Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro’
Viale Teresa Michel 11, 15121 Alessandria
http://www.di.unipmn.it

b

universita
degli studi
del piemonte
orientale

ARPHA: an FDIR architecture for Autonomous Spacecrafts based on
Dynamic Probabilistic Graphical Models
D. Codetta Raiteri, L. Portinale (daniele.codetta_raiteri @ mfn.unipmn.it,
luigi.portinale @ mfn.unipmn.it)

TECHNICAL REPORT TR-INF-2010-12-04-UNIPMN
(December 2010)

The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URL http://www.di.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

2010-03
2010-02

2010-01

2009-09

2009-08

2009-07

2009-06

2009-05

2009-04

2009-03

2009-02

2009-01

2008-09

2008-08

2008-07

2008-06

ICCBR 2010 Workshop Proceedings, C. Marling, June 2010.

Verifying Business Process Compliance by Reasoning about Actions, D. D’ Aprile,
L. Giordano, V. Gliozzi, A. Martelli, G. Pozzato, D. Theseider Dupré, May 2010.

A Case-based Approach to Business Process Monitoring, G. Leonardi, S. Montani,
March 2010.

Supporting Human Interaction and Human Resources Coordination in Distributed
Clinical Guidelines, A. Bottrighi, G. Molino, S. Montani, P. Terenziani, M. Torchio,
December 2009.

Simulating the communication of commands and signals in a distribution grid, D.
Codetta Raiteri, R. Nai, December 2009.

A temporal relational data model for proposals and evaluations of updates, L.
Anselma, A. Bottrighi, S. Montani, P. Terenziani, September 2009.

Performance analysis of partially symmetric SWNs: efficiency characterization
through some case studies, S. Baarir, M. Beccuti, C. Dutheillet, G. Franceschinis,
S. Haddad, July 2009.

SAN models of communication scenarios inside the Electrical Power System, D.
Codetta Raiteri, R. Nai, July 2009.

On-line Product Configuration using Fuzzy Retrieval and J2EE Technology, M. Ga-
landrino, L. Portinale, May 2009.

A GSPN Semantics for Continuous Time Bayesian Networks with Immediate Nodes,
D. Codetta Raiteri, L. Portinale, March 2009.

The TAAROA Project Specification, C. Anglano, M. Canonico, M. Guazzone, M.
Zola, February 2009.

Knowledge-Free Scheduling Algorithms for Multiple Bag-of-Task Applications on
Desktop Grids, C. Anglano, M. Canonico, February 2009.

Case-based management of exceptions to business processes: an approach exploit-
ing prototypes, S. Montani, December 2008.

The ShareGrid Portal: an easy way to submit jobs on computational Grids, C.
Anglano, M. Canonico, M. Guazzone, October 2008.

BuzzChecker: Exploiting the Web to Better Understand Society, M. Furini, S. Mon-
tangero, July 2008.

Low-Memory Adaptive Prefix Coding, T. Gagie, Y. Nekrich, July 2008.

Contents

1 Introduction 2
2 Modeling Causal Probabilistic Knowledge 3
3 The EDFT Formalism 5
3.1 Example of EDFT Modeling 7
4 A DDN Model for On-board FDIR 9
5 Designing ARPHA 10
5.1 Off-boardprocess 10
5.2 On-boardprocess e 12
5.3 ARPHAarchitecture 14
6 Conclusions 16

ARPHA: an FDIR architecture for Autonomous
Spacecrafts based on Dynamic Probabilistic
Graphical Models

Daniele Codetta-Raiteri, Luigi Portinale
Dipartimento di Informatica, Universitdel Piemonte Orientale
Viale T. Michel 11, 15121 Alessandria, Italy

e-mait {dcr, luigi.portinalg¢ @di.unipmn.it

Abstract

This paper introduces a formal architecture for on-board diagnpsigjno-
sis and recovery called ARPHA. ARPHA is designed as part of the ESPHES
study called VERIFIM (Verification of Failure Impact by Model checking he
goal is to allow the design of an innovative on-board FDIR procesafmn@mous
systems, able to deal with uncertain system/environment interactionsitainc
dynamic system evolution, partial observability and detection of recaaeigns
taking into account imminent failures. We show how the model neededRBHA
can be built through a standard fault analysis phase, finally produniegtanded
version of a fault tree called EDFT; we discuss how EDFT can be adagtador-
mal language to represent the needed FDIR knowledge, that camipél@d into
a corresponding Dynamic Decision Network to be used for the analyssal¥g
discuss the software architecture we are implementing following this agiproa
where on-board FDIR can be implemented by exploiting on-line infereased
on the junction tree approach typical of probabilistic graphical models.

Keywords: Fault Trees, Fault Diagnosis, Fault Recovery, Prognosishabilistic
Graphical Models

1 Introduction

Autonomous spacecraft operation relies on the adequattraely reaction of the sys-

tem to changes in its operational environment, as well dsdioperational status of the
system. The operational status of the system is dependehednternal system de-
pendability factors (e.g. sub-system and component iiétiaimodels), on the external

environment factors affecting the system reliability aatety (e.g. thermal, radiation,
illumination conditions), and on system-environment iat¢ions (e.g. stress factors,
resource utilization profiles, degradation profiles, pt€ombinations of these factors
may cause mission execution anomalies, including missegradiations and system

failures. To address possible system faults and failuhesctirrent state-of-the-art of
the FDIR (Fault Detection, Isolation and Recovery) prodedsased on the design-
time analysis of the faults and failure scenarios (e.g. uraiMode Effect Analysis
or FMEA, Fault Tree Analysis or FTA) and run-time observataf the system op-
erational status (health monitoring). The goal is a timedyedtion of faults and the
initiation of the corresponding recovery action (that mépae the execution of the
safing actions to put the spacecraft into a known safe cofiigurand transfers control
to the Ground operations).

The classical FDIR approach however, suffers from multghlertcomings. In par-
ticular, the system, as well as its environment, is onlyigliytobservable by the FDIR
monitoring; this introduces uncertainty in the interptieta of observations in terms
of the actual system status. Moreover, classical FDIR ssmis a reactive approach,
that cannot provide and utilise prognosis for the immineiitfes. Knowledge of the
general operational capabilities of the system (that shpatentially be expressed in
terms of causal probabilistic relations) is not usuallyresented on-board, making im-
possible to estimate the impact of the occurred faults aihtés on these capabilities.
Several studies have tried to addressed these problems tsorastricting attention to
manned systems [13] or to systems requiring heavy humanvartgon [10], some oth-
ers by emphasizing the prognostic phase and relying to $tasitechniques to close
the FDIR cycle [4]. A more formal approach to on-board FDIRrms to be needed,
having the capability to reason about anomalous obsensiiothe presence of uncer-
tainty, dynamic evolution and partial observability. Thaimissue should be to define
a unifying formal framework providing the system with diagis and prognosis on the
operational status to be taken into account for autonom@y®ptive recovery actions.

In this paper, a formal model integrating standard depeitijedmalysis with know-
ledge-based reasoning based on Probabilistic GraphicdeMads proposed, with the
aim of enabling on-board FDIR reasoning. While the final gdahe study will be
to develop a demonstrator performing proof-of-concepecstadies for the innova-
tive FDIR element of an autonomous spacecraft, the papeectrates on the formal
modeling, inference, specification and design of an on&b&&1R architecture called
ARPHA (Anomaly Resolution and Prognostic Health managdrmeutonomy), de-
signed to address on-board reasoning about the impacttefhsysd environment state
on spacecraft capabilities and mission execution. Therpaperganized as follows:
Sec. 2 discusses issues concerning modeling causal plisbhaknowledge, Sec. 3 in-
troduces the EDFT formalism to be used for fault analysislenh Sec. 4 the model to
be used for the actual FDIR analysis is discussed; the desidrihe formal software
architecture of ARPHA are then discussed in Sec. 5.

2 Modeling Causal Probabilistic Knowledge

Modeling of probabilistic causal dependencies is one ofithé capabilities of Proba-
bilistic Graphical Models (PGM) [7] like Bayesian Networ&N), Decision Networks
(DN) and their dynamic counterparts as Dynamic Bayesianvbigts (DBN) and Dy-

namic Decision Networks (DDN) [5]. From an FDIR perspectibis class of models
naturally captures dependencies and evolutions undaabpaloservability; moreover,

in decision models also the effect of autonomous actionsbeamodeled and util-
ity functions can be exploited in order to select most usaftions. For this reason,
we propose a formal architecture called ARPHA (Anomaly Régm and Prognostic
Health management for Autonomy) based on the model of DDNBN®are essen-
tially DBNs augmented with decision nodes and utility fuoos. DBNSs are, in turn,
a factored representation of a Markov process, where thebiystem state is deter-
mined by the Cartesian product of a set of discrete varialeging to Markovian state
transitions (see [7, 9] for more details). Solving a DDN neefaimding a sequence of de-
cisions maximizing the total expected utility over a spedfhorizon; this means that,
in principle every algorithm for solving a Markov Decisiomoeess (MDP) [11] can
be adopted. However, from an on-board FDIR perspectivéalippoptimal sequences
can be too hard to be obtained, both in terms of time and caatipotl resources; for
this reason, on-line inference [11] is preferred in the ARPHchitecture. This allow
for the choice of a locally best recovery action, given theent stream of observations
and the future possible states of the modeled system, pngvéadtight connection be-
tween diagnosis, recovery and prognosis. Furthermoregghkigd into account both the
current “belief state” of the system (summarizing the higtof the system uncertain
evolution) and the effects of the recovery actions on fusystem states, the task of
preventive recovery can be addressed.

However, dealing directly with the DDN formalism can be algem for a relia-
bility engineer, usually more familiar with other formatis and techniques supporting
classical FDIR task. Among them Fault Tree Analysis (FTA)][s definitely one
of the most popular one. However, Fault Trees (FT) are lidntte model systems
with independent binary components (i.e. characterizethby'ok-faulty” dual be-
havioral modes, failing independently from other compdsémthe system). For this
reason, several extensions have been proposed, eithedtesadspecific stochastic
dependencies as in Dynamic Fault Tree (DFT) [3] or to allogvritodeling of “multi-
state” components [6, 14], or both [1]. As observed in [1],d@lang the system to
be analyzed using a set of Boolean variables is often pidfetaan directly resort-
ing to multi-state variablés In the ARPHA architecture, in order to avoid the burden
of introducing a totally new and unfamiliar formalism to ttraditional fault analysis
phase, we propose a methodology where an extended verstbe bsic formalism
of DFTs is used as a formal modeling language; in this extens generalization of
both Boolean components to multi-state components, asawellgeneralization of the
stochastic dependencies allowed by the DFT formalism daredanced. We call this
formalism Extended Dynamic Fault Tree (EDFT) and we proposese it as a formal
notation for reliability engineering during the system ralidg phases. The idea is to
provide the modeler with a formal language able to expresa,FT-based style, a set
of complex component interactions, while being at the same, tsuitable for a general
FDIR analysis. We aim at exploiting the power of the EDFT laage to express all the
knowledge we need for the on-board FDIR engine, while notrodting the modeler
to learn a totally new modeling language. The ARPHA apprdache analysis of the
model is then to compile a DDN from the input EDFT model, usingline inference

IReliability engineers are often familiar with the use of Bemn gates for modeling a faulty behavior;
introducing multi-state variables would require to replBoslean gates with specific functional gates at the
modeling level, producing a relevant impact on the methodolagally adopted to build the model.

|
|

1 - |

: I A=f(ey, ... a)
|

|

|

(b)

senﬁpfooperty
(¢ (d)

(e)

Figure 1: EDFT events and gates.

to perform the FDIR task. In the next sections, we providediails about the EDFT
language and the DDN model that can result from a model buidugh the formalism.

3 The EDFT Formalism

The EDFT language is an extension to the DFT language as defing@] with the
following additional constructs(see Fig. 1):

e Component Box (C Box) (Fig. 1(a)): a set of mutually exclusive basic
eventsmy, ... my (called state$ each one associated with either a set of ex-
ponentially distributed transition rates ; fromm; tom; (i # j, 1 < 4,5 < k)
or a fixed probabilityp; = Pr{m; = true}.

e Stochastic Dependency (SDEP) Gat e (Fig. 1(b)): a gate with events
e1,...e, asinputs, a basic event; belonging to a C-Box as output, a prop-
erty A = A; ; if A; ; is atransition rate frorm; to m; (with m; € c) orp = p; if
p; 1S the probability of occurrence of;, and a functionf (e, . ..e;,). The be-
havior of the gate is the following: given the configuratian. . . e,,, parameter
A (orp) is settof (e, ... en); we assume that Boolean valteue is mapped
to 1 and Boolean valuéal se is mapped ta@.

e External Action Event (EA) (Fig.1(c)): a special Boolean basic event
representing the occurrence of a specific external actigimpanfluence on the
behavior of the modeled system. EA events have no quanitdficéite. point

2We assume the reader familiar with the basic notions conagfilrand DFT.
30f coursem; can also be the special case of a standard Boolean basic event

probability or rate), since they represent events that lvays known to have
occurred or not. EA events are assumed to be mutually exelise. only one
can be set true at a given time instant).

e Control Action (CA) (Fig.1(d)): aspecial Boolean basic event represent-
ing the occurrence of a specific control action issued by yistes. CA events
have no quantification (i.e. point probability or rate),cgrthey represent events
that must be determined to occur or not. CA events are asstoriemutually
exclusive (i.e. only one can be set true at a given time itstan

e Sensor (Fig. 1(e)): a property attached to each event or C-Box ahdosa
valuea € [0,1];

The C-Box construct is aimed at modeling a system compankaving multiple be-
havioral modes: basic event; is true iff component is in modem,;. Exactly onem;
is true at a given instant, while all the others are false.ase¢ = 2, a C-Box can be
compactly represented as a standard basic event. In sude agbeenn the name of
the basic event, we can simply denote)gsthe transition rate fromn = false to
m = true (i.e. the failure rate) and as,, the viceversa (i.e. the repair rate).

SDEP gates model stochastic dependencies among differentse in particular
among system components and between system componentsvinahment. In par-
ticular, SDEP gates are aimed at modeling conditional chaiy the transition rates
(or the probability of occurrence) of a system component endd fact, it is trivial
to verify that SDEP generalizes every dynamic gate of a DT e Priority AND
(PAND) gate (see Fig. 2).

EA events are used in order to model actions that may haveirdkion the behav-
ior of the modeled system, and that are set externally todh&ral part of the modeled
system. On the other hand, if the system has a control pang sations can be chosen
by the system controller and set to occur (CA events). Therdifice is that, while
EA are “observed events”, CA are events that must be detedhiy the control part
of the system. We make the assumption that only one EA is setdor at a given
time instant and that only one CA can be determined at a gives point (see in the
following).

The Sensor property of events is aimed at modeling the pbgsdf gathering ob-
servations (evidence) on particular events through ssnfite« value is intended to
model the probability of reading the exact state of the C-8uoavent to whichx is con-
nected; for example, if a C-Box has states:y, . . . my, thena = Pr{sensor_of c =
mi|c = m;}; sincem; = \/;_, m;, we assume that for eagh# i, Pr{sensor_of _c =
mjlc =m;} = }C%‘f (i.e. if the sensor is wrong, there is an equal probabilityeaiding
one of the wrong values). Of course, a sensor property aith1, means that the cor-
responding event is directly observable (with no uncetydinvhile o = 0 means that
the corresponding event is “hidden” to any observationhilatter case the property
can be omitted.

4This value can be obtained by considering bothaheuracyof the corresponding sensor (defined as
the “ability of a measurement to match the actual value of thetifyebeing measured”) and the level of
discretization of the monitored parameter.

WsP

—]
[1
Main ‘ ‘ Spare L\S

OO

dormacy factor=a

As=Asn+oAs(1-m)

)\m‘

<
=
S

[Trigger (T) FDEP o

Ad=Ad(1-T)+1(T)

Dep where

uT)=0 if T=0;
(T)=ce ifT=1

[Trigger (T)

Figure 2: The Warm Spare gate (WSP) and the Functional Dependgte (FDEP)
[3]in form of SDEP gate.

3.1 Example of EDFT Modeling

In order to show the capabilities of the EDFT language, wesitlar an example which
is part of a more complex model which has been developed (dmchvis still under
development) as part of a study called VERIFINThe example concerns part of the
power management subsystem of an autonomous Mars rovein gadticular, some
simplified version of the possible faults and behaviors thay influence the absence
of power from rover’s battery. The EDFT of Fig. 3 captures fbkowing knowl-
edge about the problem. There is no power coming from thersobattery when
either the battery is permanently damaged or when it is cetalyl discharged (flat).
Battery damages may occur in case of exposition to eitherteveperature or under-
temperature, or because of a mechanical shock. The latesdmae prior probability
of occurrence, that is increased (of a 20% factor) if the rivexecuting a “Drilling”
action; over-temperature and under-temperature are dédoysine actual external tem-
perature (which is monitored through a sensor with a coreading95% of the time)
and by failures of the TCS component (Temperature Contrete®y) that may “fail
to keep warm” FKW or “fail to keep cold” FKC). Battery charge is discretized on 3

SVERIFIM is a study conducted by Thales/Alenia and Univgreit Piemonte Orientale, under the fund-
ing of ESA/ESTEC, TEC-SWE/09259/YY.

— HP=nin(1, 1.2Pms)

| mi
NCH
I Q!
S
| o Ai2 A23 21 A3z
| ow |21 f f2 3 4
I !
I Q!
I c!
I !
Ny
ol
|
|
Lo ___ 19950 Vop_H

Let a=NoPWRSA, b=MOD_S, ¢c=MOD_E, d=MOD_H
f1(a,b,c,d)=aldr+0.5adA\r+0.05(1-a)chr+0.1(1-a)b\r+0.8achr+0.08(1-a)\r
f2(a,b,c,d)=aldr+0.5ad\f+0.05(1-a)A\f+0.1(1-a)\i+0.8achi+0.08(1-a)A\f

O f3(a,b,c,d)=b(1-ayr+1.1c(1l-apur+1.2d(1-apr

09 f4(a,b,c,d)=b(1-ayr+1.1c(1-ajur+1.2d(1-aps

v
g
:‘ o

SA1l SA2

Figure 3: . EDFT for a Mars rover’s battery power management.

levels: OK (modem;), Reduced (modems) andFl at (modems). It is sensored
with a correct reading 0§9%. Battery charging occurs through power supply from
a solar array subsystem composed by a main solar &kayand a warm spare solar
array SA2. There is no power supphNOPWR_SA event true) when either the solar
array subsystem is in shadow or when both solar arrays alty.f&oth shadow and
power supply are monitored parameters. The charge of therpas affected by the
operational mode under which the rover is working, nanggndard(MOD_S), en-
ergy saving(MOD_E) or halt (MOD_H) mode. Basic discharge rates (from OK to
Reduced) and\; (from Reduced to Fl at) are supposed to be defined in standard
mode, with no power supply fror8As; in this situation no recharge is possible, so we
havelis = Ar; A2z = Af; Ad21 = Ag2 = 0. On the contrary recharge rates from mo
tom; (Reduced to OK) andy ; frommg to ms (FI at to Reduced) refer to powered
up battery in standard mode.

Discharge rates are reduced 2§% and by50% if the operational modes are
MOD_E andMOD_H respectively; they are reduced furtherd% in case of power sup-
ply form SAs. Recharge rates are increased &% and by20% in MOD_E andMOD_H
respectively. All these dependencies are representecI8DIEP gates in Fig. 3 having
the modes oBat t ery Char ge as output. Functiong;, fo model the reduction of
discharge rates; for exampfe(a, b, ¢, d) = 0.5\, if a = NoPWRSA = 1,b = MOD_S =
0,c = MOD.E = 0,d = MOD.H = 1, i.e. the rate fromOK to Reduced is reduced
by 50% when the rover is in “halt mode” with no power supply fr@As. Functions
f3, fa model the increment of the repair rates; for examfiléz, b, c,d) = 1.1p, if
a=0,b=0,c=1,d =0, i.e. the rate fronReduced to K is increased by 0%
when the rover is in “energy saving” mode and powere®hs.

4 A DDN Model for On-board FDIR

As introduced in Sec. 2, DDN models are good candidates fineading the innovative
FDIR issues mentioned in Sec. 1. For this reason, ARPHA assuparticular DDN
model as the operational model on which to implement the &/k®IR algorithm.
ARPHA is intended to provide FDIR capabilities to an autooosdevice, interacting
with an autonomy building block setting and executing a gipan. We assume the
following characterization of DDN nodes:

e Observable nodes nodePl an whose values are the possible actions the plan-
ner can execute: this node is assumed to be always set; idewsieRecover y
whose value are the possible recovery and control acti@autonomous device
can execute; a set &ensor Nodeepresenting possible measurements from the
devices sensors which in turn can be:

— Context Nodesepresenting contextual or environmental conditions,
— Finding Nodesepresenting monitored device parameters such as measure-
ments of specific system variables.

¢ Hidden Nodesrepresenting internal state conditions of the system fviie not
directly measurable. A subset of hidden nodes are identiiBiagnostic Nodes

Time: t Time: t=t+A

Recovery(t')

Recovery(t)

o H dden
State(t')

Hi dden
State(t)

Figure 4: The DDN scheme for ARPHA FDIR.

and represent variables target of the diagnostic processrfghe following).

The network high-level scheme of the DDN model used by ARPEIAHown in
Fig. 4; an actual instantiation of this scheme is shown in 6igThe scheme encodes
the following general assumptions: contextual informafitfluences system internal
state within the same time slice; both plan as well as regoaetions have influence
on the future system state (i.e. on system variables at tkietinee slice); system
state transition model is then determined by actions (phairecovery) and the current
staté; the utility function to be optimized, in order to choose test recovery action,
depends on the chosen action and the system state detefoyitieel action.

In the next sections we will discuss how a specific instandé®DDN scheme of
Fig. 4 can be obtained in the ARPHA architecture.

5 Designing ARPHA

The ARPHA architecture puts emphasis on the on-board soéte@pabilities; how-
ever, an off-board processing phase is necessary, in argeovide it with the inputs
and the operational model that it needs (Fig. 5).

5.1 Off-board process

The off-board process starts with a fault analysis phasedi constructing (by stan-
dard and well-known dependability analysis proceduresjsa diependability model
that we assume to be a DFT. Starting from this first analys&sD-T model is enriched

6This is the standard assumption about state transition in.MDP

10

OFF-BOARD
PROCESS

Dynamic
Bayesian Network

evidence
(Junction)«———"‘"PLAN
Tree [—=———SENSORS

Diagposis, Recolvery, Prognlosis evidence

utility functions———{ Dynamic
Decision Network .
Diagnostic Recovery Prognosis

indices actions measures ON-BOARD
PROCESS

knowledge on system capabilitie\

knowledge on failure impacts\ Extended Dynamic

Fault Tree

knowledge on plan actions—""

knowledge on recovery action: Dynamic
system analysis——» Fault Tree
knowledge on

environment conditions™~, Fault Analysis
FMEA/FMECA
knowledge on faults/ ()

Figure 5: ARPHA on-board reasoning process plus off-boandess.

with knowledge about more specific system capabilities aidreés, with particular at-
tention to the identification of multi-state components ahdtochastic dependencies
not captured at the DFT language level. The aim is to genamatEDFT represent-
ing all the needed knowledge about failure impacts. For @tenevents of the DFT
representing different modes of the same components anéfidd and “clustered” in
a C-Box, while specific stochastic dependencies amongrdiffeparts of the modeled
system are represented through SDEP gates. During thie ghath knowledge about
external actions (like plan actions) or control actionsefukto perform recovery) can
be incorporated into the EDFT model.

The EDFT produced can then be compiled into a DDN: the cortigilgprocess is
essentially based on the compilation of a DFT into a DBN (vehdstails can be found
in [8]), with the addition of the compilation of the SDEP gafthat can be mapped into
suitable conditional probability entries of the variabtesicerning inputs and output of
the gate), of external actions (that can be mapped into e pbde, assumed to be
always observed as evidence) and of control actions (tlmbeanapped into states of
the decision nodes). To complete the DDN, the analyst spedtiie utility function by
identifying the set of relevant variables, and by buildihg torresponding utility table
taking into account such variables and the control actisafiable. Fig. 6 shows the
DDN obtained from the EDFT of Fig. 3 TheA®YBAN tool [8] can be used in this
phase.

In ARPHA, the DDN analysis is actually performed by explogtiJunction Tree
(JT) inference. So, another role of the off-board procesbkasgeneration of the JT
from the DDN. In particular, we decided to adopt Murphy’sd&lgorithm for DBN
[9] as the core inference procedure. We transform the DDIdinbt during off-board
analysis, into a corresponding DBN by considering difféseziting of the control ac-
tions. In this way, since the inference procedures will bégumed on board, the JT
will be the operational model undergoing analysis by théoard process of ARPHA,
with diagnosis, recovery, and prognosis purposes.

11

Sensor s
(Finding or Context)

Pl an actions

@,

'e NoPWRSA_sens
> 0 >
9 NoPWRSA NoPWRSA#
Shadow 0
1]
Shad_sens Shad_sens#
'
BattCharge_sens .
3 0 ;a BattCharge_sens#
1
BattChargs. Ba el
0 1
-
Q “Mode# -
1 MNoPWRBatt
1
3
o)
! . CrerTempit
Ext teqy pi arTa
1 @ 1
e ExtTemp_sens#
mechShocks @

BattDamaged#
1

Drill#
1

Figure 6: DDN obtained from the EDFT of Fig. 3.

5.2 On-board process

The on-board process resort to JT as actual operationallpmedeiving evidence from

both sensors (for contextual as well as finding informatimg an autonomy building
block (for plan actions); it is intended to produce recowettions (to be translated into
autonomous control action commands), as well as diagnasticprognosis indices
(see Fig. 5). We refer to the following characterizationha EDIR process:

e Diagnosisat timet: a belief state on the set of diagnostic nodeat timet, i.e.
the posterior probability at timeof eachd € D given the evidence (froal an
andSensor Nodes) up to timet;

e Recovenat timet: choice of the “best” actiom from Recovery node at time
t, given the evidence up to tinte

e Prognosisat timet’ from time¢ < ¢': the belief state of seb at timet, given
the observations up to time

12

ARPHA

Junction Tlee model, long scale sensor data @
—
e <<Includes>>
AN sl Dikgosis Observations
9 Callection

System Context e - ’z?_l’n::I—ude>) | < <Includes>>
) Belief state data from p
= computation

<<Include>3> -

‘n__//___\ commands to execute

re-configuration

Recovery

Autonomy BB

<<Include>> | | <<Include>>

1
best recovery action Command
detection Ceneration
sanlidens } Future belief state
I e e e Prognosis J-----2
assessment
<<Include>>

Figure 7: The UML Use case diagram of ARPHA.

¢ Discretization stepthe time intervalA between two consecutive inferences;

e Mission Frame the time interval concerning the analysis, starting franirgtial
time instant,, ending in a time instartt; and discretized into intervals of width
A, i.e. MF = [to,to + A, ... ,tf — A,tf]

Itis worth noting that, among the possible recovery acttbese is also theo_r ecovery
action, meaning that no explicit recovery is needed. Funtoee, if prognosis is re-
quired fort’ > ¢t + A, itis assumed thato_r ecovery action will be selected from
t+Atot (i.e. the algorithm can predict the future state of the sysieven the current
best action and given that other explicit recovery actioitlsnet be performed).

The UML use case diagram in Fig. 7 represents the main fumatitees of ARPHA.
The actors that interact with ARPHA are the following:

e System Contexit represents memory area that contains data receivedseom
sors and configuration of system;

e AutonomyBB: it represents an autonomy building block dedicated to pheat
cution and plan generation.

ARPHA cyclically performs the following sequence of useesas

o Initialization: it periodically retrieves data necessary for on-boardaoamg.
More specifically, ARPHA periodically checks the currenssion time: if the
first day of the mission has just begun, then ARPHA loads thiaiwversion of
the on-board model from the System Context; if a new missiamé has just
begun, then ARPHA retrieves the long scale sensor dathfretil the System
Context. In particular, long scale sensor data are cordent® observations

13

(evidence) for the on-board model; then, observations espggated into the
on-board model.

Diagnosis sensor data and plan data are retrieved from the Systenexd@mtd
the Autonomy BB respectively. Then, both kinds of data arereded in form of
observations concerning the variables of the on-board medeh observations
are used to update the JT on-board model and inference isitegeby 1.5JT
propagation [9]. Inspection of the probabilities of thegtiastic variables can
provide the diagnosis at the current mission time.

Recoveryafter having incorporated the current evidence in therthatic phase,
for each available recovery action, the action itself igyagated into the JT on-
board model, and the expected utility of the action is comg@utThe action
(possibly theno_r ecover y action) with the maximum expected utility is then
determined; such action is converted into a command to bauge@ by the actu-
ator components managed by the Autonomy BB. So, the comnsashelivered
to the Autonomy BB for the execution.

Prognosis the time horizort’ for prognosis is determined and 1.5JT inference is
performed with a time step ak until ¢, by consideringho_r ecover y action
and plan information at each time step as evidence.

The operations performed inside each use case are remédsnthe UML state-
chart diagram in Fig. 8. The results of the execution of eaehoase are stored in a log

file.

5.3

ARPHA architecture

The architecture of ARPHA is composed by the following comgruts represented by
the UML class diagram in Fig. 9:

Main: it implements the main program capabilities and managestier com-
ponents;

ObservationGenerator it retrieves sensor data and plan data from the Sys-
tem.ContextManager and the AutonomBB_Manager respectively. It converts
both kinds of data into observations to be propagated ird@tiiboard model;

CommandGenerator it implements the conversion of recovery actions detected
by the Recovery phase, into commands executable by the AutpiBB;

JT_Configurator it implements propagation of observations and actiorestime
on-board model;

JT_Analyzer it computes the expected utility and gives the current durii
belief state;

Logger. it implements the logger capabilities;

14

"

Tiine Checlk:

do [check current time and day
exit / save current time and day

after n seconds { Idle

_rfno / wait for data from

> SEMSOrs

first day has begun

i Model Load) (

new day has begun

Mission Frame Init

rnn_ [get model from System ﬁo:.mx_!

day has not finished yet
madel loaded

entry [get long-scale data from System Context
do / convert data into observations, propagate observations into the on-board model

propagation completed

J
i<,

g ~
- e Diagnasis (" Model Analysis ™
[ServaLin Lo hection : entry / propagate data into the on-board model
Entry | get sensor data fram System Contextand plan data from Autonomy| 0ata conversion completed do | perform a guery on the on-board model
do [canvert data into observations
= - e N“_\Ew rformed
(~ Diagnoisis Log R YD
lag updated _ do [Tog analysis qmmc_ﬁQ
b oo
. S
el =
& Best JT init i : : Recovery [Model Analysis \
ﬁno [set the current JT as the best ane L action avaliable entry / propagate the action into the on-board madel
do f compute expected u
\uc_._m exit [compare current utility with best utility
L5
{ Action selection i current utility < best utility o N
ﬁn_o / select an available action L_ current utility > best util ity
¥ Best JT update A
I e e e dane ﬁno / set the current T as the best one; set the current action as the best one ;
f action execution B
entry / convert action into command command executed _uqmnocmé Lag
do [execute command on Autonomy do f log best actio
o
|I|I|I|I|I|I|III|I|III|
log updated
L5 9 -
-
i Model Analysis ™ Prognasis (" Prognosis Log \
do [perform a query of the on-board model, in the future | =» do [log analysis resu _ log updated
u query performed L

A

f ARPHA.

iagram o

The UML State-chart d

Figure 8

15

Sensor i <cactors> <<actor>> Actuator <<actor>> |=_ _ _ <<aclor>>
Sensors Set &< - - — o System_Context Actuator Set y_BB
< <US
[[sk i | [| L 5 |
| i
T i
System_Context_manager }
+poll_for_sensor_dataf) : string < <lUses =
+pall_for_long_scale_data() : string)] - ______ =
+execute{configuration : string} ..
+load_madel{} : string

Autonomy_BB_manager
+execute(command : string) : v..
,,,,,,,, +pall_for_plan_datal} : string
N

|
'

' 0

| | <<use>>
|

L

s <usex>
I

I
Observation_Generator

+generate_ohservation() . string i [ommand,ﬁerferalor. -
+convert_data_to_obs(data : string) i s +generate_command(action © string) © void|
+aenerate_long_scale_obs() © string +generate_configurationfaction : string) ...
T -
| s<usex> P —
Main

ARPHA +set_best_JT{: void

+check_date_time() - st.
+set_hest_action{} ' void

T <use >
<<use>>!
!

JT_Configurator
+propagate_obsi(stream : string) : void
+marginalize(} : void
+advance() . void T

% !
+propagate_action(action @ string) © void PEAN | <<uzas >
|

JT_Analyzer
+expected_utilitylaction : string) @ ..
+query(time - float) : string

.
- <uses >
| . ~, <<use Wi

<<usex> | S %
Junction Tree i ¥ >i i i‘—i tog ‘

Figure 9: The UML class diagram of ARPHA.

e SystemContextManager it implements functions dedicated to manage data
contained in System Context;

e AutonomyBB_Manager it implements functions dedicated to interface the Au-
tonomy BB.

The UML sequence diagram in Fig. 10 represents the cyclifopeance of the
sequence composed by the Initialization, Diagnosis, Regpand Prognosis use case.
The components involved in each use case and their intenadth order to realize the
use case, are shown still in form of UML sequence diagramign (Initialization),
Fig. 12 (Diagnosis), Fig. 13 (Recovery) and Fig. 14 (Progg)o3he Main component
participates to each use case and coordinates the otheoocemts.

6 Conclusions

We have presented the ARPHA formal architecture for on-d&®IR process for an
autonomous spacecraft. ARPHA aims at keeping as much sthadapossible the
fault analysis phase, by allowing reliability engineerdbtild their fault models using
an intuitive extension of the DFT language (the EDFT lang)algeing able to address
issues that are very important in the context of innovativéoard FDIR: multi-state
components with different fault modes, stochastic depecide among system compo-
nents, partial observability, system-environment uraeiinteractions. ARPHA trans-
forms the EDFT model into an equivalent DDN to be used as tlegatipnal model

16

ref initialization

ref diagnosis]

ref recovery 1

ref prognosis]

Figure 10: The main UML sequence diagram of ARPHA.

for the FDIR analysis task. On-board analysis exploits tlancTree inference, by
compiling the DDN into the JT structure to be actually useeboard; FDIR is then
implemented by resorting to standard JT propagation asateeprocedure for on-line
diagnosis, recovery and prognosis. The formal softwarbitaature of ARPHA has
then been presented through UML diagrams.

References

[1] Buchacker, K.: Modeling with extended fault trees. Imo€. IEEE Int. Symp. on
High Assurance System Engineering. IEEE Press, Albuqegikiv (2000)

[2] Codetta-Raiteri, D., Portinale, L.. ARPHA: an FDIR aiteltture for Au-
tonomous Spacecrafts based on Dynamic Probabilistic Gralpiodels. Tech.
Rep. TR-INF-2010-12-04-UNIPMN, Dip. di Informatica, Unidel Piemonte
Orientale, http://www.di.unipmn.it/?page=pubblicazipubid=131 (December
2010)

[3] Dugan, J.B., Bavuso, S., Boyd, M.: Dynamic fault-treeduals for fault-tolerant
computer systems. IEEE Transactions on Reliability 41363 (1992)

17

[4]

[5]

[6]

[7]

(8]

9]

(10]

[11]

(12]
(13]

(14]

Glover, W., Cross, J., Lucas, A., Stecki, C., Stecki, Jhe use of PHM for
autonomous unmanned systems. In: Proc. Conf. of the PHMe§o&ortland,
OR (2010)

Jensen, F., Nielsen, T.: Bayesian Networks and Decisdoaphs (2nd ed.).
Springer (2007)

Kai, Y.: Multistate fault tree analysis. Reliability §meering and System Safety
28(1), 1-7 (1990)

Koller, D., Friedman, N.: Probabilistic Graphical Mdde Principles and Tech-
nigues. MIT Press (2009)

Montani, S., Portinale, L., Bobbio, A., Codetta-RaitdD.: RADYBAN: a tool

for reliability analysis of dynamic fault trees through gersion into dynamic
bayesian networks. Reliability Engineering and Systenmet$a®3(7), 922—-932
(2008)

Murphy, K.: Dynamic Bayesian Networks: Representatimfierence and Learn-
ing. PhD Thesis, UC Berkley (2002)

Robinson, P., Shirley, M., Fletcher, D., Alena, R., Bawage, D., Lee, C.: Ap-
plying model-based reasoning to the FDIR of the command ata kiandling
subsystem of the ISS. In: Proc. iISAIRAS 2003. Nara, Japad3R0

Russell, S., Norvig, P.: Artificial Intelligence: a Meth Approach (3rd ed.).
Prentice Hall (2010)

Schneeweiss, W.G.: The Fault Tree Method. LiLoLe \g1(&999)

Schwabacher, M., Feather, M., Markosian, L.: Verificatand validation of ad-
vanced fault detection, isolation and recovery for a NASAcgpsystem. In: Proc.
Int. Symp. on Software Reliability Engineering. Seattléd {2008)

Zang, X., Sun, H., Wang, D., Trivedi, K.: A BDD-based atihm for analysis of
mulitstate systems with multistate components. IEEE Taatisns on Computers
52(12), 1608-1618 (2003)

18

System_
Context
mangger |

‘Observation_ Generator

JT_Configurator

o)

[first day has begu

2 load_moded()

]

i

4.1: poll_for |

leng_scale_dataf)

I
|
1. chedc_tirm:—_de{tc[]
|
[
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|

5 long_ s

le_sensor_data

—————————— >

i3 observation_stream|

6 propagate_obs[+bmrvation_stream]

J_ren erate_long scale ob*;[]

4.2 |convert_data to o t{e[}ong_scah_scnsar_data]

e

<

Figure 11: The UML sequence diagram of the Initializatios ase.

19

JT_Caonfigurator

JT_Analyzer

5: observation_stream

At B = M
_BB_man Contaxt_

o —— | |
)	

1: generate_obsenation()

| | B
_ | 1[1] poll_for_sensor_datai)
| i<
| | 2: sensor_data
| S i >
_ _ 1.2: poll_forl_plan_data()

_

|

| 3: plagi |data

IIIIIIII -+

oL 4

6! propagate_obs(observatign_stream)

7. manginalize()

|
|
|
I
I
81
|

quernyit)

Legger

4: con BnlmmalTlouﬂ.wn_._mo_.lumﬁ. U_L_._lnuau

a:

m |||||||||||||||||

x—

lief_state

{: log_operaticn{operat

o

¥

Figure 12: The UML sequence diagram of the Diagnosis use case

20

Logger

7 System_Context_manager

1: set_best_JT()
2 advance()

[for each pessible action]
3: propagate_action{action)

4: expected_utility(action)

| 5 uifity

[utility > max_ utility]

6 set_best JT{)
7 set_best_action()

[best_action <> "do nothing™]
8: generate_commandtest_action)

| 2 execute/command)

10: log_operation|operation) ﬂ _H__
| | gl

@ [best_action requires re-configuration]

11: generate_configuratiofibest_aclion)

VE 11.41: execute(configuratidn)
T

12: log_operationl operation)

Figure 13: The UML sequence diagram of the Recovery use case.
21

1: query{t+deita)

JT_Analyzer

2: belief_state

|J_-|< _________________________

3: log_operation{oparation)

Figure 14: The UML sequence diagram of the Prognosis use case

22

