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ABSTRACT Despite the huge amount of work devoted to the treatment of time within the relational
context, some relevant phenomena remain to be fully addressed. We focus on one of them, i.e., temporal
indeterminacy with preferences. In several domains (e.g., workflows, guidelines) and tasks (e.g., planning,
scheduling), the exact time of occurrence of facts is not known: only an interval of possible values for their
starting time, and a range of possible durations is available. Additionally, preferences can be assigned to the
different temporal possibilities. We propose the first relational temporal database approach coping with such
issues.We introduce a new datamodel to copewith indeterminate timewith preferences, considering a family
of preference functions, and we propose new definitions of relational algebraic operators to query the new
data model. We also ascertain the properties of the new model and algebra, with emphasis on reducibility,
and on the correctness of the algebraic operators.

INDEX TERMS Temporal relational databases, temporal relational algebra, temporal indeterminacy,
preferences, data model.

I. INTRODUCTION
In this paper we propose a relational temporal database
(TDB) approach to deal with temporal indeterminacy with
preferences. In this Section, we introduce the problem, the
context, and the motivations of our work progressively. First
(SubsectionA)we briefly survey the relational TDB literature
to motivate the adoption of dedicated techniques to deal
with time. Second (Subsection B), we introduce an additional
source of complexity, the treatment of temporal indetermi-
nacy (i.e., coping with the time of occurrence of facts when
it is not exactly known). Third (Subsection C), we consider
the importance of dealing also with temporal preferences in
the case of temporal indeterminacy. Finally (Subsection D),
we sketch the main contributions and the organization of the
rest of the paper.

A. TEMPORAL DATABASES
Time is an intrinsic part of the human way of perceiving
and modelling reality. Thus, also DataBases (DBs) have to
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cope with it. However, already in the 1990s, the scientific
community has recognized that time has a special status,
and dedicated techniques need to be devised to deal with
it, e.g., in the context in the contexts of Artificial Intelli-
gence (AI) [6], [28] and of relational DBs [23] (for instance,
readers can find in Section I of [23] concrete examples
showing that ‘‘standard’’ relational DB approaches hardly
manage even simple queries concerning facts holding over
time intervals). Since then, the scientific community has pro-
posed hundreds of dedicated approaches to cope with time
in temporal relational databases (TDBs in the following)
[31]. A landmark in the field was the definition of TSQL2,
a consensus approach of the TDB scientific community, coor-
dinated by R.T. Snodgrass (one of the ‘‘fathers’’ of the TDB
research area) [23]. In summary, in the TSQL2 book, the
community proposed a dedicated approach to TDBs, design-
ing a temporal data model and query language, grounded on
an explicit semantics (BCDM) and on a temporal algebra.
An important part of the approach is the proof that, in case
time is not considered, the proposed temporal algebra reduces
to Codd’s algebra [8], which is commonly used by the DB
community as a reference to denote the completeness of a
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query language. Indeed, reducibility is an essential prop-
erty to also grant interoperability with non-temporal DB
approaches: if time is disregarded, TSQL2 behaves like them.
Nowadays, most of the major DBMSs have temporal support
(http://rts.cs.arizona.edu/sql3.html). However, since the treat-
ment of time in DB introduces a nuance of different problems,
some of which have not been fully addressed yet by the scien-
tific community, the research in the area is still quite vibrant.
For example, J. Gamper,M. Ceccarello, andA.Dignös survey
the main research results in TDBs in the last five years [13],
and the recent Encyclopedia of Database Systems contains
about one hundred entries dedicated to time [16].
Despite such a huge amount of work, several problems

have not been fully explored yet. One of them is the treat-
ment (data model plus algebra) of temporally indeterminate
data.

B. TEMPORAL INDETERMINACY IN TDBs
Indeed, most TDB approaches focus on the time of occur-
rence of facts (valid time [23]) and/or on the time of
their insertion/deletion in the DB (transaction time [23]),
assuming that both times are exactly known. Unfortunately,
in many contexts (e.g., workflows, guidelines) and tasks
(e.g., planning, scheduling), the exact valid time of facts is
not available. Valid-time indeterminacy (‘‘don’t know exactly
when’’ information [12]) comes into play whenever the valid
time associated with a fact is not known in an exact way.

Let us consider Ex.1.
Ex.1 John was at home from 10:00-10:10 to 14:00-14:30.

■
It is important to notice that, indeed, Ex.1 is an implicit way

of denoting (if we consider the granularity of minutes) the
11·31=341 precise scenarios/instantiations sketched in Ex.1’
below:

Ex.1’ John was at home from 10:00 to 14:00, or John was
at home from 10:00 to 14:01, or . . .

John was at home from 10:10 to 14:30. ■
Despite the plethora of application contexts in which the

valid time of facts is only known in an approximate way,
temporal indeterminacy has not been widely explored by the
TDB research. Among the most relevant approaches in this
context, Dekhtyar et al. [10] introduce temporal probabilistic
tuples (modeling instantaneous events) to cope with data
such as ‘‘data tuple d is in relation r at some point of time
in the interval [ti,tj] with probability between p and p′’’,
and Dyreson and Snodgrass [12] associate an interval of
indeterminacy with the starting and ending points of tuples
(modeling durative facts), and a probability distribution over
it. In [4], the authors of this paper, in cooperation with R.T.
Snodgrass, propose a reference model and algebra for an
explicit treatment of valid-time indeterminacy (e.g., making
explicit all the scenarios of Ex.1), and then specify, analyze
and compare a family of sixteenmore compact implicit repre-
sentations. Additionally, Anselma et al. extend the reference
model and the compact representation models to cope with
probabilities.

In a recent paper [3], the authors of this paper have tried
to generalize upon the existent literature, proposing a gen-
eral methodology to deal with temporal indeterminacy (and
also with other phenomena, such as repeated and periodic
facts [26], [27], in which an explicit representation of time is
quite space-expensive) in TDBs, that we are going to follow
also in this paper. The starting point of Anselma et al.’s
methodology is the consideration that all the existent TDB
representational models and algebrae for temporal indeter-
minacy adopt an implicit compact representation of time.
Indeed, this is a well-motivated choice, since an explicit
representation would be highly inefficient, both from the
space and from the computational points of view (as a trivial
example, consider the impact of explicitly modelling and
querying the 341 alternative scenarios sketched in Ex.1’).

Thus, to deal with temporal indeterminacy in TDBs, theo-
retically grounded approaches should not only define

(1) a suitable (implicit) compact representation (data)
model and

(2) a relational algebra to query it,
but also
(3) formally define the data semantics of the model (i.e.,

the correspondence between the compact representation and
the intended explicit one), and

(4) prove the correctness of the algebra with respect to the
data semantics (informally: the fact that, though -for the sake
of efficiency- the algebra operates on the compact implicit
representation, the results it obtains are equivalent to the
results that would be obtained by operating on the explicit
representation).

C. PREFERENCES
To the best of our knowledge, all TDB approaches in the
literature (including the ones mentioned above) consider all
the scenarios/instantiations denoted by a temporally inde-
terminate fact (see again the comment to Ex.1) as equally
desirable while in many contexts/applications, there are
preferences among such scenarios/instantiations (i.e., in
Dubois et al.’s words [11], a ranking of the instantiations that
are acceptable).

Preferences have attracted a lot of attention in AI, where
a whole stream of research has extended Constraint Sat-
isfaction Problems (CSP) methodologies to consider soft
constraints, to explicitly deal with preferences or priori-
ties (consider, e.g., the milestone paper [11]). Rossi et al.’s
book [21] discusses a large set of approaches to explicitly
manage preferences in AI.

In particular, the AI research shows that managing pref-
erences is very important in connection with temporal
indeterminacy: ‘‘temporal preferences are quantitative pref-
erences that pertain to the position and duration of events in
time’’ [21].
As a toy example, consider the following.
Ex. 2 John starts breakfast between 7:30 and 8:20 and eats

it for 10-40 minutes with (at least) low preference, and starts
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breakfast between 8:00 and 8:20 and eats it for 20-30 minutes
with high preference. ■
Temporal preferences play a key role for the personal-

ization of approaches, and have an important role in many
areas, including, e.g., economics [9] and medicine [1], [29].
Indeed, many domains (e.g., workflows, guidelines) and
tasks, including planning and scheduling, may benefit from
the treatment of temporal preferences. A prototypical exam-
ple can be found in the domain of clinical treatments and
clinical guidelines. Usually, in the clinical guideline context,
it is not possible/useful to state precisely when actions have to
be executed [25]. Temporal constraints in the guidelines can
be typically interpreted as general recommendations, to be
respected with different levels of medical preferences [1].
Consider the purely illustrative example below that we use

as a running example.
Ex. 3 Mary must undergo a physical therapy and assume

two drugs, hydrocodone for treating pain and diphenhy-
dramine for treating an allergy.

(3a) Mary’s physical therapy must start between March
14 and March 22 and last for 6-8 days with high preference,
start between March 13 and March 23 and last for 5-13 days
with a medium preference, and start between March 10 and
March 30 and last 4-20 days with a low preference.

(3b) Mary can start hydrocodone between March 10 and
March 15 and take it for 3-6 days with high preference, start
between March 7 and March 15 and take it for 3-9 days with
medium preference, start betweenMarch 1 andMarch 20 and
take it for 1-20 days with low preference.

(3c) Mary can start diphenhydramine on March 25 and
take it for 10 days with high preference, start between March
20 and March 27 and take it for 9-11 days with a medium
preference, and start it between March 11 and March 30 and
take it for 7-13 days with a low preference. ■
Additionally, patients’ preferences can be considered by

physicians to provide patients with a personalized temporal
schedule of therapies that they are comfortable with (as in the
landmark MobiGuide project [19], funded by the European
Community), to increase conformance of non-hospitalized
patients [29].

D. MAIN CONTRIBUTIONS AND ORGANIZATION OF THE
PAPER
In this paper we propose the first TDB model and rela-
tional algebra coping with temporal indeterminacy with
preferences. We consider qualitative (i.e., non-numeric) pref-
erences. For generality, we do not commit to a specific scale
of preferences (e.g., <high, medium, low> in Ex. 3 above):
any scale of qualitative or quantitative preferences (see Def. 4
below) is supported as long as a total order can be defined on
its elements.

Our approach grounds on the general methodology pro-
posed in [3]. We provide (1) a compact representation (data)
model and (2) a relational algebra to query it, we define
(3) the data semantics of the model and (4) prove the correct-
ness of the algebra. Additionally, following TSQL2 proposal,

we also (5) prove the reducibility of our approach to Codd’s
standard relational algebra, to grant the compatibility and
interoperability with standard approaches.

In Section II we propose the new data model and its
semantics. In Section III we introduce our temporal algebra
and ascertain its properties. In Section IV we propose final
discussions, comparisons, and future work.

II. DATA MODEL
In this Section, we propose our data model, to compactly
represent indeterminate temporal data with preferences. For
the sake of clarity, we introduce it gradually, in three steps.
First (Subsection A) we focus on (our representation of)
indeterminate time ‘‘per se’’. Then (Subsection B) we intro-
duce scales of preferences and preference functions, as a
way of pairing indeterminate time with preferences. Then,
(Subsection C) we propose a relational representation for the
association of indeterminate time with preferences to data,
representing facts. Finally (SubsectionD), we formally define
the semantics of the overall data model.

A. INDETERMINATE TIME
As in TSQL2 [23], BCDM [15] and in many approaches
reviewed in [23], in our approach time is discrete, linearly
ordered, and isomorphic to a subset of the integers. For the
sake of simplicity, a single granularity (e.g., day) is assumed.
Definition 1 (Chronon): The chronon is the basic time

unit. The chronon domain TC , also called timeline, is the
ordered set of chronons {. . . , ci, . . . , cj, . . . }, with ci < cj as
i < j. ■
Events, properties, and facts (henceforth we adopt facts as

a cover term for all of them) are associated with the timewhen
they occur (i.e., valid time [23]). In case it is precisely known,
the valid time of facts can be specified as below:
Definition 2: The (precisely known) valid time of a fact

can be equivalently specified by:
(Representation 2.a) a pair <s,e> such that s,e∈ TC ,

s≤e, or (Representation 2.b) a pair <s,d> such that s∈ TC ,
d∈ N . ■

While Representation 2.a explicitly locates the starting and
ending point of facts, Representation 2.b focuses on their
starting point and duration.When valid time is exactly known,
Representations 2.a and 2.b are equivalent.

Unfortunately, however, in many domains and applications
only an approximation of the valid time of facts can be avail-
able: e.g., only a range of possible values for the starting point
([sm,sM) in Def. 3) and for the duration of the fact ([dm,dM)
in Def. 3) may be known. This is typical, e.g., in several
medical applications (consider the milestone Asbru temporal
specification language [22] and the survey in [25]). In the
following, as in several TDB approaches [23], without loss
of generality, we consider all intervals as closed on the left
and open on the right.
Definition 3: The temporally indeterminate valid time of

a fact can be specified by a pair of ranges<[sm,sM),[dm,dM)>
such that sm,sM ∈ TC , sm ≤ sM, dm,dM ∈N,dm ≤ dM. . ■
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In Def. 3, <[sm,sM),[dm,dM)> is an implicit representa-
tion to state that the fact may start in any chronon in [sm,sM)
and have any duration in [dm,dM).
Notably, in Def. 3 we have chosen the Representation

2.b above (i.e., starting time + duration) to represent tem-
poral indeterminacy. It is worth point out that, in the case
of temporal indeterminacy, Representations 2.a and 2.b in
Definition 2 are not equivalent.1 In this paper we deal with the
Representation 2.b, which has not been considered yet in the
TDB context, though it is widely used in several application
domains (see, e.g., [22], [25]).

B. INDETERMINATE TIME WITH PREFERENCES
In our approach different scales of preferences can be used.
Definition 4 (Scale of Qualitative Preferences (SQP)): An

SQP (or ‘‘scale’’, for short) Sr of cardinality r is composed
by an enumerative set {p1, . . . , pr } of r labels (r>0), and a
strict and total ordering relation < over the set. We denote an
SQP by an ordered list ⟨p1, . . . , pr ⟩, such that ∀i, 1 ≤ i <

r, pi < pi+1. ■
Terminology. Given an SQP Sr of cardinality r,we indicate

by Sr (i) the ith value in the scale Sr (1 ≤ i ≤ r) and we denote
by dom(Sr) the domain of Sr. ■
Ex. 4. An SQP applicable to Ex. 2 is Sex3 : <low,

medium, high>, Sex3 (2) = medium, and dom(Sr) =

{low,medium, high}. ■
Given a scale Sr, a (temporal) preference function asso-

ciates preference values in dom(Sr) with pairs <s,d>, such
that s∈ TC , d∈ N . In this paper, we focus on a specific class
of temporal preference functions, layered preference func-
tions [2]. Indeed, in many areas and applications, preferences
distribute in a ‘‘regular’’ way, forming a sort of ‘‘pyramid’’
of nested ranges, in which the top range has the highest
preference and the bottom the lowest one. Ex. 3 is just one
example, but this is true in all cases in which preferences are
‘‘centered’’ on a given set of temporal values and decrease
while getting far from this center.
Definition 5 (Layered Preference Function prefr): Given

an indeterminate valid time <[sm,sM),[dm,dM) > and a scale
Sr of cardinality r, a layered preference function prefr is a
function prefr: TC

×N→ dom(Sr) that associates a preference
value with each pair <s,d> such that s∈ TC , sm ≤ s < sM,
d∈N, dm ≤ d < dM in such a way that preferences follow the
pattern:

1In the case of temporal indeterminacy, the start+end representation
(i.e., Representation 2.a in Definition 2) and the start+duration represen-
tation (i.e., Representation 2.b in Definition 2) are not equivalent. E.g.,
<[1,3),[1,3)> in the start+duration representation denotes the intervals
which start on 1 or 2 and have a duration of 1 or 2, i.e. the set time intervals
S={{1,2},{1,2,3},{2,3},{2,3,4}} (here we represent a time interval as a set
of chronons).

No specification in the start+end representation can denote the set S.
For example, <[1,3),[2,5)> in the start+end representation denotes the
set S’={{1,2},{1,2,3},{1,2,3,4},{2,2},{2,3}, {2,3,4}} (where also the sets
{1,2,3,4} –with duration 3– and {2,2} –with duration 0– are included). Vice
versa, the set of intervals S’={{1,2},{1,2,3},{1,2,3,4},{2,2},{2,3},{2,3,4}}
is represented by <[1,3),[2,5)> in the start+end formalism, but cannot be
represented in the start+duration formalism.

FIGURE 1. Pyramid preferences for Ex.3a.

∃s1m, s
1
M, . . . , srm, s

r
M ∈ TC , d1m, d

1
M,. . . , drm, d

r
M ∈N, such

that
sm = s1m ≤ s2m ≤ . . .≤ srm < srM ≤ sr−1

M ≤ . . .≤ s1M = sM,
dm = d1m ≤ d2m ≤ . . .≤ drm < drM ≤ dr−1

M ≤ . . .≤d1M = dM
∀i 1 ≤ i ≤ r ∀t1 ∈ TC , ∀d1 ∈ N such that sim ≤ t1 < siM ∧

dim ≤ d1 < diM then prefr(t1,d1) ≥ Sr(i) ■
For instance, pyramid preference functions allow to rep-

resent all the temporal preferences in Ex. 3 above. As a
graphical example, Fig. 1 shows the tri-dimensional pyramid
of preferences corresponding to Ex. 3.a. In the example,
we assume that time starts at the beginning of the year, and to
adopt the granularity of days. Thus, March 14 corresponds to
day 73, andMarch 22 to day 81, so that the top rectangle, with
coordinates (73,82,6,9), represents a starting time between
day 73 and day 82 (s axis) and a duration between 6 and 9 days
(d axis) when Mary’s physical therapy can be performed
with high preference (p axis). Notably, the rectangle with low
preference (coordinates: (69,90,4,21)) includes the rectangle
with medium preference (coordinates: (72,83,5,14)), which
includes the one with high preference.

We also admit ‘‘degenerate’’ pyramid preferences,
in which one or more of the ‘‘top layers’’ may be missing
(but at least the bottom layer must exist). We adopt the con-
vention that an empty layer is represented by the quadruple
(0, 0, 0, 0).

C. A RELATIONAL REPRESENTATION OF DATA WITH TIME
AND PREFERENCES
A temporal relation with layered preferences (TRwLP
for short) associates facts with valid times with pyramid
preferences.
Definition 6 (TRwLP): Given a scale Sr, which is unique

for a given DB, the schema of a temporal relation with lay-
ered preferencesR = (A1,. . . , An|(T 1

sm, T
1
sM , T

1
Dm, T

1
DM ),. . . ,

(Trsm, T
r
sM , T

r
Dm, T

r
DM )) consists of an arbitrary number of

non-temporal attributes A1, . . . , An, encoding some fact, and
of r quadruples (T ism, T

i
sM , T

i
Dm, T

i
DM ) of temporal attributes

VOLUME 12, 2024 65421



L. Anselma, P. Terenziani: Preferences in Temporal Relational Databases

(termed Temporal Layer(s) – TL for short) with domains TC

(T 1
sm, T

1
sM ,. . . , T

r
sm, T

r
sM ) or N (T 1

Dm, T
1
DM ,. . . ,T

r
Dm, T

r
DM ). The

non-temporal attributes and the temporal ones are separated
by a symbol ‘‘|’’. ■
Thus, a tuple x = (v1,. . . , vn| (s1m,s

1
M,d1m,d

1
M), . . . ,

(srm,s
r
M,drm,d

r
M)) in a TRwLP relation rTR(R) on the schema R

represents that the fact < v1,. . . , vn > starts between s1m and
s1M and have duration between d1m and d1M with preference at
least Sr(1), . . . , starts between srm and srM and lasts between
drm and drM with preference at least Sr(r).
Ex. 5. Ex. 3 can be represented, using the scale in

Ex. 4, by the relation pat_treatmTP, to model treatments
to be applied to patients (Ex.3a), with schema (patient_t,
treatment| (T 1

sm, T
1
sM , T

1
Dm, T

1
DM ), ( T

2
sm, T

2
sM , T

2
Dm, T

2
DM ),

(T3sm, T
3
sM , T

3
Dm, T

3
DM )), and the relation drug_adminTP,

to store drug administration (Ex. 3b, Ex. 3c), with schema
(patient_d, ad_drug| (T 1

sm, T
1
sM , T

1
Dm, T

1
DM ), ( T

2
sm, T

2
sM , T

2
Dm,

T2DM ), (T
3
sm, T

3
sM , T

3
Dm, T

3
DM )):

pat_treatmTP ={(Mary, phys | (69,90,4,21), (72,83,5,14),
(73,82,6,9))}
drug_adminTP ={(Mary, diphenhydramine | (60,80,1,21),

(66,75,3,10), (69,75,3,7)), (Mary, hydrocodone | (70,91,7,14),
(79,87,9,12), (84,85,10,11))}. ■

D. DATA SEMANTICS
TRwLP proposes a compact and implicit representation of
the association of valid times and preferences with facts,
since four rectangle vertices are used to summarize all the
bi-temporal points in each rectangle (see Fig. 1). Following
the methodology in [3] (see Subsection I-B), we formally
define the semantics for TRwLP through the definition of
the functions Ext andMake-Explicit. The function Ext, given
a Temporal Layer (sim,s

i
M,dim,d

i
M) taken from the temporal

part of a tuple in a TRwLP, and corresponding to the i-th
level of the scale of preference, makes explicit all the pairs
<start_point,duration> in the indeterminate valid time that
have preference at least Sr(i).
Definition 7 (Data Semantics for TRwLP): Ext function.

Let Vr = <(s1m,s
1
M,d1m,d

1
M), . . . , (srm,s

r
M,drm,d

r
M)> be the tem-

poral values associated with a tuple in a TRwLP with time
scale Sr, and let Vr[i] denote the i-th (1 ≤ i ≤ r) quadruple in
it (i.e., <sim,s

i
M,dim,d

i
M >), the ith Temporal Layer.

Ext(<sim,s
i
M,dim,d

i
M >) ={<s,d> \ sim ≤ s < siM ∧ dim ≤

d < diM}. ■
For example, Vr[1]=<69,90,4,21> compactly represents

the pairs <start,duration> having at least low preference
for the tuple in pat_treatm (see Ex. 5 and also Figure 1 above).
The Ext functions makes all such pairs explicit:

Ex. 6. Ext(<69,90,4,21>) ={<69,4>, <69,5>, . . . ,
<69,20>, . . . , <89,4>, <89,5>, . . . , <89,20>}. ■
The functionMake-Explicit, applied to a TRwLP rTP, pro-

vides as output a new relation rExpl in which each fact x =

(v1,. . . , vn) in rTP is paired with the explicit set of all the triples

<s,d,p> such that x, starting at s and lasting d , has at least
preference p.
Definition 8 (Data Semantics forTRwLP): Make-Explicit

function. Given a TRwLP rTP over a schema R = (A1,. . . ,
An| (T 1

sm, T
1
sM , T

1
Dm, T

1
DM ), . . . , (T

r
sm, T

r
sM , T

r
Dm, T

r
DM )) and

a scale Sr, Make-Explicit provides as output a new relation
rExpl defined over the schema R′

= (A1,. . . , An|S), where S is
a set of triples <s,d,pi> s∈TC, d∈N, pi∈dom(Sr) defined as
follows:

rExpl = Make-Explicit(rTP) = {(v1,. . . , vn|{<s,d,pi>)\
(v1,. . . , vn|Vr) ∈rTP ∧ <s,d>∈Ext(Vr[i]), 1≤i≤r ∧

pi =Sr(i)}) }.
For example, Make-Explicit(pat_treatm) makes explicit

all the pieces of information denoted by (pat_treatm), i.e.,
it associates with each fact all the triples denoting its starting
time, duration, and preference (for the sake of brevity, we use
L, M, and H to denote low, medium, and high respectively).

Ex. 7. Make-Explicit (pat_treatm) = {(Mary, phys |

{<69,4,L>, . . . , <89,20,L>, <72,5,M>, . . . , <82,13,M>,
<73,6,H>, . . . , <81,8,H>})}. ■

III. TEMPORAL RELATIONAL ALGEBRA
Codd defined as complete any query language that is as
expressive as his set of five relational algebraic operators:
relational union (∪), relational difference (–), selection (σP),
projection (πA), and Cartesian product (×) [8]. We propose
an extension of Codd’s operators to query the data model
in Section II. The TDB literature proposes several temporal
extensions to Codd’s operators [17], [23], [24]. To the best
of our knowledge, however, only the algebrae in [4] and [10]
define the∪

T, –T, and×
T algebraic temporal operatorsmang-

ing temporal indeterminacy, and no relational TDB approach
manages temporal preferences. A large majority of TDB
approaches follows the convention that extended operators
behave like standard Codd’s operators on the non-temporal
attributes, and perform union (for ∪

T), difference (for –T),
and intersection (for×T) on the temporal attributes [16], [23],
[24].

A. RELATIONAL ALGEBRA FOR PREFERENTIAL TIME
We base our approach on such a ‘‘consensus’’ background,
extending Codd’s operators to cope with time and prefer-
ences. In the rest of the paper, we use the superscript ‘‘TP’’
(temporal preferences) for our operators.
Definition 9 (Temporal Algebraic Operators for TRwLP):

Given a DB defined over the scale Sr, let rTP and sTP denote
TRwLP relations having the proper schema (in this definition
v, v1, v2 stand for the values of non-temporal attributes in
a tuple, and Vr, V1r, V2r for the values of the temporal
attributes – having the general form ((s1m,s

1
M,d1m,d

1
M), . . . ,

(srm,s
r
M,drm,d

r
M)).

σTP
P (rTP) = {(v|Vr)\(v|Vr) ∈ rTP ∧ P(v)}

πTP
A (rTP) = {(v′|Vr)\∃v,Vr((v|Vr) ∈ rTP ∧ v′

= πCodd
A ({v}))}
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r1TP ∪
TP r2TP = {(v|Vr)\(v|Vr) ∈ r1TP ∨ (v|Vr) ∈ r2TP)}

r1TP×
TPr2TP = {(v1 · v2|Vr)\∃V1r,V2r((v1|V1r) ∈ r1TP

∧ (v2|V2r) ∈ r2TP∧

Vr = pyramid_intersect(V1r,V2r) ∧ Vr ̸= ∅)},

where
pyramid_intersect(V1r = ((s1m1,s

1
M1,d

1
m1,d

1
M1), . . . ,(s

r
m1,s

r
M1,

drm1, drM1)), V2r = ((s1m2,s
1
M2,d

1
m2,d

1
M2), . . . ,(srm2,s

r
M2,

drm2,d
r
M2))) = ((max(s1m1,s

1
m2), min(s1M1,s

1
M2),max(d1m1,d

1
m2),

min(d1M1,d
1
M2)), . . . , (max(srm1,s

r
m2), min(srM1,s

r
M2),

max(drm1,d
r
m2), min(drM1,d

r
M2)) )

rTP−TPsTP = {(v|Vr)\∃(v|V1r) ∈ r1TP

∧ Vr ∈ sub_n_m({V1r}, {V2r\(v|V2r) ∈ r2TP})

∧ Vr ̸= ∅},

where
sub_n_m(S, ∅) = S
sub_n_m(S1,S2) = ∪e∈S1sub_1_m(e,S2)
sub_1_m(e, {e1,. . . ,ek}) = sub_n_m(pyramid_diff(e,e1),

{e2,. . . ,ek}), where
pyramid_diff(((s1m1,s

1
M1,d

1
m1,d

1
M1), . . . , (s

r
m1,s

r
M1,d

r
m1,d

r
M1)),

((s1m2,s
1
M2,d

1
m2,d

1
M2), . . . ,(s

r
m2,s

r
M2,d

r
m2,d

r
M2))) =

{ ((sim1,max(sim1,s
1
m2),max(dim1,d

1
m2),d

i
M1) with 1≤i≤r),

((max(sim1,s
1
m2),s

i
M1,min(diM1,d

1
M2),d

i
M1)) with 1≤i≤r),

((min(siM1,s
1
M2), s

i
M1,d

i
m1,min(diM1,d

1
M2)) with 1≤i≤r),

((sim1,min(siM1,s
1
M2),d

i
m1,max(dim1,d

1
m2)) with 1≤i≤r) }.

In each operator, for each Temporal Layer Vr[i], if sim ≥

siM or dim ≥diM, then Vr[i]=(0,0,0,0). Note that Vr = ∅ iff
Vr = ((0,0,0,0), . . . , (0,0,0,0)). ■
Selection σTP

P and projection πTP
A only operate on non-

temporal attributes, and need no extension with respect to
Codd’s operators (see, e.g., [16], [23]). On the other hand,
as motivated above, ∪TP, ×TP and -TPoperate in the standard
way on the non-temporal attributes and manipulate the tem-
poral attributes.
Union ∪

TP simply computes the union of the tuples of the
input relations as, e.g., in TSQL2 [23].
Cartesian product rTP×TP sTP performs the concatena-

tion of the two non-temporal parts and performs through
the pyramid_intersect function the intersection of the two
pyramids modelling the temporal parts of the tuples. Notably,
the intersection of two pyramids is either empty or a (possibly
degenerate) pyramid.
Difference rTP–TPsTP gives as output all the tuples

(v|V1r) ∈rTP that have no value-equivalent tuples (i.e., tuples
with the same value v for the non-temporal attributes [23])
occurring in sTP. Moreover, if sTP contains tuples value equiv-
alent to v, their temporal extent must be eliminated from
the pyramid modelled by V1r. The difference between two
pyramids is performed by the pyramid_diff operation. For
example, Fig. 2 graphically shows the definition of pyra-
mid_diff at a specific level of preference (the base level),
in case the section (s1m2,s

1
M2, d

1
m2,d

1
M2) of the subtrahend

FIGURE 2. Pyramid_diff at level 1: an example.

pyramid is contained into the section (s1m1,s
1
M1,d

1
m1,d

1
M1) of

the minuend pyramid.
At most four pyramids may be generated as output of

pyramid_diff. While pyramid_diff operates on two pyramids,
each pyramid in the output must eliminate the temporal
extents of all the value-equivalent tuples in the subtra-
hend. The functions sub_n_m and sub_1_n are recursively
used to generalize pyramid_diff as an operation applied to
sets of pyramids (many-to-many and one-to-many appli-
cations of pyramid_diff respectively). Notably, the need to
perform many-to-many temporal difference to cope with
value-equivalent tuples is common to many TDB approaches,
including TSQL2 (see, e.g. [23], [24]).2 Finally, also notice
that, given two pyramids V1r andV2r, pyramid_diff(V1r,V2r)
eliminates the bottom level V2r[1] of the second pyramids
from all the levels V1r[i] 1≤i≤r, to model the fact that, in the
presence of any level of preference for a pair <s,d> in the
subtrahend, a tuple with (non-temporal) value v is present
in the subtrahend, so that v at time <s,d> must not be part
of the output (this is similar to other treatments of temporal
indeterminacy, see, e.g., [4]).

As examples, we consider two queries on Ex. 3.
Ex. 8. ‘‘What drugs can Mary take (and when, and with

what preferences) during the physical therapy?’’
resTP = πad_drug(σpatient_t=′Mary′∧treatment=′phys′

(pat_treatmTP) ×
TP σpatient_d=′Mary′ (drug_adminTP)) =

{(diphenhydramine | (69,80,4,21), (72,75,5,10), (73,75,6,
7)), (hydrocodone | (70,90,7,14), (79,83,9,12), (0,0,0,0)) }.■

In Fig. 3, we graphically show the application of the Carte-
sian product ×TP to the temporal part of a pair of tuples, i.e.,
(Mary, phys | (69,90,4,21), (72,83,5,14), (73,82,6,9)) ∈

pat_treatmTP (red part of the figure), and (Mary, diphen-
hydramine | (60,80,1,21), (66,75,3,10), (69,75,3,7)) ∈

drug_adminTP(yellow part of the figure).
The resulting tuple has as temporal part the intersection of

the two pyramids, i.e., the orange pyramid.
Ex. 9.Query: ‘‘When, and with what preferences canMary

take diphenhydramine while avoiding the interaction with

2Indeed, the temporal complexity of our algebraic temporal operators×
TP

and -TP is the same as TSQL2 ones, times the number of levels in the
preference scale (i.e., intersection/difference between temporal rectangles
has to be iterated at each preference level).
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hydrocodone?’’ (taking the two drugs at the same time may
cause drowsiness).

resTP = πpatient_d (σpatient_d=′Mary′∧ad_drug=′diphenhydramine’

(drug_adminTP)) -TPπpatient_d (σpatient_d=′Mary′∧

ad_drug=′hydrocodone’ (drug_adminTP)) =

{(Mary | (60,70,7,21), (66,70,7,10), (0,0,0,0)),
(Mary | (70,80,14,21), (0,0,0,0), (0,0,0,0)),
(Mary | (60,80,1,7), (66,75,3,7), (69,75,3,7))}.
Notably, in Ex. 9, Mary can take diphenhydramine with

high preference starting in [69,75) and with a duration in
[3,7), and three pyramids (and thus three tuples) are needed
to model the result.

In Fig. 4, we graphically show the result of the application
of -TP to the temporal part of the tuples (green part of the
figure). The black part of the figure shows the rectangle corre-
sponding to the low-level preference of hydrocodone (i.e., the
time to be deleted from the pyramid corresponding to (Mary,
diphenhydramine)). Notably, the graphical result (green part)
consists of three pyramids: the pyramid consisting of (a)
rectangles (i.e., (60,70,7,21), (66,70,7,10), (0,0,0,0)), the one
consisting of (b) rectangles (i.e., (70,80,14,21), (0,0,0,0),
(0,0,0,0)), and the one consisting of (c) rectangles (i.e.,
(60,80,1,7), (66,75,3,7), (69,75,3,7)).

Other operators can be added to consider the temporal
and preference aspects of the data model. As an example,
we propose an operator for temporal and preference selection.
Definition 10: Given a DB defined over the scale Sr, and

a TRwLP relation rTP,
σTP
start=s,duration=d,preference=p(r

TP) = {(v1 | Vr) \ (v1|

Vr) ∈rTP ∧ Vr[i] = (sim,s
i
M,dim,d

i
M) ∧ sim ≤ s < siM ∧ dim ≤

d < diM, where Sr(i)=p}. ■
As an example, we consider the following query.
Ex. 10. Query: ‘‘What drugs can Mary take starting from

day 84 for 10 days with a high preference?’’
σTP
start=84,duration=10,preference=high(drug_adminTP) ={(Mary,

hydrocodone | (70,91,7,14), (79,87,9,12), (84,85,10,11))}.■

B. PROPERTIES OF THE ALGEBRA
As motivated in the introduction, since our algebraic oper-
ators perform a manipulation of an implicit representation,
a proof of correctness is required. Informally speaking, for
each algebraic operator OpTP in our algebra we have to prove
that, if we first apply OpTP to relations in our representation
and then we move to an explicit representation through the
Make-Explicit function (see Def. 8), we get the same result
that we would obtain bymoving from our representation to an
explicit one, and then applying the ‘‘explicit’’ operator OpExpl

corresponding to OpTP. Such a proof can be graphically
schematized as shown in Fig. 5.

Obviously, for the sake of the proof, the algebraic oper-
ators working on the explicit representation (i.e., on the
data semantics, see Def. 8) must be defined. In the fol-
lowing, we define ×

Expl as a specific example. Indeed,
it simply operates in the standard way on non-temporal
attributes, and performs the intersection of the sets of triples

FIGURE 3. Graphical representation of the intersection (orange part of
the figure) between the pyramids corresponding to (Mary, phys) ∈

pat_treatmTP (red part of the figure) and (Mary, diphenhydramine) ∈

drug_adminTP (yellow part of the figure).

FIGURE 4. Graphical representation of the temporal part of the result
(green part of the figure) of the application of -TP to the pyramids
corresponding to (Mary, diphenhydramine) ∈ drug_adminTP and (Mary,
hydrocodone) ∈ drug_adminTP . The black part of the figure represents the
time when drug_adminTP and (Mary, hydrocodone) has low preference.

<start,duration,preference> constituting the temporal parts
of tuples.
Definition 11: Cartesian product on the explicit repre-

sentation. r1Expl×Explr2Expl = {(v1 · v2 |S) \ ∃S1,S2(
(v1| S1)∈r1Expl∧(v2| S2)∈r2Expl ∧S = S1 ∩ S2 ∧ S ̸= ∅)}.
Property 1. Correctness of the manipulation of time

intervals.Our extended algebraic operators, operating on the
implicit temporal model, are correct: for each TP algebraic
operator OpTP extending Codd’s operators in our approach,
Make-Explicit(rTP OpTP sTP) = Make-Explicit(rTP) OpExt

Make-Explicit(sTP), where OpExt is the algebraic operator on
the explicit model corresponding to OpTP.

Proof: For the sake of brevity, we prove the property
considering the Cartesian product, i.e.,

Make-Explicit(rTP ×
TP uTP) =Make-Explicit(rTP) ×

Expl

Make-Explicit(uTP).
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FIGURE 5. Graphical representation of the correctness property of TP
operators.

The proofs for the other operators are similar.
Let rTP and uTP be two TRwLP relations with schemas

(A|T) and (B|T) respectively, where A, B and T stand for
the attributes {A1, . . ., Al}, {B1, . . ., Bm} and {(T 1

sm, T
1
sM ,

T1Dm, T
1
DM ),. . . , (T

r
sm, T

r
sM , T

r
Dm, T

r
DM )} respectively.We show

the equivalence by proving the two inclusions separately, i.e.,
we prove that the left-hand side of the formula (henceforth
lhs) implies the right-hand side (henceforth rhs) and that the
rhs implies the lhs.

(x’’∈lhs⇒x’’∈rhs)
Let x’’[A,B|S] ∈ lhs. Then, by definition of Make-Explicit

and Ext, there exists a tuple x’[A,B|T]∈ rTP ×
TP uTP such

that x’[A,B]=x’’[A,B] and, for any <s,d,pi >∈x’’[S], there
exists a Vr such that, with 1≤i≤r such that x’[T]=Vr and
Vr[i]=<sim,s

i
M,dim,d

i
M>, <s,d>∈Ext(Vr[i]), i.e., sim ≤s<siM

∧ dim ≤ d<diM and pi = Sr(i).
By definition of ×

TP and of Pyramid-Intersect, there
exist tuples x1[A|T]∈ rTP and x2[B|T]∈ uTP such that
x1[A]=x’[A], x2[B]=x’[B] and, with Vr = x’[T],
Vr[i]=<sim,s

i
M, dim,d

i
M>, with V1r = x1[T], V1r[i]=<s1im,

s1iM, d1im,d1
i
M > and with V2r = x2[T], V2r[i]=<s2im,s2

i
M,

d2im,d2
i
M>, <sim,s

i
M, dim, d

i
M> = <max(sim1,s

i
m2), min(siM1,

siM2), max(dim1,d
i
m2), min(diM1,d

i
M2) >.

Let us now reconsider <s,d,pi >∈x’’[S]. Since sim≤s<siM
and sim = max(sim1,s

i
m2) and siM = min(siM1,s

i
M2), then

max(sim1,s
i
m2) ≤ s < min(siM1,s

i
M2). Since dim ≤d<diM

and dim = max(dim1,d
i
m2) and diM = min(diM1,d

i
M2), then

max(dim1,d
i
m2) ≤ d < min(diM1,d

i
M2).

Thus, by definition of Ext, both <s,d>∈Ext(V1r[i])
and <s,d>∈Ext(V2r[i]). Thus, by definition of Make-
Explicit, there exists a tuple x1’[A|S]∈Make-Explicit(rTP)
such that x1’[A]=x1[A]=x’[A] and <s,d,pi >∈x1’[S], and
there exists a tuple x2’[B|S]∈Make-Explicit(uTP) such that
x2’[B]=x2[B]=x’[B] and <s,d,pi>∈x2’[S].
Therefore, by definition of ×

Expl, there exists a tuple
x12’’[A,B|S]∈rhs such that x12’’[A]=x1’[A], x12’’[B]=x2’
[B] and, since both <s,d,pi>∈x1’[S] and <s,d,pi>∈x2’[S],
<s,d,pi>∈x1’[S]∩x2’[S] and thus <s,d,pi>∈x12’’[S].
By construction, x12’’=x’’.
(x’’∈rhs⇒x’’∈lhs)
Let x’’[A,B|S] ∈ rhs. By definition of ×

Expl, there exist
tuples x1’[A|S]∈Make-Explicit(rTP) and x2’[B|S]∈Make-
Explicit(uTP) such that x1’[A]=x’’[A], x2’[B]=x’’[B] and,
for any <s,d,pi>∈x’’[S], <s,d,pi>∈x1’[S] and <s,d,
pi>∈x2’[S].

By definition of Make-Explicit and of Ext, since
x1’[A|S]∈Make-Explicit(rTP), there exists a tuple x1[A|T]∈rTP

such that x1’[A]=x1[A] and, with V1r =x1[T], <s,d>∈Ext
(V1r[i]). Analogously, since x2’[B|S]∈Make-Explicit(uTP),
there exists a tuple x2[B|T]∈uTP such that x2’[B]=x2[B] and,
with V2r =x2[T], <s,d> ∈ Ext(V2r[i]).
Since, with V1r[i] = <s1im, s1iM, d1im, d1iM> and

V2r[i]=<s2im,s2
i
M,d2im,d2

i
M>, by definition of Ext, s1im

≤ s < s1iM, s2im ≤ s < s2iM, d1im ≤ d < d1iM,
d2im ≤ d < d2iM, and, therefore, max(sim1,s

i
m2) ≤ s <

min(siM1,s
i
M2) and max(dim1,d

i
m2)≤ d<min(diM1,d

i
M2). Then,

by definition of ×
TP, there exists a tuple x’[A,B|T]∈ rTP

×
TP uTP such that x’[A]=x1[A], x’[B]=x2[B], x’[T]=Vr

with Vr[i]=<max(sim1,s
i
m2), min(siM1,s

i
M2), max(dim1,d

i
m2),

min(diM1,d
i
M2) > (and max(sim1,s

i
m2)≤ s<min(siM1,s

i
M2) and

max(dim1,d
i
m2) ≤ d < min(diM1,d

i
M2)).

By definition of Make-Explicit, there exists a tuple
x12’’[A,B|S] such that x12’’[A,B]=x’[A,B] and <s,d,i>∈

x12’’[S].
By construction, x12’’=x’’. ■
Reducibility is fundamental for all TDB approaches,

to grant that the new operators, which extend simpler opera-
tors to cope with new phenomena, reduce to simpler operators
when the new phenomena are disregarded [15], [23].

Intuitively speaking, to prove reducibility, standard TDB
approaches introduce a time-slice operator that removes time,
by selecting all tuples holding at a specific time [15], [23].
In our extension, the time-slice operator considers three
parameters: a time point (s), a duration (d), and a level of
preference (i). Our time-slice operator τ i<s,d> is defined as
follows.
Definition 12 (Time-Slice Operatorτ i<s,d>): Let rTP a TP

relation, defined on the schema R = (A1,. . . , An|(T 1
sm,

T1sM , T
1
em, T

1
eM ),. . . , (T

r
sm, T

r
sM , T

r
em, T

r
eM )), Sr a scale,

s∈ TC and d∈N , and i, 1≤i≤r, a level of prefer-
ence in Sr: τ i<s,d>(r

TP) ={z\∃x∈rTP (z[A]=x[A] ∧

<s,d>∈Ext(Vr[i])). ■
Given the above definition, Property 2 holds.
Property 2. Reducibility to Codd’s algebra. Our tem-

poral extension of Codd’s operators is reducible to Codd’s
operators, i.e., for each pair of TRwLP rTP and sTP (defined
over a proper schema, and considering a scale Sr), for each
s∈TC , d∈N , and level of preference i (1≤i≤r) in the scale
Sr: τ i

<s,d>
(rTPOpTPsTP) =τ i

<s,d>
(rTP) OpCoddτ i

<s,d>
(sTP),

where OpTP and OpCodd represent corresponding relational
operators in our algebra and in Codd’s algebra respectively.

Proof: For the sake of brevity, we prove the property
considering the Cartesian product, i.e.,

τ i
<s,d>

(rTP ×
TP uTP) = τ i

<s,d>
(rTP) ×

Codd τ i
<s,d>

(uTP).
The proofs for the other operators are similar.
Let rTP and uTP be two TRwLP relations with schemas

(A|T) and (B|T) respectively, where A, B and T stand for
the attributes {A1, . . ., Al}, {B1, . . ., Bm} and {(T 1

sm, T
1
sM ,

T1Dm, T
1
DM ),. . . , (T

r
sm, T

r
sM , T

r
Dm, T

r
DM )} respectively.We show

the equivalence by proving the two inclusions separately, i.e.,
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we prove that the left-hand side of the formula (henceforth
lhs) implies the right-hand side (henceforth rhs) and that the
rhs implies the lhs.

(x’’∈lhs⇒x’’∈rhs)
Let x’’[A,B] ∈ lhs. Then, by definition of τ i

<s,d>
,

there exists a tuple x’[A,B|T] ∈ rTP ×
TP uTP such that

x’[A,B]=x’’[A,B] and there exists a Vr such that x’[T]=Vr
and, with Vr[i]=<sim,s

i
M,dim,d

i
M>, <s,d>∈Ext(Vr[i]), i.e.,

sim ≤s<siM ∧ dim ≤d<diM.

By definition of ×
TP and of Pyramid-Intersect, there

exist tuples x1[A|T]∈rTP and x2[B|T]∈ uTP such that
x1[A]=x’[A], x2[B]= x’[B] and <sim,s

i
M,dim, d

i
M> = <max

(sim1,s
i
m2), min(siM1,s

i
M2), max(dim1,d

i
m2), min(diM1,d

i
M2) >,

where V1r =x1[T], V1r[i]=<s1im,s1
i
M,d1im,d1

i
M >,

V2r =x2[T], V2r[i]=<s2im,s2
i
M,d2im,d2

i
M >.

Since max(sim1,s
i
m2) = sim ≤ s < siM = min(siM1,s

i
M2) and

max(dim1,d
i
m2) = dim ≤ d < diM = min(diM1,d

i
M2), by defini-

tion of Ext, both<s,d>∈Ext(V1r[i]) and<s,d>∈Ext(V2r[i]).
Thus, by definition of τ i

<s,d>
, there exists a tuple x1’∈

τ i
<s,d>

(rTP) such that x1’[A]=x1[A]=x’[A], and there exists
a tuple x2’∈ τ i

<s,d>
(uTP) such that x2’[B]=x2[B]=x’[B].

Therefore, by definition of ×
Codd, there exists a tuple

x12’’∈ rhs such that x12’’[A]=x1’[A] and x12’’[B]=x2’[B].
By construction, x12’’=x’’.
(x’’∈rhs⇒x’’∈lhs)
Let x’’[A,B] ∈ rhs. By definition of ×

Codd, there exist
tuples x1’[A]∈ τ i

<s,d>
(rTP) and x2’[B]∈ τ i

<s,d>
(uTP) such

that x1’[A]=x’’[A], x2’[B]=x’’[B].
By definition of τ i

<s,d>
, there exists a tuple x1[A|T]∈rTP

such that x1’[A]=x1[A] and, with V1r = x1[T], <s,d>∈

Ext(V1r[i]), and there exists a tuple x2[B|T]∈uTP such that
x2’[B]=x2[B] and, with V2r = x2[T], <s,d>∈Ext(V2r[i]).
With V1r = x1[T]=<s1im,s1

i
M, d1im,d1

i
M > and V2r =

x2[T]=<s2im,s2
i
M, d2im,d2

i
M >, we thus have that s1im ≤

s < s1iM, s2im ≤ s < s2iM, d1im ≤ d < d1iM, d2im ≤ d
< d2iM, and, therefore, max(sim1,s

i
m2) ≤ s < min(siM1,s

i
M2)

and max(dim1,d
i
m2) ≤ d < min(diM1,d

i
M2).

Therefore, by definition of ×
TP, there exists a tuple

x’[A,B|T]∈ rTP ×
TP uTP such that x’[A]=x1[A], x’[B]=x2[B],

x’[T]=V’r with V’r[i]=<max(sim1,s
i
m2), min(siM1,s

i
M2),

max(dim1,d
i
m2), min(diM1,d

i
M2) ≯= ∅ since max(sim1,s

i
m2) ≤ s

< min(siM1,s
i
M2) and max(dim1,d

i
m2) ≤ d < min(diM1,d

i
M2).

Therefore, by definition of τ i
<s,d>

, there exists a tuple x12’’
such that x12’’[A,B]=x’[A,B].
By construction, x12’’=x’’. ■

IV. CONCLUSION, RELATED AND FUTURE WORK, AND
APPLICATIONS
We follow the theoretical guidelines provided by the TDB
literature (consider [3], [15], [16], [23]) to propose the first
relational TDB approach considering preferences for inde-
terminate valid time, as required by several applications
contexts including guidelines, plans and workflows. Our
approach is parametric with respect to a qualitative scale

of preferences, and considers layered preference functions,
as we defined in [2] (notably, in [2] layered preferences are
used in a purely AI context). As main contributions of our
approach, we provide (i) a data representation model for
temporally indeterminate valid timewith layered preferences,
and (ii) its data semantics. We (iii) define an extension of
Codd’s operators to query the new model, and (iv) prove its
correctness with respect to the data semantics and (vi) its
reducibility to standard Codd’s operators.
The most closely related approaches in the TDB litera-

ture are [4], [10], and [12] –see the discussion in Section I.
They all consider indeterminate valid time. Reference [12]
provides a probabilistic data model but no algebra, [10] deals
with events (instantaneous facts) and probabilities, while
in [4] we provide a family of data models for durative facts
and algebrae. However, none of such approaches cope with
preferences. Additionally, a minor difference regards the fact
that in [4], [10], and [12] indeterminacy only regards the tem-
poral location of points [10] or interval endpoints [4], [12],
while in this paper we explicitly cope also with durations (see
footnote 1). Notice, however, that an approach combining
preferences with a <start,end> representation of indeter-
minate valid time can be devised, along the guidelines we
provided in this paper. It will be a –minor– future work of us.
We are implementing our algebraic operators in the

open-source DBMS PostgreSQL, to demonstrate the fea-
sibility of our approach, and to analyze its computational
complexity. In particular, we are using PL/pgSQL, and we are
exploiting the ‘‘int4range’’ range type to model the ranges of
starting times and of durations, and the ‘‘∗’’ (intersection) and
‘‘&&’’ (empty overlap) operators to efficiently manipulate
them.
On top of such an implementation, in our future work

we plan to consider all the steps needed to propose a
full extension of PostgreSQL to manage temporal pref-
erences. The first step will be an extension of SQL to
support the creation and the querying of tables with tem-
poral preferences. Following the methodology highlighted
in Section 24 of the TSQL2 book [23], we will then con-
sider the extensions to data dictionary, DDL and Query
compilers, run-time evaluator, transaction and data man-
ager, possibly exploiting the extensions already provided
in https://github.com/scalegenius/pg_bitemporal to manage
(bi)temporal tables in PostgreSQL.
Though the approach proposed in this paper is fully domain

and application independent, we have developed it within
a specific project, ‘‘Personalized Training of Professional
Competences with AI’’ (PTPC-AI [7]; a part of a large
national project: ‘‘Learning Personalization with AI and of
AI’’ (AI-LEAP) [5]), considering medical education on the
basis of Computer-Interpretable clinical Guidelines (CIGs).
Clinical guidelines encode evidence-based medical practices
to diagnose and treat specific diseases. There are thousands
of clinical guidelines in the medical literature (consider,
e.g., the collection provided by the Guideline International
Network [14]) and are widely used in the medical practice,
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and in medical education. Several approaches in the Medical
Informatics area have provided computer systems to acquire
CIGs and use them for medical decision support and educa-
tion (see, e.g., the surveys [18], [20], [30]). Different temporal
issues have to be considered by such CIG systems, including
the definition/use of TDBs to model clinical data, which are
intrinsically temporal, and in which temporal indeterminacy
plays a relevant role; see, e.g. the survey in [25]. The adoption
of preferences in general, and of temporal preferences in
particular, plays an important role in the CIG context, e.g.,
to improve the quality of medical treatments (consider, e.g.,
Ex. 3), and/or to improve patients’ compliance to treatments,
through temporal personalization [1], [19], [29]. Thus, the
definition of a TDB approach supporting the management of
preferences for temporally indeterminate (medical) data is a
crucial step in our PTPC-AI project.
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