal expansion coefficient (equal to
1/9, for the case of an ideal gas). The presence of this additional term leads two
important consequences. First, the vertical direction is a special onejreedtise
buoyant accelerations appear in motions of all scales, | may suspect thahsnoti

all scales will be anisotropic. Second, to the dimensional parameters tehaiag

the motion of the fluid, | must now add the buoyancy parameter ¢/, whose
dimension is'ms—2k~1). The effect of anisotropy, i.e. the dependence of statistical
guantities containing the argumenor i on the angle betweenor i and the verti-

cal, can be eliminated by integrating the corresponding statistical qeant#spect

to all the possible direction af or k (i.e. over the sphere respect to sall the possible
direction of r47]). This will result in only the mean data, which will not enable me

to establsh unambiguously the corresponding three-dimensional parametersl Instea
of integration over a sphere, | can consider the characteristic of two-diomahs

fluid dynamical fields in fixed horizontal plane= const, which are isotropic. The
conclusions drawn from dimensional considerations, which are applied below to the
three-dimensional structure averaged over a sphere, will also be waliklef corre-
sponding two-dimensional characteristics in the const plane. In a stratified fluid

with large value ofPe and Re, all the turbulence fields can be regarded as locally
axially symmetric (i.e. locally homogeneous in all direction and localbtrspic

along horizontal directions). Let me now list the dimensional parameters which a
fect the small-scale structure of the velocity fieidr, t) and the temperature field
J(Z,t) in a stratified fluid. The quasi-stationary temperaure fluctuatitfs ¢) in

the quasi-equilibrium range are determined, as in a homogeneous fluid, by a constant
influx ¢, of the mean fluctuation intensif§2 /2 from the large-scale disturbance re-
gion, which is balanced by an equal outflow of mean interiBity2 as a result of
smoothing out of the field(z,¢) by molecular thermal conduction. This process

is characterized by the parametegsand y (together with the parameters which
determine the velocity field producing convective mixing). The time evolution of
velocity inhomomgeneities is described by the Boussinesq equations, which contain
the dimensional parametersandg/9J,. However the energy flux transferred from
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disturbances of given length scale to disturbances of smaller length sdlatewi

no longer be constant along this length scale spectrum. In fact, for a stable@empe
ture stratification, | have, in addition to energy transfer from one type of thatoe

to another, a loss of kinetic energy through work done against buoyancy forces in
a broad range of length scales (which leads to conversion of the kinetic enargy int
potential energy). In the case of unstable stratification, turbulent motion efeit
scales will draw additional kinetic energy from the potential energy of the medium
(the buoyancy forces will accelerate the fluid particles). It is imparta note how-

ever that the mutual transformation of potential and kinetic energies in a gnge

of length scaleg is determined by the same spectral components of the fluctuations
u'(x,t) andy’'(x, t) that are responsible for the transport of temperture inhomogene-
ity measure along the spectrum in this range. | therefore expect that, if lthes\at

Re and Pe are sulfficiently high, foi << L, the statistical source of the above en-
ergy conversions will not depend on the quantitative characteristic of the fedds
u(x,t) andd(z,t) having the scald,,, and will be homogeneous in space e quasi
stastionary in time. However, one would still expect that the presenceabifist-

tion may have an effect for scales much less thay producing an anisotropy in

the probability distributions, owing to the special role of the dirction of thedafc
gravity. The sign of the vertical mean-temperature gradient may also be anport
since it influences the character of the mean mutual conversions of kinetic and pote
tial energies. All this does not prevent the range of sclaes L, from becoming a
guasi-equilibrium range in the sense in which this is defined in a nonstratifield flui
The kinetic energy distribution over the length scales in spectrum in this raitige
now be determined from the balance of inertial transport, the transformation int
(postive or negative) potential energy and viscous dissipation. The total energy dis-
sipatione will then no longer be equal to the energy reaching the upper end of the
length range under consideration. Nevertheless, it is reasonable to expeawthat

still influence the energy distribution for scales. < Ly, i.e. it will be an important
energy parameters. In other word, it is probable that

for the turbulence in a stratified fluid with largee and Re there is a quasi-equlibrium
range of length scalek << L, in which the multidimensional probabilty distribu-
tions for velocity and temperature differences can be regarded as stationary and
homogeneous (but not isotropic, and axially symmetric only relative to the akrtic
are uniquely determined by the parametersy, g/9y, v and .

This is in fact a generalization of the Kolmogorv similarity hypothesis to tmec

of turbulence in a stratified fluid due to Bolgiano (1959) and Obhukov (1959a). the
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presence of additional parametegh, complicates the use of dimensional reasoning
in the study of local statistical properties of turbulence in a stratifiediom. | shall
use, in fact, the only one combinationafsy andg/J, which has the dimension of
length, namely,

_ el5/4)

=i/ (9/00)"2

Hence, it follows that, in a stratified medium, the general form of the longialdi
velocity structure functiorD () averaged over all directions offor |7] << L
should be of the form

1 o o
Dyr(r) = [DLL(r)dr:vl/%l/?ﬁLL(r/n,n/L*,u/n) (4.2.20)

(4.2.19)

Arr?

wheren = %44 and g, (z,y, 2) is a universal function of the three variables.
Further specifications of these formulas can be achieved by using the second Kol-
mogorov hypothesis according to which

the multidimensional distributions for the velocity and temperature differencas at
bitrary pairs of points cannot depend on the molecular constardad y provided

only that the distances between the points are much greater than a certain fixed
length,.

This hypothesys will also be valid in the case of thermal stratification, anthé

same reasons as in the previous cases. In general, the igngthiven by relations

of the formny = nA(n/L.,v/x) whereX\(y, z) is a function of the two variables. |
shall show belw, however, thag will nearly always be independent gf,. Conse-
quently,A = A\(Pr) is independent ofj/ L. and the lengthy, in a stratified medium

can be choosen in the same way as in the previous subsection. For the sake of sim-
plicity, | shall suppose henceforth thafy = Pr is of the order of unity (for air

Pr ~ 0.7). In that case), can be simply identified withy or with ny = y*/4c~1/4

which is of the same order of magnitude. Consider the longitudinal and lateral ve-
locity structure functiond.(r) and Dyy(r), and the joint structure function for

the temperature and vertical velocityy,,(r) for Ly >> r >> ny. All these func-

tions are assumed to have been averaged with respect to the directiornvettbe

. In the above range, all these quantities will depend only,enc,y andg /v, and
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therefore dimensional considerations indicate that

Dpp(r)= C¥3r*3f1(r/L,)
( ) _ 0162/37’2/3fNN(7“/L*)
Dﬁﬁ(r) = 0198198_1/37“2/3]01919(7“/[/*)
(r) = C7&)*e"or2 fyu (r/ L)
(4.2.21)

whereC, C’, Cy and(C” are dimensionless constants which can be choosen arbi-
trarly. It will be convenient to assume that the first three of these coinaittecorre-
sponding coefficients in the two-thirds law4®R.9 | note that for stable and unstable
stratification, ie. for different signs ofifdz, the functionsfrz (), ....., fow(x) may

turn out to be different. Since the random fieltls, ¢) andy(Z, ¢) are locally homo-
genenous, | can define the densitieg:) = 1Fu(k) FW( ) andFﬂw( k) for them

whenl/n, >> k = |k| >> 1/L,. If | write E(k fk| L k)dk and similarly for
the functionFy, (k) and Fy,,(k), the dimenS|onaI conS|derat|ons show that

E(k) = Ce¥3kPy(kL,)
Egg(k) = BWeye V2L 3y4(kL,)
Epu(k) = Bley?/5kyy(r/L.)
(4.2.22)

wherey((), ¥gs(¢) andiy,(¢) are universal functions3’ is an arbitrary constant,
and the constants; and BY) can be conveniently regarded as equal to the coeffi-
cients in the five-thirds law given b4.2.11 Wheng/T, = 0, i.e. in the absence of
gravitational forces which give rise to startification, the formulds21and4.2.22
should become identical to the usual formulas for the structure and spectral func-
tions of locally isotropic turbulencé,uA,¢ = 0. If, on the other handy /¥, # 0
butr/L, << 1, i.e. r << L, (butr >> 1), the the values of the correction
function in4.2.21can be approximately replaced by their values at zero, i.e. | can
use the ordinary two-thirds law which are valid for non-stratified media.il&iiy
whenk >> 1/L, (butk << 1/n), the correction function id.2.22can be approx-
imately replaced by their values at infinity, i.e. | can use the usualffivds law. In
other wordsthe length scald., characterizes the minimum length scale of inhomo-
geneities beyond which effect of the the stratification is appreciglenl, >> n

and L, >> ny (and this is nearly always the case), | can ignore the stratification
for | >> L, and use the usual form of second Kolmogorov similarity hyphotesis.
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the above analysis provides additional support to the ise of the concept of locally
isotropic turbulence and the associated similarity hyphoteses for stlatiiedia, but
shows that the upper limit of the inertial and inertial-convective lengéhescsub-
ranges must satisfy the inequalitiesc< L andl << Ly as well ad << L. If

L, << Ly = min(L, Ly) then the inertial-convective subrange will be followed
by the buoyancy subrange, >> [ > L, in which the probability distributions for
A1 and A9 can be regarded as quasi-stationary and homogeneous but no longer
Isotropic. the values of dimensionless correction functions2:21and4.2.22can,

in principle, be determined empirically, but the necessary experimertabda not
available at present. In the case of stable startification, Bolgiano (1959, 1362)tha
foward certain hyphoteses with regard to the asymptotic form of thesadasdor
wave number much less thapL,, i.e. the length scale much greater than For a
stable stratification, the energy transferred from disturbances of lerajthi s L,

to smaller-scale disturbances should be much greatersthgince most of this en-
ergy is spent in work against the buoyancy forces, and only a very smalbfmaadt

it reaches the small-scale disturbances in which viscous dissipation isrdoaied.

On this basis, one would expect that even a considerable chaageilirhave very
little effect on the shape of turbulence spectra in the regioh ek 1/L.. This

has lead Bolgiano to propose that the asymptotic form of the sp&¢tra Eyy(k),
FEy.(k) for k < 1/L, in the case of stable stratification should depend only on the
values of parametees andg/9,. From this, dimensional considerations yield

4/5
B = o) (2] k0

—2/5
Bult) = 00 (L77) s
0

1/5
Ey(k) = b’gf;/5 (i )k—9/5
)
(4.2.23)

wherec;, b¥) andl’ are universal functions. Consequently one would expect that in
case of stable stratification(¢) ~ (81, 1gy(C) = (Y1 andy.(¢) ~ (/' for

( < 1. Similar considerations lead to the following hypotheses which are equiva-
lent to4.2.23about the asymptotic form of the structure functions averaged over all
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directions for turbulence in a stratified medium:
4/5
DLL(T) = 68129/5 (i ) 7r0/5
Vo
4/5
Dyn(r) = 0/8129/5 (i )7"6/5
Vo
—2/5
Dys(r) = cwey’ (19% > 2o

1/5 -
Dyy(r) = c”EZ/S <—50 >r4/°
(4.2.24)

whenr > L., so thatf;;(z) ~ 2%, fyn(z) ~ 281, fyg(z) =~ =4 and
fow(z) ~ 2215 for x > 1. The above formulas are meaningful only if the length
scalesL, is much less than the external length turbulehgelf, on the other hand,

L, approaches or even excedds then not only the Bolgiano hyphoteses about the
asymptotic form of the correction functiods2.21and4.2.22 but the entire similar-

ity theory of this subsection will be invalid. In this last case, the iaédbnvective
subrange of the spectrum will be followed by a subrange of scales in which quan-
tities characterizing the mean fieldéz, t) andd(, t) will play an important role.

This refers in particular to the hyphoteses of Shur (1962) and Lumely (1964) about
the turbulence spectrum in a free atmosphere according to which the region of va-
lidity of five-thirds laws is followed in a stably stratified medium by egion of

a smaller wave numbers where the velocity spectrum is proportioral®and is
determined by the parameteysd, and dJ(z)/dz, in accordance with the formula
B(k) ~ £ 9},

The length scald., cannot be precisely defined for most real turbulent flows since
the values ot andey are unknown. A very rough estimate of the order of magni-
tude of the length scale of turbulence in a stratlfled medium occupylng the hadf spac

Au(AY
z > 0 can be obtained from the relatioasx ( ands ~ u< 7 (see section

4.2.1). Typical legth scaled and L, of the fleld5u( ) andd(z) |n the present case
are of the same order of magnitude as the distartoghe wall. Therefore,

(A7)
(AT) 77 (g/0)*% 2112

Near the wall, the most rapidly varying factor on the right-hand sidei¢>.
thus see that the length scdle decreasess with height quite rapidly, whereas the

L.~ (4.2.25)

3/2
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external scald, ~ z increases rapidly with height. therefore, one would expect
that at sufficiently great heights, the length scalewill be appreciably less than

L, and hence the effect of thermal stratification will begin to appearezdhat the
effect of the mean flow parameters. In the case of the atmospheric layezardas
surface, very approximate solutions due to Obukhov (1959a) show that the rAtio
becomes equal to unity even at heights of the order of 10 m. It is therefore probable
that the formulas given above will be valid beginning with heights of the order of
100 m.
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Chapter 5

Lagrangian modelling

The Lagrangian stochastic single particle models (SPMs) have been wideg test
and applied to many different situations characterised by non-homogenous turbu-
lence and several stability conditions. In thie next section | give a briehsam of

the theory of one-particle Lagrangian model$li¢mson (1987)rhomson (1990Q).

Then in sectiorb.2| will discuss the application of the Lagragian approach for eval-
uating the parameters of a SDE for temperature fluctuations included in the model
for buoyant plume rise presented in chayier

5.1 Lagrangian stochastic single particle model

In the energy spectrum between the Kolmogorov time sgaded the velocity cor-
relation Lagrangian time scalg, the evolution of a particle position and velocity in
a turbulent flow can be considered as a bivariate Markov process, i.e.espnere
present is correlated to past and future to present, but past and futuratestecatly
independent. In order to avoid the viscous subrange and molecular diffusiyity,
Lagrangian stochastic models are based on the hypothesis, that), or, in other
words, thatt, — 0 (in the atmospherée ~ 107) and thatx — 0 (Pe — 00).
Under the Markov assumption, the trajectories of independent fluid particldsecan
simulated through two stochastic differential equationsh@gmson (1987homson
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(1990)):

dui = a; (ﬁ, f, t) dt + CoGde(t) (511)

and

wherer is the particle displacemernit,is the particle velocity andWV represents the
increment of a Wiener process with zero mean and variance:

The coefficient,/Cye, whereCy is an universal constant ards the dissipation of
turbulent kinetic energy, ensures that Kolmogorov scaling in the inertial range i
satisfied by the Lagrangian velocity structure function:

As long asC is an universal constant, in principle equatmid.4can be applied to
every kind of turbulence. Nevertheless in literature there is no agrgemnets val-
ues that can show large variations in the different kinds of turbulence considered.
model turbulent absolute dispersion correctly the proper choice for the undetermined
term a should be made. Itis well known that equatibrisland5.1.2are equivalent
to the Fokker-Planck equation:

orP, 0 0 o0 Pr,

T g ) = —5, k) + Geg g

whereP;, = Pp(u, ¥, t; up, 2o, to) represents the Lagrangian joint probability density
of position and velocity of a single particle, given its positiGnand velocityu at

time t, and it is generally unknown. Nevertheless it is possible to make an ensam-
ble average of; over the Eulerian distribution of initial conditions to obtain the
Eulerian PDF of velocities:

(5.1.5)

Py, (i, Z,t) = / Py (i, %, t; iy, To, 8) P (ty, To, 5) d>tiod> Tods (5.1.6)

As long as the Fokker-Planck equati®ni.6is linear in Py, is satisfied byPx as well.
Pg is known and can be considered as a prescribed property of the flow. Therefore
the equation:

oPp 0 0 0?Pp

+ = (w;Pp) = — (a;Pg) + Coe

TR 5 D, (5-1.7)

48



5.1. LAGRANGIAN STOCHASTIC SINGLE PARTICLE MODEL

Is a constraint for the tera In the idealized case of isotropic, homogeneous, station-
ary turbulence’; does not depend arnandt and is simply function of the velocity.
Equation5.1.7can be solved to obtain:

o Coc 0P
e 2PE 8ul

that is the so called well-mixed condition and the fundamental constraina that
grangian stochastic model has to satisfh¢mson (19871) This constraint physi-
cally implies that if the particles are initially well-mixed theyllwemain so during
the flow evolution, that the solution of the Fokker- Planck equdiidrnbare compat-
ible with the Eulerian equations and that direct and inverse diffusion areaeuoiy
The vectorp, where:

+ @i (5.1.8)

é?gbz (U,X) 8PE B 8uzPE

or equivalently

o [
i (U, X) = — iPr (U, X) du
b (U,X) = =5 /_OO“ i (U, X) (5.1.10)

¢ —0  per |u|—0
is a divergence free vector that shows that equation has no unique solution.
Only in the case of homogeneous, isotropic turbulence and Gauggian

1 2
Pp = e 27 5.1.11
Y ( )

the vectora can be shown to be unigudhomson (1987)Borgas and Sawford
(1994). In this simple situation (adding the hypothesis of stationarity) equation
5.1.1becomes

C
du; = —2—06uidt + 1/CoedWi(t) (5.1.12)
02
where%‘g6 Is the inverse of the Lagrangian time scéLk-;' hence equatiob.1.12can

also be written as: |
du; = —T—uidt + / CoedW;(t) (5.1.13)
L

The linear system formed by equatiobsl.13and5.1.2 together with the initial
condition that the velocityi is chosen randomly with distributioRz(u) can be
exactly solved to give the Lagrangian positions PBBrgas and Sawford (1994)

1 1

(2m)32Di2P —5 (@i — 2;(0)) Dij(x; — 2;(0)) (5.1.14)

P, = 5
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5.1. LAGRANGIAN STOCHASTIC SINGLE PARTICLE MODEL

where

Dij = 20_2T12, [exp <_TLL> TLL — 1] 52']' (5115)
Equation5.1.15can be easily recognized as the resultTaylor (1921) theory

of diffusion. It is worth noticing that in this simple case homogenity, isotrofay, s

tionarity (this last request is not necessary for the uniqueness of the solution) and

the GaussiarP; determine the drift term a in the Langevin equattof.], but this

can not be generalized to less idealized condition. In the case of inhomogeneous

turbulence or of two-particle models the determination ¢f more complex and not

unique.

The assumption that in homogeneous turbulence the velocity PDF can be considered

Gaussian can be extended to the case of inhomogeneous turbulence, e.g. in the case

of neutral boundary layer.

The only difference in equatiob.1lis the dependence ef(and hence of, amd of

Tr) onz.

In the inhomogeneous ca$g depends on the spatial coordinates througlfthat

usually depends only o) Henceg is not equal to zero as in the homogeneous case,

but the equatio®.1.10has to be solved:

2

8 u a u U W2
. — —_ - 202(2) —
¢; (U, X) 82/ uPp (u, z) du o /_OO 2%0(2)6 du

—0

(5.1.16)

w2 2 2
_ 0 a(z)e_m _ Pylu Z)u + 0°(2) do(2)
0z |27 o(z) 0z
Therefore, in inhomogeneous turbulence the Langevin equation is written as :
U 1 u?\ Oo?
du; = ———dt + = | 1 + =% | =—=dt + /Coe;dW;(t 5.1.17
U T, +2< —l—Ja) oz, + v/ Coe;dW(t) ( )

Hence the spatial inhomogeneity produce a quadratic term in the velocity of the
form:
1 u? dor,
302 O,
This term arise from the well-mixed condition and it is needed to balamges 0
at the boundaries of the domain and the resulting explsion of its derivative.

dt (5.1.18)
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5.2 Inthe matter of models for buoyant plume rise

The main issue about the model for buoyant plume rise presented in the g&@tion
the evaluation of the temperature dissipation rajedefined in4.2.1and4.2.2 A
first attempt may be to relatg to oy andTy, as in case of energy dissipation rate
In fact, it seems easier to give expressions with simple physical mgaitoosy and

Ty (i.e. o9 o< |0 — Y] andTy = Ty, = b/|w|, see the sectiof.2). Hence may be
possible to considety = 555;2’;19 in analogy withs = C%;’%L Regarding the previous
equation can be readily deducted from the temporal Lagrangian structure function

D(LLL) (1) = Cper. In fact,

DY)(r) = Tult +7) —u®)]
= w(t+7)—2u(t + 1) + u?(t)

(5.2.1)

| have assumed that the turbulence is stationary in small space-tinense{he
wide-sense stationarity is enough to our purposes) so that the temporal Lagrangian

autocorrelation functio ) (¢, 7) = ““j;gj” is only function ofr, i.e. RV (t, 1) =

RW)(1), ando? = w2(t + 7) = u2(t). Furthermore, for a Markov process the tem-
poral autocorrelation function can be written &ér) = e /™t and its first-order
Taylor series approximation &(7) = e 7/t ~ 1 — - + O(r?). Therefore

D(LLL)(T) = 203 — 203R(L)(7)
= 203 — 2056_T/TL
2021

17

(5.2.2)

and beingD(LLL) (1) = Coer, | have the expected equatien= C?;’TL Is it possible

to follow the same way for evaluating;? The first consideration is that, to our
knowledge, an expression for the temporal Lagrangian structure function is not pre-
scribed in literature. | found only the Eulerian structure function givertl2y17

i.e. Dyy(1) = Cyege™3u*/3r2/3. Note that for velocity difference the Lagragian
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5.2. IN THE MATTER OF MODELS FOR BUOYANT PLUME RISE

structure function is different from the Eulerian one:

DY (r) = Coer
DLL(T> = 0082/3(]2/37'2/3
(5.2.3)

In the Eulerian expressioP;,; depends o/ = w, but in the Lagragian forn;, L
does not depend on it (the Lagrangian form of the structure function should be always
independent of the mean wind). The Eulerian expreséiari7for D,y depends on
U as well. Is it possible to find a Lagrangian expression/igy., independent of
U? Dyy has to have the dimensions of a square temperakife. In the equation
4.2.17 itis a function ofz, ¢y, 7 andU. Only the two parameters andU depends
on a length (i.e. in the dimension analysis they contajmg&). Hence there is no
way to make dimensionlesB,y eliminating onlyU. A first approximation may
be eliminatez as well to obtain simplwfﬂfg)(T) = CyeyT, but it is not acceptable
because of the comments made in sectiéh The simplest non-dimensional form
for D;%)(T) is:

Dg;;)(T) = Cyegets *1?
Even assuming that this expression is right (and it is not trivial) and thatrtigsoel
autocorrelation function is an exponentially decreasing function for the tetapera
as well (and it should be right since | have assumed that the temperature admits
Langevin equation as the velocity), the dependence cdnnot be eliminated (as-
suming that this dependece has to be eliminated). In fact, following the sathedn

4.2.20used to obtain = 2% in the case of velocity, | gety = C;UZ‘;UQ. Therefore

CoTy,
£y Seems to depends @éhandr. If | reformulate these observations in terms of the
spectrum language, | get the same results. A second attempt to obtain a emple f
for the temperature dissipation rates may be to derive it from the exprdssitire
third-order structure functions, e.@»9. Now | focus on the possibility of relating
Dry9 to Dy and Dyy in order to give an expression &9 and on the Lagrangian
form of D9 known. The development of the definition By, i.e.

Dryy = u(t+1)02(t+7)—2u(t +7)0(t + 7)0(t) + u(t + 7)0%(¢)
—u(t)2(t 4+ 7) + 2u(t)I(t + 7)0(t) — u(t)P?(t)

(5.2.4)
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may lead to some useful relationships. It needs some further investigafithiise
considerations given above refer to the case in which the temperature befsave

if it were a passive admixture, i.e. it has no appreciable effect on the dgaarhi
turbulence. However, in the study of a plume rise, especially for a largdike

the Buncefield one (se®4), the temperature cannot be considered as a passive sub-
stance. In fact, in this case, temperature fluctuations give rise totg@énstuations
which are in turn affected by the buoyancy. Therefore, the temperaturddiin
generates a field of buoyant accelerations, i.e. it affects the flow dysa@anse-
guently, when | study a plume rise, the theory of similarity for small-stalaulence

in a thermally stratified fluid discussed in the subsectidhlhas to be taken in ac-
count. Let me summarize the main results showed in subsetttoh( [Monin and
Yaglom (1975) §27.5]). The generalization of Kolmogorov hyphoteses to the case
of a stratified fuid is:

For the turbulence in a stratified fluid with largeée and Re there is a quasi-equlibrium
range of length scales << L, in which the multidimensional probabilty distribu-
tions for velocity and temperature differences can be regarded as stationary and
homogeneous (but not isotropic, and axially symmetric only relative to the akrtic
are uniquely determined by the parametersy, g/vy, v andy

The multidimensional distributions for the velocity and temperature differences at
arbitrary pairs of points cannot depend on the molecular constanésmd y pro-

vided only that the distances between the points are much greater than a certain
fixed lengthy,

The only combination of, £y andg /¥, which has the dimensions of length is

_ el
=3/ (g/00)?
Therefore the length scald., characterizes the minimum length scale of inhomo-
geneities beyond which the effect of stratification is appreciable.
Only if the length scald., is much less than the external turbulence length scale

Ly the asymptotic form of the temperature structure function in a stably statifie
medium is (seeNlonin and Yaglom (1973):

_2/5
Dys(r) = cies” (ﬁi > 2o
0

If | assume that the Taylor frozen turbulence hyphotesis is valid

—9/5
Dyy(1) = 0(19)5?9/5 <§ ) U255
0
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Again, there is no way to makB,y dimensionless removing, since there is only
one other length-depending parameter (iggs)y) in the above expression. Even
assuming that the last equation is the Lagragian formvgfas far as | know, it is
not possible to find relationships independent oience again, the final expression
relatingesy, Ty andoy will depend onr and.
| remark that these considerations will be valid onl\Lif < L. Hence | need to
estimateL, and L which cannot be precisely defined for most real turbulent flows
sinces andey are unknown. This lead$Vonin and Yaglom (1973)to propose
a very rough estimate of the order of magnitude=adnd ¢y for turbulence in a
stratified medium
(Au)’

L
AT (AD)

Ly
where Ly is the length over which there is an appreciable change in the mean tem-
peratured () and AyU and Ad are typical changes in the mean velocity and mean
temperature over the distanckg. Typical legth scaled, and Ly of the fieldsz(z)
and?(z) in the present case are of the same order of magnitude as distémtiee
wall. Therefore

ER

EYy ~

(A’
(89)" (g/t0)"? 17

L, ~

Anyway for the purpose of this thesis the most important relation is (Aﬁ :

Hence the question is if it is possible to estimate AyU and AY only from the
ambient temperature and wind profile which are usually available (and e.thefor
Buncefield case). To this purpose | are still looking for some methods in literat

to evaluately, and the typical changes in the mean velocity and mean temperature
over it, just starting from temperature and wind profile and it would alleingple
estimation of=y. Through this thesis | specify the formsgfsimilarly to [van Dop
(1992) and [Das and Durbin (200%)n analogy with the case of velocity, so that |
considersy = 20 whereoy = 7|6 — 6,| (in which v is a tunable parametef), is

CoTy?
the Obukhov-Cgoerrsin constant afiglis choosen to be equal 10..

54



Part |l

Modelling

55



Chapter 6

The effect of temperature fluctuations on the
spread of a buoyant plume.

6.1 Plume model

The equations governing the rise of a buoyant plume in a uniform croséflave
given by (e.g. Briggs (1984), [Weil (1988]), [Devenish et al. (2010B)

d

d—(ﬂvb2) =F (6.1.1a)

S

dg(mjwa) = 1b*g (6.1.1b)
S

dg(ﬂvg'lﬂ) = —N*7b*p,w (6.1.1c)
S

wherev = /U? + w? is the velocity along the plume axis,is the distance along
the plume axis (centreline)y is the entrainment rate (to be defined below)js

the vertical velocity of the plumé,is the plume radiusy is the (constant) ambient
buoyancy frequency and = ¢g(6(z) —0.(z)) /0, is the reduced gravity in whidl( 2)

is the potential temperature of the plume at height,(z) is the ambient potential
temperature at heightandd, is a reference temperature. Equatiohd (13, (6.1.19

and 6.1.19 respectively describe the evolution of the volume, momentum (per unit
density) and buoyancy fluxes. They are collectively known as the plume equations.

It is commonplace to assume that there are two entrainment mechanisms in a
crosswind (e.g.Hoult et al. (1969, [Hoult and Weil (1972)) [Webster and Thom-
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6.2. AHYBRID MODEL FOR BUOYANT PLUME RISE

son (2002), [Devenish et al. (2010B) one due to velocity differences parallel to
the plume axis and the other due to velocity differences normal to the plume axis and
that the two mechanisms are additivBejenish et al. (2010bkuggested that this
additive entrainment assumption bel/&anorm:

m m 1/m
E =2mb {(oz|w|%) + <B!w!%) ] : (6.1.2)

Here, | have also assumed that the difference between the horizontal component of
the plume velocity and’ is small relative td/ and that this is valid from the source.
Note that entrainment is proportional to the absolute velocity difference in tvder
avoid spurious detrainment after the plume reaches its maximum rise height. The
constant coefficients and 3 are associated with the two entrainment mechanisms:
« with velocity differences parallel to the plume axis ahaith velocity differences
normal to the plume axis. Throughout this study | take= 0.1 and5 = 0.5

which are consistent with previous studies (ekgodlt and Weil (1972) [Briggs
(1984]), [Devenish et al. (2010bh)[Devenish et al. (20109) In (6.1.2 m > 1lisa
tunable parameter. The effect of a crossflow on a buoyant plume can be chaeakteri
by the dimensionless parametér= U/(F,N)'/* whereF; is the source buoyancy
flux. In the weak-wind limitJ < 1, the first term on the right-hand side &.{.2
dominates. Whei/ >> 1 the plume becomes bent-over and the second term on
the right-hand side of5(1.2 dominates. In both asymptotic limifs is independent

of m; the dependence an is at its most sensitive fd = O(1). [Devenish et al.
(2010b] found thatm = 3/2 gave the best agreement with LES of buoyant plumes
in a crosswind and field observations. It is this value that | use throughout this study

6.2 A hybrid model for buoyant plume rise

In the model proposed byebster and Thomson (20Q2he plume equations pro-
vide the mean flow and the fluctuations are calculated using an LSM for the yelocit
components that satisfies the well-mixed conditibhgmson (1987) [Webster and
Thomson (2003)only considered fluctuations in the velocity and not the tempera-
ture; here | consider both fluctuations of the velocity and temperature. Notdéhat t
effect of turbulence generated by the plume is modelledM#gifster and Thomson
(2002) by an additional random increment to the position of a particle. Here | do
not include this extra term, instead allowing the interaction of temperaiueve-
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locity fluctuations to generate the observed spredétbster and Thomson (20Q2)

also use parameterisations of the ambient turbulent time-scale and tissizde
rather than basing them on the plume turbulence as | will do here. | use the plume
equations,§.1.1), as a starting point re-expressing them in terms af, 6 and time,

t = [ds/v. Let me show how to do it. Expand left-hand side$df.1

dv db

V¥—+20b— = E
ds e ds
d d db
Pw— + b 4 2vwb— = b (6.2.1)
ds ds ds
dg’ dv db
=L+ ¢ — +2dvb— = —N?Pw.
v ds+g ds+gvds v
Now,
dv 1 dw
A I 2y-1/29, 2
ds 2( +w) s ds
_ wdw (6.2.2)
v ds
and s06.2.2becomes
b2w dw db
T@ +21}b£ = E
b2w? dw dw db
— 4 bo— + 2owb— = Vg
vdsjL Ud3+vwds g
/ 2 /
vde—g + bwg dw + 2g'vb% = —N?*w. (6.2.3)
ds v ds ds
and hence
2
bwdw 0@ _ g (6.2.4a)
v ds ds
b2w? d db
Yt ) 22 4 2uwb— = b2y (6.2.4b)
v ds ds
dgJ b*wq d db
o= LTI L o= — N2 (6.2.4¢)
ds v ds ds
Combine the first two equations 612.4 (6.2.4) —wx (6.2.43 gives
b2vd—w =b’¢ — Fw
ds

58



6.2. AHYBRID MODEL FOR BUOYANT PLUME RISE

and hence d /
w g w
— == —-F—. 6.2.5
ds v b2v ( )
The equation fob is given by
dob b>w dw
0b— = E— ——
! ds v ds
Vw (¢ w
- F-—— L _p—=
v <U bzv)
b*wg' w?
= B v? Eﬁ
and hence " B b )
A R (6.2.6)

ds  2bv 203 20v3
Substitutings.2.5and6.2.6in 6.2.4cgives

dg’
b—- = —N?wb—
v ds v v ds g ds

bwg (¢ w E  bwd w?
— _N2 . g ety / .
wb < b 29 2bv 203 i E2bv3

bwg’2 ng/ Eg’ bwg’2 Eg/w2

= —N%wb — E — —
v v2 bv? b V2 bv?
E /
- —N2wbh- -2,
b
Thus, a4 /
g oW g
— = -N"— - F—. 6.2.7
ds v b2v ( )
Now, as
g/ _ g('g(g_ 0a>
0
| can expres$.2.7in terms off. | get
g d W g
=—(@-0,)=—-N"——E—
0o ds( ) v b2v
and hence
do do, 6 w q
R _ 2N L gL
ds ds ¢ ( v b%)
do, wby (0 —04)
= —*_N*——_F
ds qgu b2v

59
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To summarise,

d_w _ g(@ _ ‘9&) . Ei

ds 00y b2

db _ _bwg(@—@a)+Ew2
ds 2bv 2036, 20v3
W w00
ds ds qgu b2v

or in terms of timey:
dw g0 —0,) w

. 2
db _ £ bwg(d (9&)+Ew
dt 20 202 6, 2bv?
do do, why (6 —0,)
— = Y _N*—Z—_F 2.
dt dt g b2 (6.2.8)
Now,
do
N2 = L
9() dz
g db,
= = 6.2.9
90w dt ’ ( )
and hence the governing equations for the flow in ternis efandd are:
dw g0 —0,) w
i 0 — Eb2 (6.2.10a)
b E  bwg(d—146,) w?
R EF— 2.1
d 20 202 6, i 2012 (6.2.10b)
do 0—6,)
—=-F : 2.1
” 72 (6.2.10c)

with df, = HOT“’Nth, ds = vdt and & = wdt. The equation$.2.10reduce to
those of a vertically rising plume as — w and to a bent-over plume as — 0.
These equations are now used to calculate the mean velocity and tempewvaiake (
will be denoted by an overbar). The fluctuating velocity and temperature aresdenot
by a prime and will be calculated from stochastic differential equations. eTaes
constructed from analogous equations@®(10q and 6.2.10¢ for respectivelyw’
andd’ coupled with LSMs forw’ andé’. | now show the application of a Reynolds

60



6.2. AHYBRID MODEL FOR BUOYANT PLUME RISE

decomposition to the equations for andd. Becauses.2.10are linear inw and
0 respectively there are no second-order quantities and there is no feedback on the
mean quantities by the fluctuating quantities. Let me assume, firsty tead and
hence that is evaluated in terms of the mean quantities alone and, secorid =that
E(w;v;U). Since | assume also that there are no fluctuatiorts ithe Reynolds
decomposition fow is:

0+6 —40, W+ w

C(Ijt(w+w) = g —F (6.2.11)

from which | get

— l — — —
q (w') =g % Eb2 (6.2.12)
and the equation for’ analogous to(i.z.loa:

/

duw’ g@’ g

a6, b2
where | underline thak’ is assumed to be a function of the mean quantities only.
The Reynolds decomposition foketa is:

(6.2.13)

d 00, 74
&(9) = _ET Eb_2 (6.2.14)
from which | get
d 00
—(0) = —EB—~2 2.1
and he equation fat' analogous t0§.2.109:
do’ 7
e _Eﬁ (6.2.16)

The stochastic differential equation fef is now then given by

, g@’ B ' 1
duw' = 00 dt Eb2 dt TLdt+ 5 (w )da + 1/ CoediV (6.2.17)

whereT}, is the time scale on whicl’ changesg? is the vertical-velocity variance,
¢ is the mean kinetic energy dissipation rate @fids the constant of proportional-
ity in the second-order Lagrangian velocity structure function which typicalbysha
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value in the rangé — 7 in homogeneous isotropic turbulence (eXgling (2002));

| chooseCy, = 5. The last three terms on the right-hand side (RHS)602.17)
are those of Thomson (1987)LSM for inhomogeneous turbulence (as would be
the case for a Gaussian one-point velocity distribution). The stochasticethiffer
equation for' is given by

do’ = —E;dt — ?dt — —d9 + v/ Cpeg dWy
whereTy is the time scale on which decorrelatess, is the mean scalar dissipa-
tion rate and’y is the Obukhov-Corrsin constant which typically has a value of 1.6
( [Sreenivasan (199F)see also Monin and Yaglom (1973) p. 385 and the dis-
cussion in§23.5). The form of §.2.19 is similar to that considered bydn Dop
(1992). For simplicity | assume that the turbulent temperature statistefhamo-
geneous. As a particle moves from a region of low to high potential temperéture,
decreases (since the total potential temperature remains constant in énheeab$
any thermal diffusivity). The first term on the RHS &.2.17, the buoyancy term,
and the third term on the RHS @.2.19 together ensure thatis conserved follow-

ing a particle in the absence of entrainment (eRgdrson et al. (198]3) The third

term of the on the RHS 06(2.19, i.e. —ﬁ'dé arise from the tern%? that implicitly

contains fluctuations of velocity. In fact | can Wr@dt = d@a—w Now | use the
Reynolds decomposmon far and | consider the fluctating paut. Hence | have
%:dt = dead—w = d@“’ . In both 6.2.17% and 6.2.1§ the terms involvingty and
the fluctuating quantlty represent (in some way) the effect on the turbulence of the
entrainment whereas the terms [iké/ T’y represent the ‘internal’ turbulence of the
plume. The initial values oft’ and#’ are drawn from a joint Gaussian distribution
with zero mean and variances, ando; (whose functional form will be specified
below). | do not allow for any non-zero initial covariance,y, that may exist in
reality.

It remains to specify the forms of , 17, €, Cy, o andT, which are all functions of
z. | chooser,, = a|w| andT, = b/|w|. Since

202
T, = =¥ 6.2.18
it follows that )
«
6.2.19
“= o ( )
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The mean scalar dissipation rate is given by

B 203
— CyTy

(6.2.20)

€

wheresy = 7|0 — 6,], in which~ is a tunable constant whose value is choosen in
section6.4 below, andly is choosen to be equal #@.. The initial values ofr, b and
¢ are also discussed in sectibrk.

The model comprise$(2.1Q for w, § andb together with 6.2.17 and 6.2.19
for v’ and ¢’ respectively. The equations are solved numerically using an Euler-
Maruyama method. In the numerical implementation of the model it is necessary t
limit o2, T}, andoy as follows. | set

0w = amax(|w], w") (6.2.21)

and ;
T = (6.2.22)

max([w], w")

wherew* = w(z.,) andz., is the level of neutral buoyancy. The latter is most con-
veniently obtained from Briggs’ (1975) approximate solution of the plume equations
in a stably stratified environment in the absence of a crossflow (seelaseljish et

al. (2010a)). | then obtain

12
B FYA N3/ (6.2.23)
“ 10 0 ’
and hence that
~1 1/2
a = o3y (80 o AN, (6.2.24)
5) 10
Foroy | set

o9 = ymax(|0 — 0,],0") (6.2.25)

wheref” = (00/9)| Finaz|/ Ve @nd the subscriptiaz indicates that the quantities
are evaluated at the maximum rise height. FollowiBgdgs (1975), the maximum
rise height is given by

—-1/2
nan = 23414 (%) FyAN3, (6.2.26)
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and so | get
(§1e" 9a 1/ 3/4 5/4

ar = 221 (=) (= AN, 6.2.27
Noting thatF},,. = —Fy (which follows from Briggs’ approximate analytical solu-
tion) | then get

¥ 0o —1/46—5/4 5\ 1/4 nr5/4

0 =(—)n /"2 — Fy" N (6.2.28)

g S

The model is now applied in a homogeneous stably stratified atmosphere (i.e.

constant%’f > () in which the mean wind profilé/(z) is also constant. This is
done for a first assessment of the qualitative behaviour of the model. | show some
plume features in figure8.1, 6.2, 6.3 6.4evaluated includinghlack solid ling and

not including (ed dashed lingthe temperature fluctuations in order to investigate
their effect on the model. | consider a weak-wind liffiit= 0.1, a bent-over plume

U = 10 and an intermediate cagé = 1 so as to examine if the importance @f
depends on the intensity of the crossflow. In figérgl show the time evolution of
mean square temperature fluctuations. There is no much difference among the three
cases that | considered (= 0.1, U = 10, U = 1) i.e. ¢’ depends weakly on the
intensity of the crossflow. In fact} doesn’t depend ow or U, only on meanu,

hence | expected’ to have the same order of magnitude for all three cases at the
same height. The fluctuatio®swould make a greater (relative) contribution to the
SDE forw through thew — ¢ coupling termf{,%/ than to the SDE fop.

In figure 6.31 plot the evolution of the standard deviation of the particles distibution
around the mean height normalised with the wavelength of the plume’s oscillations
A = 27U/N along the downwind directiom scaled byL g, whereLp = F,/U? is

a typical length scale. [Fi§.1] shows the plume rise heightagainst the downwind
distancer normalised respectively W and +~. The plume evaluted with the
presented model seems to be sllghlty higher than the version in which | don'’t ac-
count forf’. Figure6.2 shows the vertical velocity divided by its initial valuag
against the height of the centre of mass adimensionalised with initial pludnestg.
According to [Fig6.1], w/w, calculated from the model is greater than the version
without temperature fluctations near the ground and smaller as the height increases
In figure 6.4 | show the vertical profile of the scalar concentration as a function of
the dimensionless heighfb,. Both the figure$.3 and6.4 suggest that the spread

of the plume is much larger including temperature fluctuations. Furthermore all of
the figures show that the role of the temperature fluctuation become more import as
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the intensity of the crossflow increases.

In the previous figure$.1, 6.2, 6.3 6.4 the tunable parameteris choosen to be
0.5. The figures.6 and6.7 provide further information by showing the behaviour
of plume height and scalar concentration by varying the valug dfchoosey = 0

(that can be equivalent to the case without temperature fluctuatipns)).1 and

~ = 0.5. The more evident fact is that there is little difference in the plume height
between those simulations with temperature fluctuations and those without. There
Is more of a difference in the plots of the scalar concentration: they clegolndie

on the value ofy stonger that plume height. If | compare the results with- 0.1

and the model withy = 0 then the differences are small, perhaps largest for the case
whenU = 1.
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Figure 6.1: The height of the plume centre of mass of the plagaénst downwind distance.
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Figure 6.2: The vertical velocity of the plume calculateors the centre of mass.
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Figure 6.3: Standard deviation of particles position adisienalised with the wavelength along with
the non-dimensional distance from the source.
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Figure 6.4: The scalar concentration for the plume caledlfitom the proposed hybrid modsiofid
line). The behaviour not including temperature fluctuationdge ahown @ashed ling
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line) and an intermediate case= 1 (red dashed ling
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Figure 6.6: Behaviour of the height of the plume centre of nagke valuesy = 0, v = 0.1 and
v = 0.5 for the three different cases of mean wind: a weak-wind lithi= 0.1, a bent-over plume
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Figure 6.7: Behaviour of the scalar concentration for thenawcalculated from the proposed hybrid
at the valuesy = 0, v = 0.1 andy = 0.5 for the three different cases of mean wind: a weak-wind
limit U = 0.1, a bent-over plumé& = 10, and an intermediate cage= 1
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6.3 Comparison with the model of Das and Durbin (2005)

[Das and Durbin (2005Pas and Durbin (2007 proposed an LSM for temperature
fluctuations that is constructed to agree with a known second-order closure. They
were interested in dispersion in a stably stratified turbulent flow wihon-buoyant
source. When adapted for buoyant plume rise in the same manner as | have done,
their model is very similar to the one given above. As a result of consistehcy
their model with the second-order closure they find that 977, /16. However, in
homogeneous isotropic turbulence, the coefficiénin their model has a value of
8/15 which is significantly smaller than the value used here and commonly found
experimentally and from direct numerical simulations of homogeneous isotropic tur-
bulence. Pope (200J)suggested this difference in the value@f may be due to

the relatively low-Reynolds-number flows typically used to tune second-order cl
sures. | note in passing that the valugfused by Das and Durbin (2005pas and
Durbin (2007} is closer to the value used here.

Let me introduce the simplified form of the model proposed Dgq and Durbin
(2005) whose second-order moments agree with the isotropization of production
(IP) model (see e.gFope (200Q) p. 423). This is the same model as was applied

to a realistic case with a non-buoyant source bgg and Durbin (2007) In the
context of buoyant plume rise, the stochastic differential equation for thecakrti
velocity takes the form

_(90=06.) g\ 9c _2 w29,  do, 12
dw = < 0 62> dt T dt R dt 30, dit+ 5 dt+(coe) /“dW
(6.3.1)
and that for the temperature is given by
_ _ (9 _ ea) / 1/2
do = (1 w) do, — B dt — 5k9 dt + ¢,/ "diWy (6.3.2)

wherek is turbulent kinetic energy. Here | have used the same values of the constant
coefficients that were used bp@s and Durbin (2007) Note thatc, is not the same
as(C\ above but takes the form
6 202dw 29wl 2
Co=—-——-——F — ==

5 5edz 96 3
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The conservation of scalar in stationary turbulence impilesitft= 0. The coef-
ficientcy is given by
17e—
—
Cy 10%9 .
It is clear by comparin@.3.1with 6.2.17that7;, = (10/9)k/e and, by comparing
6.3.2with 6.2.18 thatTy = 5k/(8¢). Hence, it follows thafly = 977 /16 and
17607

Cyp — 1—6?9

In both the models the term;”—;dt Is considered, se@.3.1and6.2.17 In [Das
and Durbin (2009)this is written as—% £w'dt andTL = 2k — 194 " |n my model
T, = % and by assuming? = %k: | havel; = 30 , See Pope (200Q)p 486].
Hence | can obtaid, = 6/5 by comparison with[pas and Durbin (200%)1 choose
Cy = 5 and hence the two time scales are slightly diffefEnt= 2% andT;, = £,
so that7}, in [Das and Durbin (200%)s 2> timesT}, of the model proposed here.
Anyway this difference is not necessarily wrong, because the two models idiffer
the stochastic termsyc'/2diW andCye'/2dW, with ¢y # Cj.

In both the models the term%dt Is considered, se@.3.2and6.2.18In [Das and

Durbin (2005) this is written as— (cip — &) $0'dt andTy = —=% = 2% In

19—?1 3 8¢

my model | considern) = 2"9 with Cy = 1.6 andTy = T}, = 15 k obtaining by
comparison with/y = thatTg In [Das and Durbln (200$)s times of 7y in the
model proposed here Choosrﬂg_ 61 = 5 Ty, in [Das and Durbin (200%)s
again% times7}, of the model proposed here. Again this difference is not necessarily
wrong, because the two models differ in the stochastic terms of temperatwedl as
ci/2dWy andCoe!/2dW and/Cyzg AWy, with ¢y # Cy.

6.4 Comparison with LES

Here | compare the model with the LES results Déjenish et al. (2010byvhich

were computed using a uniform ambient crosswind and a constant buoyancy fre-
quency. The initialisation ofo, b and¢’ for a pure plume whose initial buoyancy
flux is known is not straightforward. For a pure plume rising from a point source
w — 00, ¢ — oo andb — 0 asz — 0in such a way thafy is finite and non-zero
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while the initial momentum and volume fluxes are zero. Even the numerical solution
of (6.1.7) for a pure plume requires perturbation of the initial volume and momentum
fluxes in order to achieve a non-trivial solutionM¢rton et al. (1956).

[McCaffrey (1979) argued that in the lowest region of a fire plume the velocity
is independent of the heat release rate and grows:fike that is, its behaviour is
analogous to a body in free fall. It then follows that in this region= /2.
While the physics of this region is not represented in the model presented here, it
nevertheless provides a physically based approach of calculating thevaltiak of
w andg’, respectivelyin, andg/,. | estimatew, by equating the initial radius = 2z
so thatw, = /byg’y. Since the initial buoyancy fluky = 7b3¢',v, | obtain a cubic
polynomial for eithefw, or ¢/, for givenby:

2

—3 —2 F,
bog'y + U?qy — 7r2—([))61 = 0. (6.4.1)

The nature of the roots of this equation can be inferred by analysing the discriminant

of (6.4.1): ) )
Fy ¢ 27TF;
A= 7r2—b§ <4U — W2b3> : (6.4.2)
Any of the three casesY > 0, A = 0, A < 0) will produce a physical solution. In

the case that there are three real rodisX 0), (6.4.1) shows that two of these roots
will be negative (and can thus be discarded). In the problem, the valugsanids,

are such thaf\ is always negative and so the roots consist of one real root and two
complex roots.

The focus in this section is on the LES plumes in group A of Table Def/gnish
et al. (2010b]y the same values dfy,, NV andU are used in the model. The value-of
is estimated by comparing the LES profilessgfwith |0 — 6, along the centreline of
the plume. Figuré.8shows these quantities for a representative samglealues.
| find that the best fit is given with in the ranged.1 < + < 0.5 and that there is
little systematic variation with/. | present results with = 0.25, the average value
overU, andy = 0.1 and~y = 0.5.

In the calculation of the LES results, the plume was allowed to reach dystézte
and then sampled over a sufficiently long time period that fluctuations in thegplum
statistics were small. The LES domain typically allowed for the plume tdlate
for 1-2 wavelengths after the plume reached its maximum rise heightsegerjish
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etal. (2010b)Devenish et al. (2010Rjor more details). The calculation of the LSM
results was performed similarly.

Figure6.9shows the scalar concentration,beyond the first turning point of the
plume computed from the model trajectories and the LE® £t < U < 2.73 (the
case withU = 5.47 shows very similar behaviour to that 6f = 2.73 but is not
shown for reasons of space). It can be seen that, with the exception of theittase
U = 0.34, the rise height of the model plume agrees very well with the LES plume.
This is true for the model plumes with and without temperature fluctuations. In most
cases the spread of the model plume is close to that of the LES with the results for
~ = 0.1 (not shown) closest to the model plume with= 0 and the spread of the

model plume (withp’ = 0) increasing with increasing (as expected).

Figure 6.10 shows the plume width (defined to be the standard deviation of the
scalar concentration);: wherez = z/Fol/ N —3/4 the skewnessS; and the kur-
tosis, KC: for both the model and LES plumes. In order to mitigate the effect of
statistical noise in the LES data, three samples of the simulation dataedeais
calculate mean values and associated error bars (which are takethi standard
deviation) ofo: (and the higher order moments to be shown below). As expected,
o for the model plume witl¥’ = 0 (for all values ofy) is larger than that of the
model plume with9’ = 0 for all values ofU. It can also be seen that decreases
monotonically withU. As the wind speed increases, the plume is more constrained
and spreads less in the vertical direction (over a given horizontal destamicavel
time). While the LES values do not exhibit the same systematic variationOith
the overall trend is also decreasing with increadihgln general, the LES values
tend to be higher than the model values. It is possible that lack of resolution in the
LES, which may increase the amount of numerical diffusion, coupled with inade-
guate sampling leads to a greater spread compared with the model plumes. Higher
order moments of the scalar concentration show less systematic variétiori due
to statistical noise. The skewness, tends towards zero d$ increases as can be
seen in Figuré.10for both models withd’ £ 0 and®’ = 0. The model with’ = 0
has positive skewness and decreases monotonically with incredsivitereas the
model withd" £ 0 (for all values ofy), while also generally tending towards zero
asU increases, may become negative. The LES values of the skewness are nega-
tive and larger in magnitude than the model values; while the results are oy
the trend is arguably increasing (towards zero) with increaSintj is possible that
greater detrainment in the lower part of the LES plume compared with the model
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plume leads to a larger negative skewness in the LES results. Another ptsmsbili

that the LES plume tends to meander somewhat and that this is more pronounced in
the lower part of the plume; this effect is mitigated (particularly oger values of

) by choosing to calculate the scalar concentration beyond the first turning point.
The kurtosis/C:, shown in Figures.10Q, increases monotonically for the model with
0" = 0 whereas the model witf # 0 (for all values ofy) shows an initial increase
asU increases, reaching a maximuniat- 1 and steadily decreasing thereafter. As
with the skewness, LES values of the kurtosis suffer from statistical natsaegain

it is arguable that the overall trend is in keeping with the model thathgs0; the

values are closer in magnitude to the model values than is the case for theeskew
Both the skewness and the kurtosis show the model tending towards Gaussian val-
ues ad’ increases but it is not clear what the physical reasons are for the departure
from Gaussianity a8’ decreases. However, symmetry considerations suggest that
Gaussianity should be recoveredlasends to zero for the model if not for the LES.

The values ob;, S; andK: averaged ovel/ are shown in Tablé.1 It can be seen

that the model withh’ £ 0 and~ = 0.5 is closest to the LES values for all three
guantities.

As may be expected, varying in the range 0.1-0.5 produces a greater spread
as~ increases. Figuré.10shows that this is indeed the case #or Figure6.10
also shows that the variation & with ~ is not large but thatS: is more likely
to become negative asincreases. The variation &: with v is shown in Figure
6.10with IC; decreasing as increases. As increases, there is possibly a wider
variation in the level of neutral buoyancy experienced by each particle @tites
scalar distribution becomes less peaked (i.e. the kurtosis decre#sis3. is not
too large then the greater variation #hthat occurs close to the ground, and also
as~ increases, may explain why there is a tendencyStaio become negative with
increasingy. However, the complexity of the model means that the dependeriy of
and/C: on~ andU is not straightforward and these explanations should be regarded
as speculative.

| also conducted another series of simulations using the relationship befween
and T, derived by Pas and Durbin (200%).e. T, = 971/16 (assuming that this
may hold more generally than in the context of the second-order closure udeddy |
and Durbin (2009)to derive this result). Figuré.10shows that a shorter decorrela-
tion time scale fol¥ generally reduces the effect of the temperature fluctuations (as
expected).
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For values ofU smaller than those presented here, | found that the disagreement
between the model and LES plumes got worse particularly for the rise heights. This
may point to deficiencies in the modelling of buoyant plumes in a weak wind though
it should also be noted that LES of buoyant plumes with shiallere more sensitive
to resolution than larg& (see the discussion iDevenish et al. (2010h)
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(o Sg ]Cg

LES plume 0.448| -0.640| 4.817
Model plumed’ = 0 0.192| 0.106 | 2.578
Model plumef’ # 0: v = 0.25 || 0.271| 0.029 | 5.908
Model plumed’ # 0: v =0.1 | 0.216| 0.079 | 6.164
Model plume#’ #£ 0: v =0.5 | 0.321| -0.013| 4.578

Table 6.1: The standard deviation, skewness and kurtosteecdcalar concentration averaged over
all U-values for the model plumes (both+# 0 and#’ = 0) and the LES plume. The LES values are
averages over three samples of the simulation data.
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6.5. REAL CASE

6.5 Real case

The explosion and fire at the Buncefield oil depot in December 2005 produced the
largest plume of black carbon in Europe since the end of the second world war.

A major explosion at the Buncefield oil depot in Hemel Hempstead, Hertfordshire,
UK just after 0600 UTC on Sunday, 11th December 2005 resulted in the largest
peacetime fire in Europe to date (figud 1from the website

http://ww. net of fi ce. gov. uk/).

The blast was heard as far away as the Netherlands, a distance of some 200 miles
The Buncefield Major Investigation Board reported that the main explosion was
caused by the ignition of a flammable vapour cloud resulting from an overfilleol pet
storage tank (Buncefield Major Investigation Board, 2006). Forty-three peopée we
injured in the incident, but fortunately there were no fatalities. Sigmficeamage

was caused to local homes and offices and around 2000 people were evacuated. At
the height of the blaze, 20 large fuel storage tanks were alight. Each tank was re-
ported to hold up to 3 million gallons of fuel (unleaded petrol, super-unleaded petrol
motor spirit, gas oil, ultra-low sulphur diesel, and jet fuel). No efforesevmade to

bring the main fire under control during Sunday, as fire crews assessed th@sjtuati
determined the best strategy to tackle the blaze and assembled fire-fightiipg

ment. On Monday, serious efforts to cool and then extinguish the fire with foam and
water were undertaken by the fire brigade. The main fire was systemaggé-
guished during Tuesday and Wednesday.

Comparisons of LES of this plume with observations showed that the LES plume
captured many aspects of the observed plume, in particular, the rise heigiiteand
detrainment of the plume in different directions at different heigbsvenish and
Edwards (2009) Comparison of the LES plume with an LSM of the form proposed
by [Webster and Thomson (20Q2).e. with no temperature fluctuations, showed
that the LES results had a greater vertical spread than the LSM resulfSi¢sek3

of [Devenish et al. (2010h) This observation has, in part, motivated the present
study. In this section, | return to the original problem and apply the model introduced
in section6.2to the Buncefield plume.

The nearest hourly meteorological observations from the UK surface synoptic net-
work are from Heathrow and Northolt. In addition, high temporal resolution sur-
face observations from the Met Offices Meteorological Research Unit (VERRU
Cardington are available as 30, 10 and 1 minute mean values. Throughout the in-
cident, routine upper air radiosonde profiles were available twice daily froemtsc
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at Herstmonceux and Nottingham at 0000 UTC and 1200 UTC. The same wind and
temperature profiles as used ydvenish and Edwards (20Q®r [Devenish et al.
(2010b] are used here (see figuéel2and6.13. In this section, the assumption

of constant buoyancy frequency and uniform crosswind used in se@i2asd6.4

are relaxed to allow for realistic profiles of temperature and ambiamd.win ad-
dition, the model presented in sectiér is extended to include two equations for
the horizontal momentum flux, one for each horizontal component of the ambient
wind (e.g. Weil (1988])). The equation for each horizontal component of the mean
velocity of the plumey;, then takes the form

= =% (6.5.1)

whereU; is theith horizontal component of the ambient wind an@nges over the
zonal and meridional components of the wind. Fluctuations in both of these compo-
nents are not treated here.

Let me show how to obtain the ter®5.1 | consider the ambient wind =
(u14,us24) Of [Fig.6.12 and | introduce the components of the plume velogitynd

us (the zonal and meridional components respectively). | remark that | do not con-
sider any fluctuations in; andu, so thatu; = uy anduy = uy, v = \/u? + u3 + w?

and of the plume position andy so thats = /22 + 2 + 22 , the plume equations
6.1.1become:

dg(vb2) = F

s
d 2 277
$(vwb ) = bg

d d

4 (1162(u1 — ulA)) = —Ub2%

d dUQA

O ('UbZ('U/Q — UQA)) = —vbQF
%(vwb% = b’
dg(vg’b2) = —N%b*w
s

(6.5.2)
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Once again, a set of SDEs can be deduced from equétto@ Expand left-hand
sides:

dv db

b2d— + ZUbd— — F
S S
dv dw db
b2w£ + b2v$ + 21}1019& = b
dv db duy duyg duy g
b2(uy — i 4)— 4+ 20(uy — wy4)b— + b2v— — vb? — P~
(uy 14) ds (uy 14) ds ds ds ds
dv db dus duso 4 duo g
b2 (us — uga)— + 20(uy — usq)b— + b*v—=r — vb? = —uh*—==
( )ds ( ) ds ds ds ds
dg’ dv db
02T 4 g2 L ogdvb— = —N2%w.
ds ds ds
(6.5.3)
Now,
ds = 2(u1—|—u2—|—w ) des +2U1E+2U2E —; U)@"‘UQ@"‘UQE
(6.5.4)
and so 6.5.3 becomes
b2w dw u1b? dug usb? dus db
Tods T2 ds TPy ds g E
(6.5.5a)
b2w? dw ub?w duy usb?w duy 5 dw db 9
v ds T2y ds Ty ds““ds””wbds—(bg )
6.5.5
2 _ 2 _ 2 —
brwlu —wa) o | bl —wra) iy | Bua(in = wa) duz 20(uy — ulA)b% g L
v ds v ds v ds ds ds
(6.5.5¢)
2 _ 2 _ 2 —
b w(ug — ug4) diu) N b*u(ug — ug4) % N b ug(ug — ug4) % + 2v(ug — U2A)b% + UbQ% =0
v ds v ds v ds ds ds ( 0
6.5.5
d¢ b*wg d b2uiq’ d b2usg’ d db
vb2d—i Z’g d—l:Jr 1219 % + 1229 %—i-levb& = _N2p%w
(6.5.5€e)
Combine the first two equations @.6.9: (6.5.5) —wx (6.5.53
dw
Vo— = b*¢ — Bw
ds
and hence g /
w g w
—_— == F— 6.5.6
ds v b2v ( )



6.5. REAL CASE
Combine the first and the third equation 6f%.9: (6.5.59 —(u; — u14) % (6.5.58:
du1

b2 dS = E(U1 — UIA)
and hence 4 B )
Uy —L U — UrA
— =F . 6.5.7
ds b2v ( )
Combine the first and the fourth equation 6f3.9: (6.5.59 —(us — u24) % (6.5.58:
du
b2 d32 = E(UQ — UQA)
and hence g B )
U2 — L U2 — U24
—=F 6.5.8
ds b2v ( )
Consider the equatiors (5.59 for b and substituteg.5.6, (6.5.7 and 6.5.9:
db Vwdw  bPuydu;  bPus dus
20— = B — —— — —
! ds v ds v ds v ds
vw (¢ w VurE(uy —uyy)  b*usE(us — uga)
- - (L _gp—
v (v b%) i v2h? i v2h?
_ 5 b2u;g’ N Ew_j N ulE(u12— U14) N 'U;QE(UQZ_ Usa)
v v v v
and hence
db E  bwd w? Fui(uy —ura)  Fus(ug — usa)
- _ _ E
ds 2bv 203 * 2bv3 + 2003 * 2bv3
Substituting 6.5.6, (6.5.7), (6.5.8 and 6.5.9 in (6.5.5¢
dg' bwg' dw  buig duy  busg’ dus , db
Ubds = —Nlwb- v @4_ v $+ v E_ng$
dg B bwg' (g w bug’ up —upa)  bugg’ Uz — U
ds = N v (UEva) v <E b2 > v <E b2 >

E  bwg w?
-2 dul =/ — E—
g (Qb 203 T op

dg’ o o bwg® w?dwi(u—wia)g' | us(up—usa)g'  Eg | bwg”?
vb— = —N"wb— ) E FE —
ds v2 + bo? + bv? + b2 b + v2
g'w? g'ui(ur —ura) g uz(ug — uga)
—-F —F —F
b2 bv? bu?
dg’ 9 Eg
b—-— = —N-wb-— .
v ds v b
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Thus, ,
dg LW g
ds =N v Eb2
Now, as : )
I g 0 - ea
g — 90
| can expressd.5.9 in terms of6. | get
g d oW q
S —N°— — F—=—
0o ds( o) = v b2v
and hence

@ df, 90<N2w Eg)

ds ds ¢ b?
_do, 5 Wh (0 —40,)
T ods N qu E b2v
(6.5.9)
To summarise:
dw g(0 —0,)
w9 T%) W
ds v0y b2v
du1 —(u1 — ulA)
- _ B
ds b2v
dUQ o —(UQ — UQA)
9 7T
b  E bwy(d—6.) i w?
ds 2w 2030, 20v3
do dd, ywhy (0 —46,)
ds ~ ds - gu -k b2v

or in terms of timef, adding the equations for the ambient temperature and velocity
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profiles:

dw g0 —0,) w

= _ ) gt

dt 0o b2

dv dd, wb (0 —0,)
R Nl

dt dt g b2

_ P

%:E_bwg(e 9a)+Ew
dt 20 202 6, 2bv?
duy o —(Ul—um)

W P

dUQ o —(UQ—UQA)

W P
du 4 o du 4

o U d
duga o wduzA

dt dz

o, b,

&~ dz

(6.5.10)
whereN? = é"%‘)— gfwd‘)

By comparing the two equatiors5.10and6.2.9the equatior6.5.1is proved. Note
that NV (and hence ), ) is not constant. The expression foris the same used in the
previous cases, justifiable statement assuming that the difference betmbent

and plume velocities is small relative to the ambient one.

Figures6.14and6.15show respectively the plume height the standard deviation of
the particles distibution around the plume height as function of the downwind direc-
tion X = /22 + y? on the plandz, y). In [Fig.6.14 | plot as well some trajectories

of the fictitious particles released from the source for the LSM. Comparing output
from the Met Offices atmospheric dispersion model, NAME, with sateltitagery
suggested that the plume was reaching a height of about 3000 m. This estimation
was supported by a report from a commercial airline pilot. This was supported by
a call received from Southampton Air Traffic Control shortly after 10am witle-

port from a commercial airline which indicated that the smoke plume wasyrisi

a height of 9000 ft (2743 m) within the Atmosphere. A high pressure system dom-
inated the weather over the south of the UK during Sunday 11th December 2005.
A stable Atmosphere existed, which suppressed vertical mixing.A shalfowgly
stable layer with temperature increasing with height (a temperatuegsion) ex-
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6.5. REAL CASE

isted at the ground up to a height of about 100 m. Above this layer up to a height of
about 400 m above ground, the Atmosphere was approximately neutral in stability.
Above this neutral layer the Atmosphere was stable throughout with a strongly sta-
ble layer up to about 1200 m. Above, a shallow neutral layer existed at the ground
(100 m in depth). The Atmosphere was stable above and was strongly stable up to
height of about 1900 m with a number of small temperature inversions. Furthermore
the plume was detected at a height of approximately 2000 m above Bournemouth by
the Metoffice FAAM (Facility for Airborne Atmospheric Measurementsgaift on
Monday 12th December and was reported to be roughly 11 miles wide with a max-
imum height of 5000 ft (1524 m) on Tuesday 13th December. §Fld] shows that

the particles of proposed LSM reach a maximum height just lower than 3000 m and
the main plume height (i.e the equilibrium height for the plume) is included between
1500 m and 2000 m. This is roughly in line with observations from satellite imagery
and the FAAM aircraft especially considering the range of the standard aeviti
particles positions around the mean height (see ¢Fig).

Figure6.16shows the scalar concentration computed from the LSM with and with-
out temperature fluctuations. Results are presentedwith).25 andy = 0.5. The

initial buoyancy flux was comparable with that estimated from the explositimeat

oil depot and used in the original LES studydvenish and Edwards (20Q9)T'he

LES results are also shown in the same figure. In contrast with the previdiensec
(see Fig.6.9), the scalar concentration shown in Fi§.16includes the rising part

of the plume as that was how the LES results were calculated. It can be seen that
while the model plumes do not rise quite as high as the LES plume, there is a small
increase in height as the valuepincreases. Similarly, and not unexpectedly, the
spread of the model plumes increases with increaginihe values of; for all four

cases are: 396 m (LES); 324 m (model plume withZ# 0 andy = 0.5); 272 m
(model plume withp’ = 0 and~ = 0.25); 258 m (model plume witld’ = 0).
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Figure 6.11: The blaze at the Buncefield oil depot.
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Figure 6.12: The ambient initial wind profile at time of Buneddi explosion.
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Figure 6.13: The ambient initial potential temperaturefipg@t time of Buncefield explosion.
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Figure 6.14: Main plume height (red) and particles trajgeto(black) generated by the LSMo as
function of the downwind directio’ = /(2 + y?) on the planéz, y)
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Figure 6.15: Standard deviation of the particles distdoutiround the mean height as function of the
downwind directionX = /(2 + y?) on the planéz, y)
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Figure 6.16: The scalar concentration normalised by itsimam value for the Buncefield case
described in the text: the black circles are the LES restiitssmodel plumes with’ ## 0 are shown
by the red and cyan lines far= 0.5 andy = 0.25 respectively; the blue line is the model plume with
0" =0.
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Chapter 7

Analytical offline approach for concentration
fluctuations and higher order concentration
moments.

7.1 Model formulation.

In a fixed reference frame with respect to the source location, the mofecds-
centration of a passive tracer emitted from a continuous source are defined as:

c(zr,y,2) = / c"pe(c; w,y, 2)de (7.1.1)
0

wherec is the instantaneous concentratippc; x, y, z) is the concentration PDF in

the fixed systemy is the downwind distance, the crosswind direction andis the
vertical coordinate. In the FPM approach, the ensemble dispersion of a plume is
viewed as the sum of a number of instantaneous plumes. The motion of the centroid
of each instantaneous plume is considered in a fixed coordinate system redative
the source, whereas the concentration distribution within the instantaneousiplume
calculated relatively to the plume centroid. Followirggifford (1959], | assume the
contributions due to meandering and to relative diffusion are statisticalepen-

dent; the concentration PDF can be written as:

00 oo
pc(c;:c,y,z) = / / pcr(c;xayaZ;ym;Zm)pm(xaymyzm)dymdzm (712)
0 —00

wherep,,(z, ym, zn) is the PDF of centroid positiop,..(c; z, v, z, Ym, 2 ) IS the rel-
ative concentration PDF in a reference frame relativeyt z,,). Further | assume
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7.2. RELATIVE CONCENTRATION MOMENTS PARAMETERIZATION.

that the plume meander in the crosswind direction is independent from the one in the
vertical direction; the turbulence field is stationary and horizontally homagene

the wind shear can be neglected. Moreover | use of Taylor frozen turbulence hypoth-
esis, i.e.x = Ut, , whereU = w is the mean wind andis the plume travel time.
Substituting equatioi.1.2in equation7.1.1l have:

Cn .’L‘ Y, < / / [/ c" pcr GT,Y, %, ymazm)dC] pm(x ymazm)dymdzm
(7.1.3)
and using the definition of nth-order relative concentration momeis y, z):

[ee]
@({E, y? z? ynl) ZTTL) — / CanT(C; {E, y? Z? yTnn Zm)dc (7'1'4)
0
it is possible to obtain:
Az, y, 2 / / (2, Y, 2, Yms 2m) P (T Yy 2 AYmd 2, (7.1.5)

Equation7.1.5summarizes the idea of the FPMs stating that the concentration field

can be evaluated through two different contributions: the meandering of the plume
centroidp,, (z, y, 2,,) that has to be simulated, and the relative concentration statis-

ticsc?(x,y, z, ym, zm) that has to be parameterized.

7.2 Relative concentration moments parameterization.

Following [Yee and Wilson (200Qxand [Luhar et al. (200Q) p.. can be represented
by the gamma distribution:

hY A\ A
pcr(C;I,Z,Zm) - C_F(A) (C:> exrp <_C:> (721)

where\ = 1/i2, andi., = % is the relative concentration fluctuation in-

tensity, I'(\) is the gamma function, ang is the mean concentration relative to
the instantaneous plume centroid. Substituffin® 1in the term within the square
brackets of equatio.1.3 it is possible to show the following property pf. :

[ o A e\ M Ac 1 D(n+\)
r = " er\C; L5 Yy 25 Yms Zm d = ni p— d - . Tn
cr /0 "per (€2, Y, 2, Ym, 2m)de /0 c =TV (Cr> e:vp( Cr) = T c

(7.2.2)
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7.2. RELATIVE CONCENTRATION MOMENTS PARAMETERIZATION.

Hence theath-order moment of relative concentration is proportional to the the first
moment of relative concentration raised to thté power. Using this statement in
7.1.51 have:

_ 1T A)
Cn(l’, Y, Z) = _n n + / / .I' v Ys 23 Ym, Zm)pm(x Ym, Zm)dymdzm
(7.2.3)
Using the independence assumption between vertical and lateral diffus®ppi4
sible to factorize both the meander PDF and the relative mean concentiainbn,
hence the absolute concentration, as:

pm(xa Ym, Zm) = pym(xa ym)pzm(ajv Zm) (7.2.4)

_ _ Q
Cr<xa Y, 2y Ym, Zm) - Czr(xa <, Zm)pyr(xa Y, ym) - Upzr(x: - Zm)pyr(x: Y, ym)
(7.2.5)

Where() is the emission rate and the te%rgive to pdf the dimension of a concen-
tration. Introducing this factorization in.2.31 have:

1I‘n—|—)\Q

c(x,y,2) = </ pym x ym)pyr(x Y, ym)dym) Pem (T, 2m)Par (T, 2, 2m)d2m,

(7.2.6)
Since | have supposed the total crosswind expansion to be a Gaussian without
boundary, the contribution to concentration moments from the lateral meander can

be carried out analytically as ib{ihar et al. (200Q)to yield:

A(x,y,z) = iF(n—k/\)Q Ty exp | — ny-
A T(A) <\/ﬁayM /no?, + o2 ) 2y /nog, + oy,
H
| onlezlprt, 2,2z (7.2.7)
0

where H is the vertical domain sizes,, ando,,, are respectively the relative and
barycentre standard deviation for thedirection. The expression used foy, is

(see Franzese (2008)

3
o2 = et +) (7.2.8)

1 () |
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7.2. RELATIVE CONCENTRATION MOMENTS PARAMETERIZATION.

whereg, is the one dimensional Richardson constaid,the dissipation rate of tur-
bulent kinetic energyl;, is the transverse Lagrangian time scaféthe turbulence
transverse velocity variance and= (o3 / (gye))% accounts for a finite initial source

size . Equatior?.2.8corresponds to the inertial range relative dispersion formulation
at small time, and tends t@aylor (1921)s limit at large time. The mdependence

between meander and relative contribution allows to Wrzte: a T 0 and ob-

tain ay from this equation, with the crosswind spreﬁgdglven by [I'aylor (1921)s
formula or deduced by the mean filed input required in the meandering component

n

evaluation. Being,," = (%pm) , an expression fgy., is needed.

Both for the case of homogeneous turbulence and for the case of the wind tunnel
boundary layers | considered, | choose the relationFoaifizese (200Bpssuming

that the particle mean distribution around the centre of mass is Gaussiarcht®s
multiple reflections at the boundaries:

1 al 2 — zm + 2nH)? 24 2m + 2nH)?

per(es2im) = o o () e (M) 29

n=—

whereN is the number of reflection and it is taken equal to 10. Although the equa-
tion 7.2.9represent a simple reflected Gaussian form (Franzese, 2003), it was found
to provide good overall agreement with the experiments. A skewed PDF obtained
as the sum of two reflected Gaussian PDFsuhfar et al. (200Q) [Dosio and de
Arellano (2006)) and especially suited for skewed turbulence can be also used here,
e.g. in the case of convective boundary layer (CBL) or highly asymmetrical canopie
(see appendix A). Anyway throughout this thesis | useditBe9for p., given that it
provides good results in the comparison with various data, although it si vepjesim

An expression for the standard deviation of vertical relative position idegkelThe
vertical dispersion coefficient corresponds to the inertial range behaviour &k sm
times, as equation.2.8for crosswind direction, whereas accounts for the boundaries
effect that reduces the vertical spreading at large timesN\erdrini et al. (2009)

3
o2 = _ONglt ) (7.2.10)

1+ ap (g.et?)s |

whereg. is the one dimensional Richardson constant for vertical direction and the
parametersyy andap are introduced to set the contribution of two different be-
haviours for small and large time.

Equation7.2.7shows that, in order to give a complete closure for relative concentra-
tion moments, an expression far and thus for.., is required. The concentration
fluctuations are primarily caused by the variation in the external intesnay pro-
duced exclusively by the meandering motion near the source, but in the far field the
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7.3. EVALUATION OF CENTROID VERTICAL LOCATION PDF.

in-plume fluctuations became predominantly; inside the instantaneous plume bound-
aries, the fluctuations arise solely from an internal intermittency dugteonal con-
centration fluctuations produced by the turbulent mixing processes (e.g., sttain a
rotation of concentration gradients by velocity gradients, dissipation due t@mole
lar diffusive processes). Without taking into accouynt the absolute concentration
fluctuationsi, = % became zero as soon as the meander contribution is negli-
gible. Measurements of lateral cross-sections of the fluctuation inteépsity point
source plume in the absolute framergg et al. (1994) show thati. has a minimum

at the mean plume centreline and increases markedly towards the plume édges.
note that the U-shaped profile fgrpredicted by the experimental dataGdilis et

al. (2007)) is due entirely to the external fluctuations resulting from the bulk me-
andering of the plume. It is expected that the internal plume intermittencygtiafie

the internal fine-scale fluctuations should result also in a U-shaped profilg. for
similar to the U-shaped profile for due to the external plume intermittency reflect-
ing the plume meander. In view of thigéilis et al. (2007)propose the following
functional form fori,.. derived from [Gifford (1959) 2-D FPM:

—\ ¢
i2 = (14, (C:) —1 (7.2.11)
Cr0

wherei,.q is thei.. minimum, ¢, is thec, maximum and is a shape parameter with
values in the interval), 1]. The values of.,, and( are choosen, for any, to have

the best agreement with experimental da@aifis et al. (2007)obtain the values

( = % for crosswind direction{ = % for vertical one and..,., are less than unity,
applying their model to a water channel simulation that reproduce at smalltkeale
Mock Urban Setting Test (MUST) conducted at the U.S. Army Dugway Proving
Ground, Dugway, Utah in September 2001. This choice is made because it is the
only for height-dependent parameterization and takes into account the conservation
of TKE dissipation in the vortex scale reduction close to the boundaries.

7.3 Evaluation of centroid vertical location PDF.

Most of the recent versions of fluctuating plume model are coupled with a La-
grangian Stochastic Model for the particle trajectories in order to caéctha mean
concentration field. In the presented version of FPM | use@as$iani and Giostra
(2002) approach to evaluate the vertical location PRF,. This approach has the
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7.3. EVALUATION OF CENTROID VERTICAL LOCATION PDF.

advantage of independence from the method use to evaluate the mean concentration
field ¢(z,y, z), thus relaxing the need for Lagrangian modelling. Heefleey, 2)

can be derived both from measurements and numerical evaluation. Once the mean
field ¢(x, y, z) is known, the evaluation gf.,, only requires the mean heightand

the vertical location variance..

The definition of crosswind-integrate concentration is:

Cy(x, 2) = / c(z,y, z)dy (7.3.1)
It corresponds to marginal PDF definition. In this context the concentration can be
seen as the density of probability that mass of a pollutant is at a given point and
given instant. Hence, reminding that the downwind dispersion in negligipleor-
responds withp. (x, z). In particular, in order to satisfy the normalisation condition
[ ez, z)dz = 1, | can write:

(@, 2)
foH cy(w, z)dz

Where the indefinite integral is replaced with the integral over the articmain
[0, H]. Substituting the definitioid.3.1in the equatiory.3.2it follows that:

p-(z,2) = (7.3.2)

Cy(x, 2)
I ey, 2)dydz

The double integral in the denominator represent the source%erﬁfrom dimen-
sional analysis, it is obvious that the source emission @rhas the dimension of
a particles flux. Discrete values pf A z can be specified directly by sampling
the crosswind-integrated concentration normalised accordifg3t@in N points,
whereAz = 1/N is the the spatial scale of the grid. Thus it is possible to write:

p:(z,2) = (7.3.3)

N
Z(z) = szi(:z:, 2) A\ z; (7.3.4)
i=1

where the subscriptselects theth point of the grid. Analogously relationships can
be obtained for the high order moments, e.g.:

N
ol(x) =Y (2 — %) pulr,2) Az (7.3.5)

1=1
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Now the [Cassiani and Giostra (20Q2near transformation is used to evaluate the
meandering barycentre PDE,,; it is equal to Luhar et al. (200Q)linear trans-
formation, but it is apply on the points of the calculation grid instead of trajesst
given by a Lagrangian single particle model. This method allows to remove tkde nee
for SPM though maintaining the same phisycal meaningLohpr et al. (200Q)
linear transformation and to reduce the computational time also considerirteha
grid points are less than the number of particle released in a SBMaf et al.
(2000] derive the trajectory of the instantaneous plume centre of ma&s) from

the particle trajectory(z) (or equivalentlyz(¢) assuming frozen turbulence) gener-
ated by a SPM using the following linear transformation (see appendix B for the

details):

tn(1) = 257 (2(2) — 2(2)) + 2(x) (7.3.6)

2
0

whereo? ando?, are respectively the absolute and relative vertical positions vari-
ances. As inCassiani and Giostra (20Q2)use the same linear transformation but

applied to grid spacing instead of Lagrangian trajectories:

2 2
0, — 0

Zmi(T) = T(zi(ﬂﬁ') —Z(z)) +Z(z) (7.3.7)
Introducing the definition of grid spacing for the total dispersion and the barycentre
dispersion ag\z = z;(x) — z(x) and Az, = z,;(x) — Z(z) respectively, (note that
Zm = z) it follows:
02 — O'2
Azpi(x) = %Az(m) (7.3.8)

A relation between the PDFs of two stochastic processes linearl\edetaich as

zm(x) andz(x) is given byp. A, = p.,A..,, see appendix . In this way, the previous
value ofp.;A.; is exactly the value of.,,;A.,,; for an instantaneous plume centroid
located atz,,;. | note thatA,,, is smaller tham\, by the factor%, so that the
value ofp.,, is greater tham,. This is a compression of the grid spacing of the
barycentre PDF that reduces the variance conserving at the same time theskew

the kurtosis and all the scaled moments. The resulting form of PDF is:

B 0 out of the compressed concentration field (7.3.9)
Pam = p.£= inthe compressed concentration field e
Oncep.,, is known, it is possible obtain:
N
Ugm(x) — Z(zmz - §)2pzmi($7 Z) A Zmi (7310)

1=1
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N
z’i’n(x) - (zm - 5)3(:L') - Z(zrm - E)gpzmi(xa Z) Az (7.3.11)
=1
and equivalently all the higher moments. Hence, the final form of FP | propose is
obtained by rewriting the integral in2.7as:
H N
/ Pzm (xa Zm)pzr(aja 2,y Zm)dzm = Z pzm(xa Zmi)pzr(xa Z, Zmi)AZnLi (7312)
0 i=1
In such a sense, the method is a simplification of thénpr et al. (200Q)approach.
Although being simpler and faster, from a mathematical point of view the method is
equivalent to thelluhar et al. (200Q)one.

7.4 Test Case

In this section three test cases are simulated to check the model behéawisiy.

the model is applied to homogeneous turbulence and it is used to verify the well-
mixed condition. Special attention to the second moment of concentration is given
by comparing the results with analytical expressions foundThomson (199Q)

and [Ferrero and Mortarini (200%) The other two test cases verify the behaviour

of the model for inhomogeneous turbulence in water and wind tunnel simulations
of the neutral boundary layer. First, | consider the water tunnel measurements of
scalar concentration for three idealized urban canopies with differenttasims

of [Hug and Franzese (2013) compare the results obtained from the model both

to the Hug and Franzese (2013)ata, who encompass plume spread and concentra-
tion of a passive scalar continuously released from a near-ground point source, and
to the Huqg and Franzese (20]3yaussian Model. Then the model is compared to
the data-set ofNlironi (2013} and [Nironi et al. (2013) describing the evolution

of a fluctuating pollutant plume within a wind tunnel simulation of a neutral bound-
ary layer. The INironi (2013) data set extends the popular study Ba¢krell and
Robins (19824) about concentration fluctuations from point sources by including
measurements of concentration skewness and kurtosis and investigationshabout t
influence of source conditions on higher order concentration m oments.The data set
is also completed by a detailed description of the velocity statistics.

| underline that the FPM introduced here, has the capability for evaluating the con-
centration PDF without a coupled LSM, given only a mean concentration field. The
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flexibility of the models is validated using three different evaluations of tleam
field: a simple SPM in homogenoeus turbulence, a Gaussian model in the water
boundary layer and an experimental data in the wind tunnerl bounday layer.

7.4.1 Homogeneous turbulence

In this section | present the results of the numerical simulation given by nmodel
homogeneous turbulence. This is a first validation and represents a good approxima-
tion for the crosswind direction even in more realistic kinds of turbulence niden

and mean square concentration fields in the inertial range are invedtayatecom-

pared with the theoretical predictions found @jhpmson (199Q)and [Ferrero and
Mortarini (2005] and [Luhar et al. (200Q) [Thomson (199Q)develops an analyt-

ical solution obatined from two Langevin equations for the particles separation and
barycentre. His approach is based on the stochastic processes theoryribesesc
complete three dimensional model for two-particles dispersion in homogeneous tur-
bulence and it is based on a Gaussian PDF for the particles separatiorwifgllo
Thomson Thomson (199Q) [Ferrero and Mortarini (2005prescribe an analytical
formula for the fluctuation concentrations based on the Richardson form for the PDF
separation. MorevoeFErrero and Mortarini (200b)levelop a single particle model

with a gaussian PDF for the position. In particul&efrero and Mortarini (200%)
evaluated the mean concentration and the concentration fluctuations by using the
single particleP, and on the two-particle separatidh PDFs, respectively as (see
section2.4):

<mw:/3m¢mwww

cmw:/%@w@mmmmw@@

beingS(y) the amount of tracer released per unit of volume that is consider, for sake
of simplicity, a discrete Gaussian source distribution. THesrfero and Mortarini
(2005]) calculatec(z, t) using a Gaussian form fdp, (note that the:(z, ¢t) obtained

by [Ferrero and Mortarini (200bhas itself a Gaussian form.), ant{z, t) using the
Richardson PDF foP,.

Concerning the separation PDF they found thattfer ¢, andt > T} (wheret is

the time,t,, is the cross-over time ang;, is the velocity correlation Lagrangian time

scale) it is Gaussian, confirming thBdtchelor (1952)and [Monin and Yaglom
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(1971]) results, while in the intermediate subrange it departs from the Gaussian PD
and agrees with the Richardson PDF (as also fotihdifnson (199Q)and [Boffetta

and Sokolov (2003). From equatiory.2.7it is clear that an analytical solution for
concentration moments can also be carried out from fluctuating plume model (see
e.g. Luhar et al. (200Q) only if the total and meander expansions are Gaussian and
only for the case of free (i.e. not bound) variables. | consider the one-dimensional
case and | refer to the position variable jasind to velocity variable as given

that the homogeneous turbulence is a good approximation for the lateral direction.;
the generalization to two and three dimensions is trivial if only free demare
considered. The mean field required to develop the model is obtained by the simplest
SPM. In homogeneous turbulence the velocity PDF can be considered as Gaussian
yielding a simple expression for the Langevin equation:

dv = —T—Lv dt + /Cye - dW (¢ (7.4.1)
Where—TiLv is the drift term W (¢) is incremental Wiener processes with zero mean
and variance is the TKE dissipation and i§, the Kolmogorov universal constant
that ensures the model consistency with the Lagrangian velocity structureofuncti
as introducted in chapté&. The homogeneity assumption allows to use the Gaus-
sian relative PDF.2.9 of [Franzese (200B)nstead of the skewed one dDfsio
and de Arellano (200¢) Furthermore with the hypothesis of free variable, hence
without boundary reflections, equati@m2.9turns into a simple Gaussian distribu-
tion. Figure7.1show the mean concentration field computed with the FPM (black
lines) presented in this chapter plotted over filled contours represensipgatevely
the results obtained from the simple SPM of equaffioh1lused as data input for
the FPM on the top-right and the analytical form obtainedfsrfero and Mortarini
(2005) from their single particle model with gaussian PDF on the top-left. Both
the figures above evidenced a very good agreement with the FPM. The Tidure
below show the absolute standard deviatignthe baricentre standard deviation
and the relative standard deviation.. .. is compared toTaylor (1921) analytical
form (equivalent to theTThomson (199Q)c.) and the agreement results very good.
The figure shows also the typical behaviour of a FP: near the source the total disper-
sion is dominated by the barycentre part so that o.,, ando., ~ 0, whereas far
from the source the plume becomes well-mixed by spreading on the entire lertica
domain and the relative part is therefore predominantly o.,. ando.,, ~ 0.
Figure7.2shows the mean concentration fie(d, y) evaluated from the simple SPM
founded on Langevin equation written in equatibd.1lcompared with analytical

97



7.4. TEST CASE

formulae of Ferrero and Mortarini (200%)kingle particle model, oflfuhar et al.
(2000) FPM for crosswind direction. In particular | show the time evolution of the

mean field divided by its intial valu% aty =0,y = 0.04,y = 0.08 andy = 0.12.

Iny = 0 | show as well the comparison with theyhar et al. (200Q)FPM. In fig-

ure 7.3 1 present the same results, but for normalised mean concentration field, i.e
for the PDFp,(t, y), focusing the attention on the spatial evolution at the fixed time
t =0.017Ty,t =0.1T, t = Ty, andt = 107;,. The model accurately reproduces the
expected behaviour of the evolution time of mean concentration at given points and
of the spatial evolution af-PDF at fixed times. In homogenoeus turbulence my FPM
coincides with the analytical version dfdihar et al. (200Q)for crosswind direction
because the expression for the drift term of equation coupled with the lLuhar

et al. (2000) (or [CaSS|an| and Giostra (20Q2)inear transformation for crosswind
direction (i.ey,, = % “ beingy = 7,, = 0) ensures that the meandering PDF is
Gaussian and hence the equivalence between the two methods.

The second moment, i.e. the mean square concentration field, is now invatigat
[Ferrero and Mortarini (200bJound that the Richardson PDF give bette results at
small times, while at larger times the model results agree with theularbased on

a Gaussian PDF. This result demonstrates that the Gaussian PDF is ailsfaxs
torily predict concentration fluctuation only for times greater than the Lagrangia
time scales, but when we are interested in the behaviour at very shosd tirae
Richardson separation PDF should be accounted for. This result is particalarly i
teresting because in many practical applications the concentration flootiatcur

at very short times near the source. Hence in the figures about the second moment
of concentration, the form prescribed byerrero and Mortarini (200bhas to be
considered only at very short time. Moreover, the modelFarfero and Mortarini
(2005] is a one-dimensional model, hence the comparison with the y-direction of a
two-dimensional FPM might be not proper. Nevertheless, as | show in the following
figures, the agreement is very good and it is not trivial.

As shown in7.4, the FPM results agree with the expected behaviou? ef/aluated

with the two analytical predictions ofThomson (199(Q)and [Ferrero and Mortarini
(2005] respectively. The two analytical models are also compared themselves
figure 7.4, although the figures evidence that the shape abtained from SPM fit
slightly better the first one. In order to make this statement more noticeaiple
ure7.5shows the comparison among the FPM analytical version and the considered
check-up analytical models, i.e. the two above-mentioned analytical poedarid

the analytical version FPM ot uhar et al. (200Q)for crosswind direction, for the
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time evolution of the second-order moment of concentration normalised by its intial
vlaue < ((”/) at given pointy = 0, y = 0.04, y = 0.08 andy = 0.12. My FPM
coupled with the simple SPM of equatidi.1 coincides with the analytical one

of [Luhar et al. (200Q) as in the case of mean field, and the equivalence between
two methods is checked out again. It is evident that the FPM values is motarsimi

to [Thomson (199Q)solution model thanHerrero and Mortarini (2005pne. In

spite of the choice of a Gaussian distribution both for the centroid and theveelati
PDFs in homogeneous turbulence, the FPM produces a slope of mean square con-
centration larger than th& homson (199Q)one in the intermediate range. In fact,

the slope of2 approach [Ferrero and Mortarini (2005form betweent = 7} and

T = 5T}, conferming the statement that in the intermediate subrange the separation
PDF departs from the Gaussian distribution and agrees with the Richardson one.
Figure7.6shows a long-time simulation from FPM for testing the predicted asymp-
totic behaviour of the mean and of the mean square concentration at large times.
Above | show that « +/¢ considering a Gaussian PDF, below thatx ¢! by

using a Gaussian form for the separation PDRdmson (1990Q)

In figure 7.7 the concentration fluctuation intensity are presented, by showing the
behaviour ofi. in time and space (above and below respectively). Once the mean
and mean square concentration fields are evaluated the concentration fhactuati
tensity is trivial calculate from equatiap = ( y)) for any model. The figure shows

a good agree between FPM arichpbmson (199(])both in time and in space. For

the time evolution the model results are in good agreement with the previsions, in-
cluding the prediction of a peak followed by a monotonic decay with distance. The
decrease of,. until zero for large time is a validation test for well-mixed condition.

As a matter of factj. — 0 when the barycentre contribution is negligible. At large
distances from the source the plume is spread over the whole vertical extefigien
domain. Hence the relative part became predominantlygi.ev o, ando,,, ~ 0,
validating the well-mixed condition. The anomalous behavioui.aommediately

near the source is a characteristic of FPM and it is shared with sé&#k&lhersions
present in literature. In the figure on the right it is possible to visualisexpeated

U shaped behaviour in space and the decrease and the flattening for the large time
display the validity of well mixed condition again.
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Mean concentration field Mean concentration
Filled surfaces for SPM Filled surfaces for Ferrero and Mortarini (2005) SPM
Black lines for FPM Black lines for FPM

Standard deviation of lateral positions

—— Analytical (Taylor [1921], Thomson [1990])
Absolute spread
Relative spread
Barycenter spread

yTL

Figure 7.1: Mean concentration field in homogenous isotrapbulence (above): the filled contours
on the left represent the single particle model (see sebtiband subsectioii.4.1) used as input, the
filled contours on the right represent mean field obtainecbysingle particle model oHerrero and
Mortarini (2005], the black contours correspond to the fluctuating plumeehpresented in sections
7.1, 7.2and7.3

Standard deviation of particle positions (below): comgamibetween FPM and analytical expression
of [Taylor (1921).
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Figure 7.2: Time evolution of mean concentration fie{dl y) in homogeneous and isotropic turbu-
lence at centreling = 0 and at the locationg = 0.04, y = 0.08 andy = 0.12. Comparison among
the fluctuating plume model, the analytical previsions @nésn literature ( Ferrero and Mortarini
(2005) SPM and Luhar et al. (200Q)FPM) and the single particle model of sectidri.
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Figure 7.3: Spatial evolution of probability density fuioct p, (¢, y) in homogeneous and isotropic
turbulence at the fixed time= 0.017;, ¢t = 0.17},, t = T, andt = 107;,. Comparison among the
fluctuating plume model, the analytical previsions presefiterature and the single particle model
of section5.1.
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Mean square concentration filed Mean square concentration filed
Black lines for FPM Black lines for FPM
Filled surfaces for analytical Thomson (1990) TPM Filled surfaces for analytical Ferrero and Mortarini (2005) TPM
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Figure 7.4: Mean square concentration field: in the the tworég above, the filled contours on
the left represent theThomson (199Q)analytical TPM, the filled contours on the right represent
the [Ferrero and Mortarini (2005@nalytical TPM, the black contours correspond to the FRMhe
figure above the red ann blue contour-lines showt®mson (199Q)and the Ferrero and Mortarini
(2005) concentration second moments contour-lines respegtivel
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Time evolution of mean square concentration
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Figure 7.5: Time evolution of mean square concentratiod figl, 3/) in homogeneous and isotropic
turbulence at centreling = 0 and at the locationg = 0.04, y = 0.08 andy = 0.12. Comparison
among the fluctuating plume model, the analytical previsifstom two particles models present in
literature i.e Thomson (199Q)and [Ferrero and Mortarini (200%)
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Asymptotic behaviour of mean concentration field
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Figure 7.6: Asymptotic behaviour at large times>(> 7;) of mean and mean square concentration
field. The black contours correspond to the fluctuating plomeel presented in sectiofsl, 7.2and
7.3and it is compared to the forms prescribed in literature i@mgig Gaussian PDFs (i.in particular
¢ x v/t by using a SPM with Gaussian PDP, « ¢! by using a Gaussian form for the separation
PDF).
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Figure 7.7: Concentration fluctuation intensity as a functibnon-dimensional time at three different
y-locations {y = 0, y = 0.04 andy = 0.08) above, and as a function of space at different times (i.e.
distances to the sour¢e= 0.57;,t = 071}, t = 5T, andt = 1077}) below: comparison between FPM
and [Thomson (199Q)
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7.4.2 Water tunnel boundary layer

The interaction of atmospheric flow with the buildings of an urban area generates a
boundary layer with specific characteristics. The vertical structure ohusband-

ary layers comprises a roughness sub-layer near the ground and an inertial sublayer
above. In the lowest part of the roughness sub-layer, the buildings form a canopy
layer. Difficulties arise in developing guidelines for predictive analysisigbulence
characteristics depend upon unique building arrangements and geometry. The Mock
Urban Setting Test (MUST) field experiment (s@&slfoft (2001)]) has been under-
taken using a large scale model of an urban canopy, where the roughness elements
were formed by arrays of shipping containers. Anyway, meteorological data in the
urban boundary layer are not as available as from rural sites. The application of the
presented FPM to a real case scenario, like MUST, represents a fustbstigation
about the behaviour of the model, and it is one of the development lines | will con-
sider in my research.

Throughout this thesis the model in a canopy layer is applied to HF laboratory ex-
periment.In particular | apply the fluctuating plume model to tHaq and Franzese
(2013]) laboratory experiment undertaken in a water tunnel at the Environmental
Fluids Laboratory at the University of Delaware. They present measurements of
turbulence, velocity and mean concentration of a passive scalar léase a
continuous point source for three model urban canopies with different aspect ra-
tios A, 2 =025, A4 =2+ =1andA, £ = 3 whereH andw, are the
building helght and width. The measurements for the canopy Mite: 0.25, which
consists of a regular series of prisms, were takenMigddonald and Ejim (2002)

while the measurements with, = 1 (arrays of cubes) and, = 3 (arrays of tall
prisms) are new. The building length in the along-wind directfibis constant.lHuq

and Franzese (201]3pok velocity and scalar measurements in iheplane along

the centreling; = 0 of the canpoy layer, where, y andz indicate the alongwind,

the crosswind and the vertical directions, respectively. The scalaresmuagipe at
ground levelz = 0, at the centreline of the canopy= 0, at the center of the row

x = 0. All experiments simulate in-canopy dispersion in the near field and the plume
vertical dimension is smaller or comparable to the mean building height.

[Hug and Franzese (20]3ise the simple simple vertically-reflected Gaussian plume
model presented byrfanzese and Hug (20Q1yvhich was applied to study disper-
sion above the canopies of four cities. The mean concentrationcfigfid passive
tracer emitted from a ground-level continuous souice-(z = 0 ) is approximated
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by the vertically reflected Gaussian formula:

_ Q y: 2
c(t,x,z) = Uﬂay(t)az(t)emj <_T‘§ — T‘g) (7.4.2)
The transverse dispersion coefficientis calculated usingTaylor (1921} theory,
assuming horizontally homogeneous turbulence. The turbulence diffusion analysis
of [Taylor (1921) gives linear plume growth fot < 7T}, (e.g., in the near field) and
parabolic growth fot > T}, (e.g., in the far field). The far field parabolic formulation
corresponds to the configuration of a plume larger than the turbulence length scale.
Inside the canopy the turbulence length scales are comparable to the lpéeiabs

of the building and to their height. Since in their study they focus on the near field
below canopy dispersion, the plume does not grow larger than the turbulence length
scales, and only the near field approximationTahflor (1921) formula is needed:

05 = 050 + ot (7.4.3)

whereo, is the plume standard deviation at the source @hthe variance of the
Lagrangian transverse velocity.
The vertical dispersion coefficient is defined for ground level source in neutral
atmosphere as:

02 = o2y + ol t? (7.4.4)
whereo . is the plume vertical standard deviation at the sourcebdget tob = 1) in
an empirical constant. The valueslof o, ands,, in the [Huq and Franzese (2013)

model are calculated as:

e Equation7.4.3is written ass; = o7+ 2:%2? and the ratiofraco, U is obtained

by best fit to experimental data of which are measured at different distances
€.

e The relationshipr,, = %av Is assumed in accord with field measurements and
equatior7.4.4becomer? = 0% + 12722,

e U is estimated by best fit of equati@md.2to the measured concentrations.

Values of quantities used in the Gaussian model and for scaling the data arasumm
rized in the table. 1
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In the application of theQassiani and Giostra (20Q2nethod for evaluating the
barycentre PDF | choose as mean field input the Gaussian model of eqodtian
This assumption removes the need for SPM and makes the FPM simple and very
fast to compute. Further, | usérfanzese (200Bexpression/.3.9for p,r. Figure

7.8 shows the growth rate df as a function on a non-dimensional dlstalﬁe
evaluated from FPM along with the Gaussian model and experimental dd’quy [
and Franzese (201]3)The FPM compares well with théduqg and Franzese (2013)
results. The figure shows the linear plume growth according with equa#ofand

the curves approach the source size tends to zero as expected. The difference be-
tween FPM and the Gaussian model in the far field is justified.dy4that contains
only the near field (but not the far field) approximation &ylor (1921) theory. The
evolution of mean concentration, non—dimensionalize@f{éﬁb—y with the scaled dis-

tance from the sourcg: with ' = /T, T}, , is plotted in figure7.9. Again, the FPM
agrees well with both the Guassian mdoel and datddofjjand Franzese (2013)

The figure shows that two models curves follow the power law decay of concen-
tration with distance from the source. | remark that the use of the Guassidel as

input of the FPM allows to evaluate the evolution of the of the concentration sthndar
deviation without using SPM. The normalised standard deviagg@ralong with the
scaled distancg; from the source of the normalised standard deviation (plotted in
figure7.10. Again, the fluctuating plume fits well with the water tunnel datl{q
(2012)). The use of the constant valuesof for the turbulence parameter instead

of the measured profiles 6f, 0,,, 0, anduw provided by Hug and Franzese (2013)

is a simplification for both the first and the second moment. In order to include them

| may use a single particle model for inhomoneneous turbulence as mean field input.
It would allow to take in account for the turbulence inhomogeneity. Neverthéhes
purpose for this case is achieved. In fact, | can show good resutsl@hfor the
second moment of concentration using only the mean field @and evaluated in

few seconds. The evaluation of third and fourth order moments concentration is not
presented because of the lack of experimental data available.
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L1Q o | H|Ux | 0w | oo | Tw | T, | L | L, | U | U
0.25| 2.18| 0.50| 5.00| 7.80 | 0.47|0.70| 1.07| 0.71| 5.00| 5.00| 5.20| 5.20
1 |1.40[0.20]3.20| 9.40 | 0.21] 0.31| 1.55] 0.56| 3.20| 1.75| 5.20| 2.70
3 |1.40{0.20] 9.60| 11.00] 0.15] 0.22| 6.43| 0.78] 9.60| 1.75| 7.70| 2.80

Table 7.1: Aspect ratios!,, release rat€)(cm?s—'), source sizer,y = 0,9 = oo(cm), building
height H (cm), free-stream velocity/, (cms™1), vertical and transverse velocity varianegg cm?)
ando?(ecm?), vertical and transverse time scdlg(s) and7,(s), length scaled..(cm) and L, (cm),
rooftop level wind spee@,(cms™!), mean windJ (cms™1)
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Figure 7.8: Growth rate of non-dimensional vertical stadd#eviation aty = 0 function of the non-
dimensional distance from the source: comparison among@rbgosed FPM, the Gaussian model
and the experimental data dfifig and Franzese (2013)
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Non-dimensional mean concentration at ground level
as function of non-dimensional distance from the source
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Figure 7.9: Non-dimensional mean concentration at thergtpat centreline of the canopy as function
of non-dimensional distances from the source in compamgtnthe Gaussian model and the water
tunnel data offHug and Franzese (2013)
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7.4. TEST CASE

7.4.3 Wind tunnel boundary layer

| take advantage of recent wind tunnel experimentshofdni et al. (2013) and
[Nironi (2013). | test again the reliability of the FPM in estimating the concen-
tration moments of a passive tracer in neutral boundary laieromi (2013) ex-
perimental data providing a detailed description of the concentration and ofthe ve
locity statistics and hence of the evolution of a fluctuating passive pollutahinwi

the turbulent boundary layeiN[roni (2013)] experimental data extend the popular
study of [Fackrell and Robins (198Zaabout concentration fluctuations and fluxes
from point sources by including measurements of concentration skewness and kur-
tosis. The data set is completed by an exhaustive information on both the temporal
and spatial structure of the flow which is not common. Therefore | chddser]i
(2013) experimental mean concentration field as input for thagsiani and Giostra
(2002]) calculation for the barycentre PDF in my FPM. | aim to evaluate the first
moments of concentration given only the experiemntal field. Until now, | consid-
ered two simple models: a SPM in homogeneous turbulence in subséatidand

a Gaussian model in subsecti@.2 Here the information on both the temporal
and spatial structure of the flow would me to carry out a detailed SPM for inho-
mogenoeus turbulence. In particulalifoni (2013) data include one-point velocity
statistics, two-points spatial correlations, integral length scgbestsa, turbulent ki-
netic energy budget, turbulent diffusivities, vertical and transversall@sadif first

four moments of concentration PDF at several distances downwind. The full experi-
mental data set is available on the webhkite p: / / wwww. ec- | yon. fr/.

In order to apply the offline version of the FPM | started by applying equatidrs

to the mean concentration field difoni (2013) to get the vertical position PDE. .

Then | get the barycentre PDE,, from equatior/.3.9by using [Cassiani and Gios-

tra (2002) liner transformatior7.3.7. Equation7.3.9contains the relative variance
0., that has to be parameterised as in equafi@l0along with the relative part of

the motion described by the PDE, of equation7.2.1Q All the parameters | need

for calculatingo., andp., is provided by Nironi (2013} data or can be evaluated
from it. In figure7.111 plotted the non-dimensional vertical profiles of mean longi-
tudinal velocityU, of TKE dissipation rate and of root mean square of the velocity
components,, o, ando,, from which | evualated the parameters in the FPM. Figure
7.11provide as well the vertical plume spreadfrom experimental data that | use

in applying equatiory.3.9 In figure7.11, ¢ is the boundary layer depth ang is

the friction velocity. The source is located-afé = 0.19 and the source diameter is
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ds/0 = 0.00375.

The reliability of the FPM is tested against the experimental measursroentean
concentration in Figur&.12 (the two plot above) at various distances from the
source. | underline the experimental data of mean field is the input of the FPM. Then
| evaluate both the first and the higher moments of concentration by using equations
7.2.7and7.3.12 The two plots below in figur&.12 show the comparasion be-
tween the model and the data for the standard deviation of concentration at the same
downwind distance. Figuré.13show the vertical profiles of non-dimensional third
(above) and fourth (below) moments of concentration at various distances down-
wind. Central concentration moments up to the fourth order are related to the mo-
mentsc” about0 by means of the following relations:

my=C =cl

my = o2 =2 — C?

ms = 3 — 3¢2C + 2C°

my = ct — 43C + 6¢2C* — 30
(7.4.5)

and then | considered théh root of the moments, i.eM; = \/m;, so that all the
statistics plotted in the figures have the dimension of a concentration. Theofimst ¢
ment about the figures of concentration statistics is that, for all the four moments
the FPM works better at the distanegd = 1.25 from the source i.e. for the lines
plotted in black in the figures. This is not casual. In effect | choose all theesal

in the parameterisation for the relative part, and sodfot, p., andi.,., giving the
better agreement with the data at the downwind distariée= 1.25. The choice of

x/d = 1.25 as reference distance from the source is not arbitrary. In fact by choosing
larger downwind distance, the comparsion near the source get worse and, vige versa
if | choose smaller distance, the comparison deteriorate in the far fieloceHecan
hypothesise the-dependence of the relative part in a FPM. This may be primarily
due to the parameteis, and( in the [Gailis et al. (2007)equation7.2.11for i... In
particulari.. may be depend on spatial coordinates not only in the vertical direction
but also in the downwind distaneg and so on the time.

Furthermore the comparison deteriorates with the rise of the order of the cancentr
tion moments. This is expected as the higher order statistics become vetiyedasi

the initial condition and a small change in the values of the parameterisatidPi\bf
relative part can lead to great difference in statistics, esipeamathird and fourth
moments.
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7.4. TEST CASE

Furthermore | highlight that all the information | used for parameterigsingr.,. and

i.. derive from a mean field that obviously can’'t exhaustively describe the coaeentr
tion fluctuations. However the figur&sl2shows that the FPM is able to reproduce
well the first two moments of concentration. In figurd 3the FPM fits quite wellhe

third and the fourth moments dfljroni (2013}, although the comparison is not good

as in case of the first two momets. In figutd 3is noticeable as well that the worst
agreement is for the smallest distance from the souyée= 0.003125, i.e. for the

blue lines. First, it may due to the choiche of values for the relative partieas

that better fit the distance/é = 1.25. Secondly, it may due to the effect of source
size. In fact, in a FPM the effect of source size enters only in the equiatian,,
andp.r whereas, for instance in a SPM, the source size effects can be included in
the release of the particles.

| finally remark that all the statistics evaluated by the FPM derivéusieely from an
experimental data and the need for a simultaneous Lagragian model is relaxed. Nev-
ertheless this offline FPM give results comparable to the other FPM versiloout

any coupling with Lagragian modelling.

114



7.4. TEST CASE

z/3

z/3

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Non-dimensional vertical profiles of mean longitudinal velocity

Non-dimensional vertical profiles of TKE dissipation rate

ed/u?

z/3

z/3

Non-dimensional vertical profiles of r.m.s of the velocity components

N
- - - oy
h
v coeooylug
o c= oy
A\
o Y
S
BN
AN
NN
S
N \\
© AREEREN
S RN
N N
. N
Y ~
. N
N N
© \ N
o | . N
AY N
. N
N N
\ \
< _| \ \\
° \ \\
N
\ \
\ \\
N N Y
S N \
) N
S e
\ N
/A N
o | ) -
° T T T T
0.5 1.0 1.5 2.0
Vertical plume spread from experimental data
o
n
— -
e o
o o
= -
o
o
n
8 |
o
o
o
o
T T T T
0 1 2 3 4
a; (m)

Figure 7.11: Non-dimensional vertical profiles of mean laungjnal velocityU, TKE dissipation rate
€, root mean square of the velocity componemnis o, ando,, and vertical plume spread, from
experimental datai is the boundary layer depth angl is the friction velocity.

115



7.4. TEST CASE

Vertical profiles of first-order concentration statistics

Vertical profiles of first-order concentration statistics
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Vertical profiles of third—order concentration statistics

Vertical profiles of third—order concentration statistics
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Conclusion

Two Lagrangian modelling approaches have been adopted to describe the role
played by the fluctuations of active and passive scalar, respectively.
For the case of active scalars | introduced the effect of temperature fiocisian
a buoyant plume rise. | have constructed a hybrid Lagrangian stochastic model
of buoyant plume rise that includes temperature fluctuations by combining coupled
stochastic differential equations for vertical velocity and temperatitrea classical
plume model of buoyant plume rise in a crossflow. The model takes in account for
the turbulence generated by the plume itself allowing the interaction of tatupe
and velocity fluctuations to generate the observed spread through the introduction of
a SDE for the temperature andwa— 1 coupling term in the SDE fow.
The model shows qualitatively a good behaviour in the idealised case of homoge-
neous turbulence. In particular the results suggest that the spread of the plume is
much larger including temperature fluctuations and that this effect becomemore |
portant as the intensity of the crossflow increases. Howg&veepends weakly on
the intensity of the crossflow. In faat, doesn’t depend ow or U, only onw, hence
V' is expected to have the same order of magnitude for all the cases of intensity of
the crossflow at the same height. Hemicenakes a greater (relative) contribution to
the SDE forw’ through the coupling terrff- than in the SDE fof/".
Then the model is compared to the LES &fejyenish and Edwards (2009nd
[Devenish et al. (2010b) While some aspects of the formulation are not rigorous,
results generated by the model compare reasonably well with LES results. This is
true both for LES plumes in a linearly stratified environment and the reatiage
of the plume generated by the explosion and fire at the Buncefield oil depot in 2005
which was previously compared with observations. In the former case, the-agre
ment between the model and the LES results deteriorated as the ambient velocity
became smalll{ < 1). The reasons for this are not clear and the behaviour of
buoyant plumes in a weak crosswind merits further attention. In general,dtdelm
with temperature fluctuations exhibits a greater spread in the scalar catment
than the model without temperature fluctuations though the difference is not large.
Larger differences can be observed in higher order statistics as may beegkpect
There is some uncertainty over the valueyadnd while its range seems reasonably
constrained, our results have shown that better agreement with the LES results ¢
be obtained by varying within the range) < v < 0.5. However, arguably the best
overall agreement with the LES statistics is obtained with 0.5. More accurate
data on buoyant plumes in a crossflow, both from experiments and numerical simula-
tion, might help constrain the value further and elucidate any functionaloesitip
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Conclusion

with wind speed that may exist.

For the case of passive scalars | developed a version completely offline EP e
without need for a coupled LSM, but just requiring a mean field as input. Moreover,
the model is independent of the method for calculating the mean field that can be
evaluated both from experiments and models. Following the fluctuating plume ap-
proaches proposed blydhar et al. (200Q) [Cassiani and Giostra (20Q2)Franzese
(2003) and [Mortarini et al. (2009), | developed a method to compute the higher
order concentration moments, given a mean concentration field. The evaluation of
concentration fluctuations plays a crucial role in a great number of environmental
issues: prediction of air pollution, simulation of chemical reactions of pollatemt

the atmosphere (e.g. Nox and O3), analysis of turbulent combustion and estimation
of odour threshold. In particular in recent years, considerable attention has been
focused on the prediction of the PDFs of passive scalar concentration downwind
a source of pollutant in the turbulent boundary layer. This is due to an increased
interest in environmental problems, a more strict regulation about emissidhs i
atmosphere, the risk assessment of hazardous releases of toxic or flammable sub-
stances.

The presented fluctuating plume model puts together the more favourable features
of the existing versions, resulting faster and simpler than the precedehbaset
The choice of Cassiani and Giostra (20Q2pproach to evaluate the meandering
barycentre part removes the need for the knowledge of the trajectories to compute
the high order concentration fields. In fact, | underline ag@agsiani and Giostra
(2002) generalisation does not require any trajectories, but only a mean field con-
centration input. The requested mean concentration field can be obtainedreither f
models or from experiments. Hence, it is possible to choice the most suitalilednet
to evaluate the mean field, as a simple and fast model, e.g. a Gaussian onasel
a more complicated and efficient model, e.g. a single particle model, depending
on the class of turbulence investigated. The parameterisation of estattion is
established on the analytical expressions producing the best agreement with the ex-
perimental data, i.eQGailis et al. (2007)height-dependent formula for the relative
concentration fluctuations. The model can be easily adapted to differentscta#sse
turbulence modifying the mean field input data and the parameterization aveelat
part. After a positive validation in homogeneous turbulence, the model is appliled a
compared to two neutrally stratified boundary layers, a canopy layer sedulaa
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Conclusion

water-tunnel bylHug and Franzese (2013&)nd a new wind tunnel experiments taken

by [Nironi (2013] and [Nironi et al. (2013). The comparison with experimental
data shows an overall good agreement both in all the cases. | presentetidhe va
tion in homogeneous and isotropic turbulence and applicatioHuq pnd Franzese
(2013) data during 15th International Conference on Harmonisation within Atmo-
spheric Dispersion Modelling for Regulatory in Madrid (May 6-9, 2013) and results
are published inBisignano et al. (2014)The presented procedure is applied in the
vertical direction but can be easily adapted for the crosswind meandarihg case

in which it is not possible to find a simple analytical solution. | want to highlight
that in the simulation ofNlironi (2013) data | used as input the experimetal mean
field provided by the author, whereas in the simulationLafi{ar et al. (200Q)data

| considered a Gaussian model as input for FPM. In both the cases, the FPM is able
to take in account for the turbulence inhomogenityies through the parameterisation
of relative part of FPM and the low computational time demand makes the model
suitable for practical applications considering that it is able to evalugteshiorder
concentration moments in few seconds on a standard computer.

| conclude noticing that he central thread which run through all this thesis is La-
grangian modelling. It is the natural and most powerful means to describe many
Interesting atmospheric processes involving both active and passivesscefégh

the aid of LSM, better strategies for many environmental issues can bepgedeh
future.
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Appendix A

Although the use of the equati@n2.9for p., provides good overall agreement with

the experiments and it is used through this thesis, a skewed PDF obtained@sthe s
of two reflected Gaussian PDFsl{uyhar et al. (200Q) and especially suited for
skewed turbulence can be also used, e.g. in the case of convective boundary laye
(CBL) or highly asymmetrical canopies.

Z Z \/%aj { (=) —i—e(_zzm%zizi)}

j=1 k=—
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wheresS, ins the skewness of relative positiohupar et al. (200Q)assume that:

(D) = 230 + ()
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Appendices

[Dosio and de Arellano (200Bhotice that in generat’® = 23 + 23 despite the
independece between relative part and meandering centroid. Hence the aomect f
for S, [Dosio and de Arellano (2006 given by [Dosio and de Arellano (200B)

-5 (@)@
Or

2;372 is the total skewness.

Z/

wheresS =
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Appendix B

Here | show a mathematical proof for the expression assumed for the barycentre
PDF:

pzmAzm - pzAz

Sincep.,, andp, are PDFs, the previous equation represents a sort of probability
distribution conservation. To proof rigorously the equation | consider thand

~' are two stochastic processes, and at fixed times, they are two randiadlesr

In particular, at any instant;’, can be considered as the result of application of
[Cassiani and Giostra (20Q2inear transformation ta‘. A basic theorem about the
functions of random variable state that assuming that the equatiery(z) hasn
rootsy = g(z1),y = g(x2),......,y = g(x,) at fixedy. Now | suppose that is a
random variable with a known PDF,(z) e y a new random variable given by the
application of the real function(z) to 2. Then the PDF of, f,(y) is:

| assume now that, for instance the equatjon g(x) has three roots. Then

|G ()]

fyw)dy = Ply <9 <y +dy}

It is now sufficient to find the values af for whichy < = < y + dy} and the
probability thatz in contained in this set. This set consists of the three following
intervals:

r1 <z <z+dr
To < T < Ty + dxoy

r3 < x < x3+drs

124



Appendices

Where | supposed thdt:; > 0 anddzs > 0 butdzy, < 0. ThenP{y < ¢ < y + dy}
IS given by:
Plry <t <z+dr}+ P{los+des < < xo}+ P{rs < < x4+ das}
Now given that:
Plxy <z <z+dr} = fo(xr)dz
P{ZCQ + d.QfQ << 5132} = fx(CUQ)d.%‘Q
P{Ig <r<zH dl’g} = fx($3)dl‘3

with p
d:Ul = ; J
g'(z1)

dy

dxs =

2T ()

d

d$3 = J

| can conclude that
folwr) | folwe) | faulzs)
f dy = ! + ! + !
W= e Vgl gl
By dividing by dy | get f,(y) = Z(z‘ = 1)"‘5225‘ as expected.
Now | focus on the of a lineay(z).

y=9(T)=az+Db
g(x)=a
The equatio has one root:= yT‘b hence:

h@zéﬁﬁmw—w

Now | apply this result toCassiani and Giostra (20QZinear transformation. In this
framez,,; is a linear function ot;, andp.,, is the PDF ofz,,; andp. the PDF ofz;.

Then:
1

Pem = mpz
| notice now thatlz,, = adz from whicha = dj—g. By substiting this expression for
ain p., = ﬁpz | getp...A.., = p.A., i.e. the equation of§assiani and Giostra
(2002]) for the barycentre PDF.
A physical justification for the validity of the(Jassiani and Giostra (20Q2inear
transformation can be found obyhar et al. (2000Q)
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