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”The next great era of awakening of human intellect may well
produce a method of understanding the qualitative content of

equations. Today we cannot. Today we cannot see that the
water flow equations contains such things as the barber pole

structure of turbulence that one sees between rotating
cylinders. Today we cannot see whether Schrodinger’s equation

contains frogs, musical composers, or morality–or whether it
does not. We cannot say whether something beyond it like God

is needed, or not. And so we can all hold strong opinions
either way.”

Richard Feynman in Volume II, Section 41, page 12 of
”The Feynman Lectures on Physics”, 1964.
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Abstract

Dynamical systems in nature such as turbulent atmospheric flows exhibit irregular
space-time fluctuations on different scales as can be readily noticed in a casual ob-
servation of, for example, a plume emanating from a fire or power-station chimney.
It is the chaotic nature of turbulence that influences may aspects of our lives, oper-
ating at many scales, from the vast to the small. There is a clear need for the ability
to make quantitative predictions. Such predictions are, however, extremely difficult.
No theory will ever able to predict the exact concentration of a scalar at a particular
location and time. All theories of turbulence are statistical theories.Hence the sci-
ence of turbulence is largely about making statistical predictions of chaotic solutions
of the non-liner partial equations (known as Navier-Stokes equations).
The transport of scalar fields by turbulent flows is a common physical phenomenon.
The quantification of the fluctuations patterns and their influence on the turbulent
mixing of a contaminant for predictability purposes has not yet been achieved. There
are many case in which one is interested in the influence of a turbulent velocity
field on the distribution of some scalar quantity, say the distribution of temperature,
smoke, dye or concentration of a contaminant. If the scalar has no dynamic influence
on the flow then it can be referred to as a passive scalar. The scalar is active if the
dynamics of the advecting velocity field depends on the transported field. That is,
for instance, the case of temperature, affecting the velocity via buoyancy forces.
Models of turbulent dispersion often take a Lagrangian form which provides a nat-
ural framework for modelling, for example, dispersion from a point source which is
harder to model with an Eulerian approach. Typically, thousands of model particles
are followed through a given flow field and statistics such as the mean concentra-
tion are calculated from the ensemble of particles. The resolved part of the flow
field would, for realistic applications, normally be taken from a numerical weather
prediction model while the unresolved part of the motion is modelled by means of
random increments to the velocity of the particles. These models, which are known
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as Lagrangian stochastic models (LSMs), can be rigorously formulated [Thomson
(1987)] have been very successful at reproducing observations. I investigate two
different aspects of the scalars fluctuations focused on passive and attive scalars re-
spectively.The major aspects that distinguish buoyant and passive dispersion are that
buoyant fluid particles create their own turbulent field in a turbulent environment and
the exchange processes should be included in the dynamics. In both the cases, active
and passive, I considered the scalar fluctuations in term of the statistical properties
of particle trajectories, i.e. using LSMs, from which the field characteristics, i.e the
Eulerian description, can be readily obtained.
For the case of active scalar fluctuations, I present a hybrid Lagrangian stochas-
tic model for buoyant plume rise from an isolated source that includes the effects
of temperature fluctuations. The model is based on that of [Webster and Thomson
(2002)] in that it is a coupling of a classical plume model in a crossflow with stochas-
tic differential equations (SDEs) for the vertical velocity and temperature (which are
themselves coupled). The novelty lies in the addition of the latter SDE. The root-
mean-square temperature is assumed to be proportional to the temperature difference
between the centreline temperature of the plume and the ambient temperature. The
constant of proportionality is tuned by comparison with equivalent statistics from
large-eddy simulations (LES) of buoyant plumes in a uniform crossflow and con-
stant stratification. The scalar concentration computed from the model is compared
with the equivalent LES results and generally compares well both in terms of the
height reached by the plumes and their spread. The exception to this occurs when
the crossflow velocity becomes very weak. The model is extended to allow for re-
alistic profiles of ambient wind and temperature and the results are comparedwith
LES of the plume that emanated from the explosion and fire at the Buncefield oil
depot in 2005.
For the passive case, the prediction of concentration fluctuations of a dilute tracer
is considered. Whereas the evaluation of mean concentration field is considered an
almost closed matter, concentration fluctuations modelling is still an open argument,
especially for models devoted to real turbulence. Modelling concentration fluctua-
tions is fundamental to a great number of practical applications and play an essential
role in a great number of environmental issues, such as prediction of air pollution,
determination of reaction rates in turbulent chemical reactors, estimation of odour
threshold and analysis of turbulent combustion. Only a few models are available to
calculate at least the second moment, such as direct numerical simulations(DNSs),
large eddy simulation (LES), two particles Lagrangian stochastic models and proba-
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bility density function (PDF) models. The available models are subject to limitations
such as applicability only in strongly idealised conditions (e.g. two-particles mod-
els), very elaborate numerical implementation (e.g. PDF models)and expensive com-
putation (e.g. DNS), reduction of reliability for small-scale turbulence(e.g. LES).
A simple and effective method for predicting higher moments of concentration for
stationary release of contaminant is the fluctuating plume model (hereinafter FPM).
I use an offline approach of a FPM able to evaluate all the higher order moments of
the passive scalars only requiring the knowledge of the first one. In the fluctuationg
plume approach the total plume dispersion can be split into two independent compo-
nents, the meandering barycentre and the relative dispersion. While the meandering
motion of the plume centroid has to be modelled, the relative dispersion, taking into
account the turbulent mixing and scalar dissipation, can be simply parameterised.
Being independent of the method used to obtain the mean concentration field, this
approach is an ideal offline tool to predict second and higher order concentration
moments. The model adaptability to different kinds of turbulence is shown by com-
paring its results first with analytical predictions present in the literature for homoge-
neous turbulence and then with two dispersion experiments in the neutral boundary
layers generated by a water and a wind tunnel simulations respectively. The simplic-
ity of the numerical algorithm used to calculate the meandering centroid component
makes the model very fast and thus especially suitable for practical applications.
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Introduction

The purpose of thesis is the application and the development of Lagrangian stochas-
tic models (LSMs hereinfater) to investigate active and passive scalars fluctuations
in a turbulent flow both in idealised (homogenous,) and real (inhomogeneous) con-
ditions. In chapter§I, I introduce the mathematical tools used in the statistical de-
scription of turbulence, as mean values, correlation function and spectralfunctions
in chapter1 and the Lagrangian description of turbulence in chapter2. Then I in-
troduce a theoretical framework for the turbulence focused on inhomogeneous tur-
bulent flows since they represent the real conditions of the atmosphere. Equations
for velocity and temperature correlations, spectra and structure functions are consid-
ered in chapter3 and section3.3 for isotropic turbulence, and in chapter4 locally
isotropic turbulence along with the Kolmogorov similarity hyphoteses. In chapter 5
I describe the Lagrangian modelling and in particular the Lagrangian single particle
model (hereinafter SPM). For phenomena such as the turbulent transport or the ma-
terial surface deformation in a turbulent flow the Lagrangian framework is almost a
natural choice. The Lagrangian approach consists in following the motion of fixed
fluid particles from a certain initial time. With fluid particle a fluidvolume whose
linear dimensions are far bigger than the mean distances between the moleculesis
meant. In other words a fluid particle is a point of the fluid volume that is moving
inside of it following the equations of fluid mechanics. The Lagrangian description
is related to individual fluid elements whose summation produces the total turbulent
flow. Typically, thousands of model particles are followed through a given flow field
and statistics such as the mean concentration are calculated from the ensemble of
particles. The resolved part of the flow field would, for realistic applications, nor-
mally be taken from a numerical weather prediction model while the unresolvedpart
of the motion is modelled by means of random increments to the velocity of the
particles. The most exhaustive work about LSMs is due to [Thomson (1987)] who
proposed a complete theory for the one-particle dispersion in 3D turbulence based on

1



Introduction

the concept of Markovian stochastic process. i.e. a process were present is correlated
to past and future to present, but past and future are statistically independent. In this
frame, the dynamics of a passive tracer particle is described by a couple of stochas-
tic differential equation: the turbulent increments velocity the Langevin equation
and the Fokker-Planck equation, which determines the Eulerian probability density
function (PDF) of the stochastic process. In particular [Thomson (1987)] applies the
well-mixed constraint to determine the drift term in the Langevin equations from a
prescribed form for the Eulerian two-point velocity PDF. The so called well-mixed
condition is fundamental constraint that a LSM has to satisfy [Thomson (1987)].
This constraint physically implies that if the particles are initially well-mixed they
will remain so during the flow evolution, that the solution of the Fokker- Planck
equation are compatible with the Eulerian equations and that direct and inversedif-
fusion are equivalent. In section5.2 I analise the previous theories in the context of
a rise of a buoyant plume.
In part §II I discuss the application of Lagragian modelling to the active and pas-
sive scalars I developed. In chapter6 I present a hybrid Lagrangian stochastic
model for buoyant plume rise. Models of buoyant plumes have a long and suc-
cessful history originating with the work of [Morton et al. (1956)] and [Priestley
(1956)]. These models describe the mean flow of the plume but do not take account
of fluctuations in the velocity and buoyancy of the plume. In most realistic disper-
sion models that are used for operational purposes, as the LSMs, the Lagrangian
particles move independently of each other through the flow field. There is then an
inherent difficulty in modelling a coherent process such as buoyant plume rise using
single-particle LSMs: the motion of individual particles or fluid elements depends
on the buoyancy of all the fluid elements. Moreover, there is nothing to constraintwo
neighbouring model particles to be moving upwards with similar velocities. Several
authors have attempted to model buoyant plume rise using a Lagrangian approach
(e.g. [Luhar and Britter (1992)], [Anfossi et al. 1993], [Weil (1994)], [Heinz and van
Dop (1999)], [Alessandrini et al. (2013)], [Marro et al. (2014)]). Here I consider a
hybrid model introduced by [Webster and Thomson (2002)] in which the mean flow
is calculated from a simple plume model (as will be described in section6.1) and
the fluctuations are calculated using an LSM. [Webster and Thomson (2002)] only
considered fluctuations in the velocity and not the temperature; here I treat bothfluc-
tuations of the velocity and temperature. As a buoyant plume rises through a strat-
ified environment, its temperature decreases and will eventually equal theambient
temperature. The momentum of the plume forces the plume to continue rising above
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this level until it is eventually brought to rest by the action of the negative buoy-
ancy forces. Accounting for fluctuations in temperature means that the Lagrangian
particles will experience different levels of neutral buoyancy. I thus anticipate that
the final spread of the plume will be greater than that of a plume in the absence of
temperature fluctuations. The stochastic differential equation I consider in section
6.1 is similar to that considered by [van Dop (1992)]. I compare the results of the
model with the large-eddy simulations (LES) of [Devenish et al. (2010b)] in section
6.4. I then apply the model to the case of a buoyant plume in a realistic atmosphere
in section6.5and compare the results with observations.
The prediction of concentration fluctuations in the framework of one-particle La-
grangian stochastic models is an open question. Knowledge of the concentration
fluctuations is often required. This is the case, for example, in olfactory research,
the chemistry of naturally emitted volatile organic compounds (VOC), as for exam-
ple anthropogenic VOC, ozone and NOx and the modelling of areleases of toxic,
flammable and explosive materials. If the dispersed scalar can be considered non-
reactive the methods that account for fluctuations are: the two-particle approach
[Thomson (1990)], the meandering plume approach (e.g. [Luhar et al. (2000)],
[Cassiani and Giostra (2002)]) and Lagrangian probability density function trans-
port methods ( e.g. [Cassiani et al (2005a)]). Among these methods, the two-particle
approach seems currently confined to theoretical studies due to the difficultiesin
parametrizing, or more generally, providing the necessary two-point correlation statis-
tics. The Lagrangian PDF method is more flexible and theoretically allows for the
computation of one-point concentration moments of any order. The main shortcom-
ing of this approach, frequently also referred to as the micromixing method [Cassiani
et al (2005a)], lies in the demand for every grid element to contain a large number of
particles throughout the whole simulation. Recently, very sophisticated new models
for concentration fluctuations has been developed. The volumetric particle model
proposed by [Cassiani (2012)] does not consider the presence of particles not pass-
ing through the source and the micromixing is simulated as a change in volume of
the particles originally marked by the source. This approach considerably minimizes
the computational simulation time which is the same as a standard one-particle La-
grangian dispersion model. [Kaplan (2013)] introduce an additional particle variable,
the conditional average scalar concentration, over the particle’s trajectory of a LSM.
In contrast to the particle’s scalar concentration which is conserved, theconditional
average scalar concentration evolves in time. Following past success in modelling
the dynamics of concentration variance as a diffusion-advection process, [Manor
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(2014)] calculate the concentration variance by assuming an appropriate distribution
of effective variance sources for a given mean concentration field.
Nevertheless, all the mentioned models has to be (even easily and naturally) simulta-
neously implemented as an extension to an existing LS model. In chapter7 I present
a simple and fast offline version of the fluctuating plume model (hereinfater FPM)
that does not require any Lagragian simulations. Hence the model is especially suit-
able for pratical application.
The basic idea of a FPM is that absolute dispersion can be divided into two inde-
pendent parts: the meandering motion of the barycentre and the relative diffusion
around it (see section7.1). The meandering plume centroid is usually simulated in
a fixed coordinate system relative to the source; the internal mixing of the plume,
i.e. the relative concentration PDF, can be parameterized on a relative coordinate
system around the barycentre as it is evaluated on a local reference frame.The first
technique providing the basis of a number of modelling studies on higher order con-
centration statistics is [Gifford (1959)] Gaussian meandering (or fluctuating) plume
model that assumes the fluctuations are produced solely by the meandering of the
ensemble-mean instantaneous plume. This model has been particularly successful
for predictions close to the source where meandering is the primary mechanism re-
sponsible for generating fluctuations, but it ignores the in-plume fluctuations that
dominate the overall fluctuation statistics in the far field. [Yee et al. (1994)] and [Yee
and Wilson (2000)] extended [Gifford (1959)] model to include the in-plume fluc-
tuations by specifying them in terms of a Gamma PDF. Their model can very well
simulate the rich structure of concentration statistics observed in field and labora-
tory experiments. Many meandering plume model applications have been restricted
to neutral, near-neutral or stable flow conditions because of the difficulty of incor-
porating the inhomogeneous and skewed characteristics of the convective boundary
layer or a canopy layer vertical turbulence in the analytical framework of the mean-
dering plume approach. [Luhar et al. (2000)] significantly improved the FPM abil-
ity of describing less-idealized turbulence using a single particle model (hereinafter
SPM) to evaluate the PDF of the plume centroid for a contaminant in the convective
boundary layer. [Luhar et al. (2000)] evaluated the instantaneous plume meandering
applying a linear relation to the one-particle trajectories. Hence the [Luhar et al.
(2000)] model needs the trajectories of the centroids of each instantaneous plume
to compute the high order concentration fields. [Franzese (2003)] developed a new
version of FPM where the equations of the centroid are derived from the single parti-
cle stochastic equations filtering out the turbulent kinetic energy (TKE). This model
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does not require an analytical form for the turbulent velocity PDF, because the accel-
eration of the centroid is approximated by a simple quadratic functional. [Mortarini
et al. (2009)] extended the [Franzese (2003)] approach, applying the FPM model
to the turbulent flow generated by a simulated canopy. [Cassiani and Giostra (2002)]
proposed a linear contraction to derive the centroid position PDF from the mean con-
centration field derived from measurements or numerically evaluated andthus relax-
ing the need for Lagrangian modelling. In [Cassiani and Giostra (2002)] approach
the same linear transformation of [Luhar et al. (2000)] is applied to a calculation
grid instead of trajectories, causing a compression of the PDF. After calculating the
centroid PDF, the concentration field is evaluated by parameterizing the dispersion
of the cloud relative to its instantaneous centroid. Hence it is necessary topro-
vide an analytical expression for the relative position and concentration PDFsand
the relative position variance. [Luhar et al. (2000)] parameterize the relative verti-
cal position and concentration PDFs respectively as a skewed distribution obtained
as the linear combination of two reflected Gaussian PDFs and a gamma distribu-
tion, whereas [Franzese (2003)] used a simple reflected Gaussian and a lognormal
distribution. [Cassiani and Giostra (2002)] assumed that the skewness of the single
particle was equal to the skewness of the barycentre, however [Dosio and de Arel-
lano (2006)] showed that this approximation is valid only close to the source when
dispersion is dominated by the meandering, but it is not true elsewhere. Hence they
gave a new expression for the relative skewness in order to improve the comparison
with the measured data. Both in [Franzese (2003)] and [Luhar et al. (2000)] mod-
els the relative variance is written to be consistent with inertial range form at small
time and with [Taylor (1921)] limit at large time (in the vertical direction a further
interpolate expansion is considered including boundary reflections). The relative
concentration PDF requires the parameterisation of the relative fluctuations inten-
sity; the form used by [Gailis et al. (2007)] is the only one dependent on height
and shows the best agreement with experimental data. In the FPM version thatI
propose the centroid PDF is calculated applying the [Cassiani and Giostra (2002)]
approach (see section7.3), choosing each time the input mean field most suitable
for the class of turbulence considered; the relative component is parameterized as
in [Luhar et al. (2000)] although the simple Gaussian relative vertical position PDF
of [Franzese (2003)] including multiple reflections at the boundaries is used here,
see section7.1. The model is first applied in homogeneous and stationary turbulence
focusing the attention on the second moment of concentration; to this end, the model
is compared with the Lagrangian two analytical solutions for concentration variance
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found by [Thomson (1990)] and [Ferrero and Mortarini (2005)]; [Thomson (1990)]
chooses a Gaussian distribution for the relative separation PDF, whereas[Ferrero and
Mortarini (2005)] choose a Richardson PDF more appropriate at very short times.
Then inhomogeneous turbulence is considered: first the model is applied to simulate
the water tunnel experiments of dispersion from a continuous point source in urban
canopy turbulence performed by [Huq and Franzese (2013)] and then to simulate the
new data-set of [Nironi (2013)] and [Nironi et al. (2013)] describing the evolution of
a fluctuating pollutant plume within a wind tunnel simulation of a neutral boundary
layer (in section7.4). I underline that the FPM introduced here worjs offlice, i.e. has
the capability for evaluating the concentration PDF without a simultaneous LSM,
given only a mean concentration field. The model is independent of the method used
for calculating the mean field. Three different evaluations of the mean field is consid-
ered to test the flexibility of the model: a simple SPM in homogenoeus turbulence,
a Gaussian model in the water boundary layer and an experimental data in the wind
tunnel bounday layer.
The dispersion of scalar in a turbulent boundary layer is a very important process
since it is of interest for both urban and agriculturalforest applications. Mostof the
research in this field has been devoted to understanding the behaviour of the mean
concentration of natural and anthropogenic substances. The same can be said for
the atmospheric scalar fields, e.g. the temperature field. In this frame thebehaviour
of the mean values is relatively well understood while the fluctuating behaviour of
the scalar is an open question especially for the buoyant scalars . The centralthread
which run through all this thesis is Lagrangian modelling. It is the natural and most
powerful means to describe many interesting atmospheric processes and with the aid
of such models better strategies for many environmental issues can be developed.
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Part I

Theoretical framework for inhomogeneous
turbulent flows.
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Chapter 1

Mathematical description of turbulence

Both the spatial and temporale dependence of the instantaneous values of the fluid
dynamic fields habe a very compelx and confused nature. Moreover, if turbulent
flow is set up repeatdly under the same conditions, the exact values of these fields
will be different each time. The dependence on time of these fields consists of a
set of fluctations of diverse periods and amplitudes, superimposed upon each other
without any obvious regularity. The distributions of instantaneous values of the fluid
dynamic variables in space have a similar nature; they constitute a disordered set
of 3D fluctuations of diverse amplitude, wavelength and orientation. Due to this ex-
treme disorder and the sharp variation in time and space of the fields pf fluid dynamic
quantities, in the study of turbulence it is necessary to use some method of averag-
ing which will enable to pass from the initial fluid dynamic fields to smoother, more
regular mean values of the flow variables. These variables may then be investigated
by means of the usual methods of mathematical analysis.
The question of the definition of mean values is delicate one in the theory of turbu-
lence, and has a long history. In practice to determine the mean values, a most gener-
ally use of time and space averaging over some interval of time or region of space is
needed. Also a more general space-time averaging of the functionf(x1, x2, x3, t) =
f(~x, t) has to be considered, and it is given by the equation

f(x1, x2, x3, t) =

∫ ∫ ∫ ∫ ∞

−∞
f(x1−ζ1, x2−ζ2, x3−ζ,t−τ)ω(ζ1, ζ2, ζ3, τ)dζ1dζ2dζ3dτ

(1.0.1)
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1.1. MEAN VALUES AND CORRELATION FUNCTION.

here the overbar indicates averaging andω(ζ1, ζ2, ζ3) is some weighting nonnegative
function which satisfies the normalisation condition:

f(x1, x2, x3, t) =

∫ ∫ ∫ ∫ ∞

−∞
fω(ζ1, ζ2, ζ3, τ)dζ1dζ2dζ3dτ (1.0.2)

If the functionsω is equal to0 outside of 4D region and takes a constant value within
it, then1.0.1is simple average over a given region of space-time. It is clear that1.0.1
will depend on the form ofω. Thus1.0.1gives rises to many different mean values
and it is necessary to discover which of these is the best.

1.1 Mean values and correlation function.

The use of time, space or space-time averaging defined by some equations of the
form 1.0.1, is very convenient from a practical viewpoints, but leads to a great nuem-
ber of unavoidable difficulties in theoretical calculations. This type of averaginghas
the great disadvantage that the question of the form ofω most suitable for the given
problem must be resolved each time before use. Hence it is desiderable in theory of
turbulence to avoid the use of this type of averaging altogether, and to adopt instead
some other method of defining mean value, a method that has simpler properties and
is more general. A convenient definiton of this type is found in the probability theory
treatment of the fields of fluid dynamic variables in a turbulent flow as random fields.
The basic feature of probability theory approach to the turbulence is the transition
from the consideration of a single turbulent flow to the consideration of a the statis-
tical ensemble of all similar flows created by some set of fixed externalconditions.
For turbulent folw, the effect of small uncontrollable dusturbances in the flow and
in initial condition leads to a situation in which, when an experiment is performed
two times under the same conditions I shal obtain two different value of the velocity
u(~x, t) and the other turbulent variables. If I now fix the external conditions and
repeat the experiemtn may times, then the arithmetic means of the values obtained
will be fairly stable. In this case the value about which the mean ofu(~x, t) oscillates
is called probability mean of velocity and is denoted by the simbolu(~x, t). Le te me
call p(u′, u”) the probability thatu(~x, t) will take the value in the range betweenu′

andu”. Usually this numberp(u′, u”) may be represented as an integral fromu′ to
u” of some non-negative functionp(u) called probability density function (PDF of
u. Therefore the set of allu for which p(u) 6= 0 will give the set of possibile values
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1.1. MEAN VALUES AND CORRELATION FUNCTION.

of u(~x, t). I shall call the actual valueu(~x, t) observed in one of the experiments
a sample value, or realisation. The fact of the existence of the PDF is sometimes
expressed as:

P{u < u(~x, t) < u+ du} = p(u)du (1.1.1)

where the symbolP denote the probabilty of the conditions specified in the braces
being satisfied. The probability mean is:

u(~x, t) =

∫ ∞

−∞
up(u)du (1.1.2)

At the same time the probabilty mean of arbitrary functions ofu(~x, t) is:

F [u(~x, t)] =

∫ ∞

−∞
F (u)p(u)du (1.1.3)

Thus I may conclude that from a probabilistic viewpoint the value of velocity at a
point of a turbulent flow is a random variables described by a definite probabilty
distribution.
So far I have discussed only the value of velocity at a fixed point~x and at a fixed
instantt. However, I may apply a similar approach to the whole field, i.e. to the
functionu(x1, x2, x3, t) of the four variables. Repeating the experiment several times
under the same initial conditions, I shall obtain a new field every time. Here also I
may speak of the ensemble of possible fieldsu(~x, t). Morevoer each individual field
is considered as representative chosen at random from this ensemble.
For the fieldu(~x, t) to be random it is necessary that, first, the valueu(~x, t) = u(M)
of this field at a fixed space-time pointM = (~x, t) be a random variable. If I choose
two valuesu1(M1) andu2(M2) the arithmetic mean of any function of these two
values should be also statistically stable. This means that for the valuesu1(M1) and
u2(M2) there must exist a two-dimensional PDF defined by:

P{u1 < u1(M) < u1 + du1, u2 < u2(M) < u2 + du2} = pM1M2
(u1, u2)du1du2

(1.1.4)
Moreover ifM1,M2, .....,MN areN arbitrary space-time points there must exist a
corresponding function ofN variablespM1......MN

(u1, ....., uN). This function is the
N -dimensional PDF of the values of theN random variablesui(M1). This function
clearly must be non-negative and such taht the integral of each over all variables is
equal to unity.
It is natural to assimw that in a turbulent flow also the fields of pressure, density and
temperature will be also random fields. In this case each of this fields willhave a
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1.1. MEAN VALUES AND CORRELATION FUNCTION.

correpsonding multidimensional PDF. Moreover the different fluid dynamic fields in
a turbulent flow are statistically interconnected and account must be takenthat for
thse fields there also exist a joint PDF of the values of one of the fields at some given
points of space-time, values of a sceond field at given point, values of third field, etc.
This it follows that if I have any function of hte fluid dynamic variables of a turbulent
flow, i may determine its mean value as the integral of product of this function with
the joint probability densities of all its arguments.
The mean value is understood as the mean taken over all the possible values of the
quantity under discussion. Thus to determine empirically mean values I should need
results of a large number of measurements carried out in a long series of repeated
similar experiments. In practice I generally do not have such a series of experiments
and thus I am obliged to determine the mean from data of a single experiment. Then
normally simplified averaging over space interval or time are used. This I see that
the assumption of the existence of PDF does not eliminate by itself the problem of
the validity of using ordinary time or space mean values in the theory of turbulence,
but only alters the formulation of the problem. Instead of investigating the special
poroperties of particular methods of averaging, I must now discover how close the
empirical mean values obtained by these methods lie to the probability mean value.
The position is completely analogous to that in ordinary statistical mechanics where
the theoretical mean over all possible states of the system (the ensemble mean) may
also be replaced by the directly observed time-mean. I statistical mechanics it is
well known that such a change in generally made of the basis assumption that as
the averaging interval becomes infinetely great, the times means converge to the cor-
responding ensemble mean. In certan special cases, the validity of this assumption
may be proved strictly and in all other cases it is adopted as an additional,highly
likely, hyphotesis, the ergodic hyphotesis. In theory of turbulence the concept of
convergence of time means to the corresponding probability mean is introduced also
as ergodic hyphotesis.

1.1.1 Moments of random variables

If I have a system withN random variablesu1, ....., uN with aN -dimensional PDF
p(u1, ....., uN) then the moments of thse variables are defined by:

Bk1....kN = uk11 .....u
kN
N =

∫

...

∫ ∞

−∞
uk11 .....u

kN
N p(u1, ....., uN)du1.....duN (1.1.5)
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1.1. MEAN VALUES AND CORRELATION FUNCTION.

wherek1, ..., kN are non-negative integers, the sum of which gives the order of the
moments. The moments of first order are the mean values. In addition I often use the
central moment, i.e. the moments of the deviations ofu1, ....., uN from their mean
values:

bk1....kN = (u1 − u1)k1.....(uN − uN)kN (1.1.6)

Opening the brackets in the right side of1.1.6it is easy to expressbk1....kN in terms
of Bk1....kN . In particular foN = 1 I have:

b1 = 0

b2 = B2 − B2
1

b3 = B3 − 3B1B2 + 2B3
1

b4 = B4 − 4B1B3 + 6B2
1B2 − 3B4

1 (1.1.7)

.......

The momentb2 = σ2u is called variance ofu andσu =
√

σ2u os the standard devi-
ation ofu. Similarly the general second central momentb11 = (u1 − u1)(u2 − u2)
is called covariance ofu1 andu2. If ui has some definite dimension, then the corre-
sponding moments (and central moments) will also have the same dimension. How-
ever adimensional ratios ass = b3

b
3/2
2

andδ = b4
b22

are often used and called respectively

skewness and kurtosis.
Other combinations pf the moments of special interest are the cumulants that are
obtained by subtracting from the moments a special polynomial in the lower-order
moments. ForN = 1:

S1 = B1

S2 = B2 − B2
1 = b2

S3 = B3 − 3B1B2 + 2B3
1 = b3

S4 = B4 − 4B1B3 − 3B2
2 + 12B2

1B2 − 6B4
1 = b4 − 3b22 (1.1.8)

.......

1.1.2 Moments of random fields

In the theory of turbulence I am concerned with random fields, i.e. random functions
u(M) of a space-time pointM . Thekth order moments of such a field are the mean

12



1.1. MEAN VALUES AND CORRELATION FUNCTION.

values of product ofk values of the field

Bu...u(M1, ....,Mk) = u(M1)....u(Mk) (1.1.9)

These moments depend of the coordinates of the points at which the values are taken.
However some of the points may coincide with each other; the number of different
points among them defines the type of the moments. In this frame, I shall distinguish
moments of one point, two points, etc, tupes. If the type of the moment is less than
its order, then the corresponding moments[u(M1)]k1....[u(MN)]kN will be denoted
by the symbolBu..u,...,u...u(M1, ...,MN) where the subscript groups referring to dif-
ferent points of space-time are separated by commas.
The mean values of the products of values of several random fields are called joint
moments of these fields.
When the argumentsM1, ...,Mk are arbitrary points of space.time I shall call the mo-
ments, space-time moments. Very frequently, in theory of turbuelnce, one considers
only moments in which the values refer to same instant; these are called space mo-
ments. Sometimes, I deal with time moments, i.e. mean values of product of the fluid
dynamic field at the same point. Hereforth when I speak simply of moments I shall
always mean space moments. In this thesis I shall often be dealing with correlation
functions, i.e. one-point, two-point, second order moments. For instance two-point
momentBuv(M1,M2) = u(M1)vM2 is called cross-correlation function ofu and
v. Two-points moments of order greater than two will rpresent correlation functions
of some new fields which are products of the original fields; such two-points mo-
ments are called higher-order correlation functions. The corresponding differences
between a moment of orderk and a specially chosen combination of lower order mo-
ments will coincide exactly with the cumulants of the random variables discussed in
subsection1.1.1. Therefore they are called the cumulants of orderk of these fields.
The general concept of a random field was discussed and the main statistical charac-
teristic of such fields. i.e. the mean values and the correlation function were intro-
duced. For a full treatment of these functions I refer to [Monin and Yaglom (1975)].
However when I consider the finer properties of turbulence, I find that this requires
a new mathematical tool, the application of harmonic analysis, i.e. the representa-
tion of functions by Fourier series or integrals. In application however I frequently
encounter non-periodic function which do not vanish at infinity nd which, strictly
speaking, cannot be represented by Fourier series or integrals. The point is that a
Fourier expansion, or spectral representation, of a special form, and with a clear
physical interpretation, is possible for any stationary processes and homogeneous
random fields which, by definition, do not vanish at infinity. Again I do not aim to
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exaustively present the spectral representation of stationary and homogenoeus fields
in this thesis, and again I refer to [Monin and Yaglom (1975)] for the full dissertation.
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Chapter 2

Particle dispersion in a turbulent flow: the
Lagrangian description of turbulence

2.1 Definition of the variables.

In the Eulerian framework the motion of an incompressible fluid is characterized at
time t by the velocity field~u( ~X, t), i.e. by the values of the velocity vector in all
the points~X = (X1, X2, X3). In principle, known the initial condition~u( ~X, t) =
~u( ~X, 0)X), it is possible to determine the Eulerian variables~u( ~X, t) at each time
t > t0. Nevertheless it is not suitable to use Eulerian variable to describe phenomena
as the turbulent transport or the material surface deformation in a turbulent flow. For
such phenomena the Lagrangian framework is almost a natural choice.
The Lagrangian approach consists in following the motion of fixed fluid particles
from a certain initial time t0. With fluid particle a fluid volume whose linear di-
mensions are far bigger than the mean distances between the molecules is meant. In
other words a fluid particle is a point of the fluid volume that is moving inside of it
following the equations of fluid mechanics. The Lagrangian description is related to
individual fluid elements whose summation produces the total turbulent flow.
In a Lagrangian framework for an incompressible flow the function~X = (~x, t) which
for each timet gives the coordinate~X of every fluid particle, is identified by the value
of the parameter~x. The equations of fluid dynamics allow to determine the values
of ~X = (~x, t) for everyt > t0 in terms of the fluid particles initial velocity values
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2.2. STATISTICS OF THE MOTION OF A FLUID PARTICLE.

~V ( ~X, t) = ∂~V (~x,t)
∂t , i.e.:

~V ( ~X, t0) =

[

∂~V (~x, t)

∂t

]

t=t0

(2.1.1)

The relation between Eulerian and Lagrangian variables is given by the expression:

∂ ~X(~x, t)

∂t
= ~u

[

~X(~x, t), t
]

(2.1.2)

The initial values of the spacial coordinates~X at timet = t0 will be used as the fluid
particle Lagrangian parameters,~x: ~x( ~X, t0).
In this description the two variable function~X(~x, t) describes a family of fluid parti-
cles trajectories that at timet = t0 are in all the possible points~x of the volume of the
fluid. Thus the Lagrangian framework consists in assigning a family of trajectories
that differs one from the other for the value of~x and wheret is the parameter.

∂ ~X(~x, t)

∂t
= ~u

[

~X(~x, t), t
]

(2.1.3)

2.2 Statistics of the motion of a fluid particle.

A general method, suggested by [Kolmogorov (1941)], to obtain the statistics of the
motion of a fluid particle is based on changing the reference frame passing from
a fixed inertial set of coordinatesS0 to a moving inertial reference frameS whose
velocity (different for each realization) is~u(~x, t0) and whose origin att = t0 is
in ~x. The coordinates~Y (S) and the velocity~V (S) in the new set are connected to
the coordinate~x and to the velocity~u in the old frameS0 by the following simple
relations:

~Y (s) = ~X − ~x− ~u(~x, t0)τ ~V
(s) = ~u− ~u(~x, t0) (2.2.1)

with τ = t − t0.In the setS the macroscopical effects due (for example) to the
mean wind or to large scale factors do not exist, but only small scale phenomena
due to turbulence are considered, inS it is always possible to consider the field as
locally isotropic. The small scale properties of turbulence are studied through the
relative motion of a single particle in small region of space and in short time ranges.
Moreover these are not correlated to the absolute motion of the fluid that is mainly
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2.2. STATISTICS OF THE MOTION OF A FLUID PARTICLE.

determined by large scale perturbations. Let consider a fluid particle that leaves~x
at timet0 and reaches~Y (s)(τ) = ~X − ~x − ~u(~x, t0)τ at the timet0 + τ and has the
velocity ~V (s)(τ) = ~V (~x, to + τ)− ~u(~x, t0) = ∆τ

~V .
In theS reference frame it is always possible considering, at least locally, the field
as isotropic and then the∆τ

~V statistics has to obey to the Kolmogorov similarity
hypothesis ( [Monin and Yaglom (1975)]). Thus the motion of the fluid particle has
an universal form governed by the parametersǫ, the dissipation of kinetic energy,
andν, the fluid viscosity, (this is true only for timeτ ≪ T0, with T : 0 large enough,
and forRe > Recritical whereRe is the Reynolds number) and and it is possile to
write [Monin and Yaglom (1975)]:

〈V (S)
l(τ)V

(S)
j(τ)〉 = D(L)(τ)δij (2.2.2)

and considering that~Y (S)(τ) =
∫ τ

0
~V (S)(τ)dτ :

〈Y (S)
l(τ)Y

(S)
j(τ)〉 =

∫ τ

0

∫ τ

0

〈V (S)
l (τ1)V

(S)
j (τ2)〉dτ1dτ2 = δij

∫ τ

0

τ ′DL(τ ′)dτ ′

(2.2.3)
whereDL(τ) is the Lagrangian velocity structure function. According to Kolmogorov
hypotheses (see4.1.2) and remembering that the Kolmogorov microscalesη, vη and
τη for τ ≪ T0 simply are:

η =

(

ν3

ǫ

)1/4

(2.2.4)

vη = (νǫ)1/4 (2.2.5)

τη =
(ν

ǫ

)1/2

(2.2.6)

2.2.2can be expressed as:

DL(τ) = vη
2β(

τ

τη
) τ ≪ T0 (2.2.7)

In the inertial subrange,τη ≪ τ ≪ T0, equation2.2.7becomes:

DL(τ) = C0ǫτ τη ≪ τ ≪ T0 (2.2.8)

with C0 universal constant. In the inertial subrange the Lagrangian velocity structure
function is linear inτ . Substituting equation2.2.8inside equation2.2.6the inertial
range behaviour for the particle position is obtained ( [Monin and Yaglom (1975)]):

〈Y (S)
l(τ)Y

(S)
j(τ)〉 =

1

3
C0ǫτ

3δlj (2.2.9)
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2.3. SPATIAL VELOCITY DIFFERENCE STATISTICS.

2.3 Spatial velocity difference statistics.

Let consider the statistics of the velocity difference between the point~x and~x+ ~r at
time t:

∆r~u = ~u(~x+ ~r, t)− ~u(~x, t) (2.3.1)

For sufficiently small~r the PDF of∆r~u can be considered as homogeneous, isotropic
and stationary, furthermore, for locally homogeneous turbulence,∆r~u = 0 and the
second order moment tensor can be expressed in all the quasi-equilibrium range
through two scalar functions: the longitudinal structure function,DLL(r), and the
lateral structure function,DNN(r):

Dij(r, t) =
DLL(r)−DNN(r)

r2
rirj +DNN(r)δij (2.3.2)

These two structure functions can be defined as:

DLL(r) = (∆ruL)2 (2.3.3)

DNN(r) = (∆ruN)2 (2.3.4)

and are related (as a consequence of the continuity equation) by the formula:

DNN(r) = DLL(r) +
r

2

dDLL(r)

dr
. (2.3.5)

Following the first Kolmogorov hypothesis:

DLL(r) = vη
2βLL

(

r

η

)

(2.3.6)

DNN(r) = vη
2βNN

(

r

η

)

(2.3.7)

In a small region of diameterr ≪ η friction will play a dominant role in the system
dynamics and the velocity components will only have a slight dependence on the
spatial coordinates. In this limit it is possible to expandul(~x + ~r) in Taylor series,
i.e. uL(~x + ~r) = uL(~x) + ∇uL · ~r + ..., to obtain the following behaviour of the
structure functions ( [Monin and Yaglom (1975)]):

DLL(r) ≈ Ar2, DNN(r) ≈ A′r2 r ≪ η (2.3.8)
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with A andA′ are non-dimensional constants. On the contrary in the inertial sub-
range,η ≪ r ≪ L, the second Kolmogorov similarity hypothesis ensures that equa-
tions (2.3.7and2.3.7) do not depend onν:

DLL(r) ≈ Cǫ2/3r2/3 DNN(r) ≈ C ′ǫ2/3r2/3 η ≪ r ≪ L (2.3.9)

Here the statistics of particle pairs are not treated and I refer to [Monin and Yaglom
(1975)] for their description.

2.4 Concentration fluctuations statistics.

Consider parcels of a passive contaminants released in a turbulent flow. In the ab-
sence of molecular diffusion the parcel concentration is conserved. Hence, neglect-
ing dissipation, the mean concentration of a passive contaminant observed in any
point of the flow can be evaluated integrating the concentration assigned to eachpar-
ticle at the source times the particle probability of reaching the observationpoint
( [Monin and Yaglom (1975)]):

C(z, t) =

∫ ∫ ∞

−∞
P1 (z, t|z′, t′)S (z′, t′) dz′dt′, (2.4.1)

whereS (z′, t′) is the source distribution, andP1 (z, t|z′, t′) is the probability density
function that a particle starting from positionz′ at timet′ reaches positionz at time
t. For the concentration covariance an analogous expression can be found:

C(z1, t1)C(z2, t2) =

∫ ∫ ∫ ∞

−∞

∫ ∞

−∞
P2 (z1, z2, t, t|z′1, z′2, t′1, t′2)

S(z′1, t
′
1)S(z

′
2, t

′
2)dz

′
1dz

′
2dt

′
1dt

′
2

(2.4.2)

whereP2 (z1, z2, t, t|z′1, z′2, t′1, t′2) is the two-particle PDF that depends on the simul-
tanoeus motion of the particle pair [Monin and Yaglom (1975)]. For equations2.4.1
and2.4.2to be consistent it is necessary that:

P1(z1, t|z′1, t′1) =
∫ ∫ ∞

−∞
P2(z1, z2, t|z′1, z′2, t′1, t′2)dz′2dt′2 (2.4.3)

and
∫ ∫ ∞

−∞
P1(z, t|z′, t′)dz′dt′ = 1 (2.4.4)
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2.4. CONCENTRATION FLUCTUATIONS STATISTICS.

Equation2.4.3ensures that integrating the two-particle PDF on all the possible po-
sition of the second particle the single particle PDF is obtained.
I am now interested in dividing the inertial contributes to the dynamics from thevis-
cous one. It is useful to consider an inner region with eddies of the Kolmogorov
lenghtscaleη size and an outer region with eddies of the inertial range size or larger.
If the separation between two particles,r = |z1z2|, is larger thanη, thenP2 is
mainly determined by the outer region dynamics, i.e. by eddies larger than the inte-
gral lenght scaleL. In order to define the concentration variance,C2(z, t), I have to
evaluate thelimz1,z2→z of equation2.4.2but this limit is discontinous. As a matter
of fact |z1z2| → 0 in the inner region means|z1z2|η → 0, in the outer region means

— |z1z2|
L → 0, but the separation behaves in different ways in these two limits and so

a distinction has to be made. In realistic situations the smearing by molecular action
or finite measurement probe size make the definition ofC2(z, t) in terms of the outer
limit more appropriate. It is then possible to define the concentration varianceaver-
aging the concentracion covariance. This definition links the theoretical one withthe
instrumental smoothing:

C2 ≡ V −2
η

∫ ∫

Vη

C(z1)C(z2)dz1dz2 =

= V −2
η

∫ ∫ ∞

−∞

∫ ∫

Vη

P2(z1, z2|z′1, z′2)S(z′1)S(z′2)dz1dz2dz′1dz′2 ≈

≈

∫ ∫ ∞

−∞
lim

|z1−z2|/L→0
P2(z1, z2|z′1, z′2)S(z′1)S(z′2)dz′1dz′2

(2.4.5)

where for simplicity the time dependence was dropped. The last step in equation
2.4.5assumes that the limit in the outer region is a good approximation of the inner
region averaging process. Thus the concentration variance can be defined as:

C2 =

∫ ∫ ∞

−∞
P2(z|z′1, z′2)S(z′1)S(z′2)dz′1dz′2 (2.4.6)

Equation2.4.6takes into account the effects of diffusion even if it has been derived
for a passive scalare with null diffusivity. The results obtained in this limit can
be extended to fluid particles whose molecular diffusivity has a finite value. The
following hypotheses have been assumed:
i) a volumeVη tale cheL≫ Vη exists;
ii) diffusion makes〈C(z)C(z +∆)〉 less peaked near∆ = 0;
iii) the Peclet number (Pe = UL

κ determines the importance of inertial terms in
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2.4. CONCENTRATION FLUCTUATIONS STATISTICS.

respect to the molecular diffusivity) is large; if this is not trueκ can not be neglected;
iv) the Schmidt number (Sc = Pe

Re = ν
κ) is O(1), only if this constraint is satisfied

viscosity does not prevail on diffusivity and the ii) can be true, in other words this
hypothesis ensures that the volumeVη is larger than the peak width.
the peak width. If the diffusivity smearing process were ignored, the concentration
variance would be defined in the inner limit, where:

lim
∆
η →0

P2(z1, z2|z′1, z′2) = P1(z1|z′1)δ(z′1 − z′2) (2.4.7)

that states that if two particles are coincident they have the same PDF. Thusthe
concentration variance can be defined as:

C2
∗ =

∫ ∞

−∞
P1(z|z′)S2(z′)dz′ (2.4.8)

Equation2.4.8does not include turbulent mixing processes associated with relative
dispersion, while equation2.4.6does. [Durbin (1980)] showed that:

C2 ≤ C2
∗ (2.4.9)

as long as equation2.4.8correponds to neglect the interaction between the particles
and to evaluate the concentration fluctuations considering the motion of two indipen-
dent particles, the inequality2.4.9states that the correlation between the particles re-
duces the concentration fluctuations. In the study of turbulence through Lagrangian
stochastic particle models the interest is focused on the inertial range where viscosity
and molecular diffusivity can be neglected. In the atmosphere the turbulent fluxes
are characterized by large Reynolds and Peclet numbers that ensure that the mean
concentration field is not influenced byν andκ (unless very close to the source),
nevertheless this can not be exetend to the concentration fluctuations. Considering
the motion of two particles in a turbulent flow whose Reynolds and Peclet number are
large it is evident that, when the particle are far enough one from the other, molecular
diffusion is negligible compared with the turbulent effects and their motion iscom-
pletely uncorrelated, moreover, since viscosity acts only at the small scales, even the
viscous effects can be ignored. Nevertheless if the separationr between the parti-
cles isO(η) molecular diffusion and viscosity have to be taken into account (if two
particles are coincident they can be divided only by molecular effects). For theLa-
grangian modeling theory it is necessary that the separation between two particles in
a pair is larger than the Kolmogorov microscaleη, in other wordsr/η must not tend
to zero. In the previous section it has been noticed that ifr0 ≪ η the time necessary
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2.4. CONCENTRATION FLUCTUATIONS STATISTICS.

to the two-particle separation to lie in the inertial subrange is infinite, particles can
not separate. If the initial separation is in the dissipative subrange molecular and vis-
cous forces prevent the particles to separate and to be subjected to the inertial forces.
On the contrary in the inertial range∆2(t) ∝ ǫt3 and then, even in the limit∆ → 0
(∆/L → 0) e t → 0, the eddies can disperse the particles. In order to be able to use
Lagrangian modeling to describe the joint motion of particle pairs it is necessary to
find the minimum distance and the shorter time,d andtd, for which diffusivity and
viscosity can be neglected, it is necessary to find a limit in which this istrue. This
can be achieved by making the Reynolds number tend to infinity while keeping con-
stant the Schmidt number (hypothesis iv) and then ensuring thatr is always larger
thanη ( [Durbin (1980)]):

{

Re→ ∞
Sc O(1)

(2.4.10)

or, equivalently,
{

ν, κ→ 0

Sc O(1)
(2.4.11)

amd






∆ → 0

∆

η
66= 0 ∆ ≫ η

(2.4.12)

If costraints2.4.11and2.4.12are satisfied the separation between the particles
lies in the inertial subrange. It is worth noticing that definition2.4.6continues being
valid under these assumptions, [Durbin (1980)]. Hence, even dealing with passive
scalar with null diffusivity, the results can be extended to real moleculeswith finite
κ. The theory here presented is not valid in the nearby of the source, for ditance less
thand or for time shorther thantd.
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Chapter 3

Isotropic turbulence

3.1 Equations for velocity correlations and spectra.

Turbulence is said to be homogeneous if all the fluid dynamic fields form homo-
geneous random fields. It is referred to be isotropic if all the fluid dynamic fields
form isotropic random fields. In this chapter I shall be concerned with isotropic
turbulence. No real turbulence can be exactly isotropic, but it is a mathematical ide-
alisation which is convenient only for the approximate descriptiomn of certaintypes
of flow.
Let me now derive the basic dynamic equations for the correlation functions of isop-
tropic turbulence. The mean value~u(~x, t) should be zero in isotropic turbulence
(see [Monin and Yaglom (1975)]), hence the velocity is the same as velocity fluctu-
ations, and the correlation tensorBij(~r, t) = ~ui(~x, t)~uj(~x+ ~r, t) should be the form:

Bij(~r, t) = [BLL(~r, t)− BNN(~r, t) =]
rirj
r2

+BNN(~r, t)δij (3.1.1)

whereBLL(~r, t) = ~uL(~x, t) ~uL(~x+ ~r, t) andBNN(~r, t) = ~uN(~x, t) ~uN(~x+ ~r, t). In
view of the continuity equation the functionsBLL andBNN are related by:

BNN(r, t) = BLL(r, t) +
r

2

∂BLL(r, t)

∂r
(3.1.2)

The last formula shows that the tensorBij(r, t) is completely determined by a sin-
gle scalarr function of the two argumentsr andt. Morevoer, [Monin and Yaglom
(1975)], it follows from continuity equation that in isotropic turbulence the velocity
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3.1. EQUATIONS FOR VELOCITY CORRELATIONS AND SPECTRA.

fields in uncorrelated with any scalar low variable, e.eg. the pressurefield p:

Bpi(r, t) = BpL(r, t)
ri
r
= 0 (3.1.3)

This relation is the simplest relation of the theory of isotropic turbulence which can
be verified experimentally.
let me now consider the dynamic equation forBij(~r, t). To find ∂

∂tBij(~r, t I must
write down the Navier-Stokes equation for thei-th velocity component at the point
~x and thej-th velocity component at the point~x + ~r = ~x′, and multiply the first of
them byu′j and the second forui. I then add both equations together and take an
average. Finally, the homogeneous turbulence∂

∂xk
andfrac∂∂x′k can be replaced by

− ∂
∂rk

andfrac∂∂rk. This procedure leads to the basic dynamic equation realting the
second and the third velocity moments in homgeneous turbulence. Now I introduce
the assumption of isotropic turbulence. In that case the functionsBpi andBip must
be identically vanish and the tensor of second and third order can be expressed in
terms ofBLL andBLL,L (the significance ofBLL,L is clear from the notation). If I
substitutethe corresponding expressions in the equation obtained from the Navier-
Stokes equation I get the following equation that was first derived by von Karman
and Howarth (1938):

∂BLL(r, t)

∂t
=

(

∂

∂r
+

4

r

)[

BLL,L(r, t) + 2ν
∂BLL(r, t)

∂r

]

(3.1.4)

The von Karman-Howarth equation plays a basic part in isoptropic turbulence.
In addition to3.1.4 there is also an equation relating the spectral functionF (k, t)
(or the spectral energyE(k, t) = 4πk2F (k, t)) with the third-order spectral function
F (k, t) which defines the Fourier transform of the tensorBij,k. Hence the following
equation is merely a new form of3.1.4:

∂F (k, t)

∂t
= 2kF3(k, t)− 2νk2F (k, t) (3.1.5)

This is the required spectral form of the von Karman-Howarth equation and describes
the time variation of the wave numberk distribution of turbulent energy. It has a
simple physical interpretation which is important for understanding the mechanism
of turbulent mixing as widely discussed in [Monin and Yaglom (1975)].
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3.2. CORRELATIONS AND SPECTRA CONTAINING THE TEMPERATURE.

3.2 Correlations and spectra containing the temperature.

I consider isotropic turbulence in a temperature inhomogeneous fluid. In this case
also the temperature fluctuations form a homogeneous and isotropic random field.
Subject to the usual assumption than the velocity~u (~x, t) is small in compariosn with
the sound velocity and the temperature changes are small in comparison with the
mean absolute temperature, I can assume that the densityρ, the molecular viscosity
ν = ηρ and the temperature diffusivityχ = χc/cpρ can be regarded as constants. I
shall also adopt that that radiative heat transfer and the heating of the medium dueto
the kinetic energy dissipation can be neglected. The temperature fluctuationsϑ (~x, t)
will then satisfy the usual thermal conduction equation

∂ϑ

∂t
+ uα

∂ϑ

∂xα
= χ∆ϑ (3.2.1)

which is precisely the same as a diffusion equation for a passive admixture with
molecular diffusion coefficientχ. I note that, in the termal equation3.2.1, I can in-
terpretϑ as the deviation of temperature (or concentration) at given point from the
constant mean valueϑ. Below I shall start with equation3.2.1so that all the sub-
sequent discussion will be valid both for temperature and concentration of a passive

admixture. Multiplying equation3.2.1for the point~x by ϑ′ = ϑ
(

~x′
)

and the same

equation for the point~x′ by ϑ = ϑ (~x), and adding the two term by term, I find after
taking average that in case of homogeneous turbulence

∂Bϑϑ(~r, t)

∂t
=

∂

∂rk
[Bkϑ,ϑ(~r, t)− Bkϑ,ϑ(−~r, t)] + 2χ

∂2Bϑϑ(~r, t)

∂rk∂rk
(3.2.2)

where I considerϑ = 0, ϑ = ϑ′ andBϑϑ = Bϑ′ϑ′ =
[(

ϑ(~x)− ϑ
) (

ϑ(~x′)− ϑ
)]

. I
shall adopt this convention henceforth. If the turbulence is isotropic, thenBϑϑ(~r) =
Bϑϑ(r) wherer = |~r| andBkϑ,ϑ(~r, t) = BLϑ,ϑ(r)

rk
r . In this case the equation3.2.2

assumes the form

∂Bϑϑ(~r, t)

∂t
= 2

(

∂

∂r
+

2

r

)[

BLϑ,ϑ(r, t) + χ
∂Bϑϑ(r, t)

∂r

]

(3.2.3)

The equation3.2.3, which plays the role of the von Karman-Howarth equation for
the temperaure field, was first established by Corrsin (1951). As in case of thevon
Karman-Howarth equation, the Corrsin equation3.2.3relates two unkown functions
Bϑϑ(r, t) andBL,ϑϑ(r, t). Equation3.2.3can be transformed to a form containing the
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3.2. CORRELATIONS AND SPECTRA CONTAINING THE TEMPERATURE.

temperature spectrumFϑϑ(k, t) (or the functionEϑϑ(k, t) = E(ϑ)(k, t) = Fϑϑ(k, t))
and the functionFLϑ,ϑ(k, t) given by

Fjϑ,ϑ(~k) = iFLϑ,ϑ(k)
kj
k

(3.2.4)

whereFjϑ,ϑ(~k) is the Fourier transform of thr vectorBjϑ,ϑ(~r). In fact, if I take the
3D Fourier transform of all the terms in3.2.3I obtain

∂Fjϑ,ϑ(~k, t)

∂t
= iKj

[

Fjϑ,ϑ(~k, t)− Fjϑ,ϑ(−~k, t)− 2χk2Fϑϑ(~k, t)
]

(3.2.5)

By 3.2.4, the last equation can be rewritten as

∂Fϑϑ(k, t)

∂t
= Γϑϑ(k, t)− 2χk2Fϑϑ(k, t) (3.2.6)

Γϑϑ(k, t) = −2kFLϑ,ϑ(k, t)

or

∂Eϑϑ(k, t)

∂t
= Tϑϑ(k, t)− 2χk2Eϑϑ(k, t) (3.2.7)

Tϑϑ(k, t) = −8πk3FLϑ,ϑ(k, t)

where the termsΓϑϑ(k, t) andTϑϑ(k, t) represent the turbulent mixing. Equation
3.2.6(or 3.2.7) is the required spectral form of3.2.3. Equation3.2.7describes the
time variation of the wave-number distribution of the temperature fluctuationsin-
tensityϑ′2 = Bϑϑ(0), which is the natural measure of the inhomogenenity of the
temperature fieldϑ(~x). This inhomogenenity measure will vary only under the ac-
tion of the thermal conduction which leads to an equation for the temperature field.
Turbulent mixing of the fluid which is producted by the velocity field~u(~x) will then
play a very important role: it will lead to a random approaches of particles with very
different temperature, i.e. it will produce large temperature gradients resulting in a
rapid enhancement of heat transfer due to the molecular thermal conduction. If I re-
formulate these physical ideas in terms of the spectrum language, this will mean that
turbulent mixing (described by the termTϑϑ(k, t) in 3.2.7) will give rise to a redistri-
bution of the temperature field disturbances over the wave number spectrum; namely,
it will lead to a conversion of the intensitiesEϑϑ(k) for small values ofk into the val-
ues ofEϑϑ(k) for largek, without any effect of total intensity

∫∞
0 Eϑϑ(k)dk = ϑ′2.

It is clear that the functionTϑϑ(k) shoud satisty the equation
∫ ∞

0

Tϑϑ(k)dk = 0 (3.2.8)
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3.3. THE SIMPLEST CONSEQUENCES OF THE CORRELATION AND SPECTRAL
EQUATIONS.

In fact, using3.2.4 I can readily show that the left-hand side of3.2.8 is equal to

ul(~x)
∂ϑ2(~x)
∂xl

= ∂ul(~x)ϑ2(~x)
∂ul

, which vanishes beacause the turbulence is homogeneous.
Therefore, by integrating3.2.7with respect tok I obtain

∂ϑ′2

∂t
=

∂

∂t

∫ ∞

0

Eϑϑ(k)dk = 2χ

∫ ∞

0

k2Eϑϑ(k)dk (3.2.9)

as expected.

3.3 The simplest consequences of the correlation and spectral
equations.

In this section I analise some simple consequences of the section3.2. In particular I
focus on scalar fields, and especially on the temperaure field. In fact, the knowledge
of the beahaviour of the temeprature field is needed in the LSM for buoyant plume
rise I shall present in chapter6. The corresponding dissertation about velocity can
be found in [Monin and Yaglom (1975)].

3.3.1 Balance equation for energy and temperature fluctuations intensity.

The equation for the correlation and spectral functions discussed in the section3.2
involve functions of two variables,r (or k) andt. These equations lead to a number
of predictions about the numerical values of parameters describing the turbulence as
a whole, i.e. parameters independent ofr andk. To obtain these results it is suffi-
cient to expand some equations of section3.2.1, and then equate the corresponding
coefficients on either side of the resulting equation. In particular, if I use theex-
pansion of the correlation function into a Taylor series in power ofr, or the spectra
into a Taylor series in power ofk, I can obtain relations which have a clear physical
interpretation and therefore deserve special consideration. I now derive some con-
sequences from the Corrsin equation3.2.3for the temperature correlation function.
Substitutingr = 0 into this equation, I obtain

dϑ2

dt
= 6χBII

ϑϑ(0) = −12χϑ2

λ2ϑ
(3.3.1)
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whereλ2ϑ = − ϑ2

BII
ϑϑ(0)

is the temperature microscale introduced by Corrsin (1951). As

usual I assumed thatϑ = 0 whereϑ is the temperature fluctuation. The length scale
λϑ can also ne determined from the formula

1

λ2ϑ
=

2

ϑ2

(

∂θ

∂x

)2

=
2

ϑ2U 2

(

∂θ

∂t

)2

(3.3.2)

Equation3.3.1describes the rate of decrease of the mean square of temperature fluc-
tuations (the intensity of temperature fluctuations, or ther measure of the temperature
inhomogenenity) due to the thermal conductivity. Expanding all the terms in3.2.3
in series in powers ofr2, and equating the coefficients ofr2 on either side (multi-
plied by−3) I obtain the following equation for the rate of change of mean square
temperature gradient:

−3

2

d
dt
BII

ϑϑ(0) = −5BIII
Lϑ,ϑ(0)− 5χBIV

ϑϑ (0) (3.3.3)

The last term on the right-hand side is always negative. It decribes the decrease in the
mean square temperature gradient due to molecular thermal diffusivity. The first term
of the right-hand side is always, since it describes the increase in the temperature
gradient due to the inertial approach of fluid particles with very different temperature.

3.3.2 Corrsin integrals.

The ordinary differential equation, which is obtained by expanding the partial differ-
ential equaion3.2.3in power series, describes the time variation of local character-
istic of isotropic turbulence at a fixed point in the flow. An equivalent equation can
also be obtained by multiplying all teh term of spectral equation3.2.6by the corre-
sponding power ofk and integrating over all values ofk. If, however, I expand all
the terms of3.2.6in a Taylor series ofk, and equate the corresponding coefficients
on the right and left-hand sides, I obtain equations which have a completely differ-
ent character. These new equations relate quantities characterizing the behaviour of
spectral densities near the pointk = 0, i.e. they govern the asymptotic behaviour
of the longest wavelength components of the flow variables. Such quantities are
the integral characteristics of turbulence, and depend on the values of the correla-
tion function for all the values ofr between zero and infinity. The corresponding
relations cannot, of course, be verified on the basis of measurements or any other ex-
perimental data. The fact that any real turbulence can be regarded as isotropic only
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in a finite region plays a decisive role in this context. Nevertheless, the asymptotic
relations governing the behaviour of the spectral functions at low wave numbers are
interesting from the theoretical viewpoint. Assuming that the functionsFϑϑ(k) and
FLϑ,ϑ(k) can be expanded in Taylor series in the neighborhood of the pointk = 0, I
obtain from equation3.2.6

df (ϑ)0

dt
= 0 ⇒ f

(ϑ)
0 = const (3.3.4)

df2
dt

= −2g
(ϑ)
1 − 2χf

(ϑ)
0

................................

wheref (ϑ)n andg(ϑ)n are the coefficient ofkn in the expansions ofFϑϑ(k) andFLϑ,ϑ(k).
The first of these equations has the form of a conservation law and can be rewritten
in the form

∫ ∞

0

r2Bϑϑ(r)dr = K = const (3.3.5)

This result can be simply obtained from3.2.3. The quantityK is sometimes called
Corrsin integral. Let me multiply all the term in3.2.3by r2, integrate the resulting
equation betweenr = 0 andr = R and then letR tend to infinity. Assuming that
the integral3.3.5converges, i.e.Bθθ(r) tends to0 more rapidly thanr−3 asr → ∞,
I obtain

∫ ∞

0

r2Bϑϑ(r)dr = limR → ∞
[

2R2BLϑ,ϑ(R)
]

(3.3.6)

Hence it is clear that the conservation law3.3.5will be valid provided only that the
integral on the left-hand side of this equation converges, and the functionBLϑ,ϑ(r)
tend to zero more rapidly thanr−2 asr → ∞.
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Chapter 4

Locally isotropic turbulence.

4.1 General description of small-scale turbulence at large Reynolds
numbers.

4.1.1 Definition of locally isotropic turbulence.

Consider a small space-time region and a given central point( ~x0, t0) in this region. I
can then define a moving inertial set of coordinates travelling with a constantvelocity
~u( ~x0, t0) relative to the fixed (or absolute) set such that at timet = t0 its origin lies at
the point~x0. Transition to this set of coordinates means that the usual coordinatesx

and timet can be replaced by~r~x− ~x0 − ~u( ~x0, t0)(t− t0) andτ = t− t0. The first of
these quantities clearly depends on~u( ~x0, t0) and is hence random.~u( ~x0, t0) is now
replaced by the relative velocity~v(~r, τ) = ~u(~x, t) − ~u( ~x0, t0). I can now formulate
the following basic defintion:
A given turbulence in a space-time regionG is called locally isotropic if, for any
fixed value~u( ~x0, t0) = ~u0, the multidimensional probability distribution for each
finite set of relative velocity~v(~rk, τk), k = 1, ..., n, which consists of the values of the
velocity~u(~x, t) at then+ 1 points( ~x0, t0), ...., ( ~xn, tn) ofG, is
i) independent of~u0;
ii) stationary (independent oft0 in G);
iii)homogeneous (independent ofx0 in G);
iv) isotropic (i.e. invariant under rotations and reflections in the space of vectors~r).
The turbulence with sufficiently large Reynolds number is always locally isotropic
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4.1. GENERAL DESCRIPTION OF SMALL-SCALE TURBULENCE AT LARGE REYNOLDS
NUMBERS.

in any region whose linear dimension are less thanL and whose time intervals are
less thanT0 = L/U . In other words, if I restrict the attention to vectors~rk and time
intervalsτk such thatrk ≪ L andτk ≪ T0, then forRe ≫ Recr the probability
distribution for any finite set of~vk(~rk, τk) can be expected to be independet of~u0 as
well as stationary, homgeneous and isotropic.

4.1.2 The Kolmogorov similarity hyphoteses.

I now explicitly define the [Kolmogorov (1941)] hyphoteses. Kolmogorov wrote
them for a probability distribution atN space-time points(~x, t), whereas to my pur-
poses it is sufficient to define them in space region(~x) aat fixed timet. I consider a
regionG within a turbulent flux and~x(0), ~x(1),...,~x(n) are a set of pointsinG. I define
now a new set of coordinates and the velocity differences as:

~y = ~x− ~x(0) (4.1.1)

~v(~y) = U(~x, t)− U(~x(0), t) (4.1.2)

andfN is the multidimensional PDF of~v at theN points~y(0), ~y(1),...,~y(n).
Definition of local homogeneity. The turbulence is locally homogeneous inG, if
for each fixedN and~yn with n = 1, ..., N multidimensional PDFfN is independent
of ~x(0) and ofU(~x(0), t).
Definition of local isotropy. The turbulence is locally isotropic inG, if it is locally
homogeneous and the PDFFN is invariant under all rotations and translations of the
set of points.
Local isotropy hyphotesisWithin any turbulent flux with Re sufficiently high, the
turbulence is, in good approximation, locally isotropic ifG is sufficiently small (i.e.
∀n|~yn| ≪ L) and not in proximity of the bundaries of the flux or of the singularity.
First hypothesis of similarity For locally isoptropic turbulence, the PDFfN is
uniquely determined by the viscosityν and by the TKE dissipationǫ.
Second hypothesis of similarityIf the modulus of the vectors~ym and of their dif-
ference~ym − ~yn (m 66= n) are large in respect to theη Kolmogorov scale, then the
PDFfN is uniquely determined by the TKE dissipationǫ and does not depend onthe
viscosityν. I notice that the hyphoteses refer to the velocity differences. The use of
the new set of coordinates allows to apply these hyphoteses to any turbulent flux.
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4.2. LOCAL STRUCTURE OF THE TEMPERATURE FIELD FOR HIGH REYNOLDS AND
PECLET NUMBERS.

4.2 Local structure of the temperature field for high Reynolds
and Peclet numbers.

I now consider isotropic turbulence in a velocity and temperature inhomogeneous
fluid. In this case also the temperature fluctuations form a homogeneous ans isotropic
random field. Subject to the usual assumption than the velocity~u (~x, t) is small in
comparison with the sound velocity and the temperature changes are small in com-
parison with the mean absolute temperature, I can assume that the densityρ, the
molecular viscosityν = ηρ and the temperature diffusivityχ = χc/cpρ can be re-
garded as constants. I shall also adopt that that radiative heat transfer andthe heating
of the medium due to the kinetic energy dissipation can be neglected. The tempera-
ture fluctuationsϑ (~x, t) will then satisfy the usual thermal conduction equation

∂ϑ

∂t
+ uα

∂ϑ

∂xα
= χ∆ϑ

which is precisely the same as a diffusion equation for a passive admixture with
molecular diffusion coefficientχ. Below I shall start with equation4.2.1so that all
the subsequent discussion will be valid both for temperature and concentration of
a passive admixture. I consider the structure of the concentration fieldθ(~x, t) for
a dinamically passive admixture, mixed by locally isotropic turbulence. I shall sup-
pose thatθ(~x, t) is the temperature transported by the wandering fluid particles and it
has not appreciable effect on the turbulence. In other words, I shall consider forced
convection in temperature-inhomogeneous fluids in the presence of developed tur-
bulence of dynamic origin. The similarity hypotheses are based on physical ideas
indicating that, for sufficiently high Reynolds numbers, the statistical stateof veloc-
ity fluctuations in each sufficiently small space-time region is isotropicand quasi-
stationary, and it is completely defined by the parametersε andν. It is natural to
expect that the temperature fluctuations due to the mixing of portions of fluid with
different initial temperatures will then be isotropic and stationary in small space-time
regions. Consequently the scalar fieldθ(~x, t) can be regarded as locally isotropic.
However there is no reason to suppose that its statistical parameter will depend only
on ε andν. In fact, the evolution of temperature is described by the heat transfer
equation containing the molecular temperature diffusivityχ = χc/cpρ. Therefore it
is clear that the value ofχ may affect the local structure of the scalar fieldθ(~x, t).
This effect cannot be neglected: in the case of intensive turbulent mixing, molecular
thermal conductivity plays an important role, since the turbulent motion may leadto
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approach of fluid volumes with very different temperatures, i.e. to a rapidincrease of
temperature gradients. However I must augmentε, ν andχ by one further quantity
to obtain the complete set of parameters defining the statisitcal state of small-scale
temperature fluctuations. I shall now define this quantity. When I investigatethe
local structure of the velocity field~u(~x, t) I assumed thatRe = L∆Uν (where∆U
is a tipical velocity difference over a distanceL) was sufficiently large, and consid-
ered the cascade process of fragmentation of macrostructural inhomogenenities.It
was noted that, of all the quantities characterizing large-scale turbulentmotions, the
only one which affects sufficiently small disturbances is the rate of energy transfer
from large-scale to small-scale motions. This finally results in conversion into heat
through molecular viscosity. The temperature field can be considered in the same
way. I must, however, assume that both the Reynolds numberRe and the Peclet
numberPe = Lϑ∆ϑU/χ are large, whereLϑ is the length over which there is an
appreciable change in the mean temperatureϑ(~x), and∆ϑU is a typical change in
the mean velocity over the distanceLϑ (for Lϑ > L, I can replaceLϑ and∆ϑU

with L and∆U ). The cascade quantity fragmentation of velocity-field disturbances
will also lead ti the fragmentation of macrostructural temperature inhomogeneities of
scaleLϑ into smaller-scale disturbances of the fieldθ(~x, t). the typical temperature
fluctuationϑ′ = ϑ − ϑ will therefore be a measure of the degree of inhomogene-
ity of the temperature field in such regions. Following Obukhov it is convenientto
take the quantityH = 1

2ρ
∫

V ϑ
′2d~x as a measure of the temperature inhomogeneity

in a volume V, i.e. to characterize the degree of temperature inhomogeneity of a
unit mass by the quantityϑ′2/2 in analogy with the definition of the kinetic energy
~u′2/2. Fragmentation of temperature inhomogeneities will result in the fact that the
total measure of temperature inhomogeneity will increasingly concentrate in small-
scale disturbances. However the quantityϑ′2/2 will remain the same for all types
of change in temperature. In other words, the quantityϑ′2/2 satisfies a ”conserva-
tion law” which is a consequence of the fact that the temperature, like the kinetic
energy, does not change during the inertial motion of the fluid particles. A change
in the degrre of temperature inhomogeneity can be produced only by molecular ther-
mal conduction, leading to an equalization of temperatures at neighboring points,
i.e. to a reduction inϑ′2/2. Let εθ be the mean ”dissipation rate of temperature
inhomogeneities” i.e. the rate of reduction in the measure of temperature inhomo-
geneitiesϑ′2/2 due to the moleculat thermal conduction. For large value ofRe and
Pe, the ”temperature dissipation rate” will be almost entirely concentrated in the
smallest-scale disturbances, and will be equal to the ”transport of the temperature-
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inhomogeneity measure over the length scale spectrum”, i.e. it will be equal to the
increase per unit time in the contribution toϑ′2/2 associated with the small-scale
disturbances of scalel << min(Lϑ, L) and due to the fragmentation of large-scale
temperature field inhomogeneities by the turbulent motions. It is clear that the quan-
tity εϑ may remain consntant in time if the large-scale inhomogeneities of scaleLϑ

are maintained by external heat sources which produce ixed distribution of mean
temperature. Unless this is so,εϑ will depend ont. However the time variation of
εϑ will be very slow in comparison with the characteristic time scalesof sufficiently
small-scale turbulent motions. Therefore, when I consider the statisticalproperties
of small-scale temperature distrubance, the quantityεϑ can be regarded as constant.
It will, in fact, characterize the macrostructural inhomogeneities and will have an
important effect on local isotropic temperature fluctutations. The quantityεϑ is pro-
portional to the coefficientχ and to the mean square of temperature gradient. In
fact, I can use the heat transfer equation to show that for sufficiently largevolumeV ,
such that I can neglect convective heat transfer through its boundary, the reduction
in temperature-inhomogeneity measure will be described by

dH
dt

= −χ
∫

V

ρ[∆ϑ′(~x, t)]2d~x

Consequently, the specific (per unit of mass) rate of reduction is the temperature
inhomogeneity measure given by

εϑ = χ(∆ϑ′)2 = χ
3

∑

i=1

(

∂ϑ′

∂xi

)2

(4.2.1)

For homogeneous turbulence, the mean convective transport of fluctuationsϑ′ is zero
not only after averaging over a large volumeV but also at each point. In the case
of locally isoptropic turbulence, therefore, the contribution of convective transport
to the rate of change ofϑ′2/2 will be determined only by the space derivatives of
very smooth large-scale components of the flow variables, i.e. it will be negligible
throughout. This is associated with the fact that for largeRe andPe I can neglect the
effect of molecular thermal conduction on the mean flow, so that the formula4.2.1
can also written in the form

εϑ = χ(∆ϑ)2 = χ
3

∑

i=1

(

∂ϑ

∂xi

)2

(4.2.2)

This definition ofεϑ will be used below. The form of4.2.2 is very close to the

expression for the energy dissipation rateε = ν
2

∑

(

∂ui

∂xj
+

∂uj

∂xi

)2

. The quantitiesε
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andεϑ are also very close to each other in their physical significance. I recall the
entropy balance equation in e temperature inhomogeneous fluid

ρT

(

∂s

∂t
+ uα

∂s

∂xα

)

= σαβ
∂uα
∂xβ

+
∂

∂xα

(

χc
∂T

∂xα

)

(4.2.3)

whereσαβ is the viscous stress tensor. If I use the identity

1

ϑ

∂2ϑ

∂x2i
=

∂

∂xi

(

1

ϑ

∂ϑ

∂xi

)

+
1

ϑ2

(

∂ϑ

∂xi

)2

(4.2.4)

and the fact that the mean absolute temperatureϑ = T0 can be practically regarded as
constant, I may conclude thatε is equal toT0 multiplied by the mean rate of increase
in entropy due to the internal friction (i.e. the molecular viscosity) andεϑ is equal to
T 2
0 /cp multiplied by the mean rate of increase in entropy due to the molecular ther-

mal conduction. The quantityH is also found to have a simple physical meaning.
Obukhov (1949a) has shown that it is equal toT0/cp multiplied by the maximum
work which can be extracted from an inhomogeneously heated volumeV through a
reversible transition of this volume into a stase of thermodynamic equilibrium (i.e.
constant temperature). This provides an additional justification for comparing tem-
perature inhomogeneity measureH with the kinetic energy of turbulence, and the
temperture dissipation rateεϑ with the energy dissipation rateε. The quantityεϑ
can also be determined from the quantitites characteristic of large-scale mean mo-
tion which is independent of the molecular transport coefficients. Sinceεϑ has the
dimension of a square temperature divided by time, the order of magnitude ofεϑ can
be estimted from the relation

εϑ ∼ ∆ϑU
(

∆ϑ
)2

Lϑ
(4.2.5)

where∆ϑU and∆ϑ are typical changes in the mean velocity and mean temperature
over the distancesLϑ which is an analogous of the relation betweenL andε. If I
suppose thatL andLϑ are of the same order of magnitude (this is usually the case),
and setεϑ ≈ K

ϑ
(

∆ϑ
L

)2 whereKϑ is interpreted as the effective eddy temperature

diffusivity, then it will follw that Kϑ ∼ ∆U ∼ K, as expected. I shall use the
length scaleL0 = min(L,Lϑ) which can be identified ifL and withLϑ if they
are of the same order of magnitude. For the statistical turbulence characteristics
containing temperature, the quasi-equilibrium range ofl will then be defined by the
inequalityl << L0. The first similarity hyphotesis will now assume the following
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form. First similarity hyphotesis. In developed turbulence with sufficiently high
values ofRe andPe, the multidimensional probability distributuions for velocity and
temperature differences at an arbitrary set of points in a spatial regionV of diameter
l << L0 are invariant under all rotations and translations of this set of points,
provided these transformations do not take it beyond the limits of the regionV , and
are uniquely determined by the parametersε, ν, εϑ and χ. Let me to generalize
the second similarity hyphotesis to the case of probability distributions containing
temperature differences. I note that, for sufficiently high values ofPe, the molecular
theraml conducivity which is characterized byχ, may play an appreciable role only
for very small-scale disturbances. In fact, the ratio of the typical values of the terms
in the heat-transfer equation which describe the convection of heat and molecular
thermal conduction is equal to the Peclet number. Therefore, the molecular thermal
conduction is important only for disturbances withPe << 1. It is natural to suppose
that the Peclet number decreases monotonically with decreasing length scaleof the
disturbances. Therefore, for a sufficiently large Peclet number of the mean flow,
there should exist a subrange of length scales which are small in comparison with
L0 and for which the Peclet number is much greater than unity. In this subrange,
all the statistical characteristics should be independent ofχ. It can be referred to
as theconvective subrange. If I attempt to determine the order of magnitude for
the lower limit of the convective subrange, I encounter a specific difficult connected
with the presence of the two quantitiesν andχ which have the same dimensions. It
follows that the dimensionless parameters of small-scale turbulence which contain
temperature will, in general, be functions of the dimensionless parameterPr = ν/χ,
i.e. the Prandtl number. In particular, the ratio of the length scales of the smallest-
scale disturbances which are appreciably effected by molecular thermal conductivity
to the Kolomogorov internal length scaleη =

(

ν3/ε
)1/4

will also be the function of
the Prandtl number. therefore, the convective subrange of length scale is determined
by inequalities of the formL0 >> l >> λ(Pr)η whereλ(z) is a universal function.
Instead of the length scaleη I can use the so-called internal temperature length scale

ηϑ =
(

χ3/ε
)1/4

= η(Pr)−3/4 (4.2.6)

However, the conclusion that forl >> ηϑ I are necessarily within the limits of the
convective subrange cannot be regarded as justified, since the possibility of neglect-
ing molecular conductivity in comparison with convection will also depend on the
velocity field which is affected by the viscosityν. However, these considerations are
important only in the limiting casesν << χ andν >> χ which appear to be rela-
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tively exotic. It will be shown there that whenν << χ, i.e. ηϑ >> η, the convective

subrange exteds only to scalesl >>
(

νχ2

ε

)1/4

=
(

ηη2ϑ
)1/3

. In the more usual situa-

tion, Pr ∼ 1, the scalesη, ηε and
(

ηη2ϑ
)1/3

are of the same order of magnitude, and
λ(Pr) becomes a numerical coefficient of the order of unity. Therefore, forPr ∼ 1,
the upper limits of the subranges in which the molecular friction or molecular thermal
conductivity are still important may be regarded as coincident. Let ,e now consider
the intertial-convective subrangeof length scalesL0 >> l >> η0 = max(η, ηε)
which is the intersection of the convective and inertial subrange. For disturbances
with length scales lying in this subrange I can neglect both the internal friction and
molecular thermal conductivity. In other words I have the following hypothesis.The
second similarity hyphotesis. In developed turbulence with sufficiently high values
of Re and Pe, the multidimensional probability distributions for the velocity and
temperature differences at a set of points, such that all the distancesrk between the
points satisfy the inequalitiesL0 >> rk >> η0 = max(η, ηϑ), are uniquely deter-
mined by the values of the parametersǫ and ǫϑ. The similarity hyphoteses lead to
certain simple consequences with regard to the statistical characteristic of the spatial
temperature differences∆~rϑ = ϑ(~x + ~r)− ϑ(~x) in turbulent flows with sufficiently
largeRe andPe. In particular, it follows from the first similarity hyphotesis that,
in the quasi-equilibrium ranger << L0, the spatial temperature structure function
Dϑϑ(r) = (∆~rϑ)2 depends only onr = |~r|, and should be of the form

Dϑϑ(r) = εϑǫ
−1/2χ1/2h

(

r

η0
;
ν

χ

)

(4.2.7)

whereh(x; z) is an universal functions of the two variables. For sufficienlty smallr,
the difference∆~rϑ can be regarded as an aprroximately linear function of~r, so that
Dϑϑ(r) ∼ r2 for smallr andh(x; z) ∼ x2 for smallx. I shall assume for simplicity
that the numberPr ∼ 1 and, consequently, the scalesη andηϑ are of the same order
of magnitude. I then haveh(x;Pr) ≈ h0x

2 for x << 1, andDϑϑ(r) = h0
εθ
χ r

2 for

r << ηθ. It is readily shown that the numerical coefficienth0 = 1
2
∂2h(x;Pr)

∂x2 |x=0 is

independent ofPr. In fact, since according to4.2.2(∆ϑ)
2 = 3

2D”ϑϑ(0) =
εϑ
χ I have

Dϑϑ(r) =
εϑ
3χ
r2 for r << η0 (4.2.8)

i.e. h0 = 1/3 andh(x;Pr) ≈ x2/3 for x << 1. In the other limiting caser << ηϑ
(but r << L0) I can use the second similarity hyphotesis, which leads to the result

37



4.2. LOCAL STRUCTURE OF THE TEMPERATURE FIELD FOR HIGH REYNOLDS AND
PECLET NUMBERS.

that, for suchr,
Dϑϑ(r) = Cϑεϑε

−1/3r2/3 (4.2.9)

i.e. h(x;Pr) ≈ Cϑx
2/3 for x >> 1 whereCϑ is a universal constant.

In addition to the structure functionDϑϑ I can also consider the spectrum of local
isotropic temperature field,Eϑϑ(k) = E(ϑ)(k), or corrispondently one-dimensional
spectrumE(ϑ)

1 (k). Similarly to4.2.7, spectral equations have the form

E(ϑ)(k) = εϑε
−3/4χ5/4ϕ(ϑ)(kηϑ;Pr)

E
(ϑ)
1 (k) = εϑε

−3/4χ5/4ϕ
(ϑ)
1 (kηϑ;Pr)

(4.2.10)

where the functionϕ(ϑ)(ζ;Pr) andϕ(ϑ)
1 (ζ;Pr) are related toh(x;Pr). The equation

4.2.9is equivalent to the ther two following equations:

E(ϑ)(k) = B(ϑ)εϑε
−1/3k−5/3

E
(ϑ)
1 (k) = B

(ϑ)
1 εϑε

−1/3k−5/3

(4.2.11)

which are valid for1/L << k << 1/ηϑ. HereB(ϑ) and(ϑ)
1 are universal constants

given by

B(ϑ) =
10Cϑ

9Γ(1/3)
≈ 0.4Cϑ

B
(ϑ)
1 =

3

5

(ϑ)

≈ 0.25Cϑ

(4.2.12)

The formulas4.2.8 and 4.2.9 (the first of these represents thetemperature two-
thirds law) are due to Obukhov (1949a). Thetemperature five-thirds law4.2.11,
which is equivalent to4.2.9, was given by Corrsin (1951b). The similarity hy-
photeses can be also used to obtain various expression for higher-order moments
of the differences∆rϑ, and also the the higher-order joint moments of∆rϑ and∆r~u

(the second moment∆rϑ∆r~u is zero). Thus, for example, the third-order moment
Diϑϑ(~r) = ∆rui(∆rϑ)2 is determined (Yaglom 1949b) by the scalar function

DLϑϑ(r) = ∆ruL(∆rϑ)2 = εϑε
−1/4χ3/4i(r/ηϑ;Pr) (4.2.13)

wherei(r/ηϑ;Pr) is a universal function and

DLϑϑ(r) = d1εϑε
1/2χ−3/2r3 r << min(η, ηϑ) (4.2.14)
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DLϑϑ(r) = D1εϑr L0 >> r >> max(η, ηϑ) (4.2.15)

However the two scalar functionsDLLϑ = (∆ruL)2∆rϑ andDNNϑ = (∆ruN)2∆rϑ

which define the third-order tensorDijϑ = ∆rui∆ruj∆rϑ, are both equal to zero by
virtue of the general equationDjϑ = 0. The situation is more complicated in case of
the time differences

∆τϑ = ϑ(~x, t+ τ)− ϑ(~x, t) (4.2.16)

If, however, I are concerned with time intervalsτ (or frequenciesω) for which the
Taylor frozen turbulence hyphotesis is valid, then the corresponding characteristics
can be readily reduced to those of the space differences∆rϑ, which were discussed
above. In particular, forηϑ/u << τ << L0/u oru/L0 << ω << u/ηϑ, I have from
4.2.8, 4.2.10, and4.2.15

Dϑϑ(τ) = Cϑεϑε
−1/3u2/3τ 2/3, Eϑ(ω) = B

(ϑ)
1 εϑε

−1/3u2/3ω−5/3 (4.2.17)

DLϑϑ(τ) = ∆τuL(∆τϑ)2 = D1εϑuτ (4.2.18)

In conclusion, I emphasize once again that all the above formulas are valid not only
for the temperature, but also for the concentration of an arbitrary passive admixture.
Therefore, the results given in this subsection will be valid, for example, forthe
humidity or concentration of carbon dioxide in the atmosphere. The paramtersχ and
εϑ will, of course, have different values in all these cases.

4.2.1 Local statistical characteristics of turbulence in a thermally stratified
fluid.

It was assumed above that temperature behaves as if it were a passive admixture,
i.e. it has no appreciable effect on the dynamics of turbulence. However, in the im-
portant case of temperature-inhomogeneous fluid in a ravitational field, the temper-
ature cannot be considered as a passive substance. In fact, in this case, temperature
fluctuations give rise to density fluctuations which are in turn affectd by buoyancy.
Therefore, the temperature distribution generates a field of buoyant acceleration, i.e.,
it affects the flow dynamics. Consequently, in the case of a thermally stratified fluid,
the theory of similarity for small-properties of turbulence must be generalized in
some way. I shall assume that the temperature inhomogeneities are small in com-
parison with the mean temperature of mediumϑA = ϑ0, and that the motion of the

39



4.2. LOCAL STRUCTURE OF THE TEMPERATURE FIELD FOR HIGH REYNOLDS AND
PECLET NUMBERS.

medium is described by the Boussinesq equation of free convection. (Note that I
use the letterϑ for the temperature both when it is regarded to a passive admixture
and when it affects the flow dynamics). The equations of free convection differ from
the usual fluid dynamics equation for a temperature-inhomogeneous medium only
by the presence of an additional term (for the vertical velocity) describing thebuoy-
ant acceleration, i.e.−gβϑ′, whereϑ′ = ϑ − ϑ is the temperature fluctuation,g
is the gravitational acceleration andβ is the thermal expansion coefficient (equal to
1/ϑ0 for the case of an ideal gas). The presence of this additional term leads two
important consequences. First, the vertical direction is a special one, and since the
buoyant accelerations appear in motions of all scales, I may suspect that motions of
all scales will be anisotropic. Second, to the dimensional parameters characterizing
the motion of the fluid, I must now add the buoyancy parametergβ = g/ϑ0 whose
dimension is(ms−2k−1). The effect of anisotropy, i.e. the dependence of statistical
quantities containing the argument~r or ~k on the angle between~r or ~k and the verti-
cal, can be eliminated by integrating the corresponding statistical quantities respect
to all the possible direction of~r or ~k (i.e. over the sphere respect to sall the possible
direction of r=|~r|). This will result in only the mean data, which will not enable me
to establsh unambiguously the corresponding three-dimensional parameters. Instead
of integration over a sphere, I can consider the characteristic of two-dimensional
fluid dynamical fields in fixed horizontal planez = const, which are isotropic. The
conclusions drawn from dimensional considerations, which are applied below to the
three-dimensional structure averaged over a sphere, will also be valid for the corre-
sponding two-dimensional characteristics in thez = const plane. In a stratified fluid
with large value ofPe andRe, all the turbulence fields can be regarded as locally
axially symmetric (i.e. locally homogeneous in all direction and locally isotropic
along horizontal directions). Let me now list the dimensional parameters which af-
fect the small-scale structure of the velocity field~u(~x, t) and the temperature field
ϑ(~x, t) in a stratified fluid. The quasi-stationary temperaure fluctuationsϑ′(~x, t) in
the quasi-equilibrium range are determined, as in a homogeneous fluid, by a constant
influx εϑ of the mean fluctuation intensityT ′2/2 from the large-scale disturbance re-
gion, which is balanced by an equal outflow of mean intensityT ′2/2 as a result of
smoothing out of the fieldϑ(~x, t) by molecular thermal conduction. This process
is characterized by the parametersεϑ andχ (together with the parameters which
determine the velocity field producing convective mixing). The time evolution of
velocity inhomomgeneities is described by the Boussinesq equations, which contain
the dimensional parametersν andg/ϑ0. However the energy flux transferred from
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disturbances of given length scale to disturbances of smaller length scale will now
no longer be constant along this length scale spectrum. In fact, for a stable tempera-
ture stratification, I have, in addition to energy transfer from one type of disturbance
to another, a loss of kinetic energy through work done against buoyancy forces in
a broad range of length scales (which leads to conversion of the kinetic energy into
potential energy). In the case of unstable stratification, turbulent motion of different
scales will draw additional kinetic energy from the potential energy of the medium
(the buoyancy forces will accelerate the fluid particles). It is important to note how-
ever that the mutual transformation of potential and kinetic energies in a givenrange
of length scalesl is determined by the same spectral components of the fluctuations
u′(x, t) andϑ′(x, t) that are responsible for the transport of temperture inhomogene-
ity measure along the spectrum in this range. I therefore expect that, if the values of
Re andPe are sufficiently high, forl << L0 the statistical source of the above en-
ergy conversions will not depend on the quantitative characteristic of the meanfields
u(x, t) andϑ(x, t) having the scaleL0, and will be homogeneous in space e quasi
stastionary in time. However, one would still expect that the presence of stratifica-
tion may have an effect for scales much less thanL0 by producing an anisotropy in
the probability distributions, owing to the special role of the dirction of the force of
gravity. The sign of the vertical mean-temperature gradient may also be important
since it influences the character of the mean mutual conversions of kinetic and poten-
tial energies. All this does not prevent the range of sclaesl << L0 from becoming a
quasi-equilibrium range in the sense in which this is defined in a nonstratified fluid.
The kinetic energy distribution over the length scales in spectrum in this rangewill
now be determined from the balance of inertial transport, the transformation into
(postive or negative) potential energy and viscous dissipation. The total energy dis-
sipationε will then no longer be equal to the energy reaching the upper end of the
length range under consideration. Nevertheless, it is reasonable to expect thatε will
still influence the energy distribution for scalesl << L0, i.e. it will be an important
energy parameters. In other word, it is probable that
for the turbulence in a stratified fluid with largePe andRe there is a quasi-equlibrium
range of length scalesl << L0 in which the multidimensional probabilty distribu-
tions for velocity and temperature differences can be regarded as stationary and
homogeneous (but not isotropic, and axially symmetric only relative to the vertical)
are uniquely determined by the parametersε, εϑ, g/ϑ0, ν andχ.
This is in fact a generalization of the Kolmogorv similarity hypothesis to the case
of turbulence in a stratified fluid due to Bolgiano (1959) and Obhukov (1959a). the
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presence of additional parameterg/ϑ0 complicates the use of dimensional reasoning
in the study of local statistical properties of turbulence in a stratified medium. I shall
use, in fact, the only one combination ofε, εϑ andg/ϑ0 which has the dimension of
length, namely,

L∗ =
ε(5/4)

ε
3/4
ϑ (g/ϑ0)3/2

(4.2.19)

Hence, it follows that, in a stratified medium, the general form of the longitudinal
velocity structure functionDLL(~r) averaged over all directions of~r for |~r| << L0

should be of the form

DLL(r) =
1

4πr2

∫

~r=r

DLL(~r)d~r = ν1/2ε1/2βLL(~r/η, η/L∗, ν/η) (4.2.20)

whereη = ν3/4ε−1/4 andβLL(x, y, z) is a universal function of the three variables.
Further specifications of these formulas can be achieved by using the second Kol-
mogorov hypothesis according to which
the multidimensional distributions for the velocity and temperature differences atar-
bitrary pairs of points cannot depend on the molecular constantsν andχ provided
only that the distances between the points are much greater than a certain fixed
lengthη0.
This hypothesys will also be valid in the case of thermal stratification, and for the
same reasons as in the previous cases. In general, the lengthη0 is given by relations
of the formη0 = ηλ(η/L∗, ν/χ) whereλ(y, z) is a function of the two variables. I
shall show belw, however, thatη0 will nearly always be independent ofg/ϑ0. Conse-
quently,λ = λ(Pr) is independent ofη/L∗ and the lengthη0 in a stratified medium
can be choosen in the same way as in the previous subsection. For the sake of sim-
plicity, I shall suppose henceforth thatν/χ = Pr is of the order of unity (for air
Pr ≈ 0.7). In that caseη0 can be simply identified withη or with ηϑ = χ3/4ε−1/4

which is of the same order of magnitude. Consider the longitudinal and lateral ve-
locity structure functionsDLL(r) andDNN(r), and the joint structure function for
the temperature and vertical velocityDϑw(r) for L0 >> r >> η0. All these func-
tions are assumed to have been averaged with respect to the direction of thevector
~r. In the above range, all these quantities will depend only on~r, ε, εϑ andg/ϑ0 and
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therefore dimensional considerations indicate that

DLL(r) = Cε2/3r2/3fLL(r/L∗)

DNN(r) = C ′ε2/3r2/3fNN(r/L∗)

Dϑϑ(r) = Cϑεϑε
−1/3r2/3fϑϑ(r/L∗)

Dϑw(r) = C”ε
1/2
ϑ ε1/6r2/3fϑw(r/L∗)

(4.2.21)

whereC, C ′, Cϑ andC” are dimensionless constants which can be choosen arbi-
trarly. It will be convenient to assume that the first three of these coincidewith corre-
sponding coefficients in the two-thirds law of4.2.9. I note that for stable and unstable
stratification, ie. for different signs of dϑ/dz, the functionsfLL(x), ....., fϑw(x) may
turn out to be different. Since the random fields~u(~x, t) andϑ(~x, t) are locally homo-
genenous, I can define the densitiesF (~k) = 1

2Fii(~k), Fϑϑ(~k) andFϑw(~k) for them
when1/ηo >> k = |~k| >> 1/L0. If I write E(k) =

∫

|~k|=k F (
~k)d~k and similarly for

the functionFϑϑ(~k) andFϑw(~k), the dimensional considerations show that

E(k) = C1ε
2/3k−5/3ψ(kL∗)

Eϑϑ(k) = B(ϑ)εϑε
−1/3k−5/3ψϑϑ(kL∗)

Eϑw(k) = B′ε1/2ϑ ε1/6k−5/3ψϑ(r/L∗)

(4.2.22)

whereψ(ζ), ψϑϑ(ζ) andψϑw(ζ) are universal functions,B′ is an arbitrary constant,
and the constantsC1 andB(ϑ) can be conveniently regarded as equal to the coeffi-
cients in the five-thirds law given by4.2.11. Wheng/T0 = 0, i.e. in the absence of
gravitational forces which give rise to startification, the formulas4.2.21and4.2.22
should become identical to the usual formulas for the structure and spectral func-
tions of locally isotropic turbulence∆ru∆rϑ = 0. If, on the other hand,g/ϑ0 6= 0
but r/L∗ << 1, i.e. r << L∗ (but r >> η0), the the values of the correction
function in4.2.21can be approximately replaced by their values at zero, i.e. I can
use the ordinary two-thirds law which are valid for non-stratified media. Similarly
whenk >> 1/L∗ (butk << 1/η0), the correction function in4.2.22can be approx-
imately replaced by their values at infinity, i.e. I can use the usual five-thirds law. In
other words,the length scaleL∗ characterizes the minimum length scale of inhomo-
geneities beyond which effect of the the stratification is appreciable.WhenL∗ >> η
andL∗ >> ηϑ (and this is nearly always the case), I can ignore the stratification
for l >> L∗ and use the usual form of second Kolmogorov similarity hyphotesis.
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the above analysis provides additional support to the ise of the concept of locally
isotropic turbulence and the associated similarity hyphoteses for stratified media, but
shows that the upper limit of the inertial and inertial-convective length-scales sub-
ranges must satisfy the inequalitiesl << L and l << Lϑ as well asl << L∗. If
L∗ << L0 = min(L,Lϑ) then the inertial-convective subrange will be followed
by the buoyancy subrangeL0 >> l ≥ L∗ in which the probability distributions for
∆r~u and∆rϑ can be regarded as quasi-stationary and homogeneous but no longer
isotropic. the values of dimensionless correction functions in4.2.21and4.2.22can,
in principle, be determined empirically, but the necessary experimental data are not
available at present. In the case of stable startification, Bolgiano (1959, 1962) has put
foward certain hyphoteses with regard to the asymptotic form of these functions for
wave number much less than1/L∗, i.e. the length scale much greater thanL∗. For a
stable stratification, the energy transferred from disturbances of length scalel ≫ L∗
to smaller-scale disturbances should be much greater thanε, since most of this en-
ergy is spent in work against the buoyancy forces, and only a very small fraction of
it reaches the small-scale disturbances in which viscous dissipation is concentrated.
On this basis, one would expect that even a considerable change inε will have very
little effect on the shape of turbulence spectra in the region ofk ≪ 1/L∗. This
has lead Bolgiano to propose that the asymptotic form of the spectraE(k), Eϑϑ(k),
Eϑw(k) for k ≪ 1/L∗ in the case of stable stratification should depend only on the
values of parametersεϑ andg/ϑ0. From this, dimensional considerations yield

E(k) = c1ε
2/5
ϑ

(

g

ϑ0

4/5
)

k−11/5

Eϑϑ(k) = b(ϑ)ε
4/5
ϑ

(

g

ϑ0

−2/5
)

k−7/5

Eϑw(k) = b′ε3/5ϑ

(

g

ϑ0

1/5
)

k−9/5

(4.2.23)

wherec1, b(ϑ) andb′ are universal functions. Consequently one would expect that in
case of stable stratificationψ(ζ) ≈ ζ−8/15, ψϑϑ(ζ) ≈ ζ4/15 andψϑz(ζ) ≈ ζ−2/15 for
ζ ≪ 1. Similar considerations lead to the following hypotheses which are equiva-
lent to4.2.23about the asymptotic form of the structure functions averaged over all
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directions for turbulence in a stratified medium:

DLL(r) = cε
2/5
ϑ

(

g

ϑ0

4/5
)

r6/5

DNN(r) = c′ε2/5ϑ

(

g

ϑ0

4/5
)

r6/5

Dϑϑ(r) = c(ϑ)ε
4/5
ϑ

(

g

ϑ0

−2/5
)

r2/5

Dϑw(r) = c”ε
3/5
ϑ

(

g

ϑ0

1/5
)

r4/5

(4.2.24)

when r ≫ L∗, so thatfLL(x) ≈ x8/15, fNN(x) ≈ x8/15, fϑϑ(x) ≈ x−4/15 and
fϑw(x) ≈ x2/15 for x ≫ 1. The above formulas are meaningful only if the length
scalesL∗ is much less than the external length turbulenceL0. If, on the other hand,
L∗ approaches or even exceedsL0, then not only the Bolgiano hyphoteses about the
asymptotic form of the correction functions4.2.21and4.2.22, but the entire similar-
ity theory of this subsection will be invalid. In this last case, the inertial-convective
subrange of the spectrum will be followed by a subrange of scales in which quan-
tities characterizing the mean fields~u(~x, t) andϑ(~x, t) will play an important role.
This refers in particular to the hyphoteses of Shur (1962) and Lumely (1964) about
the turbulence spectrum in a free atmosphere according to which the region of va-
lidity of five-thirds laws is followed in a stably stratified medium by a region of
a smaller wave numbers where the velocity spectrum is proportional tok−3 and is
determined by the parametersg/ϑ0 and dϑ(z)/dz, in accordance with the formula

E(k) ≈ g
ϑ0

dϑ
dz k

−3.
The length scaleL∗ cannot be precisely defined for most real turbulent flows since
the values ofε andεϑ are unknown. A very rough estimate of the order of magni-
tude of the length scale of turbulence in a stratified medium occupying the half space

z > 0 can be obtained from the relationsε ≈ (∆u)
3

L andεϑ ≈ ∆u(∆ϑ)
2

Lϑ
(see section

4.2.1). Typical legth scalesL andLϑ of the fieldsu(z) andϑ(z) in the present case
are of the same order of magnitude as the distancez to the wall. Therefore,

L∗ ≈
(∆u)3

(

∆ϑ
)3/2

(g/ϑ0)
3/2 z1/2

(4.2.25)

Near the wall, the most rapidly varying factor on the right-hand side isz−1/2. I
thus see that the length scaleL∗ decreasess with height quite rapidly, whereas the
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external scaleL ≈ z increases rapidly with height. therefore, one would expect
that at sufficiently great heights, the length scaleL∗ will be appreciably less than
L, and hence the effect of thermal stratification will begin to appear earlier that the
effect of the mean flow parameters. In the case of the atmospheric layer near earth’s
surface, very approximate solutions due to Obukhov (1959a) show that the ratioz/L∗
becomes equal to unity even at heights of the order of 10 m. It is therefore probable
that the formulas given above will be valid beginning with heights of the order of
100 m.
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Chapter 5

Lagrangian modelling

The Lagrangian stochastic single particle models (SPMs) have been widely tested
and applied to many different situations characterised by non-homogenous turbu-
lence and several stability conditions. In thie next section I give a brief summary of
the theory of one-particle Lagrangian models ( [Thomson (1987),Thomson (1990)]).
Then in section5.2I will discuss the application of the Lagragian approach for eval-
uating the parameters of a SDE for temperature fluctuations included in the model
for buoyant plume rise presented in chapter6.

5.1 Lagrangian stochastic single particle model

In the energy spectrum between the Kolmogorov time scaletη and the velocity cor-
relation Lagrangian time scaleTL the evolution of a particle position and velocity in
a turbulent flow can be considered as a bivariate Markov process, i.e. a process were
present is correlated to past and future to present, but past and future are statistically
independent. In order to avoid the viscous subrange and molecular diffusivity,κ,
Lagrangian stochastic models are based on the hypothesis thattη → 0, or, in other
words, thattη → 0 (in the atmosphereRe ∼ 107) and thatκ → 0 (Pe → ∞).
Under the Markov assumption, the trajectories of independent fluid particles canbe
simulated through two stochastic differential equations ( [Thomson (1987),Thomson
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(1990)]):

dui = ai (~u, ~x, t) dt+
√

C0ǫdWj(t) (5.1.1)

and
dxi = uidt (5.1.2)

where~x is the particle displacement,~u is the particle velocity anddW represents the
increment of a Wiener process with zero mean and variance:

dWi(t)dWj(s) = δijδ(t− s)dt (5.1.3)

The coefficient
√
C0ǫ, whereC0 is an universal constant andǫ is the dissipation of

turbulent kinetic energy, ensures that Kolmogorov scaling in the inertial range is
satisfied by the Lagrangian velocity structure function:

dui(t)duj(t) = δijC0ǫdt (5.1.4)

As long asC0 is an universal constant, in principle equation5.1.4can be applied to
every kind of turbulence. Nevertheless in literature there is no agreement on its val-
ues that can show large variations in the different kinds of turbulence considered.To
model turbulent absolute dispersion correctly the proper choice for the undetermined
term a should be made. It is well known that equations5.1.1and5.1.2are equivalent
to the Fokker-Planck equation:

∂PL

∂t
+

∂

∂xi
(uiPL) = − ∂

∂ui
(aiPL) + C0ǫ

∂2PL

∂ui∂uj
(5.1.5)

wherePL = PL(~u, ~x, t; ~u0, ~x0, t0) represents the Lagrangian joint probability density
of position and velocity of a single particle, given its position~x0 and velocity~u0 at
time t0 and it is generally unknown. Nevertheless it is possible to make an ensam-
ble average ofPL over the Eulerian distribution of initial conditions to obtain the
Eulerian PDF of velocities:

PE (~u, ~x, t) =

∫

PL (~u, ~x, t; ~u0, ~x0, s)PE (~u0, ~x0, s) d
3~u0d

3~x0ds (5.1.6)

As long as the Fokker-Planck equation5.1.6is linear inPL is satisfied byPE as well.
PE is known and can be considered as a prescribed property of the flow. Therefore
the equation:

∂PE

∂t
+

∂

∂xi
(uiPE) = − ∂

∂ui
(aiPE) + C0ǫ

∂2PE

∂ui∂uj
(5.1.7)
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is a constraint for the terma. In the idealized case of isotropic, homogeneous, station-
ary turbulencePE does not depend on~x andt and is simply function of the velocity.
Equation5.1.7can be solved to obtain:

ai =
C0ǫ

2PE

∂PE

∂ui
+ φi (5.1.8)

that is the so called well-mixed condition and the fundamental constraint thata La-
grangian stochastic model has to satisfy [Thomson (1987)]. This constraint physi-
cally implies that if the particles are initially well-mixed they will remain so during
the flow evolution, that the solution of the Fokker- Planck equation5.1.5are compat-
ible with the Eulerian equations and that direct and inverse diffusion are equivalent.
The vectorφ, where:

∂φi (u, x)
∂ui

= −∂PE

∂t
− ∂uiPE

∂xi
(5.1.9)

or equivalently






φi (u, x) = − ∂

∂xi

∫ ui

−∞
uiPE (u, x) du

φi → 0 per |ui| → 0

(5.1.10)

is a divergence free vector that shows that equation has no unique solution.
Only in the case of homogeneous, isotropic turbulence and GaussianPE:

PE =
1√
2πσ2

e−
u2

2σ2 (5.1.11)

the vector~a can be shown to be unique [Thomson (1987), Borgas and Sawford
(1994)]. In this simple situation (adding the hypothesis of stationarity) equation
5.1.1becomes

dui = −C0ǫ

2σ2
uidt+

√

C0ǫdWi(t) (5.1.12)

whereC0ǫ
2σ2

is the inverse of the Lagrangian time scale1TL
, hence equation5.1.12can

also be written as:

dui = − 1

TL
uidt+

√

C0ǫdWi(t) (5.1.13)

The linear system formed by equations5.1.13and 5.1.2 together with the initial
condition that the velocity~u0 is chosen randomly with distributionPE( ~u0) can be
exactly solved to give the Lagrangian positions PDF [Borgas and Sawford (1994)]:

PL =
1

(2π)3/2D1/2
exp

[

−1

2
(xi − xi(0))Dij(xj − xj(0))

]

(5.1.14)
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where

Dij = 2σ2T
2
L

[

exp

(

− t

TL

)

t

TL
− 1

]

δij (5.1.15)

Equation5.1.15can be easily recognized as the result of [Taylor (1921)] theory
of diffusion. It is worth noticing that in this simple case homogenity, isotropy, sta-
tionarity (this last request is not necessary for the uniqueness of the solution) and
the GaussianPE determine the drift term a in the Langevin equation5.1.1, but this
can not be generalized to less idealized condition. In the case of inhomogeneous
turbulence or of two-particle models the determination ofφ is more complex and not
unique.
The assumption that in homogeneous turbulence the velocity PDF can be considered
Gaussian can be extended to the case of inhomogeneous turbulence, e.g. in the case
of neutral boundary layer.
The only difference in equation5.1 is the dependence ofǫ (and hence ofσu amd of
TL) onx.
In the inhomogeneous casePE depends on the spatial coordinates throughσu (that
usually depends only onz) Henceφ is not equal to zero as in the homogeneous case,
but the equation5.1.10has to be solved:

φi (u, x) = − ∂

∂z

∫ u

−∞
uPE (u, z) du = − ∂

∂z

∫ u

−∞

u√
2πσ(z)

e
− u2

2σ2(z)du =

=
∂

∂z

[

σ(z)√
2π
e
− u2

2σ2(z)

]

= PE(u, z)
u2 + σ2(z)

σ(z)

∂σ(z)

∂z

(5.1.16)

Therefore, in inhomogeneous turbulence the Langevin equation is written as :

dui = − ui
TLi

dt+
1

2

(

1 +
u2i
σ2ui

)

∂σ2ui

∂xi
dt+

√

C0ǫidWi(t) (5.1.17)

Hence the spatial inhomogeneity produce a quadratic term in the velocity of the
form:

1

2

u2i
σ2ui

∂σ2ui

∂xi
dt (5.1.18)

This term arise from the well-mixed condition and it is needed to balancesσu → 0
at the boundaries of the domain and the resulting explsion of its derivative.
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5.2 In the matter of models for buoyant plume rise

The main issue about the model for buoyant plume rise presented in the section6.2
the evaluation of the temperature dissipation rate,εϑ, defined in4.2.1and4.2.2. A
first attempt may be to relateεϑ to σϑ andTϑ, as in case of energy dissipation rateε.
In fact, it seems easier to give expressions with simple physical meanings toσϑ and
Tϑ (i.e. σϑ ∝ |ϑ − ϑ| andTϑ = TL = b/|w|, see the section6.2). Hence may be
possible to considerεϑ =

2σ2
ϑ

CϑTϑ
in analogy withε = 2σ2

w

C0TL
. Regardingε the previous

equation can be readily deducted from the temporal Lagrangian structure function
D

(L)
LL (τ) = C0ετ . In fact,

D
(L)
LL (τ) = [u(t+ τ)− u(t)]2

= u2(t+ τ)− 2u(t+ τ) + u2(t)

(5.2.1)

I have assumed that the turbulence is stationary in small space-time regions (the
wide-sense stationarity is enough to our purposes) so that the temporal Lagrangian

autocorrelation functionR(L)(t, τ) = u(t)u(t+τ)

u2(t)
is only function ofτ , i.e.R(L)(t, τ) =

R(L)(τ), andσ2u = u2(t+ τ) = u2(t). Furthermore, for a Markov process the tem-
poral autocorrelation function can be written asR(τ) = e−τ/TL and its first-order
Taylor series approximation isR(τ) = e−τ/TL ≈ 1− τ

TL
+O(τ 2). Therefore

D
(L)
LL (τ) = 2σ2u − 2σ2uR

(L)(τ)

= 2σ2u − 2σ2ue
−τ/TL

≈ 2σ2uτ

TL
(5.2.2)

and beingD(L)
LL (τ) = C0ετ , I have the expected equationε = 2σu

C0TL
. Is it possible

to follow the same way for evaluatingεϑ? The first consideration is that, to our
knowledge, an expression for the temporal Lagrangian structure function is not pre-
scribed in literature. I found only the Eulerian structure function given by4.2.17,
i.e. Dϑϑ(τ) = Cϑεϑε

−1/3u2/3τ 2/3. Note that for velocity difference the Lagragian
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structure function is different from the Eulerian one:

D
(L)
LL (τ) = C0ετ

DLL(τ) = C0ε
2/3U 2/3τ 2/3

(5.2.3)

In the Eulerian expressionDLL depends onU = u, but in the Lagragian formDLL

does not depend on it (the Lagrangian form of the structure function should be always
independent of the mean wind). The Eulerian expression4.2.17for Dϑϑ depends on
U as well. Is it possible to find a Lagrangian expression forDϑϑ(L) independent of
U? Dϑϑ has to have the dimensions of a square temperature(K2). In the equation
4.2.17, it is a function ofε, εϑ, τ andU . Only the two parametersεϑ andU depends
on a length (i.e. in the dimension analysis they contain a(m)). Hence there is no
way to make dimensionlessDϑϑ eliminating onlyU . A first approximation may
be eliminateε as well to obtain simplyD(L)

ϑϑ (τ) = Cϑεϑτ , but it is not acceptable
because of the comments made in section4.2. The simplest non-dimensional form
for D(L)

ϑϑ (τ) is:

D
(L)
ϑϑ (τ) = Cϑεϑεu

−2τ 2

Even assuming that this expression is right (and it is not trivial) and that the temporal
autocorrelation function is an exponentially decreasing function for the temperature
as well (and it should be right since I have assumed that the temperature admitsa
Langevin equation as the velocity), the dependence ofτ cannot be eliminated (as-
suming that this dependece has to be eliminated). In fact, following the same method
4.2.20used to obtainε = 2σu

C0TL
in the case of velocity, I getεϑ =

2σ2
ϑ

CϑTϑ
U2

τε

. Therefore

εϑ seems to depends onU andτ . If I reformulate these observations in terms of the
spectrum language, I get the same results. A second attempt to obtain a simple form
for the temperature dissipation rates may be to derive it from the expressionfor the
third-order structure functions, e.g.DLϑϑ. Now I focus on the possibility of relating
DLϑϑ to DLL andDϑϑ in order to give an expression toεϑ and on the Lagrangian
form ofDLϑϑ known. The development of the definition ofDLϑϑ, i.e.

DLϑϑ = u(t+ τ)ϑ2(t+ τ)− 2u(t+ τ)ϑ(t+ τ)ϑ(t) + u(t+ τ)ϑ2(t)

−u(t)ϑ2(t+ τ) + 2u(t)ϑ(t+ τ)ϑ(t)− u(t)ϑ2(t)

(5.2.4)
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may lead to some useful relationships. It needs some further investigations. All the
considerations given above refer to the case in which the temperature behaves as
if it were a passive admixture, i.e. it has no appreciable effect on the dynamics of
turbulence. However, in the study of a plume rise, especially for a large fire like
the Buncefield one (see6.4), the temperature cannot be considered as a passive sub-
stance. In fact, in this case, temperature fluctuations give rise to density fluctuations
which are in turn affected by the buoyancy. Therefore, the temperature distribution
generates a field of buoyant accelerations, i.e. it affects the flow dynamics. Conse-
quently, when I study a plume rise, the theory of similarity for small-scaleturbulence
in a thermally stratified fluid discussed in the subsection4.2.1has to be taken in ac-
count. Let me summarize the main results showed in subsection4.2.1( [Monin and
Yaglom (1975), §27.5]). The generalization of Kolmogorov hyphoteses to the case
of a stratified fuid is:
For the turbulence in a stratified fluid with largePe andRe there is a quasi-equlibrium
range of length scalesl << L0 in which the multidimensional probabilty distribu-
tions for velocity and temperature differences can be regarded as stationary and
homogeneous (but not isotropic, and axially symmetric only relative to the vertical)
are uniquely determined by the parametersε, εϑ, g/ϑ0, ν andχ
The multidimensional distributions for the velocity and temperature differences at
arbitrary pairs of points cannot depend on the molecular constantsν and χ pro-
vided only that the distances between the points are much greater than a certain
fixed lengthη0
The only combination ofε, εϑ andg/ϑ0 which has the dimensions of length is

L∗ =
ε(5/4)

ε
3/4
ϑ (g/ϑ0)3/2

Therefore,the length scaleL∗ characterizes the minimum length scale of inhomo-
geneities beyond which the effect of stratification is appreciable.
Only if the length scaleL∗ is much less than the external turbulence length scale
L0 the asymptotic form of the temperature structure function in a stably statified
medium is (see [Monin and Yaglom (1975)]):

Dϑϑ(r) = c(ϑ)ε
4/5
ϑ

(

g

ϑ0

−2/5
)

r2/5

If I assume that the Taylor frozen turbulence hyphotesis is valid

Dϑϑ(τ) = c(ϑ)ε
4/5
ϑ

(

g

ϑ0

−2/5
)

U 2/5τ 2/5
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Again, there is no way to makeDϑϑ dimensionless removingu, since there is only
one other length-depending parameter (i.e.g/ϑ0) in the above expression. Even
assuming that the last equation is the Lagragian form ofDϑ, as far as I know, it is
not possible to find relationships independent ofτ . Hence again, the final expression
relatingεϑ, Tϑ andσϑ will depend onτ andu.
I remark that these considerations will be valid only ifL∗ ≪ L0. Hence I need to
estimateL∗ andL which cannot be precisely defined for most real turbulent flows
sinceε and εϑ are unknown. This leads [Monin and Yaglom (1975)] to propose
a very rough estimate of the order of magnitude ofε and εϑ for turbulence in a
stratified medium

ε ≈ (∆u)3

L

εϑ ≈ ∆u
(

∆ϑ
)2

Lϑ

whereLϑ is the length over which there is an appreciable change in the mean tem-
peratureϑ(~x) and∆ϑU and∆ϑ are typical changes in the mean velocity and mean
temperature over the distancesLϑ. Typical legth scalesL andLϑ of the fieldsu(z)
andϑ(z) in the present case are of the same order of magnitude as distancez to the
wall. Therefore

L∗ ≈
(∆u)3

(

∆ϑ
)3/2

(g/ϑ0)
3/2 z1/2

Anyway for the purpose of this thesis the most important relation isεϑ ≈ ∆u(∆ϑ)
2

Lϑ
.

Hence the question is if it is possible to estimateLϑ, ∆ϑU and∆ϑ only from the
ambient temperature and wind profile which are usually available (and e.g. forthe
Buncefield case). To this purpose I are still looking for some methods in literature
to evaluateLϑ and the typical changes in the mean velocity and mean temperature
over it, just starting from temperature and wind profile and it would allow asimple
estimation ofεϑ. Through this thesis I specify the forms ofεθ similarly to [van Dop
(1992)] and [Das and Durbin (2005)] in analogy with the case of velocity, so that I
considerεθ =

2σ2
θ

CθTθ
, whereσθ = γ|θ − θa| (in which γ is a tunable parameter)Cθ is

the Obukhov-Corrsin constant andTθ is choosen to be equal toTL.
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Modelling
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Chapter 6

The effect of temperature fluctuations on the
spread of a buoyant plume.

6.1 Plume model

The equations governing the rise of a buoyant plume in a uniform crossflowU are
given by (e.g. [Briggs (1984)], [Weil (1988)], [Devenish et al. (2010b)])

d
ds

(πvb2) = E (6.1.1a)

d
ds

(πvwb2) = πb2g′ (6.1.1b)

d
ds

(πvg′b2) = −N 2πb2ρpw (6.1.1c)

wherev =
√
U 2 + w2 is the velocity along the plume axis,s is the distance along

the plume axis (centreline),E is the entrainment rate (to be defined below),w is
the vertical velocity of the plume,b is the plume radius,N is the (constant) ambient
buoyancy frequency andg′ = g(θ(z)−θa(z))/θ0 is the reduced gravity in whichθ(z)
is the potential temperature of the plume at heightz, θa(z) is the ambient potential
temperature at heightz andθ0 is a reference temperature. Equations (6.1.1a), (6.1.1b)
and (6.1.1c) respectively describe the evolution of the volume, momentum (per unit
density) and buoyancy fluxes. They are collectively known as the plume equations.

It is commonplace to assume that there are two entrainment mechanisms in a
crosswind (e.g. [Hoult et al. (1969)], [Hoult and Weil (1972)], [Webster and Thom-
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son (2002)], [Devenish et al. (2010b)]), one due to velocity differences parallel to
the plume axis and the other due to velocity differences normal to the plume axis and
that the two mechanisms are additive. [Devenish et al. (2010b)] suggested that this
additive entrainment assumption be anlm-norm:

E = 2πb

[(

α|w| |w|
v

)m

+

(

β|w|U
v

)m]1/m

. (6.1.2)

Here, I have also assumed that the difference between the horizontal component of
the plume velocity andU is small relative toU and that this is valid from the source.
Note that entrainment is proportional to the absolute velocity difference in orderto
avoid spurious detrainment after the plume reaches its maximum rise height. The
constant coefficientsα andβ are associated with the two entrainment mechanisms:
α with velocity differences parallel to the plume axis andβ with velocity differences
normal to the plume axis. Throughout this study I takeα = 0.1 and β = 0.5
which are consistent with previous studies (e.g. [Hoult and Weil (1972)], [Briggs
(1984)], [Devenish et al. (2010b)], [Devenish et al. (2010a)]). In (6.1.2) m > 1 is a
tunable parameter. The effect of a crossflow on a buoyant plume can be characterised
by the dimensionless parameterŨ = U/(F0N)1/4 whereF0 is the source buoyancy
flux. In the weak-wind limit,Ũ ≪ 1, the first term on the right-hand side of (6.1.2)
dominates. WheñU ≫ 1 the plume becomes bent-over and the second term on
the right-hand side of (6.1.2) dominates. In both asymptotic limitsE is independent
of m; the dependence onm is at its most sensitive for̃U = O(1). [Devenish et al.
(2010b)] found thatm = 3/2 gave the best agreement with LES of buoyant plumes
in a crosswind and field observations. It is this value that I use throughout this study.

6.2 A hybrid model for buoyant plume rise

In the model proposed by [Webster and Thomson (2002)], the plume equations pro-
vide the mean flow and the fluctuations are calculated using an LSM for the velocity
components that satisfies the well-mixed condition [Thomson (1987)]. [Webster and
Thomson (2002)] only considered fluctuations in the velocity and not the tempera-
ture; here I consider both fluctuations of the velocity and temperature. Note that the
effect of turbulence generated by the plume is modelled by [Webster and Thomson
(2002)] by an additional random increment to the position of a particle. Here I do
not include this extra term, instead allowing the interaction of temperatureand ve-
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locity fluctuations to generate the observed spread. [Webster and Thomson (2002)]
also use parameterisations of the ambient turbulent time-scale and dissipation rate
rather than basing them on the plume turbulence as I will do here. I use the plume
equations, (6.1.1), as a starting point re-expressing them in terms ofw, b, θ and time,
t =

∫

ds/v. Let me show how to do it. Expand left-hand sides of6.1.1:

b2
dv
ds

+ 2vb
db
ds

= E

b2w
dv
ds

+ b2v
dw
ds

+ 2vwb
db
ds

= b2g′ (6.2.1)

vb2
dg′

ds
+ g′b2

dv
ds

+ 2g′vb
db
ds

= −N 2b2w.

Now,

dv
ds

=
1

2
(U 2 + w2)−1/2 2w

dw
ds

=
w

v

dw
ds

(6.2.2)

and so6.2.2becomes

b2w

v

dw
ds

+ 2vb
db
ds

= E

b2w2

v

dw
ds

+ b2v
dw
ds

+ 2vwb
db
ds

= b2g′

vb2
dg′

ds
+
b2wg′

v

dw
ds

+ 2g′vb
db
ds

= −N 2b2w. (6.2.3)

and hence

b2w

v

dw
ds

+ 2vb
db
ds

= E (6.2.4a)
(

b2w2

v
+ b2v

)

dw
ds

+ 2vwb
db
ds

= b2g′ (6.2.4b)

vb2
dg′

ds
+
b2wg′

v

dw
ds

+ 2g′vb
db
ds

= −N 2b2w (6.2.4c)

Combine the first two equations of6.2.4: (6.2.4b) −w×(6.2.4a) gives

b2v
dw
ds

= b2g′ − Ew
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and hence
dw
ds

=
g′

v
− E

w

b2v
. (6.2.5)

The equation forb is given by

2vb
db
ds

= E − b2w

v

dw
ds

= E − b2w

v

(

g′

v
− E

w

b2v

)

= E − b2wg′

v2
+ E

w2

v2

and hence
db
ds

=
E

2bv
− bwg′

2v3
+ E

w2

2bv3
(6.2.6)

Substituting6.2.5and6.2.6in 6.2.4cgives

vb
dg′

ds
= −N 2wb− bwg′

v

dw
ds

− 2g′v
db
ds

= −N 2wb− bwg′

v

(

g′

v
− E

w

b2v

)

− 2g′v

(

E

2bv
− bwg′

2v3
+ E

w2

2bv3

)

= −N 2wb− bwg′2

v2
+ E

w2g′

bv2
− Eg′

b
+
bwg′2

v2
− E

g′w2

bv2

= −N 2wb− Eg′

b
.

Thus,
dg′

ds
= −N 2w

v
− E

g′

b2v
. (6.2.7)

Now, as

g′ =
g(θ − θa)

θ0
I can express6.2.7in terms ofθ. I get

g

θ0

d
ds

(θ − θa) = −N 2w

v
− E

g′

b2v

and hence

dθ
ds

=
dθa
ds

− θ0
g

(

N 2w

v
+ E

g′

b2v

)

=
dθa
ds

−N 2wθ0
gv

− E
(θ − θa)

b2v
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To summarise,

dw
ds

=
g(θ − θa)

vθ0
− E

w

b2v
.

db
ds

=
E

2bv
− bwg(θ − θa)

2v3θ0
+ E

w2

2bv3

dθ
ds

=
dθa
ds

−N 2wθ0
gv

− E
(θ − θa)

b2v

or in terms of time,t:

dw
dt

=
g(θ − θa)

θ0
− E

w

b2
.

db
dt

=
E

2b
− bw

2v2
g(θ − θa)

θ0
+ E

w2

2bv2

dθ
dt

=
dθa
dt

−N 2wθ0
g

− E
(θ − θa)

b2
(6.2.8)

Now,

N 2 =
g

θ0

dθa
dz

=
g

θ0w

dθa
dt
, (6.2.9)

and hence the governing equations for the flow in terms ofb, w andθ are:

dw
dt

=
g(θ − θa)

θ0
− E

w

b2
(6.2.10a)

db
dt

=
E

2b
− bw

2v2
g(θ − θa)

θ0
+ E

w2

2bv2
(6.2.10b)

dθ
dt

= −E (θ − θa)

b2
. (6.2.10c)

with dθa = θ0w
g N

2dt, ds = v dt and dz = w dt. The equations6.2.10reduce to
those of a vertically rising plume asv → w and to a bent-over plume asw → 0.
These equations are now used to calculate the mean velocity and temperature (which
will be denoted by an overbar). The fluctuating velocity and temperature are denoted
by a prime and will be calculated from stochastic differential equations. These are
constructed from analogous equations to (6.2.10a) and (6.2.10c) for respectivelyw′

andθ′ coupled with LSMs forw′ andθ′. I now show the application of a Reynolds
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decomposition to the equations forw and θ. Because6.2.10are linear inw and
θ respectively there are no second-order quantities and there is no feedback on the
mean quantities by the fluctuating quantities. Let me assume, first, thatb′ = 0 and
hence that is evaluated in terms of the mean quantities alone and, second, thatE =
E(w; v;U). Since I assume also that there are no fluctuations inθa, the Reynolds
decomposition forw is:

d
dt
(w + w′) = g

θ + θ′ − θa
θ0

− E
w + w′

b2
(6.2.11)

= g
θ − θa
θ0

+ g
θ′

θ0
− E

w

b2
− E

w′

b2

from which I get

d
dt
(w′) = g

θ − θa
θ0

− E
w

b2
(6.2.12)

and the equation forw′ analogous to (6.2.10a):

dw′

dt
=
gθ′

θ0
− E

w′

b2
(6.2.13)

where I underline thatE is assumed to be a function of the mean quantities only.
The Reynolds decomposition fortheta is:

d
dt
(θ) = −Eθ − θa

b2
− E

θ′

b2
(6.2.14)

from which I get
d
dt
(θ) = −Eθ − θa

b2
(6.2.15)

and he equation forθ′ analogous to (6.2.10c):

dθ′

dt
= −E θ

′

b2
(6.2.16)

The stochastic differential equation forw′ is now then given by

dw′ =
gθ′

θ0
dt− E

w′

b2
dt− w′

TL
dt+

1

2

(

1

w
+
w′

σ2w

)

dσ2w +
√

C0ε dW (6.2.17)

whereTL is the time scale on whichw′ changes,σ2w is the vertical-velocity variance,
ε is the mean kinetic energy dissipation rate andC0 is the constant of proportional-
ity in the second-order Lagrangian velocity structure function which typically has a
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value in the range5− 7 in homogeneous isotropic turbulence (e.g. [Yeung (2002)]);
I chooseC0 = 5. The last three terms on the right-hand side (RHS) of (6.2.17)
are those of [Thomson (1987)] LSM for inhomogeneous turbulence (as would be
the case for a Gaussian one-point velocity distribution). The stochastic differential
equation forθ′ is given by

dθ′ = −E θ
′

b2
dt− θ′

Tθ
dt− w′

w
dθ +

√

Cθεθ dWθ

whereTθ is the time scale on whichθ decorrelates,εθ is the mean scalar dissipa-
tion rate andCθ is the Obukhov-Corrsin constant which typically has a value of 1.6
( [Sreenivasan (1996)]; see also [Monin and Yaglom (1975)], p. 385 and the dis-
cussion in§23.5). The form of (6.2.18) is similar to that considered by [van Dop
(1992)]. For simplicity I assume that the turbulent temperature statistics are homo-
geneous. As a particle moves from a region of low to high potential temperature,θ′

decreases (since the total potential temperature remains constant in the absence of
any thermal diffusivity). The first term on the RHS of (6.2.17), the buoyancy term,
and the third term on the RHS of (6.2.18) together ensure thatθ is conserved follow-
ing a particle in the absence of entrainment (e.g. [Pearson et al. (1983)]). The third
term of the on the RHS of (6.2.18), i.e.−w′

w dθ arise from the termdθ
dt that implicitly

contains fluctuations of velocity. In fact I can writedθdtdt = dθdt
dzw. Now I use the

Reynolds decomposition forw and I consider the fluctating partw′. Hence I have
dθ
dtdt = dθdt

dzw
′ = dθw

′

w . In both (6.2.17) and (6.2.18) the terms involvingE and
the fluctuating quantity represent (in some way) the effect on the turbulence of the
entrainment whereas the terms likeX ′/TX represent the ‘internal’ turbulence of the
plume. The initial values ofw′ andθ′ are drawn from a joint Gaussian distribution
with zero mean and variancesσ2w andσ2θ (whose functional form will be specified
below). I do not allow for any non-zero initial covariance,σwθ, that may exist in
reality.
It remains to specify the forms ofσ2w, TL, ε, C0, εθ andTθ which are all functions of
z. I chooseσw = α|w| andTL = b/|w|. Since

TL =
2σ2w
C0ε

, (6.2.18)

it follows that

ε =
2α2w3

C0b
. (6.2.19)
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The mean scalar dissipation rate is given by

εθ =
2σ2θ
CθTθ

(6.2.20)

whereσθ = γ|θ − θa|, in which γ is a tunable constant whose value is choosen in
section6.4below, andTθ is choosen to be equal toTL. The initial values ofw, b and
g′ are also discussed in section6.4.

The model comprises (6.2.10) for w, θ andb together with (6.2.17) and (6.2.18)
for w′ and θ′ respectively. The equations are solved numerically using an Euler-
Maruyama method. In the numerical implementation of the model it is necessary to
limit σ2w, TL andσθ as follows. I set

σw = αmax(|w|, w∗) (6.2.21)

and

TL =
b

max(|w|, w∗)
(6.2.22)

wherew∗ = w(zeq) andzeq is the level of neutral buoyancy. The latter is most con-
veniently obtained from Briggs’ (1975) approximate solution of the plume equations
in a stably stratified environment in the absence of a crossflow (see also [Devenish et
al. (2010a)]). I then obtain

zeq = 23/8π−1/4

(

9α

10

)−1/2

F
1/4
0 N−3/4, (6.2.23)

and hence that

w∗ = 2−5/8π−1/4

(

6α

5

)−1(
9α

10

)1/2

F
1/4
0 N 1/4. (6.2.24)

Forσθ I set
σθ = γmax(|θ − θa|, θ

∗
) (6.2.25)

whereθ
∗
= (θ0/g)|Fmax|/Vmax and the subscriptmax indicates that the quantities

are evaluated at the maximum rise height. Following [Briggs (1975)], the maximum
rise height is given by

zmax = 23/4π−1/4

(

9α

10

)−1/2

F
1/4
0 N−3/4. (6.2.26)
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and so I get

Vmax = 25/4π1/4
(

6α

5

)(

9α

10

)−1/2

F
3/4
0 N−5/4. (6.2.27)

Noting thatFmax = −F0 (which follows from Briggs’ approximate analytical solu-
tion) I then get

θ
∗
=

(

θ0
g

)

π−1/42−5/4

(

5

8α

)1/2

F
1/4
0 N 5/4. (6.2.28)

The model is now applied in a homogeneous stably stratified atmosphere (i.e.
constantdθadt > 0) in which the mean wind profileU(z) is also constant. This is
done for a first assessment of the qualitative behaviour of the model. I show some
plume features in figures6.1, 6.2, 6.3 6.4evaluated including (black solid line) and
not including (red dashed line) the temperature fluctuations in order to investigate
their effect on the model. I consider a weak-wind limitŨ = 0.1, a bent-over plume
Ũ = 10 and an intermediate casẽU = 1 so as to examine if the importance ofθ′

depends on the intensity of the crossflow. In figure6.5 I show the time evolution of
mean square temperature fluctuations. There is no much difference among the three
cases that I considered (Ũ = 0.1, Ũ = 10, Ũ = 1) i.e. θ′ depends weakly on the
intensity of the crossflow. In fact,ϑ′ doesn’t depend onw or U , only on meanw,
hence I expectedϑ′ to have the same order of magnitude for all three cases at the
same height. The fluctuationsθ′ would make a greater (relative) contribution to the
SDE forw through thew − ϑ coupling termgθ′

θ0
than to the SDE forϑ.

In figure6.3I plot the evolution of the standard deviation of the particles distibution
around the mean height normalised with the wavelength of the plume’s oscillations
λ = 2πU/N along the downwind directionx scaled byLB, whereLB = F0/U

3 is
a typical length scale. [Fig.6.1] shows the plume rise heightz against the downwind
distancex normalised respectively as z

LBŨ8/3
and x

LB
. The plume evaluted with the

presented model seems to be slighlty higher than the version in which I don’t ac-
count forθ′. Figure6.2 shows the vertical velocity divided by its initial valuesw0

against the height of the centre of mass adimensionalised with initial plume radiusb0.
According to [Fig.6.1], w/w0 calculated from the model is greater than the version
without temperature fluctations near the ground and smaller as the height increases.
In figure 6.4 I show the vertical profile of the scalar concentration as a function of
the dimensionless heightz/b0. Both the figures6.3 and6.4 suggest that the spread
of the plume is much larger including temperature fluctuations. Furthermore all of
the figures show that the role of the temperature fluctuation become more import as
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the intensity of the crossflow increases.
In the previous figures6.1, 6.2, 6.3 6.4, the tunable parameterγ is choosen to be
0.5. The figures6.6 and6.7 provide further information by showing the behaviour
of plume height and scalar concentration by varying the value ofγ. I chooseγ = 0
(that can be equivalent to the case without temperature fluctuations),γ = 0.1 and
γ = 0.5. The more evident fact is that there is little difference in the plume height
between those simulations with temperature fluctuations and those without. There
is more of a difference in the plots of the scalar concentration: they clearly depend
on the value ofγ stonger that plume height. If I compare the results withγ = 0.1
and the model withγ = 0 then the differences are small, perhaps largest for the case
whenŨ = 1.
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Figure 6.1: The height of the plume centre of mass of the plumeagainst downwind distance.
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Figure 6.2: The vertical velocity of the plume calculated along the centre of mass.
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Figure 6.3: Standard deviation of particles position adimensionalised with the wavelength along with
the non-dimensional distance from the source.
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Figure 6.4: The scalar concentration for the plume calculated from the proposed hybrid model (solid
line). The behaviour not including temperature fluctuations is also shown (dashed line).
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Figure 6.5: The time evolution of mean square temperature fluctuation for three different cases of
mean wind: a weak-wind limit̃U = 0.1 (green dotted line), a bent-over plumẽU = 10 (blue dash-dot
line) and an intermediate casẽU = 1 (red dashed line).
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Figure 6.6: Behaviour of the height of the plume centre of massat the valuesγ = 0, γ = 0.1 and
γ = 0.5 for the three different cases of mean wind: a weak-wind limitŨ = 0.1, a bent-over plume
Ũ = 10, and an intermediate casẽU = 1
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Figure 6.7: Behaviour of the scalar concentration for the plume calculated from the proposed hybrid
at the valuesγ = 0, γ = 0.1 andγ = 0.5 for the three different cases of mean wind: a weak-wind
limit Ũ = 0.1, a bent-over plumẽU = 10, and an intermediate casẽU = 1
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6.3 Comparison with the model of Das and Durbin (2005)

[Das and Durbin (2005),Das and Durbin (2007)] proposed an LSM for temperature
fluctuations that is constructed to agree with a known second-order closure. They
were interested in dispersion in a stably stratified turbulent flow with a non-buoyant
source. When adapted for buoyant plume rise in the same manner as I have done,
their model is very similar to the one given above. As a result of consistencyof
their model with the second-order closure they find thatTθ = 9TL/16. However, in
homogeneous isotropic turbulence, the coefficientC0 in their model has a value of
8/15 which is significantly smaller than the value used here and commonly found
experimentally and from direct numerical simulations of homogeneous isotropic tur-
bulence. [Pope (2000)] suggested this difference in the value ofC0 may be due to
the relatively low-Reynolds-number flows typically used to tune second-order clo-
sures. I note in passing that the value ofCθ used by [Das and Durbin (2005),Das and
Durbin (2007)] is closer to the value used here.
Let me introduce the simplified form of the model proposed by [Das and Durbin
(2005)] whose second-order moments agree with the isotropization of production
(IP) model (see e.g. [Pope (2000)], p. 423). This is the same model as was applied
to a realistic case with a non-buoyant source by [Das and Durbin (2007)]. In the
context of buoyant plume rise, the stochastic differential equation for the vertical
velocity takes the form

dw =

(

g(θ − θa)

θ0
− E

w

b2

)

dt− 9

10

ε

k
w′dt−2

5
w′dw

dz
dt−2

3

gθ′

θ0
dt+

dσ2w
dz

dt+(c0ε)
1/2dW

(6.3.1)
and that for the temperature is given by

dθ =

(

1− w

w

)

dθa − E
(θ − θa)

b2
dt− 8

5

ε

k
θ′dt+ c

1/2
θ dWθ (6.3.2)

wherek is turbulent kinetic energy. Here I have used the same values of the constant
coefficients that were used by [Das and Durbin (2007)]. Note thatc0 is not the same
asC0 above but takes the form

c0 =
6

5
− 2

5

σ2w
ε

dw
dz

− 2

9

g

ε

w′θ′

θ0
− 2

3
.
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The conservation of scalar in stationary turbulence impiles thatw′θ′ = 0. The coef-
ficient cθ is given by

cθ =
17

10

ε

k
θ′2.

It is clear by comparing6.3.1with 6.2.17thatTL = (10/9)k/ε and, by comparing
6.3.2with 6.2.18, thatTθ = 5k/(8ε). Hence, it follows thatTθ = 9TL/16 and

cθ =
17

16

θ′2

Tθ
.

In both the models the term−w′

TL
dt is considered, see6.3.1and6.2.17. In [Das

and Durbin (2005)] this is written as−c1
2
ε
kw

′dt andTL = 2k
c1ε = 10

9
k
ε . In my model

TL = 2σ2
w

C0ε
and by assumingσ2w = 2

3k I haveTL = 4
3C0

k
ε , see [Pope (2000), p 486].

Hence I can obtainC0 = 6/5 by comparison with [Das and Durbin (2005)]. I choose
C0 = 5 and hence the two time scales are slightly differentTL = 10

9
k
ε andTL = 4

15
k
ε ,

so thatTL in [Das and Durbin (2005)] is 25
6 timesTL of the model proposed here.

Anyway this difference is not necessarily wrong, because the two models differin
the stochastic terms,c0ε1/2dW andC0ε

1/2dW , with c0 6= C0.
In both the models the term− θ′

Tθ
dt is considered, see6.3.2and6.2.18In [Das and

Durbin (2005)] this is written as−
(

c1θ − c1
2

)

ε
kθ

′dt andTθ = 1
c1θ− c1

2

k
ε = 5

8
k
ε . In

my model I considerTθ =
2σ2

θ

Cθεθ
with Cθ = 1.6 andTθ = TL = 4

15
k
ε , obtaining by

comparison withTθ = 5
8
k
ε thatTθ in [Das and Durbin (2005)] is 75

32 times ofTθ in the
model proposed here. ChoosingTθ = 9

16TL = 3
20ε, TL in [Das and Durbin (2005)] is

again25
6 timesTL of the model proposed here. Again this difference is not necessarily

wrong, because the two models differ in the stochastic terms of temperature aswell,
c
1/2
θ dWθ andC0ε

1/2dW and
√
Cθεθ dWθ, with cθ 6= Cθ.

6.4 Comparison with LES

Here I compare the model with the LES results of [Devenish et al. (2010b)] which
were computed using a uniform ambient crosswind and a constant buoyancy fre-
quency. The initialisation ofw, b andg′ for a pure plume whose initial buoyancy
flux is known is not straightforward. For a pure plume rising from a point source
w → ∞, g′ → ∞ andb → 0 asz → 0 in such a way thatF0 is finite and non-zero
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while the initial momentum and volume fluxes are zero. Even the numerical solution
of (6.1.1) for a pure plume requires perturbation of the initial volume and momentum
fluxes in order to achieve a non-trivial solution ( [Morton et al. (1956)]).

[McCaffrey (1979)] argued that in the lowest region of a fire plume the velocity
is independent of the heat release rate and grows likez1/2, that is, its behaviour is
analogous to a body in free fall. It then follows that in this regionw =

√
2g′z.

While the physics of this region is not represented in the model presented here, it
nevertheless provides a physically based approach of calculating the initialvalues of
w andg′, respectivelyw0 andg′0. I estimatew0 by equating the initial radiusb0 = 2z
so thatw0 =

√

b0g′0. Since the initial buoyancy fluxF0 = πb20g
′
0v0 I obtain a cubic

polynomial for eitherw0 or g′0 for givenb0:

b0g′
3
0 + U 2g′

2
0 −

F 2
0

π2b40
= 0. (6.4.1)

The nature of the roots of this equation can be inferred by analysing the discriminant
of (6.4.1):

∆ =
F 2
0

π2b40

(

4U 6 − 27F 2
0

π2b20

)

. (6.4.2)

Any of the three cases (∆ > 0, ∆ = 0, ∆ < 0) will produce a physical solution. In
the case that there are three real roots (∆ > 0), (6.4.1) shows that two of these roots
will be negative (and can thus be discarded). In the problem, the values ofF0 andb0
are such that∆ is always negative and so the roots consist of one real root and two
complex roots.

The focus in this section is on the LES plumes in group A of Table 1 of [Devenish
et al. (2010b)]; the same values ofF0,N andU are used in the model. The value ofγ

is estimated by comparing the LES profiles ofσθ with |θ−θa| along the centreline of
the plume. Figure6.8shows these quantities for a representative sample ofŨ -values.
I find that the best fit is given withγ in the range0.1 . γ . 0.5 and that there is
little systematic variation with̃U . I present results withγ = 0.25, the average value
overŨ , andγ = 0.1 andγ = 0.5.

In the calculation of the LES results, the plume was allowed to reach a steady state
and then sampled over a sufficiently long time period that fluctuations in the plume
statistics were small. The LES domain typically allowed for the plume to oscillate
for 1–2 wavelengths after the plume reached its maximum rise height (see [Devenish
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et al. (2010b),Devenish et al. (2010a)] for more details). The calculation of the LSM
results was performed similarly.

Figure6.9shows the scalar concentration,χ, beyond the first turning point of the
plume computed from the model trajectories and the LES for0.34 6 Ũ 6 2.73 (the
case withŨ = 5.47 shows very similar behaviour to that of̃U = 2.73 but is not
shown for reasons of space). It can be seen that, with the exception of the casewith
Ũ = 0.34, the rise height of the model plume agrees very well with the LES plume.
This is true for the model plumes with and without temperature fluctuations. In most
cases the spread of the model plume is close to that of the LES with the results for
γ = 0.1 (not shown) closest to the model plume withθ′ = 0 and the spread of the
model plume (withθ′ 6= 0) increasing with increasingγ (as expected).

Figure6.10 shows the plume width (defined to be the standard deviation of the
scalar concentration),σẑ whereẑ = z/F

1/4
0 N−3/4, the skewness,Sẑ and the kur-

tosis,Kẑ for both the model and LES plumes. In order to mitigate the effect of
statistical noise in the LES data, three samples of the simulation data are used to
calculate mean values and associated error bars (which are taken to bethe standard
deviation) ofσẑ (and the higher order moments to be shown below). As expected,
σẑ for the model plume withθ′ 6= 0 (for all values ofγ) is larger than that of the
model plume withθ′ = 0 for all values ofŨ . It can also be seen thatσẑ decreases
monotonically withŨ . As the wind speed increases, the plume is more constrained
and spreads less in the vertical direction (over a given horizontal distance or travel
time). While the LES values do not exhibit the same systematic variation withŨ ,
the overall trend is also decreasing with increasingŨ . In general, the LES values
tend to be higher than the model values. It is possible that lack of resolution in the
LES, which may increase the amount of numerical diffusion, coupled with inade-
quate sampling leads to a greater spread compared with the model plumes. Higher
order moments of the scalar concentration show less systematic variation with Ũ due
to statistical noise. The skewness,Sẑ, tends towards zero as̃U increases as can be
seen in Figure6.10for both models withθ′ 6= 0 andθ′ = 0. The model withθ′ = 0
has positive skewness and decreases monotonically with increasingŨ whereas the
model withθ′ 6= 0 (for all values ofγ), while also generally tending towards zero
as Ũ increases, may become negative. The LES values of the skewness are nega-
tive and larger in magnitude than the model values; while the results are verynoisy,
the trend is arguably increasing (towards zero) with increasingŨ . It is possible that
greater detrainment in the lower part of the LES plume compared with the model
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plume leads to a larger negative skewness in the LES results. Another possibility is
that the LES plume tends to meander somewhat and that this is more pronounced in
the lower part of the plume; this effect is mitigated (particularly for larger values of
Ũ ) by choosing to calculate the scalar concentration beyond the first turning point.
The kurtosis,Kẑ, shown in Figure6.10, increases monotonically for the model with
θ′ = 0 whereas the model withθ′ 6= 0 (for all values ofγ) shows an initial increase
asŨ increases, reaching a maximum atŨ ≈ 1 and steadily decreasing thereafter. As
with the skewness, LES values of the kurtosis suffer from statistical noise but again
it is arguable that the overall trend is in keeping with the model that hasθ′ 6= 0; the
values are closer in magnitude to the model values than is the case for the skewness.
Both the skewness and the kurtosis show the model tending towards Gaussian val-
ues asŨ increases but it is not clear what the physical reasons are for the departure
from Gaussianity as̃U decreases. However, symmetry considerations suggest that
Gaussianity should be recovered asŨ tends to zero for the model if not for the LES.
The values ofσẑ, Sẑ andKẑ averaged over̃U are shown in Table6.1. It can be seen
that the model withθ′ 6= 0 andγ = 0.5 is closest to the LES values for all three
quantities.

As may be expected, varyingγ in the range 0.1–0.5 produces a greater spread
asγ increases. Figure6.10 shows that this is indeed the case forσẑ. Figure6.10
also shows that the variation ofSẑ with γ is not large but thatSẑ is more likely
to become negative asγ increases. The variation ofKẑ with γ is shown in Figure
6.10 with Kẑ decreasing asγ increases. Asγ increases, there is possibly a wider
variation in the level of neutral buoyancy experienced by each particle and so the
scalar distribution becomes less peaked (i.e. the kurtosis decreases).If this is not
too large then the greater variation inθ′ that occurs close to the ground, and also
asγ increases, may explain why there is a tendency forSẑ to become negative with
increasingγ. However, the complexity of the model means that the dependency ofSẑ

andKẑ onγ andŨ is not straightforward and these explanations should be regarded
as speculative.

I also conducted another series of simulations using the relationship betweenTθ
andTL derived by [Das and Durbin (2005)] i.e. Tθ = 9TL/16 (assuming that this
may hold more generally than in the context of the second-order closure used by [Das
and Durbin (2005)] to derive this result). Figure6.10shows that a shorter decorrela-
tion time scale forθ generally reduces the effect of the temperature fluctuations (as
expected).
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For values ofŨ smaller than those presented here, I found that the disagreement
between the model and LES plumes got worse particularly for the rise heights. This
may point to deficiencies in the modelling of buoyant plumes in a weak wind though
it should also be noted that LES of buoyant plumes with smallŨ were more sensitive
to resolution than largẽU (see the discussion in [Devenish et al. (2010b)]).
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σẑ Sẑ Kẑ

LES plume 0.448 -0.640 4.817
Model plumeθ′ = 0 0.192 0.106 2.578
Model plumeθ′ 6= 0: γ = 0.25 0.271 0.029 5.908
Model plumeθ′ 6= 0: γ = 0.1 0.216 0.079 6.164
Model plumeθ′ 6= 0: γ = 0.5 0.321 -0.013 4.578

Table 6.1: The standard deviation, skewness and kurtosis ofthe scalar concentration averaged over
all Ũ -values for the model plumes (bothθ′ 6= 0 andθ′ = 0) and the LES plume. The LES values are
averages over three samples of the simulation data.
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6.5 Real case

The explosion and fire at the Buncefield oil depot in December 2005 produced the
largest plume of black carbon in Europe since the end of the second world war.
A major explosion at the Buncefield oil depot in Hemel Hempstead, Hertfordshire,
UK just after 0600 UTC on Sunday, 11th December 2005 resulted in the largest
peacetime fire in Europe to date (figure6.11from the website
http://www.metoffice.gov.uk/).
The blast was heard as far away as the Netherlands, a distance of some 200 miles.
The Buncefield Major Investigation Board reported that the main explosion was
caused by the ignition of a flammable vapour cloud resulting from an overfilled petrol
storage tank (Buncefield Major Investigation Board, 2006). Forty-three people were
injured in the incident, but fortunately there were no fatalities. Significant damage
was caused to local homes and offices and around 2000 people were evacuated. At
the height of the blaze, 20 large fuel storage tanks were alight. Each tank was re-
ported to hold up to 3 million gallons of fuel (unleaded petrol, super-unleaded petrol,
motor spirit, gas oil, ultra-low sulphur diesel, and jet fuel). No efforts were made to
bring the main fire under control during Sunday, as fire crews assessed the situation,
determined the best strategy to tackle the blaze and assembled fire-fightingequip-
ment. On Monday, serious efforts to cool and then extinguish the fire with foam and
water were undertaken by the fire brigade. The main fire was systematically extin-
guished during Tuesday and Wednesday.
Comparisons of LES of this plume with observations showed that the LES plume
captured many aspects of the observed plume, in particular, the rise height andthe
detrainment of the plume in different directions at different heights [Devenish and
Edwards (2009)]. Comparison of the LES plume with an LSM of the form proposed
by [Webster and Thomson (2002)], i.e. with no temperature fluctuations, showed
that the LES results had a greater vertical spread than the LSM results (seeFig. 18
of [Devenish et al. (2010b)]). This observation has, in part, motivated the present
study. In this section, I return to the original problem and apply the model introduced
in section6.2to the Buncefield plume.
The nearest hourly meteorological observations from the UK surface synoptic net-
work are from Heathrow and Northolt. In addition, high temporal resolution sur-
face observations from the Met Offices Meteorological Research Unit (MRU) at
Cardington are available as 30, 10 and 1 minute mean values. Throughout the in-
cident, routine upper air radiosonde profiles were available twice daily from ascents
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at Herstmonceux and Nottingham at 0000 UTC and 1200 UTC. The same wind and
temperature profiles as used by [Devenish and Edwards (2009)] or [Devenish et al.
(2010b)] are used here (see figure6.12 and6.13). In this section, the assumption
of constant buoyancy frequency and uniform crosswind used in sections6.2and6.4
are relaxed to allow for realistic profiles of temperature and ambient wind. In ad-
dition, the model presented in section6.2 is extended to include two equations for
the horizontal momentum flux, one for each horizontal component of the ambient
wind (e.g. [Weil (1988)]). The equation for each horizontal component of the mean
velocity of the plume,ui, then takes the form

dui
dt

= −E(ui − Ui)

b2
(6.5.1)

whereUi is theith horizontal component of the ambient wind andi ranges over the
zonal and meridional components of the wind. Fluctuations in both of these compo-
nents are not treated here.
Let me show how to obtain the term6.5.1. I consider the ambient wind~U =
(u1A, u2A) of [Fig.6.12] and I introduce the components of the plume velocityu1 and
u2 (the zonal and meridional components respectively). I remark that I do not con-
sider any fluctuations inu1 andu2 so thatu1 = u1 andu2 = u2, v =

√

u21 + u22 + w2

and of the plume positionx andy so thats =
√

x2 + y2 + z2 , the plume equations
6.1.1become:

d
ds

(vb2) = E

d
ds

(vwb2) = b2g′

d
ds

(

vb2(u1 − u1A)
)

= −vb2du1A
ds

d
ds

(

vb2(u2 − u2A)
)

= −vb2du2A
ds

d
ds

(vwb2) = b2g′

d
ds

(vg′b2) = −N 2b2w

(6.5.2)
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Once again, a set of SDEs can be deduced from equation6.5.2. Expand left-hand
sides:

b2
dv
ds

+ 2vb
db
ds

= E

b2w
dv
ds

+ b2v
dw
ds

+ 2vwb
db
ds

= b2g′

b2(u1 − u1A)
dv
ds

+ 2v(u1 − u1A)b
db
ds

+ b2v
du1
ds

− vb2
du1A
ds

= −vb2du1A
ds

b2(u2 − u2A)
dv
ds

+ 2v(u2 − u2A)b
db
ds

+ b2v
du2
ds

− vb2
du2A
ds

= −vb2du2A
ds

vb2
dg′

ds
+ g′b2

dv
ds

+ 2g′vb
db
ds

= −N 2b2w.

(6.5.3)

Now,

dv
ds

=
1

2
(u21 + u22 + w2)−1/2

(

2w
dw
ds

+ 2u1
du1
ds

+ 2u2
du2
ds

)

=
1

v

(

w
dw
ds

+ u2
du1
ds

+ u2
du2
ds

)

(6.5.4)

and so (6.5.3) becomes

b2w

v

dw
ds

+ 2
u1b

2

v

du1
ds

+ 2
u2b

2

v

du2
ds

+ 2vb
db
ds

= E

(6.5.5a)

b2w2

v

dw
ds

+ 2
u1b

2w

v

du1
ds

+ 2
u2b

2w

v

du2
ds

+ b2v
dw
ds

+ 2vwb
db
ds

= b2g′

(6.5.5b)

b2w(u1 − u1A)

v

dw
ds

+
b2u(u1 − u1A)

v

du1
ds

+
b2u2(u1 − u1A)

v

du2
ds

+ 2v(u1 − u1A)b
db
ds

+ vb2
du1
ds

= 0

(6.5.5c)

b2w(u2 − u2A)

v

dw
ds

+
b2u(u2 − u2A)

v

du1
ds

+
b2u2(u2 − u2A)

v

du2
ds

+ 2v(u2 − u2A)b
db
ds

+ vb2
du2
ds

= 0

(6.5.5d)

vb2
dg′

ds
+

b2wg′

v

dw
ds

+
b2u1g

′

v

du1
ds

++
b2u2g

′

v

du2
ds

+ 2g′vb
db
ds

= −N2b2w

(6.5.5e)

Combine the first two equations of (6.5.5): (6.5.5b) −w×(6.5.5a)

b2v
dw
ds

= b2g′ − Ew

and hence
dw
ds

=
g′

v
− E

w

b2v
. (6.5.6)
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Combine the first and the third equation of (6.5.5): (6.5.5c) −(u1 − u1A)×(6.5.5a):

b2v
du1
ds

= −E(u1 − u1A)

and hence
du1
ds

= E
−E(u1 − u1A)

b2v
. (6.5.7)

Combine the first and the fourth equation of (6.5.5): (6.5.5d) −(u2−u2A)×(6.5.5a):

b2v
du2
ds

= −E(u2 − u2A)

and hence
du2
ds

= E
−E(u2 − u2A)

b2v
. (6.5.8)

Consider the equation (6.5.5a) for b and substitute (6.5.6), (6.5.7) and (6.5.8):

2vb
db
ds

= E − b2w

v

dw
ds

− b2u1
v

du1
ds

− b2u2
v

du2
ds

= E − b2w

v

(

g′

v
− E

w

b2v

)

+
b2u1E(u1 − u1A)

v2b2
+
b2u2E(u2 − u2A)

v2b2

= E − b2wg′

v2
+ E

w2

v2
+
u1E(u1 − u1A)

v2
+
u2E(u2 − u2a)

v2

and hence

db
ds

=
E

2bv
− bwg′

2v3
+ E

w2

2bv3
+
Eu1(u1 − u1A)

2bv3
+
Eu2(u2 − u2a)

2bv3

Substituting (6.5.6), (6.5.7), (6.5.8) and (6.5.9) in (6.5.5e)

vb
dg′

ds
= −N2wb− bwg′

v

dw
ds

+
bu1g

′

v

du1
ds

+
bu2g

′

v

du2
ds

− 2g′v
db
ds

vb
dg′

ds
= −N2wb− bwg′

v

(

g′

v
− E

w

b2v

)

− bu1g
′

v

(

−E
u1 − u1A

b2v

)

− bu2g
′

v

(

−E
u2 − u2A

b2v

)

−2 g′v

(

E

2bv
− bwg′

2v3
+ E

w2

2bv3

)

vb
dg′

ds
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′
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.
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Thus,
dg′

ds
= −N 2w

v
− E

g′

b2v
Now, as

g′ =
g(θ − θa)

θ0
I can express (6.5.9) in terms ofθ. I get

g

θ0

d
ds

(θ − θa) = −N 2w

v
− E

g′

b2v

and hence

dθ
ds

=
dθa
ds

− θ0
g

(

N 2w

v
+ E

g′

b2v

)

=
dθa
ds

−N 2wθ0
gv

− E
(θ − θa)

b2v
(6.5.9)

To summarise:

dw
ds

=
g(θ − θa)

vθ0
− E

w

b2v
.

du1
ds

= E
−(u1 − u1A)

b2v
du2
ds

= E
−(u2 − u2A)

b2v
db
ds

=
E

2bv
− bwg(θ − θa)

2v3θ0
+ E

w2

2bv3

dθ
ds

=
dθa
ds

−N 2wθ0
gv

− E
(θ − θa)

b2v

or in terms of timet, adding the equations for the ambient temperature and velocity
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profiles:

dw
dt

=
g(θ − θa)

θ0
− E

w

b2
.

dθ
dt

=
dθa
dt

−N 2wθ0
g

− E
(θ − θa)

b2

db
dt

=
E

2b
− bw

2v2
g(θ − θa)

θ0
+ E

w2

2bv2

du1
dt

= E
−(u1 − u1A)

b2

du2
dt

= E
−(u2 − u2A)

b2

du1A
dt

= w
du1A
dz

du2A
dt

= w
du2A
dz

dθa
dt

= w
dθa
dz

(6.5.10)

whereN 2 = g
θ0

dθa
dz = g

θ0w
dθa
dt .

By comparing the two equations6.5.10and6.2.9the equation6.5.1is proved. Note
thatN (and hence dθa ) is not constant. The expression forE is the same used in the
previous cases, justifiable statement assuming that the difference betweenambient
and plume velocities is small relative to the ambient one.
Figures6.14and6.15show respectively the plume height the standard deviation of
the particles distibution around the plume height as function of the downwind direc-
tionX =

√

x2 + y2 on the plane(x, y). In [Fig.6.14] I plot as well some trajectories
of the fictitious particles released from the source for the LSM. Comparing output
from the Met Offices atmospheric dispersion model, NAME, with satellite imagery
suggested that the plume was reaching a height of about 3000 m. This estimation
was supported by a report from a commercial airline pilot. This was supported by
a call received from Southampton Air Traffic Control shortly after 10am witha re-
port from a commercial airline which indicated that the smoke plume was rising to
a height of 9000 ft (2743 m) within the Atmosphere. A high pressure system dom-
inated the weather over the south of the UK during Sunday 11th December 2005.
A stable Atmosphere existed, which suppressed vertical mixing.A shallow strongly
stable layer with temperature increasing with height (a temperature inversion) ex-
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isted at the ground up to a height of about 100 m. Above this layer up to a height of
about 400 m above ground, the Atmosphere was approximately neutral in stability.
Above this neutral layer the Atmosphere was stable throughout with a strongly sta-
ble layer up to about 1200 m. Above, a shallow neutral layer existed at the ground
(100 m in depth). The Atmosphere was stable above and was strongly stable up to
height of about 1900 m with a number of small temperature inversions. Furthermore
the plume was detected at a height of approximately 2000 m above Bournemouth by
the Metoffice FAAM (Facility for Airborne Atmospheric Measurements) aircraft on
Monday 12th December and was reported to be roughly 11 miles wide with a max-
imum height of 5000 ft (1524 m) on Tuesday 13th December. [Fig.6.14] shows that
the particles of proposed LSM reach a maximum height just lower than 3000 m and
the main plume height (i.e the equilibrium height for the plume) is included between
1500 m and 2000 m. This is roughly in line with observations from satellite imagery
and the FAAM aircraft especially considering the range of the standard deviation of
particles positions around the mean height (see [Fig.6.15]).
Figure6.16shows the scalar concentration computed from the LSM with and with-
out temperature fluctuations. Results are presented withγ = 0.25 andγ = 0.5. The
initial buoyancy flux was comparable with that estimated from the explosion atthe
oil depot and used in the original LES study [Devenish and Edwards (2009)]. The
LES results are also shown in the same figure. In contrast with the previous section
(see Fig.6.9), the scalar concentration shown in Fig.6.16 includes the rising part
of the plume as that was how the LES results were calculated. It can be seen that
while the model plumes do not rise quite as high as the LES plume, there is a small
increase in height as the value ofγ increases. Similarly, and not unexpectedly, the
spread of the model plumes increases with increasingγ. The values ofσẑ for all four
cases are: 396 m (LES); 324 m (model plume withθ′ 6= 0 andγ = 0.5); 272 m
(model plume withθ′ 6= 0 andγ = 0.25); 258 m (model plume withθ′ = 0).
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Figure 6.11: The blaze at the Buncefield oil depot.
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Figure 6.12: The ambient initial wind profile at time of Buncefield explosion.
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Figure 6.13: The ambient initial potential temperature profile at time of Buncefield explosion.
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Figure 6.15: Standard deviation of the particles distibution around the mean height as function of the
downwind directionX =

√

(x2 + y2) on the plane(x, y)
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Figure 6.16: The scalar concentration normalised by its maximum value for the Buncefield case
described in the text: the black circles are the LES results;the model plumes withθ′ 6= 0 are shown
by the red and cyan lines forγ = 0.5 andγ = 0.25 respectively; the blue line is the model plume with
θ′ = 0.
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Chapter 7

Analytical offline approach for concentration
fluctuations and higher order concentration
moments.

7.1 Model formulation.

In a fixed reference frame with respect to the source location, the momentsof con-
centration of a passive tracer emitted from a continuous source are defined as:

cn(x, y, z) =

∫ ∞

0

cnpc(c; x, y, z)dc (7.1.1)

wherec is the instantaneous concentration,pc(c; x, y, z) is the concentration PDF in
the fixed system,x is the downwind distance,y the crosswind direction andz is the
vertical coordinate. In the FPM approach, the ensemble dispersion of a plume is
viewed as the sum of a number of instantaneous plumes. The motion of the centroid
of each instantaneous plume is considered in a fixed coordinate system relativeto
the source, whereas the concentration distribution within the instantaneous plumeis
calculated relatively to the plume centroid. Following [Gifford (1959)], I assume the
contributions due to meandering and to relative diffusion are statistically indepen-
dent; the concentration PDF can be written as:

pc(c; x, y, z) =

∫ ∞

0

∫ ∞

−∞
pcr(c; x, y, z, ym, zm)pm(x, ym, zm)dymdzm (7.1.2)

wherepm(x, ym, zm) is the PDF of centroid position,pcr(c; x, y, z, ym, zm) is the rel-
ative concentration PDF in a reference frame relative to(ym, zm). Further I assume
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that the plume meander in the crosswind direction is independent from the one in the
vertical direction; the turbulence field is stationary and horizontally homogeneous;
the wind shear can be neglected. Moreover I use of Taylor frozen turbulence hypoth-
esis, i.e.x = Ut, , whereU = u is the mean wind andt is the plume travel time.
Substituting equation7.1.2in equation7.1.1I have:

cn(x, y, z) =

∫ ∞

0

∫ ∞

−∞

[
∫ ∞

0

cnpcr(c; x, y, z, ym, zm)dc

]

pm(x, ym, zm)dymdzm

(7.1.3)
and using the definition of nth-order relative concentration momentscnr (x, y, z):

cnr (x, y, z, ym, zm) =

∫ ∞

0

cnpcr(c; x, y, z, ym, zm)dc (7.1.4)

it is possible to obtain:

cn(x, y, z) =

∫ ∞

0

∫ ∞

−∞
cnr (x, y, z, ym, zm)pm(x, ym, zm)dymdzm (7.1.5)

Equation7.1.5summarizes the idea of the FPMs stating that the concentration field
can be evaluated through two different contributions: the meandering of the plume
centroidpm(x, ym, zm) that has to be simulated, and the relative concentration statis-
tics cnr (x, y, z, ym, zm) that has to be parameterized.

7.2 Relative concentration moments parameterization.

Following [Yee and Wilson (2000)] and [Luhar et al. (2000)], pcr can be represented
by the gamma distribution:

pcr(c; x, z, zm) =
λλ

crΓ(λ)

(

c

cr

)λ−1

exp

(

−λc
cr

)

(7.2.1)

whereλ = 1/i2cr and icr = σcr(x,y,z)
cr(x,y,z)

is the relative concentration fluctuation in-
tensity,Γ(λ) is the gamma function, andcr is the mean concentration relative to
the instantaneous plume centroid. Substituting7.2.1 in the term within the square
brackets of equation7.1.3, it is possible to show the following property ofpcr :

cnr =

∫

∞

0

cnpcr(c;x, y, z, ym, zm)dc =

∫

∞

0

cn
λλ

crΓ(λ)

(

c

cr

)λ−1

exp

(

−λc

cr

)

dc =
1

λn

Γ(n+ λ)

Γ(λ)
cr

n

(7.2.2)
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Hence thenth-order moment of relative concentration is proportional to the the first
moment of relative concentration raised to thenth power. Using this statement in
7.1.5I have:

cn(x, y, z) =
1

λn
Γ(n+ λ)

Γ(λ)

∫ ∞

0

∫ ∞

−∞
cr

n(x, y, z, ym, zm)pm(x, ym, zm)dymdzm

(7.2.3)
Using the independence assumption between vertical and lateral diffusion, it is pos-
sible to factorize both the meander PDF and the relative mean concentration,and
hence the absolute concentration, as:

pm(x, ym, zm) = pym(x, ym)pzm(x, zm) (7.2.4)

cr(x, y, z, ym, zm) = czr(x, z, zm)pyr(x, y, ym) =
Q

U
pzr(x, z, zm)pyr(x, y, ym)

(7.2.5)
WhereQ is the emission rate and the termQU give to pdf the dimension of a concen-
tration. Introducing this factorization in7.2.3I have:

cn(x, y, z) =
1

λn

Γ(n+ λ)

Γ(λ)

Q

U

∫

∞

0

(
∫

∞

−∞

pym(x, ym)pyr(x, y, ym)dym

)

pzm(x, zm)pzr(x, z, zm)dzm

(7.2.6)

Since I have supposed the total crosswind expansion to be a Gaussian without
boundary, the contribution to concentration moments from the lateral meander can
be carried out analytically as in [Luhar et al. (2000)] to yield:

cn(x, y, z) =
1

λn
Γ(n+ λ)

Γ(λ)

Q

U

σyr
(√

2πσyr
√

nσ2ym + σ2yr

)nexp






− ny2

2
√

nσ2ym + σ2yr







∫ H

0

pzm(x, zm)pzr(x, z, zm)dzm (7.2.7)

whereH is the vertical domain size,σyr andσym are respectively the relative and
barycentre standard deviation for they direction. The expression used forσyr is
(see [Franzese (2003)]):

σ2yr =
gyǫ(t+ ts)

3

[

1 +
(

gyǫt2

2σ2
vTLv

)
2
3

]
3
2

(7.2.8)
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wheregy is the one dimensional Richardson constant,ǫ is the dissipation rate of tur-
bulent kinetic energy,TLv is the transverse Lagrangian time scale,σ2v the turbulence
transverse velocity variance andts = (σ20/(gyǫ))

1
3 accounts for a finite initial source

size . Equation7.2.8corresponds to the inertial range relative dispersion formulation
at small time, and tends to [Taylor (1921)]s limit at large time. The independence
between meander and relative contribution allows to writeσ2y = σ2ym + σ2yr and ob-
tainσ2ym from this equation, with the crosswind spreadσ2y given by [Taylor (1921)]s
formula or deduced by the mean filed input required in the meandering component

evaluation. Beingczrn =
(

Q
U pzr

)n

, an expression forpzr is needed.

Both for the case of homogeneous turbulence and for the case of the wind tunnel
boundary layers I considered, I choose the relation of [Franzese (2003)] assuming
that the particle mean distribution around the centre of mass is Gaussian andincludes
multiple reflections at the boundaries:

pzr(x, z, zm) =
1√

2πσzr

N
∑

n=−N

[

exp

(

−(z − zm + 2nH)2

2σ2
zr

)

+ exp

(

−(z + zm + 2nH)2

2σ2
zr

)]

(7.2.9)

whereN is the number of reflection and it is taken equal to 10. Although the equa-
tion 7.2.9represent a simple reflected Gaussian form (Franzese, 2003), it was found
to provide good overall agreement with the experiments. A skewed PDF obtained
as the sum of two reflected Gaussian PDFs ( [Luhar et al. (2000)]; [Dosio and de
Arellano (2006)]) and especially suited for skewed turbulence can be also used here,
e.g. in the case of convective boundary layer (CBL) or highly asymmetrical canopies
(see appendix A). Anyway throughout this thesis I used the7.2.9for pzr given that it
provides good results in the comparison with various data, although it si very simple.
An expression for the standard deviation of vertical relative position is needed. The
vertical dispersion coefficient corresponds to the inertial range behaviour for small
times, as equation7.2.8for crosswind direction, whereas accounts for the boundaries
effect that reduces the vertical spreading at large times, see [Mortarini et al. (2009)].

σ2zr =
αNgzǫ(t+ ts)

3

[

1 + αD (gzǫt3)
2
3

]
3
2

(7.2.10)

wheregz is the one dimensional Richardson constant for vertical direction and the
parametersαN andαD are introduced to set the contribution of two different be-
haviours for small and large time.
Equation7.2.7shows that, in order to give a complete closure for relative concentra-
tion moments, an expression forλ, and thus foricr, is required. The concentration
fluctuations are primarily caused by the variation in the external intermittency pro-
duced exclusively by the meandering motion near the source, but in the far field the
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in-plume fluctuations became predominantly; inside the instantaneous plume bound-
aries, the fluctuations arise solely from an internal intermittency due to internal con-
centration fluctuations produced by the turbulent mixing processes (e.g., strain and
rotation of concentration gradients by velocity gradients, dissipation due to molecu-
lar diffusive processes). Without taking into accounticr, the absolute concentration
fluctuationsic =

σc(x,y,z)
c(x,y,z) became zero as soon as the meander contribution is negli-

gible. Measurements of lateral cross-sections of the fluctuation intensityic of a point
source plume in the absolute frame ( [Yee et al. (1994)]) show thatic has a minimum
at the mean plume centreline and increases markedly towards the plume edges.I
note that the U-shaped profile foric predicted by the experimental data ( [Gailis et
al. (2007)]) is due entirely to the external fluctuations resulting from the bulk me-
andering of the plume. It is expected that the internal plume intermittency reflecting
the internal fine-scale fluctuations should result also in a U-shaped profile foricr,
similar to the U-shaped profile foric due to the external plume intermittency reflect-
ing the plume meander. In view of this, [Gailis et al. (2007)] propose the following
functional form foricr derived from [Gifford (1959)] 2-D FPM:

i2cr =
(

1 + i2cr0
)

(

cr
cr0

)−ζ

− 1 (7.2.11)

whereicr0 is theicr minimum,cr0 is thecr maximum andζ is a shape parameter with
values in the interval[0, 1]. The values oficr0 andζ are choosen, for anyx, to have
the best agreement with experimental data. [Gailis et al. (2007)] obtain the values
ζ = 1

5 for crosswind direction,ζ = 3
4 for vertical one andicr0 are less than unity,

applying their model to a water channel simulation that reproduce at small scalethe
Mock Urban Setting Test (MUST) conducted at the U.S. Army Dugway Proving
Ground, Dugway, Utah in September 2001. This choice is made because it is the
only for height-dependent parameterization and takes into account the conservation
of TKE dissipation in the vortex scale reduction close to the boundaries.

7.3 Evaluation of centroid vertical location PDF.

Most of the recent versions of fluctuating plume model are coupled with a La-
grangian Stochastic Model for the particle trajectories in order to calculate the mean
concentration field. In the presented version of FPM I use the [Cassiani and Giostra
(2002)] approach to evaluate the vertical location PDFpzm. This approach has the
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advantage of independence from the method use to evaluate the mean concentration
field c(x, y, z), thus relaxing the need for Lagrangian modelling. Hencec(x, y, z)
can be derived both from measurements and numerical evaluation. Once the mean
field c(x, y, z) is known, the evaluation ofpzm only requires the mean heightz and
the vertical location varianceσz.
The definition of crosswind-integrate concentration is:

cy(x, z) =

∫ ∞

−∞
c(x, y, z)dy (7.3.1)

It corresponds to marginal PDF definition. In this context the concentration can be
seen as the density of probability that mass of a pollutant is at a given point and
given instant. Hence, reminding that the downwind dispersion in negligible,cy cor-
responds withpz(x, z). In particular, in order to satisfy the normalisation condition
∫∞
−∞ cy(x, z)dz = 1, I can write:

pz(x, z) =
cy(x, z)

∫ H

0 cy(x, z)dz
(7.3.2)

Where the indefinite integral is replaced with the integral over the vertical domain
[0, H]. Substituting the definition7.3.1in the equation7.3.2it follows that:

pz(x, z) =
cy(x, z)

∫ H

0

∫∞
−∞ c(x, y, z)dydz

(7.3.3)

The double integral in the denominator represent the source termQ
U . From dimen-

sional analysis, it is obvious that the source emission termQ has the dimension of
a particles flux. Discrete values ofpz △ z can be specified directly by sampling
the crosswind-integrated concentration normalised according to7.3.3 in N points,
where△z = 1/N is the the spatial scale of the grid. Thus it is possible to write:

z(x) =
N
∑

i=1

pzi(x, z)△ zi (7.3.4)

where the subscripti selects theith point of the grid. Analogously relationships can
be obtained for the high order moments, e.g.:

σ2z(x) =
N
∑

i=1

(zi − z)2pzi(x, z)△ zi (7.3.5)
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Now the [Cassiani and Giostra (2002)] linear transformation is used to evaluate the
meandering barycentre PDFpzm; it is equal to [Luhar et al. (2000)] linear trans-
formation, but it is apply on the points of the calculation grid instead of trajectories
given by a Lagrangian single particle model. This method allows to remove the need
for SPM though maintaining the same phisycal meaning of [Luhar et al. (2000)]
linear transformation and to reduce the computational time also considering that the
grid points are less than the number of particle released in a SPM. [Luhar et al.
(2000)] derive the trajectory of the instantaneous plume centre of masszm(x) from
the particle trajectoryz(x) (or equivalentlyz(t) assuming frozen turbulence) gener-
ated by a SPM using the following linear transformation (see appendix B for the
details):

zm(x) =
σ2z − σ2zr
σ2z

(z(x)− z(x)) + z(x) (7.3.6)

whereσ2z andσ2zr are respectively the absolute and relative vertical positions vari-
ances. As in [Cassiani and Giostra (2002)] I use the same linear transformation but
applied to grid spacing instead of Lagrangian trajectories:

zmi(x) =
σ2z − σ2zr
σ2z

(zi(x)− z(x)) + z(x) (7.3.7)

Introducing the definition of grid spacing for the total dispersion and the barycentre
dispersion as∆z = zi(x) − z(x) and∆zm = zmi(x) − z(x) respectively, (note that
zm = z) it follows:

∆zmi(x) =
σ2z − σ2zr
σ2z

∆z(x) (7.3.8)

A relation between the PDFs of two stochastic processes linearly related such as
zm(x) andz(x) is given bypz∆z = pzm∆zm, see appendix . In this way, the previous
value ofpzi∆zi is exactly the value ofpzmi∆zmi for an instantaneous plume centroid
located atzmi. I note that∆zm is smaller than∆z by the factorσ

2
z−σ2

zr

σ2
z

, so that the
value ofpzm is greater thanpz. This is a compression of the grid spacing of the
barycentre PDF that reduces the variance conserving at the same time the skewness,
the kurtosis and all the scaled moments. The resulting form of PDF is:

pzm =

{

0 out of the compressed concentration field
pz

∆z
∆zm

in the compressed concentration field
(7.3.9)

Oncepzm is known, it is possible obtain:

σ2zm(x) =
N
∑

i=1

(zmi − z)2pzmi(x, z)△ zmi (7.3.10)
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z′3m(x) = (zm − z)3(x) =
N
∑

i=1

(zmi − z)3pzmi(x, z)△ zmi (7.3.11)

and equivalently all the higher moments. Hence, the final form of FP I propose is
obtained by rewriting the integral in7.2.7as:

∫ H

0

pzm(x, zm)pzr(x, z, zm)dzm =
N
∑

i=1

pzm(x, zmi)pzr(x, z, zmi)∆zmi (7.3.12)

In such a sense, the method is a simplification of the [Luhar et al. (2000)] approach.
Although being simpler and faster, from a mathematical point of view the method is
equivalent to the [Luhar et al. (2000)] one.

7.4 Test Case

In this section three test cases are simulated to check the model behaviour.First,
the model is applied to homogeneous turbulence and it is used to verify the well-
mixed condition. Special attention to the second moment of concentration is given
by comparing the results with analytical expressions found by [Thomson (1990)]
and [Ferrero and Mortarini (2005)]. The other two test cases verify the behaviour
of the model for inhomogeneous turbulence in water and wind tunnel simulations
of the neutral boundary layer. First, I consider the water tunnel measurements of
scalar concentration for three idealized urban canopies with different aspect ratios
of [Huq and Franzese (2013)]. I compare the results obtained from the model both
to the [Huq and Franzese (2013)] data, who encompass plume spread and concentra-
tion of a passive scalar continuously released from a near-ground point source, and
to the [Huq and Franzese (2013)] Gaussian Model. Then the model is compared to
the data-set of [Nironi (2013)] and [Nironi et al. (2013)] describing the evolution
of a fluctuating pollutant plume within a wind tunnel simulation of a neutral bound-
ary layer. The [Nironi (2013)] data set extends the popular study of [Fackrell and
Robins (1982a)], about concentration fluctuations from point sources by including
measurements of concentration skewness and kurtosis and investigations about the
influence of source conditions on higher order concentration m oments.The data set
is also completed by a detailed description of the velocity statistics.
I underline that the FPM introduced here, has the capability for evaluating the con-
centration PDF without a coupled LSM, given only a mean concentration field. The
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flexibility of the models is validated using three different evaluations of the mean
field: a simple SPM in homogenoeus turbulence, a Gaussian model in the water
boundary layer and an experimental data in the wind tunnerl bounday layer.

7.4.1 Homogeneous turbulence

In this section I present the results of the numerical simulation given by modelin
homogeneous turbulence. This is a first validation and represents a good approxima-
tion for the crosswind direction even in more realistic kinds of turbulence. Themean
and mean square concentration fields in the inertial range are investigated and com-
pared with the theoretical predictions found by [Thomson (1990)] and [Ferrero and
Mortarini (2005)] and [Luhar et al. (2000)]. [Thomson (1990)] develops an analyt-
ical solution obatined from two Langevin equations for the particles separation and
barycentre. His approach is based on the stochastic processes theory, it prescribes a
complete three dimensional model for two-particles dispersion in homogeneous tur-
bulence and it is based on a Gaussian PDF for the particles separation. Following
Thomson [Thomson (1990)], [Ferrero and Mortarini (2005)] prescribe an analytical
formula for the fluctuation concentrations based on the Richardson form for the PDF
separation. Morevoer [Ferrero and Mortarini (2005)] develop a single particle model
with a gaussian PDF for the position. In particular [Ferrero and Mortarini (2005)]
evaluated the mean concentration and the concentration fluctuations by using the
single particleP1 and on the two-particle separationP2 PDFs, respectively as (see
section2.4):

c(x, t) =

∫

P1(y, s|x, t)S(y)dy

c2(x, t) =

∫

P2(y1, y2, s, s|x1, x2, t, t)S(y)dy

beingS(y) the amount of tracer released per unit of volume that is consider, for sake
of simplicity, a discrete Gaussian source distribution. Then [Ferrero and Mortarini
(2005)] calculatec(x, t) using a Gaussian form forP1 (note that thec(x, t) obtained
by [Ferrero and Mortarini (2005)] has itself a Gaussian form.), andc2(x, t) using the
Richardson PDF forP2.
Concerning the separation PDF they found that fort < t0 andt > TL (wheret is
the time,t0 is the cross-over time andTL is the velocity correlation Lagrangian time
scale) it is Gaussian, confirming the [Batchelor (1952)] and [Monin and Yaglom
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(1971)] results, while in the intermediate subrange it departs from the Gaussian PDF
and agrees with the Richardson PDF (as also found [Thomson (1990)] and [Boffetta
and Sokolov (2002)]). From equation7.2.7it is clear that an analytical solution for
concentration moments can also be carried out from fluctuating plume model (see
e.g. [Luhar et al. (2000)]) only if the total and meander expansions are Gaussian and
only for the case of free (i.e. not bound) variables. I consider the one-dimensional
case and I refer to the position variable asy and to velocity variable asv given
that the homogeneous turbulence is a good approximation for the lateral direction.;
the generalization to two and three dimensions is trivial if only free variables are
considered. The mean field required to develop the model is obtained by the simplest
SPM. In homogeneous turbulence the velocity PDF can be considered as Gaussian
yielding a simple expression for the Langevin equation:

dv = − 1

TL
v · dt+

√

C0ǫ · dW (t) (7.4.1)

where− 1
TL
v is the drift term,dW (t) is incremental Wiener processes with zero mean

and variance ,ǫ is the TKE dissipation and isC0 the Kolmogorov universal constant
that ensures the model consistency with the Lagrangian velocity structure function
as introducted in chapter5. The homogeneity assumption allows to use the Gaus-
sian relative PDF7.2.9of [Franzese (2003)] instead of the skewed one of [Dosio
and de Arellano (2006)]. Furthermore with the hypothesis of free variable, hence
without boundary reflections, equation7.2.9turns into a simple Gaussian distribu-
tion. Figure7.1 show the mean concentration field computed with the FPM (black
lines) presented in this chapter plotted over filled contours representing respectively
the results obtained from the simple SPM of equation7.4.1used as data input for
the FPM on the top-right and the analytical form obtained by [Ferrero and Mortarini
(2005)] from their single particle model with gaussian PDF on the top-left. Both
the figures above evidenced a very good agreement with the FPM. The figure7.1
below show the absolute standard deviationσz, the baricentre standard deviationσz,
and the relative standard deviationσzr. σz is compared to [Taylor (1921)] analytical
form (equivalent to the [Thomson (1990)] σz) and the agreement results very good.
The figure shows also the typical behaviour of a FP: near the source the total disper-
sion is dominated by the barycentre part so thatσz ∼ σzm andσzr ∼ 0, whereas far
from the source the plume becomes well-mixed by spreading on the entire vertical
domain and the relative part is therefore predominantlyσz ∼ σzr andσzm ∼ 0.
Figure7.2shows the mean concentration fieldc(t, y) evaluated from the simple SPM
founded on Langevin equation written in equation7.4.1compared with analytical
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formulae of [Ferrero and Mortarini (2005)] single particle model, of [Luhar et al.
(2000)] FPM for crosswind direction. In particular I show the time evolution of the

mean field divided by its intial valuec(t,y)
c(0,y)

aty = 0, y = 0.04, y = 0.08 andy = 0.12.
In y = 0 I show as well the comparison with the [Luhar et al. (2000)] FPM. In fig-
ure7.3 I present the same results, but for normalised mean concentration field, i.e.
for the PDFpy(t, y), focusing the attention on the spatial evolution at the fixed time
t = 0.01TL, t = 0.1TL, t = TL andt = 10TL. The model accurately reproduces the
expected behaviour of the evolution time of mean concentration at given points and
of the spatial evolution ofy-PDF at fixed times. In homogenoeus turbulence my FPM
coincides with the analytical version of [Luhar et al. (2000)] for crosswind direction
because the expression for the drift term of equation17.1 coupled with the [Luhar
et al. (2000)] (or [Cassiani and Giostra (2002)]) linear transformation for crosswind
direction (i.eym =

σ2
y−σ2

yr

σ2
y

beingy = ym = 0) ensures that the meandering PDF is
Gaussian and hence the equivalence between the two methods.
The second moment, i.e. the mean square concentration field, is now investigated.
[Ferrero and Mortarini (2005)] found that the Richardson PDF give bette results at
small times, while at larger times the model results agree with the formula based on
a Gaussian PDF. This result demonstrates that the Gaussian PDF is able to satisfac-
torily predict concentration fluctuation only for times greater than the Lagrangian
time scales, but when we are interested in the behaviour at very short times the
Richardson separation PDF should be accounted for. This result is particularly in-
teresting because in many practical applications the concentration fluctuations occur
at very short times near the source. Hence in the figures about the second moment
of concentration, the form prescribed by [Ferrero and Mortarini (2005)] has to be
considered only at very short time. Moreover, the model of [Ferrero and Mortarini
(2005)] is a one-dimensional model, hence the comparison with the y-direction of a
two-dimensional FPM might be not proper. Nevertheless, as I show in the following
figures, the agreement is very good and it is not trivial.
As shown in7.4, the FPM results agree with the expected behaviour ofc2 evaluated
with the two analytical predictions of [Thomson (1990)] and [Ferrero and Mortarini
(2005)] respectively. The two analytical models are also compared themselvesin
figure7.4, although the figures evidence that the shape ofc2 obtained from SPM fit
slightly better the first one. In order to make this statement more noticeable, fig-
ure7.5shows the comparison among the FPM analytical version and the considered
check-up analytical models, i.e. the two above-mentioned analytical prediction and
the analytical version FPM of [Luhar et al. (2000)] for crosswind direction, for the
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time evolution of the second-order moment of concentration normalised by its intial

vlaue c2(t,y)

c2(0,y)
at given pointsy = 0, y = 0.04, y = 0.08 andy = 0.12. My FPM

coupled with the simple SPM of equation7.4.1 coincides with the analytical one
of [Luhar et al. (2000)], as in the case of mean field, and the equivalence between
two methods is checked out again. It is evident that the FPM values is more similar
to [Thomson (1990)] solution model than [Ferrero and Mortarini (2005)] one. In
spite of the choice of a Gaussian distribution both for the centroid and the relative
PDFs in homogeneous turbulence, the FPM produces a slope of mean square con-
centration larger than the [Thomson (1990)] one in the intermediate range. In fact,
the slope ofc2 approach [Ferrero and Mortarini (2005)] form betweent = TL and
T = 5TL conferming the statement that in the intermediate subrange the separation
PDF departs from the Gaussian distribution and agrees with the Richardson one.
Figure7.6shows a long-time simulation from FPM for testing the predicted asymp-
totic behaviour of the mean and of the mean square concentration at large times.
Above I show thatc ∝

√
t considering a Gaussian PDF, below thatc2 ∝ t−1 by

using a Gaussian form for the separation PDF [Thomson (1990)].
In figure 7.7 the concentration fluctuation intensity are presented, by showing the
behaviour ofic in time and space (above and below respectively). Once the mean
and mean square concentration fields are evaluated, the concentration fluctuation in-
tensity is trivial calculate from equationic =

σ(t,y)
c(t,y) for any model. The figure shows

a good agree between FPM and [Thomson (1990)] both in time and in space. For
the time evolution the model results are in good agreement with the previsions, in-
cluding the prediction of a peak followed by a monotonic decay with distance. The
decrease ofic until zero for large time is a validation test for well-mixed condition.
As a matter of fact,ic → 0 when the barycentre contribution is negligible. At large
distances from the source the plume is spread over the whole vertical extensionof the
domain. Hence the relative part became predominantly, i.e.σz ∼ σzr andσzm ∼ 0,
validating the well-mixed condition. The anomalous behaviour ofic immediately
near the source is a characteristic of FPM and it is shared with severalFPM versions
present in literature. In the figure on the right it is possible to visualise the expected
U shaped behaviour in space and the decrease and the flattening for the large time
display the validity of well mixed condition again.
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Figure 7.1: Mean concentration field in homogenous isotropic turbulence (above): the filled contours
on the left represent the single particle model (see section5.1and subsection7.4.1) used as input, the
filled contours on the right represent mean field obtained by the single particle model of [Ferrero and
Mortarini (2005)], the black contours correspond to the fluctuating plume model presented in sections
7.1, 7.2and7.3.
Standard deviation of particle positions (below): comparison between FPM and analytical expression
of [Taylor (1921)].
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Figure 7.2: Time evolution of mean concentration fieldc(t, y) in homogeneous and isotropic turbu-
lence at centreliney = 0 and at the locationsy = 0.04, y = 0.08 andy = 0.12. Comparison among
the fluctuating plume model, the analytical previsions present in literature ( [Ferrero and Mortarini
(2005)] SPM and [Luhar et al. (2000)] FPM) and the single particle model of section5.1.
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Figure 7.3: Spatial evolution of probability density function py(t, y) in homogeneous and isotropic
turbulence at the fixed timet = 0.01TL, t = 0.1TL, t = TL andt = 10TL. Comparison among the
fluctuating plume model, the analytical previsions presentin literature and the single particle model
of section5.1.
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Figure 7.4: Mean square concentration field: in the the two figures above, the filled contours on
the left represent the [Thomson (1990)] analytical TPM, the filled contours on the right represent
the [Ferrero and Mortarini (2005)] analytical TPM, the black contours correspond to the FPM; in the
figure above the red ann blue contour-lines show the [Thomson (1990)] and the [Ferrero and Mortarini
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Figure 7.5: Time evolution of mean square concentration field c2(t, y) in homogeneous and isotropic
turbulence at centreliney = 0 and at the locationsy = 0.04, y = 0.08 andy = 0.12. Comparison
among the fluctuating plume model, the analytical previsions from two particles models present in
literature i.e [Thomson (1990)] and [Ferrero and Mortarini (2005)].
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7.4.2 Water tunnel boundary layer

The interaction of atmospheric flow with the buildings of an urban area generates a
boundary layer with specific characteristics. The vertical structure of urban bound-
ary layers comprises a roughness sub-layer near the ground and an inertial sublayer
above. In the lowest part of the roughness sub-layer, the buildings form a canopy
layer. Difficulties arise in developing guidelines for predictive analysis as turbulence
characteristics depend upon unique building arrangements and geometry. The Mock
Urban Setting Test (MUST) field experiment (see [Biltoft (2001)]) has been under-
taken using a large scale model of an urban canopy, where the roughness elements
were formed by arrays of shipping containers. Anyway, meteorological data in the
urban boundary layer are not as available as from rural sites. The application of the
presented FPM to a real case scenario, like MUST, represents a furtherinvestigation
about the behaviour of the model, and it is one of the development lines I will con-
sider in my research.
Throughout this thesis the model in a canopy layer is applied to HF laboratory ex-
periment.In particular I apply the fluctuating plume model to the [Huq and Franzese
(2013)] laboratory experiment undertaken in a water tunnel at the Environmental
Fluids Laboratory at the University of Delaware. They present measurements of
turbulence, velocity and mean concentration of a passive scalar released from a
continuous point source for three model urban canopies with different aspect ra-
tios Ar = H

wb
= 0.25, Ar = H

wb
= 1 andAr = H

wb
= 3 whereH andwb are the

building height and width. The measurements for the canopy withAr = 0.25, which
consists of a regular series of prisms, were taken by [Macdonald and Ejim (2002)],
while the measurements withAr = 1 (arrays of cubes) andAr = 3 (arrays of tall
prisms) are new. The building length in the along-wind directionB is constant. [Huq
and Franzese (2013)] took velocity and scalar measurements in thexz plane along
the centreliney = 0 of the canpoy layer, wherex, y andz indicate the alongwind,
the crosswind and the vertical directions, respectively. The scalar source is a pipe at
ground levelz = 0, at the centreline of the canopyy = 0, at the center of the row
x = 0. All experiments simulate in-canopy dispersion in the near field and the plume
vertical dimension is smaller or comparable to the mean building height.
[Huq and Franzese (2013)] use the simple simple vertically-reflected Gaussian plume
model presented by [Franzese and Huq (2001)], which was applied to study disper-
sion above the canopies of four cities. The mean concentration fieldc of a passive
tracer emitted from a ground-level continuous source (y = z = 0 ) is approximated
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by the vertically reflected Gaussian formula:

c(t, x, z) =
Q

Uπσy(t)σz(t)
exp

(

− y2

2σ2y
− z2

2σ2z

)

(7.4.2)

The transverse dispersion coefficientσy is calculated using [Taylor (1921)] theory,
assuming horizontally homogeneous turbulence. The turbulence diffusion analysis
of [Taylor (1921)] gives linear plume growth fort < TL (e.g., in the near field) and
parabolic growth fort > TL (e.g., in the far field). The far field parabolic formulation
corresponds to the configuration of a plume larger than the turbulence length scale.
Inside the canopy the turbulence length scales are comparable to the lateral spacing
of the building and to their height. Since in their study they focus on the near field
below canopy dispersion, the plume does not grow larger than the turbulence length
scales, and only the near field approximation of [Taylor (1921)] formula is needed:

σ2y = σ2y0 + σ2vt
2 (7.4.3)

whereσy0 is the plume standard deviation at the source andσ2v the variance of the
Lagrangian transverse velocity.
The vertical dispersion coefficientσz is defined for ground level source in neutral
atmosphere as:

σ2z = σ2z0 + b2σ2wt
2 (7.4.4)

whereσz0 is the plume vertical standard deviation at the source andb (set tob = 1) in
an empirical constant. The values ofU , σv andσw in the [Huq and Franzese (2013)]
model are calculated as:

• Equation7.4.3is written asσ2y = σ2y0+
σv

U
2x2 and the ratiofracσvU is obtained

by best fit to experimental data ofσy which are measured at different distances
x.

• The relationshipσw = 2
3σv is assumed in accord with field measurements and

equation7.4.4becomeσ2z = σ2z0 +
4
9
σv

U
2x2.

• U is estimated by best fit of equation7.4.2to the measured concentrations.

Values of quantities used in the Gaussian model and for scaling the data are summa-
rized in the table7.1.
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In the application of the [Cassiani and Giostra (2002)] method for evaluating the
barycentre PDF I choose as mean field input the Gaussian model of equation7.4.2.
This assumption removes the need for SPM and makes the FPM simple and very
fast to compute. Further, I use [Franzese (2003)] expression7.3.9for pzr. Figure
7.8 shows the growth rate ofσz

Lz
as a function on a non-dimensional distancexUTw

evaluated from FPM along with the Gaussian model and experimental data by [Huq
and Franzese (2013)]. The FPM compares well with the [Huq and Franzese (2013)]
results. The figure shows the linear plume growth according with equation7.4.4and
the curves approach the source size asx tends to zero as expected. The difference be-
tween FPM and the Gaussian model in the far field is justified by7.4.4that contains
only the near field (but not the far field) approximation of [Taylor (1921)] theory. The
evolution of mean concentration, non-dimensionalized ascULzLy

Q with the scaled dis-

tance from the sourcexUT with T =
√

TwTy , is plotted in figure7.9. Again, the FPM
agrees well with both the Guassian mdoel and data of [Huq and Franzese (2013)].
The figure shows that two models curves follow the−2 power law decay of concen-
tration with distance from the source. I remark that the use of the Guassian model as
input of the FPM allows to evaluate the evolution of the of the concentration standard
deviation without using SPM. The normalised standard deviationσc

c(0) along with the
scaled distancexB from the source of the normalised standard deviation (plotted in
figure7.10). Again, the fluctuating plume fits well with the water tunnel data ( [Huq
(2012)]). The use of the constant values of7.1 for the turbulence parameter instead
of the measured profiles ofU , σw, σu anduw provided by [Huq and Franzese (2013)]
is a simplification for both the first and the second moment. In order to include them,
I may use a single particle model for inhomoneneous turbulence as mean field input.
It would allow to take in account for the turbulence inhomogeneity. Nevertheless the
purpose for this case is achieved. In fact, I can show good results in7.10 for the
second moment of concentration using only the mean field of7.9 and evaluated in
few seconds. The evaluation of third and fourth order moments concentration is not
presented because of the lack of experimental data available.
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H
wb

Q σ0 H U∞ σw σv Tw Tv Lz Ly Ub U

0.25 2.18 0.50 5.00 7.80 0.47 0.70 1.07 0.71 5.00 5.00 5.20 5.20
1 1.40 0.20 3.20 9.40 0.21 0.31 1.55 0.56 3.20 1.75 5.20 2.70
3 1.40 0.20 9.60 11.00 0.15 0.22 6.43 0.78 9.60 1.75 7.70 2.80

Table 7.1: Aspect ratiosAr, release rateQ(cm3s−1), source sizeσy0 = σz0 = σ0(cm), building
heightH(cm), free-stream velocityU∞(cms−1), vertical and transverse velocity variancesσ2

w(cm
2)

andσ2

v(cm
2), vertical and transverse time scaleTw(s) andTv(s), length scalesLz(cm) andLy(cm),

rooftop level wind speedUb(cms
−1), mean windU(cms−1)
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Figure 7.8: Growth rate of non-dimensional vertical standard deviation aty = 0 function of the non-
dimensional distance from the source: comparison among theproposed FPM, the Gaussian model
and the experimental data of [Huq and Franzese (2013)].
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Figure 7.10: Non-dimensional root mean square concentration at the ground, at centreline of the
canopy as function of non-dimensional distance from the source in comparison with the water tunnel
data of [Huq (2012)]
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7.4.3 Wind tunnel boundary layer

I take advantage of recent wind tunnel experiments of [Nironi et al. (2013)] and
[Nironi (2013)]. I test again the reliability of the FPM in estimating the concen-
tration moments of a passive tracer in neutral boundary layer. [Nironi (2013)] ex-
perimental data providing a detailed description of the concentration and of the ve-
locity statistics and hence of the evolution of a fluctuating passive pollutant within
the turbulent boundary layer. [Nironi (2013)] experimental data extend the popular
study of [Fackrell and Robins (1982a)] about concentration fluctuations and fluxes
from point sources by including measurements of concentration skewness and kur-
tosis. The data set is completed by an exhaustive information on both the temporal
and spatial structure of the flow which is not common. Therefore I choose [Nironi
(2013)] experimental mean concentration field as input for the [Cassiani and Giostra
(2002)] calculation for the barycentre PDF in my FPM. I aim to evaluate the first
moments of concentration given only the experiemntal field. Until now, I consid-
ered two simple models: a SPM in homogeneous turbulence in subsection7.4.1and
a Gaussian model in subsection7.4.2. Here the information on both the temporal
and spatial structure of the flow would me to carry out a detailed SPM for inho-
mogenoeus turbulence. In particular [Nironi (2013)] data include one-point velocity
statistics, two-points spatial correlations, integral length scales, spectra, turbulent ki-
netic energy budget, turbulent diffusivities, vertical and transversal profiles of first
four moments of concentration PDF at several distances downwind. The full experi-
mental data set is available on the websitehttp://www.ec-lyon.fr/.
In order to apply the offline version of the FPM I started by applying equation7.3.3
to the mean concentration field of [Nironi (2013)] to get the vertical position PDFpz.
Then I get the barycentre PDFpzm from equation7.3.9by using [Cassiani and Gios-
tra (2002)] liner transformation7.3.7. Equation7.3.9contains the relative variance
σzr that has to be parameterised as in equation7.2.10along with the relative part of
the motion described by the PDFpzr of equation7.2.10. All the parameters I need
for calculatingσzr andpzr is provided by [Nironi (2013)] data or can be evaluated
from it. In figure7.11I plotted the non-dimensional vertical profiles of mean longi-
tudinal velocityU , of TKE dissipation rateǫ and of root mean square of the velocity
componentsσu, σv andσw from which I evualated the parameters in the FPM. Figure
7.11provide as well the vertical plume spreadσz from experimental data that I use
in applying equation7.3.9. In figure7.11, δ is the boundary layer depth anduf is
the friction velocity. The source is located atzs/δ = 0.19 and the source diameter is
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ds/δ = 0.00375.
The reliability of the FPM is tested against the experimental measurements of mean
concentration in Figure7.12 (the two plot above) at various distances from the
source. I underline the experimental data of mean field is the input of the FPM. Then
I evaluate both the first and the higher moments of concentration by using equations
7.2.7 and 7.3.12. The two plots below in figure7.12 show the comparasion be-
tween the model and the data for the standard deviation of concentration at the same
downwind distance. Figure7.13show the vertical profiles of non-dimensional third
(above) and fourth (below) moments of concentration at various distances down-
wind. Central concentration moments up to the fourth order are related to the mo-
mentscn about0 by means of the following relations:

m1 = C = c1

m2 = σ2c = c2 − C2

m3 = c3 − 3c2C + 2C3

m4 = c4 − 4c3C + 6c2C2 − 3C4

(7.4.5)

and then I considered theith root of the moments, i.e.Mi = i
√
mi, so that all the

statistics plotted in the figures have the dimension of a concentration. The first com-
ment about the figures of concentration statistics is that, for all the four moments,
the FPM works better at the distancex/δ = 1.25 from the source i.e. for the lines
plotted in black in the figures. This is not casual. In effect I choose all the values
in the parameterisation for the relative part, and so forσzr, pzr and icr, giving the
better agreement with the data at the downwind distancex/δ = 1.25. The choice of
x/δ = 1.25 as reference distance from the source is not arbitrary. In fact by choosing
larger downwind distance, the comparsion near the source get worse and, vice versa,
if I choose smaller distance, the comparison deteriorate in the far field. Hence I can
hypothesise thex-dependence of the relative part in a FPM. This may be primarily
due to the parametersicr0 andζ in the [Gailis et al. (2007)] equation7.2.11for icr. In
particularicr may be depend on spatial coordinates not only in the vertical direction
but also in the downwind distancex, and so on the time.
Furthermore the comparison deteriorates with the rise of the order of the concentra-
tion moments. This is expected as the higher order statistics become very sensitive to
the initial condition and a small change in the values of the parameterisation ofFPM
relative part can lead to great difference in statistics, especially in third and fourth
moments.
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Furthermore I highlight that all the information I used for parameterisingpzr, σzr and
icr derive from a mean field that obviously can’t exhaustively describe the concentra-
tion fluctuations. However the figures7.12shows that the FPM is able to reproduce
well the first two moments of concentration. In figure7.13the FPM fits quite wellhe
third and the fourth moments of [Nironi (2013)], although the comparison is not good
as in case of the first two momets. In figure7.13is noticeable as well that the worst
agreement is for the smallest distance from the sourcex/δ = 0.003125, i.e. for the
blue lines. First, it may due to the choiche of values for the relative part parameters
that better fit the distancex/δ = 1.25. Secondly, it may due to the effect of source
size. In fact, in a FPM the effect of source size enters only in the equationfor σzr
andpzr whereas, for instance in a SPM, the source size effects can be included in
the release of the particles.
I finally remark that all the statistics evaluated by the FPM derive exclusively from an
experimental data and the need for a simultaneous Lagragian model is relaxed. Nev-
ertheless this offline FPM give results comparable to the other FPM version without
any coupling with Lagragian modelling.

114



7.4. TEST CASE

15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Non−dimensional vertical profiles of mean longitudinal velocity

U δ

z
δ

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Non−dimensional vertical profiles of r.m.s of the velocity components

z
δ

σu uf

σv uf

σw uf

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Non−dimensional vertical profiles of TKE dissipation rate

εδ uf
3

z
δ

0 1 2 3 4

0.
05

0.
10

0.
15

Vertical plume spread from experimental data

σz  (m)

z
δ
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Conclusion

Two Lagrangian modelling approaches have been adopted to describe the role
played by the fluctuations of active and passive scalar, respectively.
For the case of active scalars I introduced the effect of temperature fluctuations in
a buoyant plume rise. I have constructed a hybrid Lagrangian stochastic model
of buoyant plume rise that includes temperature fluctuations by combining coupled
stochastic differential equations for vertical velocity and temperaturewith a classical
plume model of buoyant plume rise in a crossflow. The model takes in account for
the turbulence generated by the plume itself allowing the interaction of temperature
and velocity fluctuations to generate the observed spread through the introduction of
a SDE for the temperature and aw − ϑ coupling term in the SDE forw.
The model shows qualitatively a good behaviour in the idealised case of homoge-
neous turbulence. In particular the results suggest that the spread of the plume is
much larger including temperature fluctuations and that this effect become more im-
portant as the intensity of the crossflow increases. Howeverθ′ depends weakly on
the intensity of the crossflow. In fact,ϑ′ doesn’t depend onw orU , only onw, hence
ϑ′ is expected to have the same order of magnitude for all the cases of intensity of
the crossflow at the same height. Henceϑ′ makes a greater (relative) contribution to
the SDE forw′ through the coupling termgθ

′

θ0
than in the SDE forθ′.

Then the model is compared to the LES of [Devenish and Edwards (2009)] and
[Devenish et al. (2010b)]. While some aspects of the formulation are not rigorous,
results generated by the model compare reasonably well with LES results. This is
true both for LES plumes in a linearly stratified environment and the realisticcase
of the plume generated by the explosion and fire at the Buncefield oil depot in 2005
which was previously compared with observations. In the former case, the agree-
ment between the model and the LES results deteriorated as the ambient velocity
became small (̃U ≪ 1). The reasons for this are not clear and the behaviour of
buoyant plumes in a weak crosswind merits further attention. In general, the model
with temperature fluctuations exhibits a greater spread in the scalar concentration
than the model without temperature fluctuations though the difference is not large.
Larger differences can be observed in higher order statistics as may be expected.
There is some uncertainty over the value ofγ and while its range seems reasonably
constrained, our results have shown that better agreement with the LES results can
be obtained by varyingγ within the range0 ≤ γ ≤ 0.5. However, arguably the best
overall agreement with the LES statistics is obtained withγ = 0.5. More accurate
data on buoyant plumes in a crossflow, both from experiments and numerical simula-
tion, might help constrain the value further and elucidate any functional relationship
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with wind speed that may exist.
For the case of passive scalars I developed a version completely offline of theFPM,
without need for a coupled LSM, but just requiring a mean field as input. Moreover,
the model is independent of the method for calculating the mean field that can be
evaluated both from experiments and models. Following the fluctuating plume ap-
proaches proposed by [Luhar et al. (2000)], [Cassiani and Giostra (2002)], [Franzese
(2003)] and [Mortarini et al. (2009)], I developed a method to compute the higher
order concentration moments, given a mean concentration field. The evaluation of
concentration fluctuations plays a crucial role in a great number of environmental
issues: prediction of air pollution, simulation of chemical reactions of pollutants in
the atmosphere (e.g. Nox and O3), analysis of turbulent combustion and estimation
of odour threshold. In particular in recent years, considerable attention has been
focused on the prediction of the PDFs of passive scalar concentration downwind
a source of pollutant in the turbulent boundary layer. This is due to an increased
interest in environmental problems, a more strict regulation about emissions in the
atmosphere, the risk assessment of hazardous releases of toxic or flammable sub-
stances.

The presented fluctuating plume model puts together the more favourable features
of the existing versions, resulting faster and simpler than the precedent methods.
The choice of [Cassiani and Giostra (2002)] approach to evaluate the meandering
barycentre part removes the need for the knowledge of the trajectories to compute
the high order concentration fields. In fact, I underline again [Cassiani and Giostra
(2002)] generalisation does not require any trajectories, but only a mean field con-
centration input. The requested mean concentration field can be obtained either from
models or from experiments. Hence, it is possible to choice the most suitable method
to evaluate the mean field, as a simple and fast model, e.g. a Gaussian model, or as
a more complicated and efficient model, e.g. a single particle model, depending
on the class of turbulence investigated. The parameterisation of relative motion is
established on the analytical expressions producing the best agreement with the ex-
perimental data, i.e. [Gailis et al. (2007)] height-dependent formula for the relative
concentration fluctuations. The model can be easily adapted to different classes of
turbulence modifying the mean field input data and the parameterization of relative
part. After a positive validation in homogeneous turbulence, the model is applied and
compared to two neutrally stratified boundary layers, a canopy layer simulated in a
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water-tunnel by [Huq and Franzese (2013)] and a new wind tunnel experiments taken
by [Nironi (2013)] and [Nironi et al. (2013)]. The comparison with experimental
data shows an overall good agreement both in all the cases. I presented the valida-
tion in homogeneous and isotropic turbulence and application to [Huq and Franzese
(2013)] data during 15th International Conference on Harmonisation within Atmo-
spheric Dispersion Modelling for Regulatory in Madrid (May 6-9, 2013) and results
are published in [Bisignano et al. (2014)].The presented procedure is applied in the
vertical direction but can be easily adapted for the crosswind meandering in the case
in which it is not possible to find a simple analytical solution. I want to highlight
that in the simulation of [Nironi (2013)] data I used as input the experimetal mean
field provided by the author, whereas in the simulation of [Luhar et al. (2000)] data
I considered a Gaussian model as input for FPM. In both the cases, the FPM is able
to take in account for the turbulence inhomogenityies through the parameterisation
of relative part of FPM and the low computational time demand makes the model
suitable for practical applications considering that it is able to evaluate higher order
concentration moments in few seconds on a standard computer.
I conclude noticing that he central thread which run through all this thesis is La-
grangian modelling. It is the natural and most powerful means to describe many
interesting atmospheric processes involving both active and passive scalars. With
the aid of LSM, better strategies for many environmental issues can be developed in
future.
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Appendix A

Although the use of the equation7.2.9for pzr provides good overall agreement with
the experiments and it is used through this thesis, a skewed PDF obtained as the sum
of two reflected Gaussian PDFs ( [Luhar et al. (2000)]) and especially suited for
skewed turbulence can be also used, e.g. in the case of convective boundary layer
(CBL) or highly asymmetrical canopies.

pzr =
2

∑

j=1

N
∑

k=−N

aj√
2πσj

[

e(−
z−zm−2kzi−zi ) + e(−

−z−zm−2kzi−zi )
]

where

z1 =
Srfσ1
|Sr|

z2 =
Srfσ2
|Sr|

σ1 = σzr
√

a2/ [a1(1 + f 2)]

σ2 = σzr
√

a1/ [a2(1 + f 2)]

a1 =
1−

√

r
4+r

2
= 1− a2

r =
(1 + f 2)3S2

r

1 + f 2)2f 2

f =
2

3|Sr|
1
3

whereSr ins the skewness of relative position. [Luhar et al. (2000)] assume that:

z′3(t) = z′3m(t) + z′3r (t)
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[Dosio and de Arellano (2006)] notice that in generalz′3 = z′3m + z′3r despite the
independece between relative part and meandering centroid. Hence the correct form
for Sr [Dosio and de Arellano (2006)] is given by [Dosio and de Arellano (2006)]:

Sr =
S

σ3zr

[

(

z′2
)3/2

−
(

z′2 − z′2m

)3/2
]

whereS = z′3

z′2
372 is the total skewness.
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Here I show a mathematical proof for the expression assumed for the barycentre
PDF:

pzm∆zm = pz∆z

Sincepzm andpz are PDFs, the previous equation represents a sort of probability
distribution conservation. To proof rigorously the equation I consider thatzim and
zi are two stochastic processes, and at fixed times, they are two random variables.
In particular, at any instant,zim can be considered as the result of application of
[Cassiani and Giostra (2002)] linear transformation tozi. A basic theorem about the
functions of random variable state that assuming that the equationy = g(x) hasn
rootsy = g(x1), y = g(x2), ....., y = g(xn) at fixedy. Now I suppose that̂x is a
random variable with a known PDFfx(x) e ŷ a new random variable given by the
application of the real functiong(x) to x̂. Then the PDF ofy, fy(y) is:

fy(y) =
n

∑

i=1

fx(xi)

|gx(xi)|

I assume now that, for instance the equationy = g(x) has three roots. Then

fy(y)dy = P{y < ŷ < y + dy}

It is now sufficient to find the values ofx for which y < x ≤ y + dy} and the
probability thatx̂ in contained in this set. This set consists of the three following
intervals:

x1 < x < x1 + dx1

x2 < x < x2 + dx2

x3 < x < x3 + dx3
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Where I supposed thatdx1 > 0 anddx3 > 0 butdx2 < 0. ThenP{y < ŷ < y + dy}
is given by:

P{x1 < x̂ < x+ dx1}+ P{x2 + dx2 < x̂ < x2}+ P{x3 < x̂ < x+ dx3}
Now given that:

P{x1 < x̂ < x+ dx1} = fx(x1)dx1

P{x2 + dx2 < x̂ < x2} = fx(x2)dx2

P{x3 < x̂ < x+ dx3} = fx(x3)dx3

with

dx1 =
dy

g′(x1)

dx3 =
dy

g′(x3)

dx3 =
dy

g′(x3)
I can conclude that

fy(y)dy =
fx(x1)

g′(x1)
+
fx(x2)

|g′(x2)|
+
fx(x3)

g′(x3)

By dividing bydy I getfy(y) =
∑

( i = 1)n fx(xi)
|gx(xi)| as expected.

Now I focus on the of a linearg(x).

ŷ = g(x̂) = ax̂+ b

g′(x) = a

The equatio has one root:x = y−b
a , hence:

fy(y) =
1

|a|fx(fracy − ba)

Now I apply this result to [Cassiani and Giostra (2002)] linear transformation. In this
framezmi is a linear function ofzi, andpzm is the PDF ofzmi andpz the PDF ofzi.
Then:

pzm =
1

|a|pz

I notice now thatdzm = adz from whicha = dzm
dz . By substiting this expression for

a in pzm = 1
|a|pz I get pzm∆zm = pz∆z, i.e. the equation of [Cassiani and Giostra

(2002)] for the barycentre PDF.
A physical justification for the validity of the [Cassiani and Giostra (2002)] linear
transformation can be found on [Luhar et al. (2000)].
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