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Cytosolic Ca2+ signals are organized in complex spatial and temporal patterns that
underlie their unique ability to regulate multiple cellular functions. Changes in
intracellular Ca2+ concentration ([Ca2+]i) are finely tuned by the concerted
interaction of membrane receptors and ion channels that introduce Ca2+ into the
cytosol, Ca2+-dependent sensors and effectors that translate the elevation in [Ca2+]i
into a biological output, and Ca2+-clearing mechanisms that return the [Ca2+]i to pre-
stimulation levels and prevent cytotoxic Ca2+ overload. The assortment of the Ca2+

handling machinery varies among different cell types to generate intracellular Ca2+

signals that are selectively tailored to subserve specific functions. The advent of novel
high-speed, 2D and 3D time-lapse imaging techniques, single-wavelength and
genetic Ca2+ indicators, as well as the development of novel genetic engineering
tools to manipulate single cells and whole animals, has shed novel light on the
regulation of cellular activity by the Ca2+ handlingmachinery. A symposiumorganized
within the framework of the 72nd Annual Meeting of the Italian Society of Physiology,
held in Bari on 14–16th September 2022, has recently addressed many of the
unexpected mechanisms whereby intracellular Ca2+ signalling regulates cellular
fate in healthy and disease states. Herein, we present a report of this symposium,
in which the following emerging topics were discussed: 1) Regulation of water
reabsorption in the kidney by lysosomal Ca2+ release through Transient Receptor
Potential Mucolipin 1 (TRPML1); 2) Endoplasmic reticulum-to-mitochondria Ca2+

transfer in Alzheimer’s disease-related astroglial dysfunction; 3) The non-canonical
role of TRPMelastatin 8 (TRPM8) as a Rap1A inhibitor in the definition of some cancer
hallmarks; and 4) Non-genetic optical stimulation of Ca2+ signals in the cardiovascular
system.
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1 Introduction

An increase in intracellular Ca2+ concentration ([Ca2+]i) can operate over a very wide
dynamic range to specifically regulate a multitude of cellular functions (Berridge et al., 2003).
Neurotransmitter release from presynaptic terminals, as well as insulin exocytosis from
pancreatic β-cells, occur within microseconds on the elevation in [Ca2+]i, while the
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intracellular Ca2+ oscillations that drive gene expression may last for
a few hours (Berridge et al., 2003; Clapham, 2007). An additional
mechanism that enriches the versatility of intracellular Ca2+

signalling is represented by the spatial location of the Ca2+

sources, which can be physically coupled to different Ca2+-
dependent decoders (Berridge et al., 2003; Bagur and Hajnoczky,
2017; Ong et al., 2019; Barak and Parekh, 2020). Environmental cues
generate a complex choreography of intracellular Ca2+ signals
(Berridge et al., 2003; Clapham, 2007), whose spatio-temporal
malleability enables one single ion messenger to control as many
different functions as fertilization (Moccia et al., 2006), cell cycle
(Lim et al., 2003) and proliferation (Faris et al., 2019; Faris et al.,
2022), migration (Fiorio Pla et al., 2012; Zuccolo et al., 2018b),
differentiation (Maione et al., 2022), contraction (Bers, 2008;
Landstrom et al., 2017), metabolism (Patella et al., 2015),
angiogenesis (Bernardini et al., 2019; Moccia et al., 2019b;
Scarpellino et al., 2020), vasculogenesis (Moccia et al., 2012;
Moccia et al., 2013; Zuccolo et al., 2018a), and, more recently,
neurovascular coupling (Negri et al., 2021c; Soda et al., 2023). The
multifaceted nature of intracellular Ca2+ signalling can be further
appreciated by recalling that, depending on the Ca2+ source and on
the Ca2+-dependent target, an increase in [Ca2+]i may induce
opposing cellular responses, e.g., proliferation (Faris et al., 2022)
and apoptosis (Astesana et al., 2021; Faris et al., 2023), vascular
smooth muscle cell contraction (Knot and Nelson, 1998) and
relaxation (Nelson et al., 1995), neuronal depolarization
(Menigoz et al., 2016) and hyperpolarization (Tiwari et al., 2018),
long-term potentiation (Ezra-Nevo et al., 2018; Soda et al., 2019;
Locatelli et al., 2021) and long-term depression (Hirano, 2013).
Dysregulation of the sophisticated machinery that orchestrates the
Ca2+ response to physiological signals can, therefore, trigger or
exacerbate a growing list of life-threatening disorders, such as
neurodegenerative (Lim et al., 2014; Lim et al., 2021a) and
cardiovascular (Venetucci et al., 2012; Moccia et al., 2019a)
disorders, severe combined immunodeficiency (SCID) (Vaeth
et al., 2020), and cancer (Moccia, 2018; Prevarskaya et al., 2018).

The Ca2+ response to environmental cues in non-excitable cells is
usually triggered by the phospholipase C-dependent production of
inositol-1,4-5-trisphosphate (InsP3), whichmobilizes Ca2+ fromwhat
is regarded the most abundant intracellular Ca2+ reservoir, namely,
the endoplasmic reticulum (ER) (Berridge et al., 2003; Clapham,
2007). InsP3 gates the ionotropic InsP3 receptors (InsP3Rs), which are
non-selective cation channel located on ER cisternae, in the presence
of a permissive concentration of ambient Ca2+ (Prole and Taylor,
2019). Repetitive events of InsP3-evoked Ca

2+ release may be spatially
confined to peripheral InsP3Rs, which are located in close proximity
to plasmalemmal Gq-Protein Coupled Receptors (GqPCRs) (Keebler
and Taylor, 2017; Thillaiappan et al., 2017), or can propagate as
regenerative Ca2+ waves through the mechanism of Ca2+-induced
Ca2+ release (CICR) (Bootman et al., 1997). Ryanodine receptors
(RyRs), which represent the main Ca2+-releasing channel in the
sarcoplasmic reticulum (SR) and may also be present in the ER,
support InsP3-evoked regenerative Ca2+ waves in some, but not all
(Moccia et al., 2019b), cell types (Santulli et al., 2018). Depletion of
the ER/SR Ca2+ content due to cyclic Ca2+ extrusion in the
extracellular milieu by plasma membrane Ca2+-ATPase or Na+/
Ca2+ exchanger (NCX) (Moccia et al., 2002; Berra-Romani et al.,
2023) is prevented by the activation of store-operated Ca2+ entry

(SOCE) (Lewis, 2020; Moccia et al., 2023). SOCE requires the
dynamic interplay between Stromal Interaction Molecules 1 and 2
(STIM1 and STIM2, respectively), which serve as sensor of ER Ca2+

concentration ([Ca2+]ER), and the Ca2+-selective channels, Orai1-3,
on the plasma membrane (Lewis, 2020; Moccia et al., 2023). In
excitable cells, membrane depolarization evoked by excitatory
synaptic transmission (Locatelli et al., 2021) or spontaneous
diastolic depolarization (Eisner et al., 2017) can lead to
extracellular Ca2+ entry through multiple types of voltage-operated
Ca2+ channels (VOCCs), which can be followed by CICR through
RyRs and/or InsP3Rs (Bading, 2013; Eisner et al., 2017). In both
excitable and non-excitable cells, extracellular Ca2+ entry is further
mediated by the Transient Receptor Potential (TRP) family of non-
selective cation channels, most of which are polymodal Ca2+-
permeable channels able to sense chemical, thermal and
mechanical signals and thereby execute the most appropriate
cellular response (Curcic et al., 2019; Vangeel and Voets, 2019;
Diver et al., 2022). The advent of novel high-speed, 2D and 3D
time-lapse imaging techniques, single-wavelength and genetic Ca2+

indicators, as well as the development of novel genetic engineering
tools to manipulate single cells and whole animals, has shed novel
light on the regulation of cellular activity by the Ca2+ handling
machinery (Lim et al., 2016a; Bagur and Hajnoczky, 2017; Tapella
et al., 2020; Berra-Romani et al., 2021; Leoni et al., 2021; Longden
et al., 2021; Marta et al., 2022). For instance, it has been recognized
that ER cisternae may establish dynamic contacts with other
intracellular organelles, such as mitochondria (Csordas et al.,
2010; Csordas et al., 2018; Bartok et al., 2019; Lim et al., 2021a;
Sanchez-Vazquez et al., 2023) and lysosomes (Kilpatrick et al., 2013;
Atakpa et al., 2018; Faris et al., 2022), to shape intracellular Ca2+

signals. The Ca2+-dependent inter-organellar communication
between ER and mitochondria has long been known to dictate
cellular fate (Loncke et al., 2021; Bonora et al., 2022). We now
know that, although both InsP3Rs in ER cisternae and mitochondria
in the cytosol are quite motile, they can establish temporary
interactions at mitochondria-associated ER membranes (MAMs)
to increase mitochondrial Ca2+ in an InsP3-dependent manner
and stimulate cellular bioenergetics (Gherardi et al., 2020; Katona
et al., 2022). However, stress conditions, such as those that can lead to
neurodegenerative disorders, can alter the distance between the ER
and mitochondria and, thereby, impair mitochondrial Ca2+ uptake
and cellular bioenergetics that contributes to cell dysfunction (Lim
et al., 2021a; Lim et al., 2023). An unexpected mode of Ca2+-
dependent inter-organellar communication has also been
described at the membrane contact sites between ER and
lysosomes (Kilpatrick et al., 2013; Ronco et al., 2015). Herein, the
second messenger nicotinic acid adenine dinucleotide phosphate
(NAADP), which can also be synthesized upon GqPCR or
tyrosine kinase receptor (TKR) activation, gates two pore channels
(TPCs) to mediate lysosomal Ca2+ release and prime ER-embedded
InsP3Rs for InsP3-dependent activation (Patel, 2015; Galione et al.,
2023). Lysosomal Ca2+ can also be mobilized by TRP Mucolipin 1
(TRPML1), which plays a crucial role in autophagic progression
(Medina et al., 2015; Di Paola et al., 2018). TRPML1-mediated Ca2+

signals were thought to be confined to the perilysosomal Ca2+ space
(Medina et al., 2015), but recent studies unexpectedly reported
TRPML1-induced global Ca2+ signals via the Ca2+-dependent
recruitment of RyRs and InsP3Rs (Kilpatrick et al., 2016; Thakore

Frontiers in Physiology frontiersin.org02

Moccia et al. 10.3389/fphys.2023.1210085

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1210085


et al., 2020). An additional dogma that has recently turn into a
signalling revolution regards the same operation mode of ion
channels. Channel proteins do more than simply conducting
biologically relevant ions (Montes de Oca Balderas, 2022). Indeed,
emerging evidence indicates that ion channels can signal in a flux-
independent mode, thereby widening their potential impact on cell
physiology (Borowiec et al., 2014; Vrenken et al., 2016; Chinigo et al.,
2020; Pressey andWoodin, 2021; Arcangeli et al., 2023). For instance,
the intracellular domains of some VOCCs, i.e., CaV1.2 (Gomez-
Ospina et al., 2006) and CaV2.1 (Kordasiewicz et al., 2006), as well as
some isoforms of the accessory CaVβ subunit (Hibino et al., 2003),
can translocate into the nucleus and induce Ca2+-independent gene
expression. Furthermore, some ionotropic receptors, such as
N-methyl-D-aspartate (NMDA) receptors (Montes de Oca
Balderas and Aguilera, 2015; Negri et al., 2021a) and type A γ-
aminobutyric acid (GABA) receptors (Negri et al., 2022b), can signal
an increase in [Ca2+]i in a flux-independent manner due to their
ability to interact with their corresponding metabotropic receptors.
Several members of the TRP superfamily can also function in a non-
canonical mode. For instance, TRP Melastatin type 7 (TRPM7)
channel promotes most of its effect thought the intrinsic kinase
activity that is located within its COOH-terminus (Desai et al., 2012;
Faouzi et al., 2017; Cai et al., 2018), whereas TRP Canonical type 1
(TRPC1) does not need to mediate Ca2+ to induce proliferation in
human umbilical cord vein endothelial cells (Abdullaev et al., 2008).
Finally, the versatility of the Ca2+ handling machinery has been
exploited to design alternative therapeutic avenues for many diseases
that are still waiting for an effective treatment. For instance, a light-
operated Ca2+ permeable channel (LOC) has been generated by
introducing plant-derived photosensory domain into a
cytoplasmic loop of the Orai1 channel (He et al., 2021).
Optogenetic intervention by this novel LOC proved effective to
suppress excessive hematopoietic stem cell self-renewal and to
alleviate neurodegeneration in a model of amyloidosis (He et al.,
2021).

A symposium organized within the framework of the 72nd
Annual Meeting of the Italian Society of Physiology, held in Bari
on 14–16th September 2022, has recently addressed many of the
unexpected mechanisms whereby intracellular Ca2+ signalling
regulates cellular fate in healthy and disease. The symposium,
named “Ca2+ signalling: unexpected new roles for the usual
suspect”, gathered together four renowned Italian
physiologists, who informed a numerous and very interested
audience about their novel findings regarding the following
topics: 1) the role of TRPML1 in Ca2+-mediated water
reabsorption in the kidney (Prof. Andrea Gerbino, University
of Bari Aldo Moro); 2) the modulation of the ER-mitochondria
distance to fuel cellular metabolism in astrocytes and prevent
neurodegeneration in Alzheimer’s disease (Prof. Dmitry Lim,
University of Piemonte Orientale, Novara); 3) the non-canonical
role of TRP Melastatin 8 (TRPM8) in the definition of some
cancer hallmarks (Prof. Alessandra Fiorio Pla, University of
Turin); and 4) the use of novel light-sensitive organic
actuators to stimulate angiogenesis and control cardiac cells
pacing (Prof. Francesco Lodola, University of Milan-Bicocca).
Herein, we present a full report of the symposium and discuss the
implications for the Ca2+ signalling field of the novel findings that
were presented during each lecture.

2 TRPML1 and aquaporin 2: the secret
liaison mediated by lysosomal Ca2+

Lysosomes are multifunctional organelles: apart from well-
defined digestive tasks (Xu and Ren, 2015), lysosomes act as a
regulatory hub integrating multiple cues to modulate a wide
spectrum of intracellular signaling pathways (Ballabio, 2016).
Lysosomal vesicles are emerging as a novel Ca2+ reservoir that
can finely modulate cellular fate through local or global Ca2+

signals (Patel and Cai, 2015; Galione, 2019; Galione et al., 2023).
Throughout the whole process, lysosomes can freely diffuse and
deliver/reuptake Ca2+ in the close proximity of target organelles such
as ER, mitochondria and secretory vesicles. Understanding how
lysosomes establish the Ca2+-dependent cross-talk with surrounding
organelles that orchestrate the Ca2+ response to physiological cues is
crucial to appreciate how defective lysosomal Ca2+ signalling
underpins life-threatening diseases, such as cancer (Faris et al.,
2018), viral infections (Moccia et al., 2021a), hypertension (Negri
et al., 2021b) and arrhythmias (Negri et al., 2021b), and lysosomal
storage disorders (Kiselyov et al., 2010; Lloyd-Evans et al., 2010;
Morgan et al., 2011).

The lysosomal matrix is strongly acidic with a pH of around
4.6 originated by the continuous activity of a vesicular H+-proton
pump ATPase (V-ATPase) (Xu and Ren, 2015). Lysosomes can
actively accumulate large amount of free Ca2+ (0.5 mM) through a
mechanism that is still highly debated (Yang et al., 2019). Refilling
with the Ca2+ of the lysosomal matrix could be driven either by a
putative H+/Ca2+ exchanger in a pH-dependent manner
(Christensen et al., 2002; Ronco et al., 2015; Melchionda et al.,
2016) or by extracellular Ca2+ entry through endocytosis or SOCE
(Gerasimenko et al., 1998; Sbano et al., 2017). Lysosomal Ca2+ can be
released into the cytosol through TPCs (Patel, 2015), of which two
isoforms exist in mammals (i.e., TPC1 and TPC2), and TRPML1
(Faris et al., 2018). TPCs are gated by NAADP, which can be
produced upon GqPCR or TKR activation on the plasma
membrane, and phosphatidylinositol-3, 5-bisphosphate (PIP2)
(Patel, 2015; Galione et al., 2023). Intriguingly, planar lysosomal
patch-clamp recording showed that NAADP evoked TPC2-
mediated currents that were equally mediated by Na+ and Ca2+,
while those gated by PIP2 were relatively Na

+-selective (Gerndt et al.,
2020). TPCs can be located at membrane contact sites (MCSs)
between lysosomes and ER (Kilpatrick et al., 2017; Faris et al., 2022),
where they are physiologically activated by NAADP to release
lysosomal Ca2+ and evoke global Ca2+ signals via Ca2+-induced
Ca2+ release through InsP3Rs and/or ryanodine receptors (Patel,
2015; Galione et al., 2023). According to the “trigger-hypothesis”
(Galione, 2019; Galione et al., 2023), the InsP3-induced Ca2+

response to a plethora of extracellular stimuli, including
glutamate (Foster et al., 2018; Zuccolo et al., 2019), acetylcholine
(Aley et al., 2013), foetal bovine serum (Faris et al., 2019), and
vascular endothelial growth factor (VEGF) (Moccia et al., 2021b), is
initiated by the NAADP-sensitive lysosomal TPCs. TRPML1 is a
non-selective cation permeable channel that mediates lysosomal
Ca2+, Fe2+, and Zn2+ release into the cytosol in response by either
endogenous agonists, such as phosphatidylinositol 3,5-bisphosphate
[PI(3,5)P2] (Gan et al., 2022) and reactive oxygen species (ROS)
(Zhang et al., 2016) or synthetic ligands, such as ML-SA1 (Kilpatrick
et al., 2016). TRPML1 usually mediates local events of Ca2+ release
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that stimulate autophagy by inducing the nuclear translocation of
the Ca2+-sensitive transcription factor, TFEB (Medina et al., 2015; Di
Paola et al., 2018). Furthermore, TRPML1-induced local Ca2+ release
modulates additional lysosomal functions, including lysosomal
exocytosis, membrane trafficking and biogenesis (Di Paola et al.,
2018; Medina, 2021). Recent evidence, however, showed that local
lysosomal Ca2+ release through TRPML1 can also lead to global
elevations in [Ca2+]i via CICR through InsP3Rs (Kilpatrick et al.,
2016) or RyRs (Thakore et al., 2020). The Ca2+-dependent crosstalk
between TRPML1 and ER/SR-resident Ca2+-permeable channels is,
however, seemingly looser as compared to TPCs. In agreement with
this evidence, a recent investigation showed that local Ca2+ release
events through TRPML1 control water homeostasis in the renal
collecting duct (CD, Figure 1) (Scorza et al., 2023).

Facultative water reabsorption in CD cells is finely tuned by a
plethora of intracellular signaling mediators and transcription
factors (Knepper et al., 2015). Antidiuresis is activated upon the
release of the antidiuretic hormone (ADH) by the posterior pituitary
gland. Specific binding of ADH with the vasopressin type 2 receptor
(V2R), which is localized in principal cells of the CD, stimulates the
cAMP/protein kinase A (PKA) axis leading to the apical fusion of
the water channel aquaporin 2 (AQP2)-harboring vesicles (Zhao
et al., 2023). The rapid apical accumulation of AQP2 boosts water
permeability that, in the presence of the strong osmotic gradient in
the kidney medulla, is responsible for water reabsorption in the
interstitium. The ADH-dependent increase in [Ca2+]i is likewise
important to enable the proper fusion of AQP2 vesicles with the
plasma membrane. Therefore, it does not come as a surprise that
Ca2+ signaling events can independently influence AQP2 expression

and translocation even in the absence of cAMP-mediated cues
(Chou et al., 2000; Procino et al., 2015; Mamenko et al., 2016;
Tomilin et al., 2019). For instance, the antidiabetic drug
rosiglitazone facilitates AQP2 apical accumulation and water
reabsorption by inducing massive Ca2+ influx upon the specific
activation of Transient Receptor Potential Vanilloid 6 (TRPV6)
channel (Procino et al., 2015). In addition, a wide variety of TRP
channels have been reported in CD cells and CD-derived cultures
(Woudenberg-Vrenken et al., 2009). The activation of these
channels orchestrates Ca2+ responses that are mainly driven by
remarkable Ca2+ influx often associated with additional Ca2+

release from the ER. These robust Ca2+ signals can rapidly invade
the bulk of the cytosol thus engaging a number of Ca2+-dependent
molecular effectors localized throughout the cell. Conversely, only
scarce information is currently available regarding the role of local
Ca2+ signals in AQP2-mediated water homeostasis. A recent
investigation provided the first evaluation of lysosomal Ca2+

signaling events in renal CD cells, which were evoked by either
blocking the vacuolar H-ATPase (V-ATPase) with bafilomycin
A1 to deplete the lysosomal Ca2+ pool (Morgan et al., 2015) or
activating TRPML1 with the synthetic agonist ML-SA1 (Kilpatrick
et al., 2016) (Figure 1). In CD cells, both lysosomal agonists induced
robust and long-lasting cytosolic Ca2+ oscillations sustained by tonic
ER Ca2+ release through InsP3Rs but not directly associated to
lysosomal Ca2+-triggered CICR (Scorza et al., 2023), as widely
reported for TPCs (Macgregor et al., 2007; Brailoiu et al., 2009;
Kilpatrick et al., 2013; Faris et al., 2019; Moccia et al., 2021b; Faris
et al., 2022). This finding strongly suggests that InsP3-mediated ER
Ca2+ release drives lysosomal Ca2+ refilling in CD cells. ML-SA1 and

FIGURE 1
Schematic diagram showing the effect of TRPML1 activation on AQP2-mediated water reabsorption in mouse renal collecting duct cells. ML-SA1
triggers TRPML1-dependent local Ca2+ events that are sustained by the endoplasmic reticulum (ER) Ca2+ content. Activation of theCa2+/calcineurin/NFAT
pathway determines depolymerization of the actin cytoskeleton, thus leading to accumulation of AQP2 at the apical plasma membrane and enhancing
water membrane permeability. The putative role of lysosomal Ca2+ signaling events as switch for changes in AQP2 expression level through the
modulation of the transcriptional activity of NFAT needs further investigation (question mark). Created with BioRender.com (agreement number:
FY259UYCKW).
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bafilomycin A1 differentially modulated AQP2 translocation to the
apical membrane and actin polymerization in the cytosol, since only
ML-SA1 specifically elicited submaximal water reabsorption in
collecting duct cells (Scorza et al., 2023) (Figure 1). Even though
ML-SA1 increased water permeability to the same extent as
submaximal doses of the cAMP increasing agents forskolin and
IBMX, TRPML1 activation was unable to switch on the cAMP/PKA
pathway. Currently, the cytosolic Ca2+ effectors translating
TRPML1-mediated Ca2+ release into an increase in AQP2-
containining vesicle translocation to the apical membrane remain
to be deciphered. However, TRPML1-dependent
AQP2 translocation and actin depolymerization were inhibited
by blocking the Ca2+-dependent phosphatase calcineurin (CaN)
with cyclosporine A (Scorza et al., 2023). Intriguingly, CaN is
selectively engaged by TRPML1-mediated lysosomal Ca2+ release
to drive the nuclear translocation of TFEB (Medina et al., 2015), the
master regulator of lysosomal function and autophagy (Di Paola
et al., 2018; Medina, 2021) (Figure 1). CaN activation tightly bridges
lysosomal Ca2+ signaling events and water reabsorption by directly
dephosphorylating cytoskeletal organizing proteins (cofilin, WAVE-
1 and synaptopodin) or eliciting long-lasting transcriptional effects
mediated by NFAT (Descazeaud et al., 2012). Therefore, it is
reasonable to assume that TRPML1 can regulate water balance
by influencing the polymerization state of the actin cytoskeleton
thus facilitating the fusion of AQP2-harboring vesicles with the
apical plasma membrane (Figure 1). Noteworthy, TRPML1 induced
Ca2+ events have been associated with fusion of gastric tubulovesicles
carrying the H+/K+-ATPase that pumps H+ into the gastric lumen
(Sahoo et al., 2017).

3 Ca2+ handling at the mitochondria-ER
contact sites: role in Alzheimer’s
disease-related astroglial dysfunction
and beyond

Mitochondrial enzymes and F0F1 ATP synthase require Ca2+ for
activation and maintenance of bioenergetic activity and production
of ATP. Mitochondria uptake Ca2+ with a high affinity directly from
juxtaposed InsP3Rs located in mitochondria-associated ER
membranes (MAMs) (Rizzuto et al., 1993). The morpho-
functional complex that holds together interacting ER and
mitochondria is referred to as mitochondria-ER contact sites
(MERCS) (Herrera-Cruz and Simmen, 2017). Ca2+ transfer at
MERCS occurs through a complex composed of InsP3Rs, voltage-
dependent anion channel 1 (VDAC1) and the associated protein
Grp75, and then, into mitochondrial matrix, via a low affinity
mitochondrial Ca2+ uniporter. Besides Ca2+ fluxes, MERCS are
responsible for a number of key cellular processes, such as lipid
and steroid biogenesis, mitochondrial fission and dynamics,
autophagosome formation, apoptosis induction, and others
(Barazzuol et al., 2021). Disruption of MERCS has been observed
in several neurodegenerative diseases, including Parkinson’s disease,
amyotrophic lateral sclerosis and Alzheimer’s disease (AD)
(Paillusson et al., 2016; Area-Gomez and Schon, 2017; Lim et al.,
2021a; Leal and Martins, 2021). In AD, a strengthening of the
interaction between ER and mitochondria has been found in human
brains and in animal and cellular AD models (Lim et al., 2021a).

Although such increase has been associated with mitochondrial
dysfunction and with aberrant processing of amyloid precursor
protein (APP), mechanistic aspects MERCS alterations and
cause-effect relationships with AD-related cellular pathology
remain poorly understood (Lim et al., 2021a; Lim et al., 2023).

AD, a major, yet uncurable, age-related neurological disorder,
has a long-lasting pathogenesis with poorly characterized preclinical
and prodromal phases. Cellular dysfunctions, such as alterations of
protein synthesis and degradation with associated accumulation of
misfolded/aggregated proteins, mitochondrial dysfunction with
concomitant bioenergetic deficit and oxidative stress, and
derangement of Ca2+ homeostasis and signalling, represent early
signs of AD pathology (De Strooper and Karran, 2016). Yet, these
dysfunctions have mainly been studied and interpreted from the
point of view of neuronal pathology, while alterations in glial cells,
specifically in astrocytes, have been largely overlooked (Verkhratsky
et al., 2019; Merlo et al., 2021). Astrocytes are homeostatic and
supportive cells in the central nervous system (CNS), which warrant
correct development, function and adaptation of neurons and other
cells in the CNS to activity and stress (Verkhratsky and Nedergaard,
2016; Santello et al., 2019; Tapella et al., 2020). They participate in
formation of morpho-functional units in the brain, such as blood-
brain barrier (BBB) and neurovascular unit (Schaeffer and Iadecola,
2021), and are responsible for metabolic, structural and functional
support to neurons. In AD pathogenesis, astrocytes undergo
complex biphasic alterations, first becoming asthenic and
atrophic, to turn to hypertrophy and reactivity at later AD stages
in concomitance with the development of senile plaques and
neurofibrillary tangles accompanied by remodelling of astrocytic
Ca2+ signalling (Lim et al., 2014; Lim et al., 2016b; Verkhratsky et al.,
2019). Reactive astrocytes, in association with microglial cells,
participate in the development of neuroinflammatory reaction.
During these transformations, astrocytes lose their homeostatic
and defensive functions and leave neurons to suffer damage, lose
synaptic connectivity and die. Little is known about astrocytic cell
pathology during early AD pathogenesis.

Unexpectedly, recent findings suggest that the alterations of
MERCS and ER-mitochondrial Ca2+ transport may be
responsible for a number of cellular dysfunctions, which may
explain the loss of homeostatic function by AD astrocytes. These
studies took advantage of a novel model of immortalized
hippocampal astrocytes from 3xTg mouse model of AD, which
faithfully reproduce transcriptional and functional alterations of
primary AD astrocytes (Ruffinatti et al., 2018; Rocchio et al.,
2019). Moreover, their produce and release β-amyloid peptide
and have impaired autophagic and proteasomal protein
degradation, which are signs of early cellular dysfunction in
AD (Gong et al., 2023). Immortalized WT and 3xTg-AD
astrocytes, referred to as WT-iAstro and 3Tg-iAstro, represent
versatile and easy-to-handle astrocytic AD model, well suited for
comprehensive investigation from single cell imaging and
transfection to omics analyses and sub-cellular fractionation
requiring large amount of material (Tapella et al., 2023). First,
it was assessed whether 3Tg-iAstro present mitochondrial
alterations characteristic for AD cells. 3Tg-iAstro cells have a
lower basal mitochondrial respiration and severely impaired
respiratory reserve, significantly lower mitochondrial ATP
production and significantly higher mitochondrial ROS.
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Glycolytic activity was also impaired in 3Tg-iAstro compared
with WT-iAstro cells. This was in line with recent reports on AD-
derived human iPSC-differentiated astrocytes (Oksanen et al.,
2017; Oksanen et al., 2019). Proteomics analysis on isolated
mitochondria and associated ER membranes were also
conducted. Surprisingly, differentially expressed proteins were
found to be mainly responsible for ER functions and ribosomal
proteins synthesis (Dematteis et al., 2020). Validation of these
results showed that 3Tg-iAstro cells presented a lower rate of
basal protein synthesis and low-grade chronic ER stress
accompanied by an increased phosphorylation of eukaryotic
initiation factor 2α (p-eIF2α). Gong et al. (2023) found that
proteasomal and autophagic activities are impaired in 3Tg-iAstro
cells. Moreover, 3Tg-iAstro, but not WT-iAstro cells, were
unable to promote the formation of the bidimensional tubular
network, which is the in vitro surrogate of in vivo blood vessel
formation (Balbi et al., 2019; Balducci et al., 2021), in an in vitro
astrocyte/pericyte/endothelial 3D co-culture due to a loss of
secreted factors, thereby suggesting the impairment of key
homeostatic functions (Tapella et al., 2022). These alterations
were also found in hippocampus of 3xTg-AD mice in vivo
(Tapella et al., 2022).

Next, it was investigated if 3Tg-iAstro presented alterations
of Ca2+ homeostasis (Lim et al., 2021b). A significant increase of
steady-state ER Ca2+ level and higher ATP-induced Ca2+ signals
in the cytosolic compartment, indicating a higher Ca2+ ER load
and higher InsP3R-mediated Ca2+ release, were reported. This
was in accord with previous reports (Grolla et al., 2013a; Grolla
et al., 2013b; Lim et al., 2013; Ronco et al., 2014). However,
unexpectedly, ATP-induced Ca2+ transients, measured in
mitochondrial matrix, were significantly lower in 3Tg-iAstro
compared with WT-iAstro cells, indicating on the alterations
with ER-mitochondrial Ca2+ transport. This was in line with the
increased ER-mitochondrial interaction at a distance of 8–10 nm,
which we have demonstrated using a split-GFP ER-
mitochondrial contact site sensor (SPLICS) (Cieri et al., 2018;
Dematteis et al., 2020). To investigate if the increased ER-
mitochondrial interaction and the impaired mitochondrial
Ca2+ signals were responsible for alterations of cellular
proteostasis, an artificial linker that fixes the ER and the outer
mitochondrial membrane at a short distance of about 10 nm was
overexpressed in WT-iAstro cells, thereby reproducing MERCS
and Ca2+ alterations found in 3Tg-iAstro cells. Strikingly, fixing
MERCS at 10 nm reproduced the impairment of ribosomal
protein synthesis and increased p-eIF2α levels. Moreover, as
reported for 3Tg-iAstro cells, WT-iAstro cells overexpressing
10 nm linker were unable to support tubulogenesis in vitro in 3D
co-culture with pericytes and endothelial cells (Tapella et al.,
2022).

Taken together, these results provide proof of principle that the
shortening of ER-mitochondrial distance, observed in AD, may be
causative for a number of cellular AD-related alterations.
Furthermore, our results suggest that the altered MERCS
function in AD astrocytes may result in impairment of CNS
homeostasis, BBB and neuronal dysfunction (Figure 2). Further
experiments are necessary to elucidate molecular mechanisms of
MERCS dysfunction and dissect the role of impaired ER-
mitochondrial Ca2+ transfer in AD pathogenesis.

4 Non-canonical role of TRP Melastatin
8 (TRPM8) in the definition of some
cancer hallmark

TRPM8 is a member of the TRP family primarily known for its
classical cold receptor function in sensory neurons required for cold
thermal transduction and response as well as pain sensation in
mammals (McKemy et al., 2002; Madrid et al., 2006; Dhaka et al.,
2008; Knowlton et al., 2013). The first identified “full-length”
isoform of TRPM8 consists of a homotetrameric protein of
1,104 amino acid (128 kDa) organized into six hydrophobic
transmembrane α-helices (S1-S6) with a transmembrane loop
between S5 and S6, and cytosolic tetrameric coiled-coil COOH-
terminal domain (C-term) and a large hydrophilic NH2-terminal
domain (N-term) containing ‘TRPM homology regions’ (MHR)
involved in channel assembly and trafficking (Kraft and Harteneck,
2005; Fujiwara and Minor, 2008; Yin et al., 2018). The voltage
sensor-like domain (VSLD) is defined by the first 4 TM helices (S1-
S4) and also contains the binding sites for menthol and icilin at the
cavity formed with the TRP domain (Bandell et al., 2006; Yin et al.,
2019). The pore module of TRPM8 is, instead, formed by the last
2 TM helices (S5-S6) and it is characterized by a highly conserved
hydrophobic region and a conserved aspartate residue, responsible
for ion selectivity (PCa/PNa = 3.3) (Zholos et al., 2011). Interestingly,
this full length TRPM8 is mainly localized in the plasma membrane
but is also partly present at the ER level where it functions by
releasing Ca2+ form the store (Chinigo et al., 2022).

Beside this well know role in thermal transduction, the human
TRPM8 gene was first identified and cloned from prostate tissues
and described as a new prostate-specific gene due to the peculiar
expression pattern shown during prostate cancer (PCa) progression
(Tsavaler et al., 2001). In particular, TRPM8 is upregulated in benign
hyperplasia (BPH) and during the early androgen-dependent stages
of PCa, and then downregulated in the more advanced androgen-
independent metastatic stages of the tumor. Consistent with its
unique deregulation during PCa progression, alterations in
TRPM8 channel activity have been linked to several cancer
hallmarks, including tumor cell proliferation and survival, cell
migration, and angiogenesis (Alaimo et al., 2020; Grolez et al., 2022).

However, the impact of TRPM8 in the development and
progression of PCa is subject to complex modulation
mechanisms that also underlie the expression of different
isoforms with distinct subcellular localization and activity
depending on tumor stage and androgen sensitivity. Indeed, the
expression of the full-length isoform of TRPM8 located on the
plasma membrane (TRPM8PM) is highly subject to androgen
regulation and thus is significantly downregulated in androgen
deprivation and androgen receptor (AR) loss during the late
androgen-independent phase of PCa (Zhang and Barritt, 2004;
Bidaux et al., 2005; Grolez et al., 2019). This regulation occurs
through both genomic and non-genomic mechanisms involving the
AR (Figure 3) (Bidaux et al., 2005; Grolez et al., 2019). As regarding
in particular the non-genomic action, the role of AR-TRPM8
interaction is tightly regulated by testosterone in a dose-
dependent manner: low doses of testosterone (10 nM) are
associated with AR-TRPM8 localization at the level of lipid rafts
and a significant inhibition of TRPM8 activity which in turn lead to
an increase in cell motility as compared with the absence of
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FIGURE 2
Proposed scheme relationships between AD-related mutations, mitochondrial-ER interaction, mitochondrial and ER Ca2+ signaling, and cellular
dysfunctions in astrocytes. Altered ER-mitochondrial interaction impairs ER-mitochondrial Ca2+ transfer, resulting in mitochondrial bioenergetic deficit
and increased production of ROS, induction of a low-grade chronic ER stress and derangement of proteins synthesis and degradation. Cellular
dysproteostasis results in an impaired secretion of factors including adhesion molecules, components of extracellular matrix, pro-neurogenic and
neuroprotective molecules. Altogether, this impairs homeostatic and signaling activity of AD astrocytes eventually leading to impairment of synaptic
functions, blood-brain barrier integrity and to development of neurodegeneration.

FIGURE 3
Schematic representation of TRPM8 subcellular localization and activity in cancer cells. TRPM8 Full length isoform localizes at the plasma
membrane and is subjected to androgen regulation. Smaller isoforms typically localize in the ER andmediate Ca2+ release in the cytosol or Ca2+ transfer in
the mitochondria. TRPM8 also act independently from its channel activity as an inhibitor of the small GTPase Rap1A thus inhibiting cell adhesion and
migration. Created with BioRender.com (agreement number: AT259UYHZ3).
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testosterone; on the other hand, high doses of testosterone (100 nM)
lead to a decrease of TRPM8-AR interaction thus reverting the
inhibitory effect of AR on TRPM8 activity (Grolez et al., 2019). This
loss of interaction and delocalization of TRPM8 outside of lipid rafts,
significantly increases prostate cancer cell motility (Grolez et al.,
2019).

Beside the role of the full-length TRPM, during the transition
from androgen-dependent to androgen-independent phases of PCa,
through an alternative splicing mechanism, the “full-length” isoform
of TRPM8 gives way to a shorter isoform with typical ER
localization, known as TRPM8ER (Bidaux et al., 2007). The
TRPM8ER isoform, being able to directly release ER Ca2+ and
thereby activate SOCE on the plasma membrane, is mainly
involved in the control of Ca2+-dependent pro-apoptotic
mechanisms (Figure 3) (Thebault et al., 2005; Prevarskaya et al.,
2007). Interestingly, the pro-apoptotic role of TRPM8 has also been
confirmed in PCa cells treated with sub-lethal doses of radio,
hormonal, or chemo therapies (Alaimo et al., 2020; Genovesi
et al., 2022). Furthermore, other isoforms of the channel have
been identified to date in the prostate. A functional TRPM8ER
characterized by only 4 rather than 7 transmembrane domains
(TMDs) has been identified and characterized as a mediator of
the Ca2+ transfer from the ER to the mitochondria in PCa epithelial
cells (Figure 2) (Bidaux et al., 2018), while short non-channel
TRPM8 isoforms (sM8s) with ubiquitous cytosolic localization in
PCa were found to exert antagonist functions towards the full-length
isoform (Peng et al., 2015; Bidaux et al., 2016). sM8s are a first
example of non-channel function of TRPM8 that influences cell
behavior independently of pore function and Ca2+ mobilization
(Fernandez et al., 2012). Therefore, the growth of primary PCa as
a result of the equilibrium between proliferation and apoptosis may
depend on the relative expression levels of the different
TRPM8 isoforms with channel and non-channel functioning.

In addition, TRPM8 regulates cell migration through both Ca2+-
dependent and Ca2+-independent mechanisms. TRPM8-mediated
Ca2+ signals induce an increase in the expression and activity of
some proteins that are crucial in the epithelial-to-mesenchymal
transition (EMT), in focal adhesion dynamics and consequently
in the control of cell adhesion and migration (Noren et al., 2000;
Millar et al., 2017). In particular, Cdc42, Rac1, ERK, and FAK are
stimulated in a Ca2+-dependent manner by TRPM8 activity in PCa
cells (Yang et al., 2009; Zhu et al., 2011; Wang et al., 2012; Grolez
et al., 2022). On the other hand, the involvement of TRPM8 in the
migratory machinery goes beyond its channel function. Indeed, a
novel facet of TRPM8 as an inhibitor of the small GTPase Rap1A
that is completely independent of its cation channel activity has
recently been unveiled (Figure 3) (Genova et al., 2017; Chinigo et al.,
2022). More specifically, a direct physical interaction between
TRPM8 and Rap1A has been characterized in both PCa-derived
endothelial cells and epithelial PCa cells (Genova et al., 2017;
Chinigo et al., 2022). The interaction site is located on the NH2-
terminus of the channel and involves the glutamate 207 and the
tyrosine 240, which directly interact with some residues (including
tyrosine 32) located within the switch I region of Rap1A, responsible
for the transition from the inactive to the active form of the small
GTPase (Chinigo et al., 2022). Indeed, Rap1A, as a small GTPase, co-
exists in two different forms: an active formwhen bound to GTP and
an inactive form when bound to the GDP (Vetter and Wittinghofer,

2001). Specific guanine exchange factors (GEFs) catalyze the
exchange between GDP and GTP thereby inducing small GTPase
activation, which normally results in the promotion of cell adhesion
through the activation of the β1-integrin signaling at the plasma
membrane (Chrzanowska-Wodnicka et al., 2008; Boettner and Van
Aelst, 2009; Carmona et al., 2009; Cherfils and Zeghouf, 2013).
Recent work demonstrated that TRPM8 intracellularly binds Rap1A
mainly at the ER in its inactive form, thus hindering its translocation
to the plasma membrane and its subsequent activation (Genova
et al., 2017; Chinigo et al., 2022). This mechanism results in the
inhibition of cell adhesion and migration in PCa-derived endothelial
cells and in epithelial PCa cells, thus making TRPM8 an appealing
candidate to block both tumor invasiveness and angiogenesis
(Genova et al., 2017; Chinigo et al., 2022). Although
TRPM8 expression is sufficient to exert these functional effects,
stimulation with TRPM8 agonists, such as icilin and WS12, further
potentiates these effects not only by recruiting Ca2+-dependent
pathways, such as Cdc42, Rac1, ERK, and FAK, but also by
probably promoting TRPM8-Rap1 interaction. This could be
explained by global conformational rearrangements triggered by
agonist binding in the TRPM8 TMDs that are propagated to the
cytosolic domain where interaction with Rap1A occurs (Yin et al.,
2018; Yin et al., 2019). Rap1A is not the only GTPase involved in the
TRPM8 interactome. Indeed, TRPM8 was found to interact with the
inactive form of the G-protein subunit Gαq, which leads to the
inhibition of TRPM8 gating and, in turn, may be subject to TRPM8-
mediated metabotropic regulation (Klasen et al., 2012; Zhang et al.,
2012). These data fit into the broader context of a bidirectional close
interplay between TRP channels and small GTPases at all stages of
the metastatic cascade through both Ca2+-dependent and Ca2+-
independent pathways (Chinigo et al., 2020).

All these recent mechanistic findings on TRPM8 provide new
insights for the development of innovative and effective tools
targeting TRPM8 to block PCa progression and improve the
prognosis of the currently incurable metastatic castration-
resistant prostate cancer (mCRPC) phenotypes. In addition to
supporting a potential use of TRPM8 in anti-tumor therapy as a
dual target to simultaneously counteract metastatic dissemination
and angiogenesis, they also shed new light on the possibility of using
TRP channels as targets for the development of peptidomimetics in
cancer therapy. In fact, the administration of therapeutic peptide
mimicking the channel or part of its structure would further reduce
any side effects associated with the wide tissue distribution of TRP
channels and the multitude of intracellular signalling pathways
regulated by them, directly targeting a specific protein-protein
interaction and consequently impairing only its associated
cellular pathways (Mabonga and Kappo, 2019; Tsagareli and
Nozadze, 2020). As to TRPM8-Rap1A interaction, the
applicability of a peptide that reproduces the N-terminus of the
channel in patients in androgen-independent late stages of PCa
seems to be further supported by the fact that none of the residues
involved in this interaction were mutated in the analyzed patient
cohorts (Chinigo et al., 2022). Of note, validation of TRPM8-Rap1A
interaction in more than 1 cell line (Genova et al., 2017; Chinigo
et al., 2022), including prostate, breast, and cervical cancer cells as
well as endothelial cells, suggests a broader spectrum of action of
TRPM8 as an inhibitor of Rap1, albeit with a different impact in
terms of control of cell adhesion and migration according to the cell
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type. Therefore, this protein-protein interaction could prove to be an
interesting target in the treatment of a much wider range of
pathologies.

5 Non-genetic light stimulation of Ca2+
signals in cardiovascular research:
methodology and possible applications

The idea to use light to trigger specific biological pathways,
including Ca2+ signalling, represents one of the most fascinating
insights in modern science (Lodola and Moccia, 2022). In recent
years, photostimulation of cells and living systems has received great
interest from the scientific community due to several unique
advantages. Indeed, light is a minimally invasive biophysical tool
that can overcome the limitations of more conventional stimulation
approaches based on electrical, chemical, mechanical, or magnetic
cues (i.e., limited spatial and temporal resolution) (Di Maria et al.,
2018). The potential revolutionary role of light has been originally
suggested by Sir Francis Crick. The Nobel Prize for Physiology or
Medicine, discussing the need to achieve a selective control of
individual neurons to understand the complexity of the brain,
asserted that “The ideal signal would be light, probably at an
infrared wavelength to allow the light to penetrate far enough.
This seems rather farfetched, but it is conceivable that molecular
biologists could engineer a particular cell type to be sensitive to light in
this way” (Crick, 1999). This revolutionary concept become reality
few years later with the implementation of Optogenetics, which
consists in the expression of light-sensitive ion channels into the
cellular plasma membrane to control the activity of neurons or other
cell types with light (Deisseroth, 2011). However, the standard
method to deliver the light-sensitive sensors-actuators to the
target cells membrane impinges on viral constructs and this,
combined with the fact that the exogenous proteins are isolated
from very distant species (i.e., bacteria, algae, or unicellular fungi),
open a series of issues in the therapeutic translatability of the
approach.

An alternative strategy to still preserve the advantages of optical
stimulation, but avoiding genetic modification, relies on the use of
photosensitive transducers (Di Maria et al., 2018; Hopkins et al.,
2019). The foundation of this approach is built on the convergence
of various cutting-edge expertise ranging from biology, material
science and photonics. In recent years, both inorganic and organic
semiconductors have been used with excellent results (Di Maria
et al., 2018; Hopkins et al., 2019). In particular, the organic one has
aroused considerable interest within the scientific community due to
their unique characteristics. In fact, these materials support both
ionic and charge transfer, are soft and conformable, cost-effective
and solution processable, but most importantly their absorption
range is in the visible region, and they present a high
biocompatibility, thus proving capable of interfacing with living
matter to transduce light into a biological signal. Regioregular
polymer poly(3-hexylthiophene-2,5-diyl), referred as P3HT, is
probably the workhorse material among the organic
semiconductors and the widely studied for biological purposes
(Antognazza et al., 2015; Di Maria et al., 2018; Moccia et al., 2020).

The main photophysical mechanisms that occur at the polymer/
cell interface could be capacitive, electrochemical, or thermally

mediated. These phenomena in turn generate different cellular
response. For example, at the cellular level, planar P3HT has
been proven effective in the modulation of the membrane
potential of non-excitable cells (i.e., HEK-293 cells and
astrocytes) up to the optical stimulation/silencing of neuronal
firing (Ghezzi et al., 2011; Benfenati et al., 2014; Antognazza
et al., 2015; Feyen et al., 2016; Di Maria et al., 2018). Notably, its
efficacy is not limited to in vitro applications. Indeed P3HT-based
hybrid interfaces (Ghezzi et al., 2013; Antognazza et al., 2016; Maya-
Vetencourt et al., 2017), and more recently also nanoparticles
(Maya-Vetencourt et al., 2020), were also shown to restore light-
sensitivity and visual acuity in animal models of retinal degeneration
evidencing novel potential biomedical implications of conjugated
polymers.

The modulation of cellular fate via electrochemical and/or
thermal signals could be achieved by modulation of [Ca2+]i
(Bossio et al., 2018; Moccia et al., 2022). Recently, it has been
demonstrated that P3HT photoexcitation led to the activation of
the non-selective cation channel Transient Receptor Potential
Vanilloid 1 (TRPV1) channel (Lodola et al., 2017b; Moccia et al.,
2020; Moccia et al., 2022). TRPV1 is a non-selective cation channel

FIGURE 4
Geneless light stimulation of Ca2+ signals in cardiac cells. (A)
Polymer-mediated optical excitation induces a robust enhancement
of proliferation and bidimensional tube formation in ECFCs seeded on
top of P3HT thin films (λ = 520 nm). ECFC modulation in ECFCs
requires TRPV1 activation on the plasma membrane, which in turn
mediates extracellular Ca2+ entry to engage a NF-kB-dependent gene
expression program. (B) Ziapin2 internalizes into the plasma
membrane of human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs). Upon photoexcitation (λ = 470 nm) the
molecule isomerizes, changing hiPSC-CMs membrane capacitance.
This triggers action potential generation and consequently modulates
the “excitation-contraction coupling” process at a whole extent
opening a new way towards hybrid soft robotics and heart disease
therapies. Adapted from (Vurro et al., 2023a). Created with BioRender.
com (agreement number: RO259UYLP6).
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that can integrate a variety of extracellular cues (Moccia et al., 2020;
Moccia et al., 2022), including an increase in ROS (Guarini et al.,
2012), an increase in temperature >40 °C (Caterina et al., 1997), and
by a reduction in extracellular pH (Jordt et al., 2000). In accord,
P3HT photoexcitation can stimulate TRPV1-mediated membrane
depolarization via the local increase in temperature and ROS
concentration at the interface between PH3T thin films and cell
membrane (Lodola et al., 2017b). Further studies showed that
optical excitation of P3HT thin films induced intracellular Ca2+

oscillations in human circulating endothelial colony forming cells
ECFCs) (Negri et al., 2022a), a truly endothelial progenitor
population that is mobilized in peripheral circulation upon an
ischemic insult to regenerate the damaged vascular networks
(Moccia et al., 2018). TRPV1-mediated Ca2+ signals were mainly
elicited by local ROS generation and were supported by InsP3-
induced ER Ca2+ release and SOCE (Negri et al., 2022a). Of note,
light-induced intracellular Ca2+ oscillations were reminiscent of the
repetitive Ca2+ spikes whereby vascular endothelial growth factor
(Dragoni et al., 2011; Dragoni et al., 2015; Lodola et al., 2017a) and
the human amniotic fluid stem cell secretome (Balducci et al., 2021)
induce the nuclear translocation of NF-κB to stimulate ECFC
proliferation and tube formation. In agreement with these
observations, optical excitation of P3HT thin films was found to
boost ECFC pro-angiogenic activity by activating TRPV1 and
thereby promoting a NF-κB-dependent gene expression program
(Figure 4A) (Lodola et al., 2019a). These findings pave the way
towards the use of these materials as a reliable tool for precise and
reversible optically-driven modulation of ECFC physiological
activity (Zhang et al., 2014; Lodola et al., 2019a; Moccia et al.,
2020; Moccia et al., 2022).

The same interface has been applied also to optical increase the
contractile activity of human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs), a process where Ca2+ is the actual
coupling between excitation occurring in the sarcolemma and the
onset of mechanical contraction (Bers and Guo, 2005). Although in
this experimental setting the physical process was photothermal,
P3HT still presents advantages over more traditional stimulation
methods, thereby opening interesting perspectives for the control of
cardiac pacing (Lodola et al., 2019b).

Within this context, an alternative approach involves
photochromic compounds (Wang and Li, 2018). These organic
molecules undergo reversible transformation between two
metastable states following the absorption of an
electromagnetic radiation and provide a conceptually simple
and convenient way to control cellular activity. Indeed,
photoswitches can bind covalently to ion channels/receptors
or be targeted directly to the plasma membrane bilayer, thus
modifying, upon photoisomerization, the ion channel dynamics
and/or the electrical properties of the membrane (Gorostiza and
Isacoff, 2008; Izquierdo-Serra et al., 2016; Leippe et al., 2017).
Recently, a newly synthetized amphiphilic azobenzene-based
photo-transducer (Ziapin2), successfully tested in bacteria,
HEK-293 cells and neurons (Paterno et al., 2020a; Paterno
et al., 2020b; DiFrancesco et al., 2020; Magni et al., 2022), has
been used as a non-invasive optical tool to trigger hiPSC-CMs
contraction behavior (Vurro et al., 2023a). Thanks to its peculiar
chemical properties Ziapin2 has the capability to dwell within the
hiPSC-CMs sarcolemma. In this environment the molecule

photoisomerization induces a heatless mechanical perturbation
upon millisecond pulse of visible light that leads to a dynamic
modulation of membrane capacitance. This change in the passive
electrical property of the cell results in a transient
hyperpolarization followed by a delayed depolarization able to
elicit an action potential. The electrical activity correlates with
changes in Ca2+ dynamics and ultimately with an increase in the
contraction rate (Figure 4B). The photopacing efficacy of the
approach has been further extended to a cardiac
microphysiological model that mimics the cellular
organization and substrate mechanical properties of native
cardiac tissue (Vurro et al., 2023b), thus proving that
Ziapin2 could be a viable tool for the modulation of the
excitation-contraction coupling with a precise spatial and
temporal punctuality.

6 Conclusion

The Symposium “Ca2+ signalling: unexpected new roles for the
usual suspect” has been one of the most attended events of the 72nd
Annual Meeting of the Italian Society of Physiology. In our opinion,
this was not only due to the widespread function of the Ca2+ handling
machinery, which plays fundamental and diversified roles in human
physiology that could of course gather vast interest by the audience.
We believe that the Symposium gathered such a large audience since it
aimed at a presenting one of the oldest signalling messengers known,
i.e., Ca2+, from a novel perspective. It is now clear that the Ca2+

handling machinery is no longer limited, to quote a few paradigmatic
examples, to intracellular Ca2+ stores that exclusively located in the ER
or to voltage-gated Ca2+ channels and ligand-gated channels on the
plasma membrane. Lysosomes and mitochondria are also crucial to
shape the physiological Ca2+ response to extracellular cues by,
respectively, amplifying, or modulating ER Ca2+ release. Altering
this delicate balance of inter-organellar Ca2+ fluxes can lead to life-
threatening disorders, such as AD, cancer, and lysosomal storage
disorders, and many more are likely to be discovered in the next
future. The non-canonical function of ion channels, exemplified by
TRPM8-Rap1A interaction, represents another revolutionary field of
research showing that classical omics technologies, such as single-cell
RNA sequencing or mass spectrometry, need to be integrated by a
physiological approach to truly understand the signalling mode of a
channel transcript/protein. These emerging pieces of information on
the heterogeneity and versatility of the Ca2+ handling machinery can
be exploited to design alternative strategies to selectively rescue the
function of diseased cells by combining novel nanotechnologies with a
proper knowledge of molecular physiology. Due to its polymodal
nature, TRPV1 is certainly the best molecular switch to translate
optical stimulation of photosensitive conjugated polymers into a
biologically relevant signal. But other candidates presenting similar
sensitivity to heat and ROS, such as TRP Ankyrin 1, are likely to be
rapidly integrated in the arsenal of Ca2+-permeable channels that
could be probed for their therapeutic potential. In conclusion, this
Symposium, which also engendered may fruitful discussions and
opened the way to new collaborations among the participants
(including many foreigner guests), confirmed that Italian
Physiology is at the forefront of research in Ca2+ signalling, as also
proven by many other oral and poster presentations of the meeting
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