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ENGLISH SUMMARY OF THE THESIS  

In the present Ph.D. thesis, proteomic, peptidomic and metabolomic analysis were performed to 

investigate various biological aspects of cancer, viral infection, and metabolic diseases. All the 

studies were carried out through an untargeted approach using a high-resolution mass 

spectrometry coupled with liquid or gas chromatography. The first study focused on cancer vaccine-

based immunotherapies. Our findings demonstrated that salmonella infection of STSs/bone 

sarcoma primary human cells induces the release of immunogenic peptides in the extracellular 

medium. These peptides showed an HLA-binding ability in silico and a capability to induce an 

antitumor immune response in vitro. In the second study, we employed an untargeted proteomic 

discovery approach to identify potential MPM biomarkers in serum and pleural effusion. Two 

candidate biomarkers were confirmed on a bigger cohort of patients by ELISA: Gelsolin for serum 

and Lumican for pleural effusion. They showed diagnostic, prognostic and histological subtypes 

discrimination capabilities. The third study of the thesis mainly focused on cancer patients affected 

by COVID-19 disease. A proteomic analysis was performed to identify immuno-metabolic pathways 

that intersect Sars-Cov-2 infection and cancer. The emerging proteomic profile of Sars-Cov-2 and 

cancer patients showed alterations in the modulation of pathways and proteins associated with 

immunodeficiency, susceptibility to viral infection and inflammatory modulation. These results 

suggest that the concomitant presence of cancer condition and viral infection may increase the 

inflammatory state of patients, contributing to extra pulmonary inflammatory complications and 

fragility in cancer patients. The fourth study focused on the investigation – via proteomic approach 

- of the host circulating exosome’s response to Sars-CoV-2 infection. Our findings showed that 

circulating exosomes are strongly involved in the processes associated with SARS-CoV-2 infection. 

The proteomic analysis of plasma exosomes identified several molecules involved in immune 

response, inflammation, activation of coagulation and complement pathways. Another remarkable 

result is the presence of several potential biomarkers that are well correlated with the severity of 

the disease. The last part of the thesis reports a metaproteomics and metabolomics analysis of the 

gut microbiota in pediatric obese children before and after six and twelve months of Mediterranean 

Diet (MD) intervention. Our results showed that MD induces in pediatric obese patients the 

modulation of several bacterial species linked to a general improvement of intestinal dysbiosis, 

inflammation and metabolic syndrome induced by high-fat diets. In addition, MD also impacted the 

production and use of  gut and circulating SCFAs, suggesting an indirect contribution of bacteria-

produced SCFAs to obesity. 
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ITALIAN SUMMARY OF THE THESIS  

Nel presente lavoro di ricerca, sono state eseguite diverse analisi di proteomica, metabolomica e 

peptidomica basate sulla cromatografia liquida o gassosa e spettrometria di massa per studiare vari 

aspetti biologici della ricerca sul cancro, sulle infezioni virali e sulle malattie metaboliche. Il primo 

studio riporta una nuova strategia di vaccinazione immunoterapeutica basata su peptidi 

immunogenici.  I nostri risultati hanno dimostrato che l'infezione da salmonella di cellule umane 

primarie di sarcoma induce il rilascio di peptidi immunogenici nel mezzo extracellulare. Questi 

peptidi hanno mostrato una forte capacità di legare gli HLA in silico e di indurre una risposta 

immunitaria antitumorale in vitro. Il secondo studio riporta l’identificazione, mediante un approccio 

proteomico untargeted, di nuovi biomarcatori del plasma e del versamento pleurico per la diagnosi 

precoce di mesotelioma pleurico maligno (MPM). Due potenziali biomarcatori sono stati confermati 

mediante ELISA su una coorte più ampia di pazienti: Gelsolina per il siero e il Lumican per il 

versamento pleurico. Questi due biomarcatori hanno mostrato un’elevata capacità diagnostica, 

prognostica e di individuazione del sottotipo istologico. Il terzo studio si focalizza principalmente sui 

pazienti oncologici affetti da COVID-19. È stata eseguita un'analisi proteomica al fine di identificare 

i meccanismi biochimici e le vie immunologiche che caratterizzano la condizione patologica dei 

pazienti con infezione da SARS-CoV-2 e cancro. Il profilo proteomico ha mostrato alterazioni nella 

modulazione dei pathway e di proteine associate all'immunodeficienza, ad una maggiore 

suscettibilità ad infezioni virali e alla risposta infiammatoria. Questi risultati suggeriscono che la 

presenza concomitante di una patologia tumorale e di un'infezione virale può aumentare lo stato 

infiammatorio dei pazienti, contribuendo alle complicazioni infiammatorie extrapolmonari e alla 

fragilità dei pazienti oncologici. Il quarto studio descrive la risposta degli esosomi circolanti 

dell'ospite all'infezione da SARS-CoV-2. I nostri risultati hanno dimostrato che gli esosomi circolanti 

sono fortemente coinvolti nei processi associati all'infezione da SARS-CoV-2. L'analisi proteomica 

degli esosomi plasmatici ha identificato diverse molecole coinvolte nella risposta immunitaria, 

nell'infiammazione, nell'attivazione della coagulazione e nelle vie del complemento. Un altro 

risultato notevole è la presenza di diversi potenziali biomarcatori correlati con la gravità della 

malattia. L'ultima parte della tesi riporta un'analisi metaproteomica e metabolomica del microbiota 

intestinale in bambini pediatrici obesi prima e dopo sei e dodici mesi di Dieta Mediterranea (MD). I 

nostri risultati hanno mostrato che la MD induce nei pazienti pediatrici obesi la modulazione di 

diverse specie batteriche legate a un miglioramento generale della disbiosi intestinale, 

dell'infiammazione e della sindrome metabolica indotta da diete ricche di grassi. 
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2 INTRODUCTION AND AIMS OF THE THESIS 

 

Today mass spectrometry (MS) is emerging as a powerful strategy for the identification, 

characterization, and quantification of thousands of molecules in a biological sample or system. In 

particular, MS-based proteomic and metabolomic applications have received considerable 

attention during last years [1]. In system biology, large-scale analysis of metabolites and proteins is 

essential to understand the response of cellular systems [2,3]. While proteomics is the large-scale 

study of the entire complement of proteins in a biological system and their changes under different 

conditions, from physiological states to pathological variations [4], metabolomics aims at the 

comprehensive and quantitative analysis of a large variety of metabolites in biological samples. A 

detailed comprehension of the participating proteins and metabolic substrates provides an 

understanding of the biochemical processes and cellular functions essential to health and/or 

disease: this information is also necessary to advance translational studies, especially those related 

to personalized medicine [5]. Proteomics and metabolomics can be used to discover potential 

biomarkers for the screening and diagnosis of diseases and metabolic disorders, for the 

understanding of drug responses and molecular pathogenesis, and for the identification of new 

therapeutic targets. In addition, improvements in both liquid chromatography (LC) and mass 

spectrometry (MS) instrumentation have also allowed the study and quantification of native 

peptides [6]. Peptidomics is the comprehensive study of all peptides in a biological sample and 

system. Peptidomic analysis employs many proteomics methods but with a different target. Since 

peptides play complex regulatory roles in many biological processes, peptidomic is today employed 

in several applications, from food to clinical application [7]. 

In the present Ph.D. thesis, proteomic, metabolomic and peptidomic analysis were performed to 

explore disease disorders, especially in the context of identifying new therapeutic approaches, 

exploring  biochemical mechanisms and discovering diagnostic/prognostic biomarkers. In particular, 

five different studies in which the right combination of proteomic, metabolomic and/or peptidomic 

allowed the in-depth study of protein and biological alterations under different disease conditions 

will be presented. In light of this, the thesis is divided in three main chapters based on the 

investigated disease: 
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• Cancer 

o Identification of new immunogenic peptides as potential anticancer vaccines for 

sarcoma cancer.  

o Identification and large cohort validation of novel diagnostic biomarkers for 

Malignant Pleural Mesothelioma (MPM). 

o Investigation of PBMC proteomic alterations in cancer patients with COVID-19. 

 

•  Viral infection 

o Investigation of exosome composition alterations upon SARS-CoV-2 infection. 

 

• Metabolic diseases 

o Study the impact of MD intervention on the gut microbiota of pediatric obese 

patients. 

In the first main chapter, MS-based proteomic and peptidomic technologies were used to 

investigate several biological aspects in cancer research. The first part stems from an AIRC funded 

project (Universal Cancer Vaccine: UniCanVax), in which the proposal is a novel immunotherapeutic 

vaccination strategy based on immunogenic peptides that are naturally released by cancer cells and 

that could be used as universal vaccines. This project was carried out in collaboration with Prof. 

Maria Rescigno’s group from Humanitas Research Center of Rozzano. The aim of this project was to 

identify novel immunogenic peptides that could be used as a universal sarcoma vaccine 

treatment. Through LC-MS/MS techniques, peptides extracted from the conditioned medium of soft 

tissue sarcoma (STS)/ sarcoma cells treated with salmonella infection were identified and 

quantified.  

The second study on cancer reports the discovery of new sera and pleural effusions biomarkers of 

MPM. The aim of this project was the identification and a large-cohort validation of new 

biomarkers for the early diagnosis of MPM. Plasma and pleural effusions from patients and controls 

were analyzed through LC-MS/MS to identify marker proteins that were then validated using ELISA. 

The third part of the first chapter is mainly focused on cancer patients affected by COVID-19 disease. 

An untargeted proteomic analysis of PBMC samples was performed to elucidate the mechanism and 

immunological pathways that intersect patients with infection and cancer. In particular, the 

objective was to investigate the interference between the immunosuppressive and anti-
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inflammatory action of growing tumors and the immune metabolic scenario induced by SARS-CoV-

2 infection, as well as to identify new therapeutic strategies for the management of patients with 

cancer affected by COVID-19.  

In the second chapter of the thesis the host circulating exosomes’ response to SARS-CoV-2 infection 

will be presented. The knowledge of the host response to the novel coronavirus SARS-CoV-2 was 

still limited at the time of the research (beginning of 2020). The aim of this study was to investigate 

by proteomic analysis the alterations of exosome composition upon SARS-CoV-2 infection and the 

potential use of plasma exosomes as biomarkers of the disease severity. MS-based proteomic 

analysis was employed for the characterization of plasma-derived exosomes from COVID-19 

patients and healthy controls. 

The last chapter of the thesis is focused on metaproteomic and metabolomic approaches to study 

gut microbiota alterations in pediatric obese patients subjected to a dietary intervention with 

Mediterranean Diet (MD). Although the study of intestinal microbiome is still challenging, today, 

thanks to recent developments of metaproteomics and metabolomics, the gut microbiome 

characterization is possible. The aim of the project was to investigate the impact of MD 

intervention on the gut microbiota of pediatric obese patients. The dietary intervention was based 

on educational training using gamification, while untargeted metaproteomics and metabolomics 

were employed to study any alterations of the gut microbiota and plasma after six and twelve 

months of diet.
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3 CANCER 

3.1 MASS SPECTROMETRY BASED PROTEOMICS - APPLICATIONS TO CANCER 

RESEARCH 
 

Cancer is the second leading cause of death and poses a major problem to healthcare systems 

worldwide [8].  The most diagnosed cancers are breast, lung, and prostate cancers, while the most 

common causes of cancer death are caused by lung, liver, and stomach cancers. Currently, clinical 

practices are being improved by research on early detection methods, appropriate classification of 

risk groups and treatment efficacies. The early detection of cancer is crucial for its ultimate control 

and prevention [9]. The ability to effectively cure and treat cancer is directly dependent on the 

ability  to detect them at their earliest stages [10]. Advances in conventional diagnostic strategies, 

such as mammography and Prostate-Specific Antigen (PSA) testing, have provided some 

improvement in the detection of disease. [11,12] However, they still do not reach the sensitivity and 

specificity that are needed to reliably detect early-stage disease. In many cases, cancer is diagnosed 

and treated when cancer cells have already invaded surrounding tissues and, in this case, most 

conventional therapeutics are limited in their success. [13] On the other hand, detecting cancers 

when they are at their earliest stages means that current or future treatment strategies will have a 

higher probability of truly curing the disease. In this scenario, biomarkers represent an important 

tool for cancer detection and monitoring, and the emerging field of clinical proteomics is especially 

well suited to the discovery and implementation of these biomarkers. [14] Considering that proteins 

are biomolecules that directly carry out most biological processes, they are ideal predictors of 

disease progression. Body fluids, such as serum, are protein-rich information reservoir that contains 

traces of what the blood has encountered during its circulation through the body [15]. Mass 

spectrometry-based proteomic analysis is a key method for the rapid detection of cancer-specific 

biomarkers. Moreover, specific protein profiles may be prognostic, thus helping with proper 

treatment recommendations. [16]  MS-based proteomic techniques are also widely employed for 

the full understanding of complex molecular pathways related to cancerogenesis. Several studies 

have shown the great potential of clinical proteomics in the characterization of many diseases and 

its achievements in the oncological field [17]. 
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Additionally, proteins and peptides are the active targets of most cancer therapeutics, including the 

growing field of immunotherapies. Cancer immunotherapy is a type of cancer treatment that aims 

to boost T cell-mediated immune response in order to target and eliminate cancer cells. After many 

years of disappointing results, immunotherapy has become a clinically validated treatment for a 

variety of human malignancies [18]. In addition, therapeutic cancer vaccines against tumor-related 

epitopes that directly stimulate T cells have been clinically effective and are currently available [19]. 

Cancer cells express several antigens, including self-antigens derived from tumor tissues, as well as 

mutation-derived antigens (i.e., neoantigens), that can be processed and presented as HLA binding 

peptides (HLAp), leading to their recognition as “non-self” by the host immune system [20]. 

Currently, mass spectrometry based immunopeptidomics is the only unbiased methodology to 

interrogate the repertoire of naturally presented HLAp in tissues. Of note, mass spectrometry has 

been successful in identifying neoantigens on cancer cell lines and in melanoma tissues [21]. 

The present chapter reports the application of MS-based proteomic and peptidomic technologies 

with diagnostic, prognostic or therapeutic purposes in oncology research, particularly for soft tissue 

sarcoma (STS)/sarcoma, mesothelioma and cancer patients affected by SARS-CoV-2.  
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3.2 IDENTIFICATION OF NEW IMMUNOGENIC PEPTIDES AS POTENTIAL 

ANTICANCER VACCINES FOR STSS/SARCOMA CANCER 
 

3.2.1 Background and Rationale 
 

Sarcomas account for over 20% of all pediatric solid malignant cancers and about 1% of adults’ 

worldwide. The over seventy known sarcoma sub-types dramatically differ for origin, 

aggressiveness, response to therapy and intratumor heterogeneity [22]. High grade sarcomas can 

be highly heterogeneous histologically, with a single tumor containing areas of different histologic 

grade, necrotic regions, and a variable inflammatory cell infiltrate. These patients as well as the 

patients with locally advanced disease are often treated with the combination of a perioperative 

treatment (neoadjuvant or adjuvant), chemotherapy and/or radiotherapy, to improve the long-term 

outcome and to reduce the risk of relapse [23]. In the last years, immunotherapy has emerged as 

an attractive approach to refractory cancers. In sarcoma, the role of immunotherapeutic agents is 

still under evaluation but new strategies to enhance immunogenicity and therapeutic strategies are 

strongly needed. Most cancer cells down-regulate gap junctions (GJ) resulting in loss of 

communication with their surrounding microenvironment [24,25]. A previous clinical study  

documented that the infection of tumor cells with Salmonella Typhimurium induces the up 

regulation of connexin 43 (Cx43), a ubiquitous protein that forms GJ [26]. Cx43 allows the transfer 

of antigens between tumor cells and dendritic cells (DC) enabling them to induce an efficient anti-

tumor response both in human melanoma cells in vitro and in a mouse model of melanoma in vivo 

[27]. Most important, the increased proteasome activity induced by Salmonella infection on human, 

murine, and canine tumor cells results in the secretion of non-conventional ER-stress-response-

derived immunogenic peptides (ERstrePs) in the extracellular space through Cx43-hemichannels. 

Mass spectrometry analysis on the supernatant of Salmonella-infected human melanoma cells 

revealed 12 peptides that were selectively released upon infection and that are capable to bind HLA-

2 and HLA-3 molecules directly on dendritic cells and to prime human cytotoxic CD8+ T cells from 

PBMCs of healthy donors. As a result, healthy-donor CD8+ T cells recognize and kill human 

melanoma cells in vitro and when xenotransplanted in vivo [26]. These peptides released by cancer 

cells are not presented by healthy cells and are highly immunogenic and trigger an efficient anti-

tumor response in a clinical trial on dogs affected by osteosarcoma and high-grade sarcoma [28]. 

Based on these considerations, the aim of the present study was the identification of novel 
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immunogenic peptides released by soft tissue sarcoma (STS)/ sarcoma patients-derived primary 

tumor cells to formulate a possible vaccine. Peptides were extracted from the medium of 

STSs/sarcoma cells treated with Salmonella infection and were analyzed with LC-MS.  

3.2.2 Materials and Methods  

3.2.2.1 Patients 

In total, 23 patients (mean age 59 years, range 25–88 years) with a histological diagnosis of primary 

or recurrent soft tissue or bone sarcoma of any histotype (with the exception of well-differentiated 

liposarcoma), grade and site were included in the study. Their characteristics are summarized in 

Table 3.1.  

Table 3.1: patients with STSs/sarcoma enrolled in the study 

 

The patients were diagnosed, treated, and follow up at the Humanitas Research Hospital Rozzano, 

Milan, Italy. Some of the patients included in the study received a systemic chemotherapeutic 

treatment, with or without radiotherapy, including locally advanced disease for neoadjuvant 

treatment, non-resectable local recurrence, synchronous or metachronous metastatic disease.  The 

study was approved by the Ethics Committee of Humanitas Clinical and Research Center. 

3.2.2.2 Sample preparation 

Primary human STS and bone sarcoma cells, obtained from dissociation of human tumor specimens, 

were left untreated or infected with an attenuated vaccine strain of Salmonella enterica serovar 

Typhi (Ty21a). This in vitro part was performed by our collaborator from Humanitas University.  

Patient Code Gender Age Type Site Grading Stage chemio radio Status (Alive/Dead)

HsSa5

HsSa6 F 47 Myxoid liposarcoma Upper leg 2 1 0 A

HsSa9 F 44 Other sarcoma Upper leg 3 0 0 A

HsSa13 F 30 chondrosarcoma Sternum 1 0 0 A

HsSa14 F 72 Undifferentiated pleomorphic sarcoma Leg 3 distant metastasis 0 0 A

HsSa15 F 78 Fibrosarcomatous DFSP Other 3 distant metastasis 0 0 A

HsSa16 F Dedifferentiated liposarcoma Retroperitoneum 3 0 0 A

HsSA17 F 74 Myxofibrosarcoma Buttock 3 0 0 A

HsSA18 F 69 Solitary fibrous tumour Paravertebral - thoracolumbar 2 0 0 D

HsSA19 M 69 Dedifferentiated liposarcoma Retroperitoneum 3 0 0 D

HsSA22 F 31 Osteosarcoma Lower leg 3 0 0 A

HsSA25

HsSA28 F 51 Myxofibrosarcoma Upper leg 3 1 1 A

HsSA29 M 67 Dedifferentiated liposarcoma Upper leg 2 0 1 A

HsSA30 F 88 Giant cell tumour of soft tissue Upper leg 0 0 A

HsSA31 F 78 Undifferentiated round cell sarcoma Hand 3 1 0 A

HsSA32 F 76 Dedifferentiated liposarcoma Retroperitoneum 3 0 0 A

HsSA33 F Dedifferentiated liposarcoma Retroperitoneum 3 0 0 A

HsSA35 F 25 Phyllodes tumor Breast 3 1 0 A

HsSA37 M 74 Undifferentiated pleomorphic sarcoma Upper leg 3 0 1 A

HsSA40 F 82 Undifferentiated pleomorphic sarcoma Upper leg 3 distant metastasis 0 0 D

HsSA42 F 80 Dedifferentiated liposarcoma Upper leg 3 0 0

HsSA43 F 49 Synovial sarcoma Abdominal wall 1 1 A
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Briefly, single bacterial colonies were grown overnight and restarted the next day to reach an 

absorbance at 600 nm of 0.6, corresponding to 0.6 x 10 9 colony-forming units (CFUs)/mL. Primary 

human sarcoma cells (2 x 10 6 cells/mL) were incubated with the bacteria for 90 min, in tubes, at a 

cell-to-bacteria ratio of 1:50, in the appropriate medium containing L-glutamine without antibiotics. 

Then, the cells were washed and incubated in medium supplemented with gentamicin (50 mg/mL), 

for 18 hours to kill extracellular bacteria. Cell viability was tested by Annexin/PI staining (BD).  During 

incubation, immunogenic peptides are released - via Cx43 hemichannels - by cancer cells in the 

extracellular space. At the end of incubation, the supernatants were collected. Successively, 

supernatants were filtered through a 0.22 µm filter to get rid of any remaining potentially live 

bacteria and concentrated through the use of chromabond SPE C18 devices (Macherey-Nagel). Once 

eluted with 80% CH3CN in 0.1% Formic Acid (FA) solution, samples were dried by speed vacuum, 

solved in water, and sonicated with Bioruptor 30’’ ON + 30’’ OFF (2 cycles). Next, low and high 

molecular weight fractions were separated with Amicon Ultra-0.5 mL 10 kDa centrifugal filter 

(Millipore, Billerica, MA, USA). Low molecular peptides were concentrated in a centrifuge vacuum 

concentrator and then acquired by nano-scale liquid chromatographic mass spectrometry.  

3.2.2.3 Mass spectrometry analysis  

2 µl of each sample were loaded on EASY nano-LC 1200 system (Thermo Scientific, Milano, Italy) 

coupled to a 5600+ TripleTOF system (AB Sciex, Concord, Canada). Peptides separation was achieved 

on Acclaim PepMap C18 2μm 75µm x 150mm column with a linear gradient from 97% solvent A 

(100% water, 0.1% formic acid) to 45% solvent B (80% acetonitrile, 0.1% formic acid) over 2 hours 

at a constant flow rate of 0.3 ml/min. MS data were acquired using a mass range of 100–1600 Da 

(TOF scan with an accumulation time of 0.25 s), followed by a MS/MS product ion scan from 400 to 

1250 Da (accumulation time of 5.0 ms) with the abundance threshold set at 30 cps (40 candidate 

ions can be monitored during every cycle). The ion source parameters in electrospray positive mode 

were set as follows: curtain gas (N2) at 30 psig, nebulizer gas (GAS1) at 25 psig, ion spray floating 

voltage (ISFV) at 2700 V, source temperature at 90 °C and declustering potential at 85V. Two 

technical replicates were conducted on the LC-MS/MS part of the analysis. 

3.2.2.4 Mass spectrometry data processing    

Mass spectra were analyzed using MaxQuant software (version 1.5.2.8). Search parameters were 

set to an initial precursor ion tolerance of 10 ppm and MS/MS tolerance at 20 ppm. Enzyme 

specificity was set to unspecific and methionine oxidation was set as variable modification. The 
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spectra were searched using the Andromeda search engine in MaxQuant against the 

Uniprot_Human_2018 sequence database. Label free analysis was carried out, including a ‘match 

between runs’ option imposing the following parameters: quantification based on extracted ion 

chromatograms with minimum ratio count of 1, peptide and protein false discovery rates (FDRs) 

were set to 0.01 and the minimum required peptide length was set to 7 amino acids. The reversed 

sequences of the target database were used as decoy database. Comparative analyses were 

performed using the Perseus software (version 1.5.1.6). Missing values were replaced by random 

numbers drawn from a normal distribution by the function ‘imputation’ (width 0.3, down shift 1.8, 

separately for each column). Peptides were also analyzed using Protein Pilot software v. 4.2 (AB 

SCIEX, Concord, Canada) and Mascot v. 2.4 (Matrix Science Inc., Boston, USA). No enzyme was 

specified for both software and oxidized methionine was used as variable modification. The 

Uniprot_Human_2018 sequence database was used, and a target-decoy database search was 

performed. False Discovery Rate (FDR) was fixed at 1%. For mascot an assay tolerance of 50 ppm 

was specified for peptide mass tolerance, and 0.1 Da for MS/MS tolerance. The peptide charges to 

be detected were set to 2 +, 3 +, and 4 +, and the assay was set on monoisotopic mass. Only peptides 

with ions score cut-off greater than 20 were considered. Comparative analyses were performed 

using MarkerView 1.2. (ABSCIEX, Concord, Canada). For all the statistical analysis a t-test analysis 

was performed imposing a p-value of 0.05 and a fold change greater than 1.3. Net-MHCpan4.1 tool 

was applied to in silico predict the affinity of the peptides for major histocompatibility complex 

(MHC) class I molecules. 

3.2.2.5 Antigen specific-CD8+ T cells expansion from healthy donor PBMCs 

Total PBMCs isolated from healthy donors were loaded with either supernatant derived from 2 x 

106 sarcoma cells treated with Salmonella, or 20 mM Mart-126-35 (Iba Lifesciences) or CMV 

peptides (pp65, JPT Peptide Technologies) in rotation at 37 °C for 90 minutes. Cells were then plated 

in complete medium in 24-well plates (2 x 106 cells per well) in a final volume of 2 ml. Starting from 

day 3, every 2-3 days we added recombinant IL-2 (Proleukin, Novartis) at a final concentration of 20 

U/mL. Cells were restimulated every 10 days; expanded lymphocytes were enriched in CD8+ T cells 

by magnetic column separation (Miltenyi Biotec) and stimulated with irradiated (10 Gy) PBMCs that 

were pulsed with either Mart-1 or CMV peptides-mix, or supernatant from sarcoma cells infected 

with Salmonella. To pulse, PBMC were incubated for 90 minutes at 37°C in RPMI supplemented with 

the selected stimulus. 
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3.2.3 Results and Discussion 

3.2.3.1 Isolation and identification of immunogenic peptides derived from the supernatant of 

Salmonella-treated and -untreated human STS/sarcoma cells 

The experimental workflow followed for the identification of immunogenic peptides from 

supernatants of salmonella treated and untreated human STS/sarcoma cells is summarized in Figure 

3.1. To isolate peptides present in the supernatant, a combination of SPE and centrifugal filtration 

method was applied. LC-MS/MS analysis of extracted peptides was performed on a TripleTOF5600+ 

mass spectrometer with a Nano Spray III ion source coupled to an EASY nano-LC 1200 system. Each 

sample was analyzed in duplicate. To increase the number of identified peptides, the generated 

peak lists were searched with three different database search engines: Mascot, Protein Pilot and 

MaxQuant with 1% FDR. 

 

Figure 3.1: experimental workflow to identify peptides released by human STSs/sarcoma cells upon Salmonella infection. 

 

A total of 2755 different peptides corresponding to 783 unique proteins were identified in the 

conditioned medium. Consistent with the finding that Salmonella infection fosters the secretion of 

peptides [26], we detected a larger number of peptides in the secretome of the Salmonella-infected 

primary cell line than in the non-infected cell line. Among the thousands of peptides detected, 637 
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were overexpressed in salmonella infected cell line secretome, of which 73 were shared between 

at least 2 or more patients. The complete list of the overexpressed peptides and their correspondent 

parent proteins is shown in table 3.2.  

Table 3.2: list of the overexpressed peptides and their correspondent parent proteins. 

PEPTIDE PROTEIN PROTEIN NAME 

pep1 G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase  

pep2 HMGN2_HUMAN Non-histone chromosomal protein HMG-17 

pep3 HMGN2_HUMAN Non-histone chromosomal protein HMG-17 

pep4 MARE1_HUMAN Microtubule-associated protein RP/EB family member 1  

pep5 G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

pep6 ROA2_HUMAN Heterogeneous nuclear ribonucleoproteins A2/B1 

pep7 PDIA1_HUMAN Protein disulfide-isomerase (PDI) 

pep8 EF1B_HUMAN Elongation factor 1-beta (EF-1-beta) 

pep9 VIME_HUMAN Vimentin 

pep10 RS19_HUMAN 40S ribosomal protein S19  

pep11 VIME_HUMAN Vimentin 

pep12 ACTB_HUMAN Actin, cytoplasmic 1 (Beta-actin) 

pep13 SH3L3_HUMAN SH3 domain-binding glutamic acid-rich-like protein 3  

pep14 SERPH_HUMAN Serpin H1 

pep15 PLEC_HUMAN Plectin 

pep16 TYB4_HUMAN Thymosin beta-4  

pep17 TYB4_HUMAN Thymosin beta-4  

pep18 EF1A1_HUMAN Elongation factor 1-alpha 1 (EF-1-alpha-1) 

pep19 SNRPA_HUMAN U1 small nuclear ribonucleoprotein A 

pep20 LMNA_HUMAN Prelamin-A/C  

pep21 ROA2_HUMAN Heterogeneous nuclear ribonucleoproteins A2/B1 

pep22 HMGA1_HUMAN High mobility group protein HMG-I/HMG-Y  

pep23 HMGA1_HUMAN High mobility group protein HMG-I/HMG-Y  

pep24 VIME_HUMAN Vimentin 

pep25 TBB6_HUMAN Tubulin beta-6 chain 

pep26 H2A1_HUMAN Histone H2A type 1 

pep27 NPM_HUMAN Nucleophosmin  

pep28 H2A2A_HUMAN Histone H2A type 2-A 

pep29 G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase  

pep30 HSPB1_HUMAN Heat shock protein beta-1  

pep31 GSTP1_HUMAN Glutathione S-transferase P  

pep32 MIF_HUMAN Macrophage migration inhibitory factor 

pep33 PPIA_HUMAN Peptidyl-prolyl cis-trans isomerase A 

pep34 PTBP1_HUMAN Polypyrimidine tract-binding protein 1  

pep35 PARK7_HUMAN Parkinson disease protein 7  
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pep36 NUDC_HUMAN Nuclear migration protein nudC  

pep37 EF1B_HUMAN Elongation factor 1-beta  

pep38 CALR_HUMAN Calreticulin 

pep39 MIF_HUMAN Macrophage migration inhibitory factor 

pep40 G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase  

pep41 SC61B_HUMAN Protein transport protein Sec61 subunit beta 

pep42 MIF_HUMAN Macrophage migration inhibitory factor 

pep43 VIME_HUMAN Vimentin 

pep44 PTBP1_HUMAN Polypyrimidine tract-binding protein 1  

pep45 PGK1_HUMAN Phosphoglycerate kinase 1  

pep46 PGK1_HUMAN Phosphoglycerate kinase 1  

pep47 TSP1_HUMAN Thrombospondin-1 (Glycoprotein G) 

pep48 YBOX1_HUMAN Y-box-binding protein 1  

pep49 CPNS1_HUMAN Calpain small subunit 1  

pep50 TBX20_HUMAN T-box transcription factor TBX20  

pep51 NUCB1_HUMAN Nucleobindin-1 

pep52 GDN_HUMAN Glia-derived nexin  

pep53 GDN_HUMAN Glia-derived nexin  

pep54 SH3L3_HUMAN SH3 domain-binding glutamic acid-rich-like protein 3 

pep55 HS90A_HUMAN Heat shock protein HSP 90-alpha  

pep56 IF5AL_HUMAN Eukaryotic translation initiation factor 5A-1-like  

pep57 G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase 

pep58 COF1_HUMAN Cofilin-1 

pep59 MARE1_HUMAN Microtubule-associated protein RP/EB family member 1  

pep60 GDN_HUMAN Glia-derived nexin  

pep61 GDN_HUMAN Glia-derived nexin  

pep62 LYOX_HUMAN Protein-lysine 6-oxidase  

pep63 VIME_HUMAN Vimentin 

pep64 CSRP1_HUMAN Cysteine and glycine-rich protein 1 

pep65 LYOX_HUMAN Protein-lysine 6-oxidase  

pep66 VIME_HUMAN Vimentin 

pep67 ACTB_HUMAN Actin, cytoplasmic 1 

pep68 HMGN2_HUMAN Non-histone chromosomal protein HMG-17  

pep69 HMGN2_HUMAN Non-histone chromosomal protein HMG-17  

pep70 IF4H_HUMAN Eukaryotic translation initiation factor 4H 

pep71 ROA2_HUMAN Heterogeneous nuclear ribonucleoproteins A2/B1  

pep72 HMGN2_HUMAN Non-histone chromosomal protein HMG-17  

pep73 SNRPA_HUMAN U1 small nuclear ribonucleoprotein A  
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3.2.3.2 Validation of peptides released by human sarcoma cells upon Salmonella infection 

To predict the affinity of the peptides for major histocompatibility complex (MHC) class I molecules, 

in silico prediction tool Net-MHCpan4.1 was used. [29] As further selection criteria, we considered 

HLA-binding prediction for the most frequent HLA supertype representatives, namely, HLA-A*02:01, 

-A*03:01, -B*07:02, -B*14:02, -B*40:01, and -B*58:01 and a final list of 26 candidate peptides was 

selected. To assess the immunogenicity of the 26 selected peptides, our research partner evaluated 

their ability to induce CD8 T cell responses from 7 healthy donor PBMCs. Among the 24 peptides 

tested, 12 elicited a cytotoxic response in at least three of seven donors. Of these, 10 peptides were 

confirmed as immunogenic and could be used as an anticancer vaccine.  

 

3.2.4 Conclusions 

Previous findings showed that Salmonella infection of mouse melanoma cells promoted the 

secretion of neo-antigens in the extracellular space through GJ hemichannels and that were efficacy 

both in preclinical models and in a therapeutic clinical trial on dogs affected with osteosarcoma, 

high-grade sarcoma, or metastatic melanoma. In the present research, we found that the same 

stimulus induces the release of immunogenic peptides in the extracellular medium of STSs/bone 

sarcoma primary human cells. Identified peptides were not patient specific but were shared among 

several subjects. They were selected for their overrepresentation in Salmonella treated cell 

secretomes, for their HLA-binding ability in silico and for their capability to induce an immune 

response in vitro. These preliminary results showed that they can be considered as a ‘‘signature’’ of 

antigens that could be used as a universal sarcoma vaccine treatment. If successful, the use of 

universal peptides will have tremendous translational relevance because providing immediate 

benefit to metastatic sarcoma patients.  
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3.3 GELSOLIN AND LUMICAN PROTEINS AS BIOMARKERS OF MALIGNANT 

PLEURAL MESOTHELIOMA 

3.3.1 Background and Rationale  

MPM is a highly aggressive malignancy which is linked to asbestos exposure in more than 80% of 

the cases [30,31]. The diagnosis and treatment of mesothelioma is still challenging. The treatment 

is based on surgery, chemotherapy, and radiation; however, the estimated median survival remains 

around 13–15 months after the diagnosis [32]. MPM is divided into three main histological subtypes: 

the epithelioid that is the most common, which is characterized by the highest median survival, the 

sarcomatous which is the most aggressive and has the lowest survival, and the biphasic type which 

contains both cell types [33].  

Although several trials are focusing on the development and testing of new therapies for MPM [34–

36], the early diagnosis of disease could help improving the overall survival and prognosis of the 

patients. Today, in fact, the only available instruments for large screening for asbestos-exposed 

subjects are based on imaging tests, which are costly and expose patients to high doses of radiation 

[37], while invasive procedures are required for definitive histological and bio-molecular diagnosis 

of mesothelioma. For this reason, several studies investigated the presence of potential biomarkers 

for the non-invasive diagnosis in biofluids such as pleural effusion and plasma [38,39]. But although 

numerous candidate biomarkers have been proposed [40–44], only the soluble mesothelin-related 

protein (SMRP), which is released by tumour cells into pleural fluid and serum, has been approved 

by FDA as serum diagnostic biomarker. However, this marker showed a high specificity for the 

disease, but a low sensitivity, thus limiting its potential diagnostic use [45,46]. In addition, it has 

been also demonstrated that SMRP is usually not elevated on MPM tumours with sarcomatous and 

biphasic histology [47–49]. Another circulating protein proposed as biomarkers is Fibulin-3, 

although a lower specificity in pleural effusion has been reported [50]. A proteomic approach 

performed on a panel of 13-protein biomarker through SOMAscan technology was able to detect 

MPM, respect healthy control subjects, with a sensitivity and specificity of 93% and 91%, 

respectively [51]. In a more recent study, Cerciello et al. proposed an additional diagnostic approach 

based on a six-peptide signature by targeted proteomics in serum. This signature was able to 

discriminate patients with MPM from asbestos-exposed donors with a specificity of 0.706, but with 

a higher sensitivity (61%) when compared to SMRP [52]. Despite several studies proposed numerous 

potential biomarkers, the discovery of additional markers is needed, especially to improve the 
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diagnostic sensitivity. In addition, current biomarkers are not able to distinguish between MPM 

subtypes, which could have a positive impact on the clinical management of patients.  

In the present study, a mass spectrometry-based proteomics approach was used to identify new 

potential sera and pleural effusion markers for the diagnosis of MPM, to differentiate the three 

histological subtypes and to discriminate MPM from lung adenocarcinoma (AdC) and pulmonary 

hyperplasia. The potential markers were then validated on a larger cohort of patients. 

3.3.2 Materials and Methods 

3.3.2.1 Study subjects  

The initial discovery set consisted of serum samples from 34 (14 epithelioid, 10 sarcomatous, 10 

biphasic) MPM patients, 6 lung AdC patients, 8 pulmonary hyperplasia patients, and 20 healthy 

controls, and pleural effusion samples from 46 (15 epithelioid, 16 sarcomatous, 15 biphasic) MPM 

patients, 15 lung AdC patients and 12 pulmonary hyperplasia patients. The demographic and clinical 

data of the study population recruited for the discovery phase are reported in Table 3.3.  

Table 3.3: demographic and clinical characteristics of the subjects included in the discovery study. 

Variable Serum Pleural Effusion 
 

MPM 
(n=34) 

Lung 
AdC 

(n=6) 

Pulmonary 
hyperplasia (n=8) 

Healthy 
(n=20) 

MPM 
(n=46) 

Lung 
AdC 

(n=15) 

Pulmonary 
hyperplasia (n=12) 

Gender (n°) 
       

Male 29 4 5 12 38 11 7 

Female 5 2 3 8 8 4 5 

Age Mean (years) 
       

Mean±SD 73.35 
±7.65 

69.83 
±11.09 

68.75 ±10.85 66.8 
±4.13 

73.60 
±7.45 

68.66 
±12.42 

73.08 ±12.38 

Histological type 
(n°) 

       

Epithelioid 14 
   

15 
  

Biphasic 10 
   

15 
  

Sarcomatous 10 
   

16 
  

Stage (n°) 
       

I 3 
   

3 
  

II 0 
   

0 
  

III 4 
   

7 
  

IV 2 
   

3 
  

Unknown 25 
   

33 
  

Asbestos 
Exposure (n°) 

       

Yes 16 1 2 
 

18 0 2 

No 0 5 1 
 

0 0 1 
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Unknown 18 0 5 
 

28 15 9 

Mean Survival 
Time(months) 

15 15 17 
 

10 14 42 

 

The validation set consisted of 116 serum samples and 121 pleural effusion samples divide as follow: 

12 subjects with lung AdC, 24 subjects with only pulmonary hyperplasia, 77 MPM (23 biphasic, 19 

sarcomatous, 35 epithelioid) patients and 10 healthy volunteers were used for the validation of GELS 

in sera, while 13 subjects with lung AdC, 25 subjects with only pulmonary hyperplasia and 92 MPM 

(24 biphasic, 14 sarcomatous, 54 epithelioid) patients were included in the validation study of LUM 

in pleural effusions. Demographical and main characteristics of the validation study patients are 

reported in table 3.4. MPM diagnosis was histologically confirmed, and all patients were enrolled at 

the time of diagnosis, before beginning any therapeutic treatment. All the patients were recruited 

from Northern Italy (Casale Monferrato and Alessandria) between 2003 and 2019. The study was 

approved by the Ethical Committee of Novara Hospital. 

Table 3.4: demographic and Clinical characteristics of the subjects included in the validation study of GELS and LUM 

Variable Serum GSN Pleural Effusion LUM 
 

MPM 
(n=77) 

Lung 
AdC 

(n=9) 

Pulmonary 
hyperplasia (n=20) 

Healthy 
(n=10) 

MPM 
(n=90) 

Lung 
AdC 

(n=10) 

Pulmonary 
hyperplasia 

(n=21) 

Gender (n°) 
       

Male 57 7 12 5 63 8 16 

Female 20 2 8 5 27 2 5 

Age Mean (years) 
       

Mean±SD 72.07 
±9.50 

72.55 
±10.35 

67.85 ±10.06 45.3 
±11.45 

70 
±10.6

1 

72.2 
±9.04 

71.8 ±10.19 

Histological type 
(n°) 

       

Epithelioid 35 
   

54 
  

Biphasic 23 
   

22 
  

Sarcomatous 19 
   

14 
  

Stage (n°) 
       

I 3 
   

1 
  

II 1 
   

0 
  

III 6 
   

4 
  

IV 2 
   

2 
  

Unknown 55 
   

83 
  

Asbestos Exposure 
(n°) 

       

Yes 16 1 3 
 

12 1 4 

No 0 0 1 
 

0 0 0 

Unknown 61 8 16 
 

78 9 17 
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Mean Survival 
Time(months) 

15 28 36 
 

38 39 22 

 

3.3.2.2 Specimens 

Blood and pleural effusion samples were collected at the “Santi Antonio e Biagio e Cesare Arrigo” 

hospital of Alessandria. At the time of enrollment, venous blood samples were collected in 

vacutainer tubes without anticoagulant, clotted at room temperature for 30 min, and then 

centrifuged 3000 rpm for 15 min to yield serum. Next, serum samples were immediately transferred 

to 1.5 ml sterile centrifuge tubes and stored at −80 °C for further analyses. Pleural fluids were 

drained using thoracic thoracentesis, processed by centrifugation and stored at −80 °C until use. 

3.3.2.3 Sample preparation procedure for serum and pleural effusion proteome 

6 μL of serum and 40 μL of pleural effusions were depleted of high-abundance proteins using the 

Seppro IgY14 spin column kit (Sigma-Aldrich Inc., St. Louis, MO, USA) according to the 

manufacturer's procedure. The method was used to bind human serum HSA, IgG, fibrinogen, 

transferrin, IgA, IgM, haptoglobin, alpha 2-macroglobulin, alpha 1-acid glycoprotein, alpha 1-

antitrypsin, Apo A-I HDL, Apo A-II HDL, complement C3 and LDL (ApoB) in order to increase low-

abundance protein identification. The samples were transferred into an Amicon Ultra-0.5 mL 3 kDa 

centrifugal filter (Millipore, Billerica, MA, USA) to collect high molecular weight proteins. The 

samples were then subjected to denaturation with TFE, to reduction with DTT 200 mM, to alkylation 

with IAM 200mM and to complete protein digestion with 1 μg of Trypsin (Sigma-Aldrich Inc., St. 

Louis, MO, USA). Next, peptides were desalted on the Discovery® DSC-18 solid phase extraction 

(SPE) 96-well plate (25 mg/well) (Sigma-Aldrich Inc., St.Louis, MO, USA). More specifically, the SPE 

plate was preconditioned with 1 mL of acetonitrile and 2 mL of water. After loading the sample, the 

SPE was washed with 1 mL of water. The adsorbed peptides were eluted with 800 μL of 

acetonitrile:water (80:20), vacuum-evaporated and, lastly, reconstituted in mobile phase (0.1 % 

formic acid in water) for successive analysis.  

3.3.2.4 LC-MS/MS analysis  

Samples were analyzed in two phases: a data-dependent acquisition (DDA) followed by data-

independent analysis (DIA) on the same sample using the same gradient conditions. All samples 

were analyzed with a micro-LC Eksigent Technologies (Eksigent, Dublin, USA) system interfaced with 

a 5600+ TripleTOF system (AB Sciex, Concord, Canada) equipped with DuoSpray Ion Source and CDS 
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(Calibrant Delivery System). Peptides were separated using Halo C18 column (0.5×100 mm, 2.7 μm; 

Eksigent Technologies Dublin, USA). The reverse phase LC solvents include solvent A (99.9% water 

+0.1% formic acid) and solvent B (99.9% acetonitrile +0.1% formic acid). A 30 min gradient was used 

at a flow rate of 15 μL/min with an increasing concentration of solvent B from 2% to 40%. For DDA 

acquisition, experiments were set to obtain a high-resolution TOF-MS scan over a mass range of 

100–1500 m/z, followed by an MS/MS product ion scan from 200 to 1250 Da (accumulation time of 

5.0 ms) with the abundance threshold set at 30 cps (35 candidate ions can be monitored during 

every cycle). The ion source parameters in electrospray positive mode were set as follows: curtain 

gas (N2) at 25 psig, nebulizer gas GAS1 at 25 psig, and GAS2 at 20 psig, ion spray voltage floating 

(ISVF) at 5000 V, source temperature at 450 °C and declustering potential at 25 V. Using the same 

conditions as described above, a SWATH acquisition using DIA was carried out for the label-free 

quantification process. The mass spectrometer was operated so that a 50-ms survey scan (TOF-MS) 

was performed and subsequent MS/MS experiments were performed on all precursors. These 

MS/MS experiments were carried out in a cyclical manner using an accumulation time of 40 ms per 

25-Da swath (36 swaths in total) for a total cycle time of 1.5408 s. The ions were fragmented for 

each MS/MS experiment in the collision cell using the rolling collision energy. The MS data were 

acquired with Analyst TF 1.7 (AB SCIEX, Concord, Canada). Peptides (and proteins) were identified 

using DDA followed by database search, while the quantification was obtained by integrating the 

area under the chromatographic peak for each ion fragment of identified peptides by using the DIA 

file.  

3.3.2.5 Protein Database Search  

The DDA files were searched against the UniProt Swiss-Prot reviewed database containing human 

proteins (version 01.02.2018, containing 42,271 sequence entries) using Protein Pilot software v. 

4.2 (SCIEX, Concord, Canada) and Mascot v. 2.4 (Matrix Science Inc., Boston, USA). Samples were 

input in the Protein Pilot software with the following parameters: cysteine alkylation, digestion by 

trypsin, no special factors and False Discovery Rate (FDR) at 1%. For Mascot search, we selected 

Trypsin as digestion enzyme with 2 missed cleavages, set the instrument to ESI-QUAD-TOF and 

specified the following modifications for the assay: carbamidomethyl cysteine as fixed modification 

and oxidized methionine as variable modification. [53,54].  An assay tolerance of 50 ppm was 

specified for peptide mass tolerance, and 0.1 Da for MS/MS tolerance. The charges of the peptides 

to search for were set to 2 +, 3 + and 4 +, and the search was set on monoisotopic. A target-decoy 
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database search was performed, and FDR was fixed at 1%. SwathXtend was employed to build an 

integrated assay library with the DDA acquisitions to use as the ion library file for all SWATH analysis 

and quantification. 

3.3.2.6 Protein Quantification 

Quantification was performed by integrating the extracted ion chromatogram of all the unique ions 

for a given peptide. Spectral alignment of the SWATH samples (DIA run) was carried out with 

PeakView 2.2 (ABSCIEX, Concord, Canada) using the spectral library generated above and the 

following parameters: 6 peptides per protein, 6 transitions per peptide, XIC extraction window of 5 

min and a width of 15 ppm. Shared peptides were excluded as well as peptides with modifications. 

Peptides with FDR lower than 1.0% were exported in MarkerView 1.2 (ABSCIEX, Concord, Canada) 

for the t-test. 

3.3.2.7 ELISA assay 

The concentration of serum GELS and pleural LUM were measured using commercially available 

sandwich-type ELISA kits (FN-test, Wuhan Fine Biotech Co., Ltd., Wuhan, Hubei, China) according to 

manufacturer’s instructions. Briefly, serum and pleural effusion samples were, respectively, diluted 

1:200 (GELS) and 1:20 (LUM) using 10 mM PBS, pH 7.1. 100 μL of blanks, diluted standards and 

samples were added to 96-well strip plates pre-coated with an anti-GELS or -LUM specific antibody 

and incubated for 90 min at 37˚C. Then, wells were washed twice, anti-GELS or -LUM biotin-

conjugated specific antibody added, and incubated for 1 h at 37˚C. Successively, plates were washed 

again, the streptavidin conjugated horseradish peroxidase (HRP) added, and incubated for 30 min 

at 37˚C. Next, the plates were washed, the (3,3’, 5,5; -tetramethylbenzidine) substrate (TMB) added 

and incubated for 10 min at 37˚C in the dark. The enzyme-substrate reaction was stopped by adding 

a sulfuric acid solution and the O.D absorbance was measured spectrophotometrically at a 

wavelength of 450 nm. GELS and LUM sample concentrations (ng/ml) were determined by 

comparing the optical density (OD) of the samples to GELS and LUM standard curves, respectively. 

3.3.2.8 Bioinformatic and statistic software 

Statistical analysis and related graphical representations were done using GraphPad Prism v. 8 and 

MetaboAnalyst software (www.metaboanalyst.org). Pathway analysis was carried out using 

Ingenuity Pathways Analysis (IPA) software (Qiagen, Redwood City, CA, USA). Differentially 
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expressed proteins were used as input and only data pathways with p values<0.05 were examined 

further. 

3.3.3 Results 

In this study, the proteomic profiles of sera and pleural effusions from patients with MPM, AdC, 

pulmonary hyperplasia, and healthy controls were obtained to identify candidate biomarkers for 

the early diagnosis of MPM and to further characterize the pathways involved in the pathology. 

Potential markers were then validated in order to confirm the role of these proteins as biomarkers. 

Figure 3.2 shows the experimental workflow of the research. For the discovery phase, untargeted 

proteomics was performed on pleural effusions from 45 MPM patients (15 epithelioid, 15 

sarcomatous, 15 biphasic), 15 patients with lung AdC, and from 15 patients with lung hyperplasia. 

Serum discovery was performed on 34 MPM patients (14 epithelioid, 10 sarcomatous, 10 biphasic) 

6 lung AdC patients, 8 patients with lung hyperplasia, and 20 healthy controls.  
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Figure 3.2: experimental workflow of the study. An untargeted proteomic approach performed on serum and pleural 

effusion from patients with malignant pleural mesothelioma (MPM), lung adenocarcinoma, pulmonary hyperplasia, and 

healthy subjects, was used to identify potential biomarkers and the main biological pathways involved in MPM. Then, a 

validation phase allowed the confirmation of some proteins as potential diagnostic biomarkers of MPM. 

Serum and pleural effusion samples were all depleted from the high-abundant proteins, digested, 

and then analyzed with SWATH-MS to obtain a proteomic signature of each patient’s group. 

Candidate biomarkers, found in the discovery study, were verified via ELISA in a larger cohort of 

patients: 12 lung AdC, 24 pulmonary hyperplasia, 77 MPM (23 biphasic, 19 sarcomatous, 35 

epithelioid) patients and 10 healthy volunteers were enrolled in the validation study of sera GELS, 

while 13 lung AdC, 25 pulmonary hyperplasia and 92 MPM (24 biphasic, 14 sarcomatous, 54 

epithelioid) patients were included in the validation study of LUM in pleural effusions. 

3.3.3.1 Serum proteomic profiling and candidate markers of MPM 

To investigate the differential expression of proteins in serum and to identify potential biomarkers 

for the diagnosis of MPM, a label-free quantification analysis was performed. A total of 445 proteins 

were identified: among these, 387 proteins were quantified with a peptide confidence cut-off of 

99%. Protein abundances were analyzed using multivariate statistical analysis in order to assess the 

overall differences between MPM patients, pulmonary hyperplasia-affected patients, AdC patients, 

and healthy subjects.  

The score plot representation of supervised partial least square discriminant analysis (PLS-DA) 

reported in Figure 3.3A shows a clear separation of healthy subjects (green dots) from MPM 

patients (red dots), suggesting the presence of a specific proteomic signature associated to MPM 

disease. 

In addition, the variable importance in projection (VIP) scores plot shows the 15 most significant 

proteins contributing to the group discrimination observed in the PLS-DA model analysis (Figure 

3.3B). Proteomic differences between the two groups of samples were mostly due to Alpha-1 

antitrypsin (A1AT_HUMAN), Hemopexin (HEMO_HUMAN), Leucine-rich alpha-2-glycoprotein 

(A2GL_HUMAN), Alpha-1-acid glycoprotein 1 (A1AG1_HUMAN), haptoglobin (HPT_HUMAN), and C-

reactive protein (CRP_HUMAN). In addition, the hierarchical clustering heatmap reported in figure 

3.3C clearly shows the presence of two well-distinct clusters related to MPM and healthy subjects. 

On the other hand, the PLS-DA and VIP scores plot of modulated proteins from MPM patients 

compared to pulmonary hyperplasia-affected patients and MPM patients compared to AdC patients 

show a less, but also significant, separation between samples (Supplementary figures 3.1). 
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Figure 3.3: proteomic signature associated with MPM disease in serum. (A) Partial least square discriminant analysis 

(PLS-DA) of MPM patients (red dots) and healthy subjects (green dots), the two groups are well separated. (B) Variable 

importance in projection (VIP) score plot of the top 15 proteins that differed in MPM patients vs healthy controls. 

Colored boxes indicate the most predictive or discriminative features in each group (red, high; blue, low). (C) Hierarchical 

heat map of quantified proteins (MPM patients in red and healthy subjects in green). (D) Volcano plot of modulated 

serum proteins in MPM: a total of 123 proteins were modulated in MPM patients compared to healthy subjects ((p-

value < 0.05 and fold change > 1.3). 

 

Next, we performed a univariate analysis of quantified proteins using the relative abundance of the 

proteins quantified in all the samples. The volcano plot highlighted the presence of several 

modulated proteins in MPM patients compared to healthy subjects (Figure 3.3D): 58 proteins were 



30 
 

significantly upregulated, while 107 proteins were downregulated (FC > 1.3; p-value ≤ 0.05). In MPM 

patients, C-reactive protein (13.8-fold), Myelin expression factor 2 (8.8-fold), Gelsolin (4.4-fold), 

Alpha-1-acid glycoprotein 1 (4.3-fold), Alpha-1 antitrypsin (2.5-fold) serum amyloid A-4 protein (2.4-

fold) were up-regulated, while Lysophosphatidylcholine acyltransferase 2 (15-fold), Inter-alpha-

trypsin inhibitor heavy chain H1 (2.3-fold), Thyroid receptor-interacting protein 11 (2.1-fold), N-

acetylmuramoyl-L-alanine amidase (2.3-fold) were down-regulated. The complete list of modulated 

proteins is reported in Supplementary table 3.1.  

The comparison of MPM patients with lung AdC and hyperplasia-affected patients showed a smaller 

number of modulated proteins respect with the healthy subjects, as reported by the volcano plot 

and the heat map of log fold changes (Supplementary figure 3.2). 12 and 5 proteins were 

upregulated and down regulated, respectively, in MPM patients compared to pulmonary 

hyperplasia-affected patients, while 10 and 22 proteins were up- and down- regulated in MPM 

compared to AdC patients (FC > 1.3; p-value ≤ 0.05). Interestingly, Inhibitor of growth protein 2 was 

2-fold up-regulated in MPM patients compared to both hyperplasia-affected patients and healthy 

subjects, whereas Thyroxine-binding globulin, complement factor B and Complement component 

C9 were down-regulated in MPM patients compared to AdC patients and healthy subjects. The 

modulated proteins with the log (fold change) are reported in Supplementary figure 3.4.  

3.3.3.2 Circulating Inflammatory and Immune Response proteins are strongly modulated in MPM 

patients 

Ingenuity pathway analysis (IPA) was employed to identify the main pathways and molecular 

functions associated with modulated proteins in MPM. The differentially expressed proteins of each 

comparative analysis were analysed. Interestingly, the pathway analysis of the modulated proteins 

in MPM patients compared to healthy subjects showed a predicted activation of Acute Phase 

Response Signaling, Coagulation System, Production of Nitric Oxide and Reactive Oxygen Species in 

Macrophages and LPS/IL-1 Mediated Inhibition of RXR Function, together with a predicted inhibition 

of LXR/RXR Activation, Complement System, Intrinsic Prothrombin Activation Pathway, and IL-8 

Signaling (Figure 3.4A). The chord diagram in Figure 3.4B reports the top 15 pathways, and their 

associated proteins, involved in MPM disease.  

In contrast, LXR/RXR Activation pathway is predicted activated in MPM compared to AdC and the 

Coagulation system is significantly predicted inactivated in MPM compared to Hyperplasia 

(Supplementary figure 3.3). Intriguingly, diseases and disorders analysis identified several proteins 
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associated with the inflammatory response in MPM compared to healthy subjects (Figure 3.4C) such 

as FA12, PLF4, PEDF, LYAM1, LBP, TBA1C, CRP, PLMN, ADIPO, VCAM1, SAA1, PROS, FINC, ECM1, 

KNG1, A2AP, BST1, CD14, S10A9, CD44, LYSC, SLIT2, VTNC, GELS, APOE, C163A, FETUA, PGRP2, and 

LUM, while physiological system development and function bioinformatic elaboration highlighted 

the involvement of humoral immune response and immune cell trafficking (Figure 3.4D). 

 

 

 

Figure 3.4: pathways and biological functions in MPM.  IPA core analysis of the 123 dysregulated proteins between MPM 

and healthy control. (A) Significant top 20 canonical pathways that were enriched in the dysregulated proteins. The 

orange and blue-coloured bars indicate predicted pathway activation, or predicted inhibition, respectively (z-score). 
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White bars are those with a z-score at or very close to 0. Grey bars indicate pathways where no prediction can currently 

be made. (B) Chord diagram showing the most enriched pathway with their differentially expressed proteins. (C) Top 

molecular and cellular functions (C) and diseases and disorders (D). The higher the -log(p-value) the more involved the 

functions are. 

3.3.3.3 Pleural effusion proteome and biomarkers of MPM 

 

Pleural effusions were analyzed using a label-free quantitation approach in order to investigate the 

differences between the proteome of MPM, pulmonary hyperplasia and AdC-affected patients.  

Three pools obtained from five samples for each group were analyzed. A total of 139 proteins were 

quantified. Of these proteins, 14 were differentially modulated in MPM compared to hyperplasia-

affected patients (10 up- and 4 down- regulated), while 27 were differentially expressed in MPM 

compared to AdC patients (10 up- and 17 down- regulated), fold change > 1.3 and p-value ≤ 0.05  

(Figure 3.5A-C). The score plot representation of the PLS-DA shows a separation of MPM patients   

(red dots) from both lung AdC (violet dots) and from pulmonary hyperplasia (blue dots) (Figure 3.5B-

D).  

3.3.3.4 Acute Phase and Immune Response pathways in MPM pleural effusion 

Signalling pathways and disease/functions annotation associated to modulated proteins in pleural 

effusion were investigated using a bioinformatic approach. Figure 3.6A reports canonical pathways 

enriched in the pleural effusion proteome of MPM patients compared to pulmonary hyperplasia. 

The top most enriched canonical pathways included Haematopoiesis from Pluripotent Stem Cells, 

Primary Immunodeficiency Signalling, Communication between Innate and Adaptive Immune Cells, 

Extrinsic and Intrinsic Prothrombin Activation Pathway. 

Diseases and disorders analysis highlighted the involvement of proteins associated to different 

pathologies such as metabolic, gastrointestinal and endocrine system disorders (Figure 3.6B), while 

physiological system development and function elaboration identified several proteins associated 

with the Immune Cell Trafficking, Humoral Immune Response, Organismal Functions, Tissue 

Morphology, Hematological System Development and Function (Figure 3.6C). 

Bioinformatic analysis performed on the comparison between MPM and AdC indicated that pleural 

effusion proteins were mainly involved in Acute Phase Response Signaling, Complement System, 

Coagulation System, Iron homeostasis signaling pathway, LXR/RXR Activation, FXR/RXR Activation, 

Hepatic Fibrosis / Hepatic Stellate Cell Activation, Systemic Lupus Erythematosus Signaling, GP6 

Signaling Pathway and IL-6 Signaling (Figure 3.6D). 
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Figure 3.5: proteomic analysis of pleural effusions. (A-C) Volcano plots of quantified proteins: a total of 27 proteins were 

modulated in MPM patients compared to lung AdC patients, while 14 proteins were modulated in MPM compared to 

pulmonary hyperplasia (p-value < 0.05 and fold change > 1.3). (B-D) Partial least square discriminant analysis (PLS-DA) 

of MPM patients (red dots), AdC patients (violet dots) and pulmonary hyperplasia (blue dots). 

 

The “Disease and Disorder” elaboration highlighted that several modulated proteins were related 

to Connective Tissue Disorders, and Inflammatory Response (Figure 3.6E). Furthermore, the 

bioinformatic analysis also showed an involvement of proteins associated with Tissue Morphology, 
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Organismal Development, Vascular System Development and Function, Visual System Development 

and Function and Humoral Immune Response (Figure 3.6F). 

 

 

Figure 3.6: pathways and biological functions in enriched in pleural effusions. (A-B) Canonical Pathway analysis. The 

orange and blue-coloured bars indicate predicted pathway activation, or predicted inhibition, respectively (z-score). 

White bars are those with a z-score at or very close to 0. Grey bars indicate pathways where no prediction can currently 

be made. Top molecular and cellular functions (C) and diseases and disorders (D). The higher the -log(p-value) the more 

involved the functions are. 
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3.3.3.5 Gelsolin and Lumican proteins as biomarkers of MPM  

Potential biomarkers identified in the discovery phase were further validated on a larger cohort of 

patients. Among modulated proteins the following proteins were selected for the validation as 

biomarker: LUM, FINC, and FIBB for pleural effusion validation assay, while FINC, GELS and VDBP for 

serum validation assay. Interestingly, GELS resulted significantly overexpressed in serum of MPM 

compared not only to healthy subjects, but also to lung AdC and pulmonary hyperplasia. Similarly, 

LUM levels were higher in pleural effusion of MPM patients compared to both lung AdC and 

pulmonary hyperplasia. While the validation of FINC, FIBB, and VDBP did not confirm the mass 

spectrometry results, the expression of GELS and LUM in the validation cohort confirmed the 

potential role of these proteins as novel cancer-derived biomarkers in serum and pleural effusion. 

The validation cohort for serum GELS included 12 lung AdC, 24 pulmonary hyperplasia, 77 MPM (23 

biphasic, 19 sarcomatous, 35 epithelioid) patients and 10 healthy volunteers, while 13 lung AdC, 25 

pulmonary hyperplasia and 92 MPM (24 biphasic, 14 sarcomatous, 54 epithelioid) patients were 

included in the validation study of LUM in pleural effusions. The validation of these two proteins 

was performed using commercial ELISA kits.  

Box plots of both GELS and LUM serum concentrations and relative ROC curves are shown in Figures 

3.7. The diagnostic power of these putative biomarkers was also evaluated by the ROC curve. 

Intriguingly, the AUC value for GELS in MPM versus healthy subjects was 1 with 100% specificity and 

100% sensitivity. In MPM versus AdC, the AUC value was 0.961 with 91.7% specificity and 93.5% 

sensitivity, while in MPM compared to pulmonary hyperplasia the AUC value was 0.961 with 83.3% 

specificity and 97.4% sensitivity. Thus, serum GELS turned out to have a high diagnostic value for 

discriminating MPM patients from healthy subjects, lung AdC and pulmonary hyperplasia patients 

(Figure 3.7A-C-D-E). Then, we investigated also the discriminative power of LUM in pleural effusion. 

LUM showed an AUC value of 0.903 with a 100% of sensitivity and 69.2% of specificity in MPM 

compared to AdC, while it shows an AUC value of 0.786 with a sensitivity of 67.4% and a specificity 

of 76% in MPM vs pulmonary hyperplasia (Figure 3.7F-H-I). These results showed that the 

discriminative power of GELS in serum is higher than that of LUM in pleural effusion. Another striking 

result is the direct correlation of the abundance of LUM and GELS with the disease’s aggressiveness. 

In particular, sarcomatous and biphasic MPM displayed higher levels of GELS in serum and LUM in 

pleural effusions than epithelioid MPM (Figure 3.7B-C).   
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Figure 3.7: diagnostic power of gelsolin and lumican biomarkers. Boxplots and ROC curves of the two validated 

biomarkers in serum and pleural effusions using ELISA assay.  (A) Serum gelsolin showed significant differences between 

MPM and the other three groups (AdC, hyperplasia and healthy subjects); gelsolin was also found at higher levels in 

patients with sarcomatous and biphasic MPM compared to those with epithelioid MPM (B). Discrimination between 

MPM and healthy subjects with an AUC of 1 (C), MPM and hyperplasia with an AUC of 0.961 (D), and MPM and lung 

AdC with an AUC of 0.961 (E). Lumican levels in pleural effusion showed significant differences between MPM and both 

hyperplasia and lung AdC (F). Lumican was also found at higher levels in patients with sarcomatous and biphasic MPM 

compared to those with epithelioid MPM (G). Discrimination between MPM and lung AdC with an AUC of 0.903 (H), and 

MPM and hyperplasia with an AUC of 0.786 (I). 

3.3.3.6 Gelsolin and Lumican proteins as biomarkers of MPM  

Furthermore, GELS and LUM levels were also associated to the prognosis of MPM by performing a 

survival analysis. The X-tile software was used to identify the optimal cut-off values of high and low 

GELS/LUM expression groups, and Kaplan-Meier method was used to calculate the survival curve. 
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Figure 3.8A shows the Kaplan-Meier curve for LUM using 69 ng/mL as cut-off value, while figure 

3.8B shows a Kaplan-Meier curve for GELS levels using 2.7x104ng/mL as cut-off value. Kaplan–Meier 

survival curves were significantly different between the two groups (P= 0.041 for LUM and P=0.039 

for GELS). The mean survival length for patients with low GELS levels was 24 months, whereas the 

mean survival length for patients with higher GELS concentrations was significantly reduced at 11 

months. Regarding LUM, patients with low abundance of this protein survived on average for 24 

months, while patients with higher levels survived on average for 14 months. In both cases, high 

LUM and GELS levels were significantly associated with poorer survival times, confirming LUM and 

GELS as markers for poor MPM prognosis.  

 

 

Figure 3.8:  Kaplan–Meier survival graphs for patients with MPM and survival prediction. (A) Kaplan-Meier survival 

curves for low and high levels of LUM in MPM effusions and (B) for low and high levels of GELS in MPM sera. The mean 

survival time for the high LUM group and the high GELS group was, respectively, 11 and 14 months compared to 24 

months for both the low levels LUM group and the low levels GELS group. These differences were statistically significant 

(P= 0.041 for LUM and P=0.039 for GELS). 

 

3.3.4 Discussion 

Malignant pleural mesothelioma is a rare and aggressive cancer mainly caused by the exposure to 

asbestos, with limited treatment options and devastating prognosis. Histologically, MPM is classified 

into three main different subtypes: epithelioid, sarcomatous, and biphasic, the latter two being the 

most aggressive. The diagnosis of MPM is often difficult not only because it occurs at advanced 

stages, but also because the disease presents nonspecific symptoms that don’t allow distinguishing 
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MPM from adenocarcinoma or other benign lung diseases. Since pleural biopsy remains the only 

standard diagnostic method for MPM, there is a critical need for a specific non-invasive biomarker-

based screening test to potentially diagnose mesothelioma at an early stage and thus to improve 

the overall survival of patients. In the present research we employed an untargeted proteomic 

discovery approach to identify potential biomarkers that were then validated on a bigger cohort of 

patients. Two biomarker candidates were confirmed by ELISA, which showed that GELS could be a 

good serum diagnostic biomarker of MPM, while LUM may be a potential diagnostic biomarker of 

MPM in pleural effusions. GELS levels were able to distinguish MPM not only from healthy subjects 

(AUC = 1), but also from AdC and pulmonary hyperplasia reporting an AUC of 0.961 for both groups. 

In addition, GELS expression increased with cancer aggressiveness: the concentration of GELS was 

higher in the more aggressive histological subtypes (sarcomatous and biphasic) compared to the 

epithelioid one. Several studies have reported the association between GELS dysregulation and 

cancer. GELS is an actin-binding protein expressed both in extracellular fluids and in the cytoplasm 

of many human cells, where it plays an important role in the morphology and motility of cells[55]. 

Apart from its role in sequestering actin in extracellular compartments, the extracellular form, called 

plasma GELS (pGSN), has been implicated in a variety of physiological and pathological processes 

such as epigenetic processes, signal transduction, transcriptional regulation, apoptosis, modulation 

of the inflammatory response, and pathogenesis of diseases[56]. Interestingly, the pathway analysis 

supported the involvement of GELS in the inflammatory response, suggesting a role of GELS in the 

chronic inflammation that influences and supports tumor growth[57]. Increased Gsn expression was 

reported in the pulmonary epithelium where researcher shown that it is necessary for the 

development of pulmonary inflammation and fibrosis[58]. Several studies have revealed the dual 

roles of GELS as a tumour enhancer or tumour suppressor. The cytoplasmatic content of GELS was 

found down-regulated in certain types of cancer including glioblastoma, colorectal, bladder, gastric 

and non-small-cell lung cancers[59–62]. In addition, Wen‑Xiang Li et al. showed that an 

overexpression of GELS reduces the proliferation and invasion of colon cancer cells in vitro[63]. On 

the contrary, several studies have found that GELS is upregulated in a subset of pancreatic, 

hepatocellular, and gynaecologic cancers and acts as an oncogene. Increased expression of total 

plasma GELS has been associated with poor prognosis, poor survival and chemoresistance of 

patients with ovarian, cervical, and prostate cancer[64–66]. In hepatocellular cancer, GELS may 

promote cancer progression by regulating epithelial-mesenchymal transition (EMT)[67]. Increased 

expression of GELS probably facilitates tumor cell motility and enhances its capability and 
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probability to invade adjacent tissues and metastasis to remote organ sites[68]. Consistent with 

these findings, our study showed, for the first time, the dysregulation of GELS in the plasma of MPM 

patients and its correlation with the disease’s aggressiveness. Our data suggest that plasma GELS is 

a promising biomarker for the detection and histological classification of MPM. 

The validation of LUM expression in pleural effusions also confirms the potential use of this molecule 

as MPM biomarkers. Our findings reported an overexpression of lumican in pleural effusion fluid of 

MPM patients compared to pulmonary hyperplasia and AdC patients with an AUC, respectively, of 

0.786 and 0.903. LUM is a secreted member of small leucine rich proteoglycans (SLRP) and it is 

involved in cellular processes associated with tumorigeneses, such as EMT, cellular proliferation, 

migration, invasion, and adhesion. In the tumor microenvironment, LUM has been associated with 

signaling, which can result in either pro-tumorigenic or anti-tumorigenic effects [69]. Its pro-

tumorigenic effects are mainly observed in gastric, liver, and bladder cancers, which is associated 

with poor clinical prognosis [70–72]. Conversely, in melanoma, pancreatic cancer, lung cancer, and 

breast cancer LUM demonstrates anti-tumorigenic effects, which are associated with better clinical 

outcomes [73–76]. Cappellesso et al. observed a lower expression of lumican in the lung 

adenocarcinoma tissue compared to adjacent stromal matrix. In contrast, the pleural effusion fluid 

had higher levels of LUM which was probably secreted from the stromal fibroblast that were 

overexpressing LUM. Higher stromal tissue expression of lumican was associated with enhanced 

invasion, residual tumor, and lower survival [77]. Consistently, our study showed an overexpression 

of lumican in sarcomatous and biphasic subtypes, which are associated with worse clinical and 

prognostic outcomes of the cancer than epithelioid one. This suggest that LUM overexpression in 

pleural effusion fluid may be associated with the worse prognosis and poorer response rate to 

treatment of sarcomatous and biphasic compared to epithelioid subtype.  

Bioinformatics analysis of modulated serum proteins in serum highlighted the involvement of 

inflammation and immune response in MPM patients. Acute Phase Response Signaling and 

Coagulation System were shown to be the main predicted activated pathway in MPM compared to 

healthy subject with a z-score, respectively, of 1.61 and 0.63. The acute phase response (APR) is a 

systemic unspecific immune-mediated response that is activated by inflammation, infection, 

disease and tissue damage due to malignancies, burn injuries or trauma. These stressors may cause 

the release of mediators including IL-1, IL-6, and TNF-α which stimulate the release of specific 

circulating proteins [78] such as C-reactive protein, serum amyloid A, ceruloplasmin, haptoglobin, 

α1-acid glycoprotein, and α-2-macroglobulin [79]. Different studies reported high levels of CRP in 
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blood and pleural effusion of patients with malignant mesothelioma (MM) compared to healthy 

subjects [80,81] and its association with short survival [82]. In our study, CRP level was significantly 

higher in the MPM group (13,8-fold) than in the healthy groups and this is probably correlated with 

the inflammatory disorders that characterize the development and progression of MPM. In addition, 

our data reported an increase of other proteins that are positively correlated with APR such as SAA1 

(8.3-fold), SAA2 (6.8-fold), SAA4 (2.6-fold), HPT (2.2-fold) and A1AG1 (4,3-FOLD). Proteins known to 

be negatively correlated with the APR [83], including serum albumin and fetuin A were decreased 

in MPM patients. 

As reported previously, our findings also showed a predicted activation of coagulation system in 

MPM patients compared to healthy subjects. In this regard, cancer patients show several 

coagulation abnormalities that are correlated with an increased tendency of these patients to both 

thrombotic and hemorrhagic complications. It has been reported that patients with cancer may 

have an increased of blood procoagulant factors or a direct release of procoagulant tissue factor by 

the cancer cells. Tissue factor complexes with coagulation factors activate the coagulation cascade 

A [84,85]. Excessive release of procoagulant factors will lead to thromboembolic events (TEE). 

Derrick Nguyen et al. showed that the rate of TEE in mesothelioma patients is much higher (of 

27.7%) than in healthy subjects [86]. In our study, high serum levels of fibrinogen alpha chain (FIBA) 

were detected in MPM patients compared to healthy subjects. On the other hand, there were no 

significant intergroup differences in blood coagulation factor levels among patients with MPM and 

patients with hyperplasia.  

Moreover, canonical pathway analysis revealed a predicted inactivation of the complement system 

in MPM compared to healthy. The complement is a constituent of innate immunity, and its functions 

include clearance of pathogens and maintenance of homeostasis. The complement proteins are 

mostly released by the liver, but both tumor and stromal cells also have the ability to produce 

complement factors. Thus, their presence in the tumor microenvironment is both due to the 

contribution of the systemic compartment and the local production by the cancer cells. Recent 

studies revealed that depending on the cancer type, complement can have a pro or anti-tumoral 

role in the context of certain cancers [87]. In order to clarify the current role of complement in 

human cancers, Margot Revel et al. classified human cancers in four different groups based on the 

prognostic impact of the overexpression of complement genes. Interestingly, mesothelioma belongs 

to the protective complement groups: high expression of complement genes is associated with a 

favourable prognosis. In our study, the inactivation of complement system is associated to a 
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downregulation of complement C1s subcomponent, complement C2, complement C9, complement 

factor B and complement factor D, while C4b-binding protein alpha chain and beta chain, that act 

as inhibitors of the complement system, are significantly up-regulated in serum of MPM compared 

to healthy subjects. Our results thus support the involvement of circulating complement proteins, 

suggesting a more general inhibition of the pathway in the disease.  

The top pathways involved in MPM also included the Liver X Receptors/Retinoid X Receptors 

(LXR/RXR) activation pathway, which has important functions in cholesterol transport, lipid and 

glucose metabolism, and in the modulation of inflammatory responses, which are essential 

biological processes for tumour development. In our study, LXR/RXR activation pathway was 

inhibited in MPM compared to healthy subjects and activated in MPM compared to hyperplasia. 

There are accumulating evidences that support the involvement of LXRs in a variety of malignancies. 

A down-regulation of the LXR activation pathway was also observed in prostate cancer [88] and in 

colon adenocarcinoma [89]. Surprisingly, the involvement of this pathway in malignant pleural 

mesothelioma has not been previously reported. Twenty-two proteins involved in LXR/RxR 

activation pathway were differentially expressed. Among the most differentially expressed proteins 

in this pathway were Lipopolysaccharide-binding protein (LBP), SAA1, SAA2, SAA4, Phospholipid 

transfer protein (PLTP), hemopexin (HEMO), Interleukin-1 receptor accessory protein (IL1RAP). 

Finally, the modulation of several serum proteins involved in the activation of the Production of 

Nitric Oxide and Reactive Oxygen Species in Macrophages pathway were identified. Intriguingly, this 

modulation may be associated to the accumulation of reactive oxygen species (ROS) and reactive 

nitrogen species (RNS), which are produced by alveolar macrophages during asbestos-mediated 

carcinogenesis. In mesothelioma there is approximately 20 to 40 years latency between the time of 

asbestos exposure and clinical diagnosis, during which chronic asbestos exposure creates a 

persistent inflammatory response. The activation of inflammatory cell, especially alveolar 

macrophages, implicates the release of ROS and RNS. Macrophage-mediated ROS/RNS production 

and inflammatory cytokines release can potentially lead to MPM carcinogenesis pathway [90]. 

In conclusion, in the present research two new potential biomarkers, namely gelsolin and lumican, 

for the diagnosis of MPM were proposed. These proteins were identified using an untargeted 

proteomic approach performed on serum and pleural effusion samples, and then validated through 

ELISA using an extended cohort of patients including lung adenocarcinoma patients, healthy 

subjects and patients with lung hyperplasia.  
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ELISA validation confirmed the potential use of lumican and gelsolin as MPM biomarkers in pleural 

effusion and serum, respectively. In addition, their abundance was also higher in patients with 

sarcomatous and biphasic subtypes compared to the epithelioid one, suggesting their potential use 

for the detection of the histological subtype. Moreover, high lumican and gelsolin levels were 

significantly associated with poorer survival times, confirming LUM and GELS as markers for poor 

MPM prognosis. Finally, the bioinformatic analysis highlighted the overall involvement of proteins 

related to the inflammatory and immune response in MPM patients. 
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3.3.5 Supplementary Data 
 

 

Supplementary figure 3.1: multivariate analysis. Partial least square discriminant analysis (PLS-DA) of MPM patients 
(red dots) vs AdC patients (violet dots) (A) and MPM patients vs Hyperplasia patients (blue dots) (B). The three groups 
are well separated. Variable Importance in Projection (VIP) score plot of the top 15 proteins that differed in MPM patients 
vs AdC patients (C) and in MPM patients vs Hyperplasia patients (D). Colored boxes indicate the most predictive or 
discriminative features in each group (red, high; blue, low). 
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Supplementary figure 3.2: modulated serum proteins in malignant pleural mesothelioma (MPM). Volcano plots of 
quantified proteins: a total of 22 proteins were modulated in MPM patients compared to lung adenocarcinoma (AdC) 
patients (A) and 11 proteins were significantly regulated in MPM compared to hyperplasia-affected patients (B) (p-value 
< 0.05 and fold change > 1.3). Hierarchical heat maps of quantified proteins with MPM patients in red, AdC patients in 
violet (C) and hyperplasia-affected patients in blue (D).  
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Figure 3.3: upregulated and downregulated proteins in MPM patients compared to healthy subjects(A); Upregulated 
and downregulated proteins in MPM patients compared to AdC (B); (C) Upregulated and downregulated proteins in 
MPM patients compared to pulmonary hyperplasia affected patients (C) (Log FC ≥0.176 or Log FC ≤0.13; p-value<0.05). 
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Supplementary figure 3.4: IPA core analysis. The significant top canonical pathways that were enriched in the serum 
dysregulated proteins of MPM vs AdC patient group (A) and of MPM vs hyperplasia-affected patient group. The orange 
and blue-coloured bars indicate predicted pathway activation, or predicted inhibition, respectively (z-score). White bars 
are those with a z-score at or very close to 0. Grey bars indicate pathways where no prediction can currently be made. 
B. A chord diagram showing the most enriched pathway with their differentially expressed proteins. C. 
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Supplementary Figure 3.5: Boxplot of biomarkers validated with ELISA assay that did not confirm mass spectrometry 
results: VDBP (A,B), FINC (C,D), FIBB (E,F).  

 

Supplementary table 3.1: list of modulated proteins 

Protein name Fold change p-value 

CRP_HUMAN 13,85025152 0,00017 

MYEF2_HUMAN 8,806223664 0,00057 

SAA1_HUMAN 8,300649805 0,002 

SAA2_HUMAN 6,807573326 0,00109 

SWAHC_HUMAN 5,35812367 2,72E-10 

GELS_HUMAN 4,392904989 1,56E-08 

A1AG1_HUMAN 4,314601926 2,77E-07 

KV308_HUMAN 3,380908317 0,00111 

HV5X1_HUMAN 3,188365975 0,00582 

PLMN_HUMAN 3,062302959 0,00019 

FIBA_HUMAN 2,887455743 1,22E-08 

SAA4_HUMAN 2,658701274 3,27E-09 

A1AT_HUMAN 2,474351002 1,29E-11 

C4BPB_HUMAN 2,435492614 4,81E-07 

LV310_HUMAN 2,409926482 0,00609 
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LBP_HUMAN 2,353117491 4,16E-06 

A2GL_HUMAN 2,293805408 1,94E-07 

HPT_HUMAN 2,257274447 0,00301 

FINC_HUMAN 2,210705714 0,03564 

ING2_HUMAN 2,172421718 0,00266 

S10A9_HUMAN 2,081783083 0,00138 

C4BPA_HUMAN 2,025804842 8,41E-07 

LV657_HUMAN 2,016044041 0,01972 

LV321_HUMAN 1,984841667 0,01963 

IL1AP_HUMAN 1,960405849 0,00452 

CE290_HUMAN 1,946576224 1,24E-06 

K2C6B_HUMAN 1,927426116 0,00341 

IDH3A_HUMAN 1,820117161 1,64E-05 

PLF4_HUMAN 1,810375987 8,25E-06 

LV147_HUMAN 1,804685759 0,02974 

IBP2_HUMAN 1,793450501 0,00669 

PROS_HUMAN 1,713452476 3,95E-05 

NUP93_HUMAN 1,69576833 0,00514 

ECM1_HUMAN 1,687599586 2,77E-05 

LV319_HUMAN 1,660406957 0,03405 

IGJ_HUMAN 1,631721307 0,01663 

KVD15_HUMAN 1,602823309 0,04053 

C163A_HUMAN 1,597303789 0,02388 

APOA1_HUMAN 1,595210799 0,00642 

BST1_HUMAN 1,587929378 0,00206 

ICAM2_HUMAN 1,578703401 0,02315 

KV133_HUMAN 1,573022796 0,01484 

KV116_HUMAN 1,571745444 0,01009 

PAP1L_HUMAN 1,564867987 0,00623 

KV303_HUMAN 1,562408869 0,01135 

APOD_HUMAN 1,536128919 0,02322 

NEBL_HUMAN 1,53211904 0,02098 

APOE_HUMAN 1,526196873 0,00553 

KV315_HUMAN 1,515031594 0,01841 

FHR5_HUMAN 1,484376326 0,00014 

HV551_HUMAN 1,4618971 0,02433 

VWF_HUMAN 1,41843466 0,04431 

LYSC_HUMAN 1,418109833 0,00782 

FCGBP_HUMAN 1,400049292 0,01932 

FCG3A_HUMAN 1,336863253 0,04014 

C1RL_HUMAN 1,312170666 0,00332 

FUBP1_HUMAN 1,312112996 0,04569 

SEPP1_HUMAN 1,307959361 0,02256 

CD14_HUMAN 0,766554326 0,00531 

ANT3_HUMAN 0,741063971 0,00869 
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ADIPO_HUMAN 0,74029546 0,02209 

TYB4_HUMAN 0,739525327 0,03432 

FUBP3_HUMAN 0,737146065 0,03947 

RPA2_HUMAN 0,733348806 0,0321 

LYAM1_HUMAN 0,73278503 0,00792 

IBP3_HUMAN 0,732025194 0,00775 

HEMO_HUMAN 0,728079533 1,69E-10 

VASN_HUMAN 0,72350724 0,00148 

BTD_HUMAN 0,719423037 8,44E-06 

MUC18_HUMAN 0,708254232 0,02 

CO9_HUMAN 0,706478473 0,01977 

TTHY_HUMAN 0,705681605 0,00062 

TAGL2_HUMAN 0,703910725 0,04103 

LV469_HUMAN 0,702416646 0,02603 

LV861_HUMAN 0,70055172 0,02824 

TRML1_HUMAN 0,697575286 0,03144 

KV224_HUMAN 0,691062663 0,00134 

UBR1_HUMAN 0,68042522 0,00261 

FA5_HUMAN 0,679216466 3,10E-05 

HV307_HUMAN 0,67857786 0,00033 

A1BG_HUMAN 0,676992749 8,53E-05 

DOPO_HUMAN 0,669552785 0,01057 

KAIN_HUMAN 0,669170297 9,70E-05 

PHLD_HUMAN 0,668228734 0,00658 

TETN_HUMAN 0,665766758 1,17E-05 

FETUA_HUMAN 0,665610428 1,18E-05 

VTNC_HUMAN 0,662553859 0,00149 

CAH1_HUMAN 0,657899212 0,01268 

THBG_HUMAN 0,657706407 7,92E-05 

HGFA_HUMAN 0,657222633 0,00018 

HEP2_HUMAN 0,653110526 0,03066 

ALBU_HUMAN 0,648838749 0,03049 

CHLE_HUMAN 0,640763752 4,73E-06 

HV364_HUMAN 0,640716819 0,0437 

AKAP9_HUMAN 0,63965227 2,35E-05 

LUM_HUMAN 0,637376712 1,34E-07 

CNDP1_HUMAN 0,632768568 0,00021 

IPSP_HUMAN 0,632175377 0,00414 

SH3L3_HUMAN 0,623515552 0,02932 

CBG_HUMAN 0,619291128 0,00135 

DSRAD_HUMAN 0,611939619 0,00869 

POTEE_HUMAN 0,590910707 0,00022 

KNG1_HUMAN 0,590318594 1,44E-08 

BGH3_HUMAN 0,583276552 0,00417 

PLTP_HUMAN 0,58137846 0,04599 
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LASP1_HUMAN 0,58005579 3,25E-05 

HV226_HUMAN 0,579837055 0,03584 

SRRM1_HUMAN 0,578972118 0,02091 

CAH2_HUMAN 0,563494075 0,01354 

SRGN_HUMAN 0,56173496 0,00455 

ROCK2_HUMAN 0,561424587 2,13E-05 

IGHG1_HUMAN 0,559605021 0,04421 

APOC2_HUMAN 0,557970344 0,00285 

C1S_HUMAN 0,55776526 3,01E-06 

PRDX1_HUMAN 0,557403282 0,00187 

KV305_HUMAN 0,553067434 0,00049 

CFAD_HUMAN 0,54995706 0,00466 

CO2_HUMAN 0,54247832 0,00026 

RET4_HUMAN 0,537514884 3,82E-07 

FETUB_HUMAN 0,531150585 0,00068 

CFAB_HUMAN 0,528353258 8,67E-08 

PI16_HUMAN 0,526093278 1,36E-06 

FXL22_HUMAN 0,525201261 0,00268 

ZYX_HUMAN 0,521729968 0,01685 

VCAM1_HUMAN 0,519221963 0,00272 

CD44_HUMAN 0,507828252 0,00046 

CAN2_HUMAN 0,49847632 5,86E-06 

TBA1C_HUMAN 0,498428436 0,01505 

PCDC1_HUMAN 0,494316104 0,01594 

FUBP2_HUMAN 0,491880752 9,78E-05 

OTU7A_HUMAN 0,487777111 2,99E-05 

AFAM_HUMAN 0,485357894 1,35E-08 

FA12_HUMAN 0,481222484 2,76E-09 

ITIH2_HUMAN 0,471625275 4,29E-09 

AIPL1_HUMAN 0,467984798 0,03943 

TRIPB_HUMAN 0,465027228 3,46E-11 

TM198_HUMAN 0,453364099 6,93E-11 

PGRP2_HUMAN 0,434662432 2,20E-09 

ITIH1_HUMAN 0,431583159 4,53E-11 

PEDF_HUMAN 0,416045879 2,01E-10 

A2AP_HUMAN 0,412165657 4,40E-06 

FCN3_HUMAN 0,410262648 8,79E-08 

ITIH3_HUMAN 0,409773674 1,08E-07 

IQCC_HUMAN 0,405298871 0,00134 

DDAH1_HUMAN 0,400250824 0,00058 

SHBG_HUMAN 0,393635685 0,01804 

SYF1_HUMAN 0,389104927 1,08E-05 

PBX1_HUMAN 0,386433445 1,50E-07 

CENP1_HUMAN 0,353155535 0,00741 

ALS_HUMAN 0,347584944 1,14E-08 
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LAC2_HUMAN 0,327626393 6,78E-05 

FCN2_HUMAN 0,316440737 4,42E-06 

ARIP4_HUMAN 0,300134779 4,55E-08 

KIF4A_HUMAN 0,279607061 0,00857 

CNNM4_HUMAN 0,277863138 0,00017 

GP1BA_HUMAN 0,274986399 3,87E-06 

APOC3_HUMAN 0,2732603 4,99E-07 

KV203_HUMAN 0,251189769 0,00014 

SLIT2_HUMAN 0,249758846 7,30E-13 

DCD_HUMAN 0,249429276 1,75E-10 

VILI_HUMAN 0,247046148 6,48E-06 

GRIN1_HUMAN 0,242307949 9,38E-10 

GDF5_HUMAN 0,233523271 3,04E-10 

LRC56_HUMAN 0,211883054 4,95E-08 

PCAT2_HUMAN 0,064749288 1,15E-12 
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3.4 PBMCS PROTEOMIC ALTERATIONS IN CANCER PATIENTS WITH COVID-19 

3.4.1 Background and rationale 

Pathophysiological changes and metabolic disorders, which establish a subclinical syndrome of 

“homeostatic frailty,” are common among the elderly population and are associated with greater 

susceptibility to infection [91] and cancer [92]. These changes determine immune-senescence and 

an imbalance between activation and resolution mechanisms of inflammation [e.g., high levels of 

inflammatory mediators such as interleukin IL-6, tumor necrosis factor-α, and C-reactive protein], 

that is an immunological scenario typical of the elderly [93].  As a consequence, failure to resolve 

the inflammatory process undermines metabolic and immune pathways [91]. Of relevance, an 

overwhelming inflammation is observed in COVID-19 patients, possibly resulting from loss of 

homeostatic robustness, which is clinically mitigated by treatment with either monoclonal antibody 

against IL-6 (tocilizumab) [94] and/or with corticosteroids [95]. Aging and various comorbidities 

associated with COVID-19 severity (i.e., diabetes, cancer, hypertension, cardiovascular disease) are 

characterized by inflammatory and metabolic disorders, which may represent indicators of 

homeostatic frailty and immune dysregulation [96]. However, the net immunometabolic 

contribution that these comorbidities add to COVID-19 disease is still poorly understood. Cancer 

progression is known to establish immunosuppression, often associated with production of anti-

inflammatory and immunosuppressive cytokines (i.e., IL-10, TGFβ) by alternative/M2 activated 

myeloid cells, macrophages in particular [97,98]. Noteworthy, cancer and COVID-19 exploit distinct 

patterns of macrophage activation, that promote disease progression in their most severe forms 

[96]. While an alternative/M2 activation state of macrophages is generally associated with cancer 

progression, the most severe forms of COVID-19 are supported by a macrophage activation 

syndrome, which generates a storm of M1-related cytokines [96]. Of relevance, the functional M1 

vs M2 dichotomy of macrophage polarization mutually modulates in response to polarizing 

cytokines Th1 (i.e., IFN) and Th2 (i.e., IL-4) respectively [97], whose imbalance is associated with 

higher COVID-19 risk mortality [99]. Since the M1 and M2 polarization states are metabolically 

distinct [100] and cancel each other out [101], we investigated whether the immunosuppressive 

and anti-inflammatory action of growing tumors could interfere with the immune metabolic 

scenario induced by SARS-CoV-2 infection. In this study we have undertaken proteomic approaches 

to elucidate the mechanism and immunological pathways that intersect SARS-CoV-2 infection and 
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cancer and to identify new therapeutic strategies for the management of patients with cancer 

affected by COVID-19.  

3.4.2 Materials and Methods  

3.4.2.1 Patients 

The analyses were carried out on blood samples collected at the Humanitas Research Hospital. 

Thirty-four patients were enrolled in the present study: 19 SARS-CoV-2 patients (12 males and 7 

females, mean age 67.44 years, ± 15.74), 8 SARS-CoV-2/Cancer Patients (SARS-CoV2/CP) (5 males 

and 3 females, mean age 72.25 years, ± 12.91), 7 cancer patients (CP) (5 males and 2 females, mean 

age 70.47 years, ± 13.72). Out of the 19 SARS-CoV-2 patients enrolled, 10 were severe and 9 were 

mild, while among SARS-CoV-2/CP patients, 2 were severe and 6 mild. Seven healthy subjects were 

selected as control population. Demographical characteristics of patients involved in the study are 

reported in table 3.5.  

Table 3.5: demographical characteristics of patients infected with SARS-CoV-2, with and without oncological disease, 
involved in the study. 

Characteristic    SARS-CoV-2 SARS-CoV-2/CP CP HC 

Gender          

  Male  12 5 5 4 

  Female 7 3 2 3 

Age Mean         

  Mean ± SD 67.44 ± 15.74 72.25 ± 12.91 70.47 ± 13.72 66.8 ± 10.13 

 

3.4.2.2 PBMCs Isolation 

Blood samples were collected in heparin and diluted 1:2 with PBS 1X. Subsequently, peripheral 

blood mononuclear cells (PBMCs) were obtained using a density gradient stratification. Briefly, 

diluted whole blood samples was carefully layered onto Histopaque-1077 Ficoll (Sigma- Aldrich) and 

then centrifuged at 1,800 rpm for 30 min at room temperature without brake. After centrifugation, 

PBMCs were collected at the interface and transferred into a new collection tube. 
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3.4.2.3 Proteomic analysis 

PBMCs were washed twice with PBS 1X by centrifugation at 1,200 rpm for 5 min and lysed using 200 

μL of RIPA buffer (50mM Tris HCl pH 7.2, 0.05%SDS) and sonication. Cold acetone was used for 

protein precipitation followed by resuspension in 100 mM NH4HCO3. Protein content was 

measured by Bradford Protein Assay (Sigma-Aldrich, St. Louis, MO). Fifty micrograms (50 µg) of 

proteins were subjected to reduction with DTT, alkylation with iodoacetamide and tryptic digestion 

at 37 ◦C overnight. Peptides were then desalted on the Discovery® DSC-18 solid phase extraction 

(SPE) 96-well plate (25 mg/well) (Sigma-Aldrich Inc., St. Louis, MO, USA) and then analyzed by label-

free LC–MS/MS, performed by using a micro-LC system (Eksigent Technologies, Dublin, USA) 

interfaced with a 5600+ TripleTOF mass spectrometer (Sciex, Concord, Canada). Samples were 

subjected first to data-dependent acquisition (DDA) analysis to generate the MS spectral library, and 

then to cyclic data independent analysis (DIA) using one technical replicates of each sample. The MS 

data were acquired and processed as reported from paragraph 3.3.2.4 to 3.3.2.6. 

3.4.2.4 Statistical Analysis 

Statistical analysis of proteomic data was performed using MarkerView software (Sciex, Concord, 

Canada) and MetaboAnalyst software (www.metaboanalyst.org). Proteins were considered up- and 

downregulated using fold change >1.3 or <0.769 and p-value < 0.05. The significance of the 

difference was also analyzed by non-parametric tests using the Prism v.8 software package 

(GraphPad Software, San Diego, CA, USA), with statistical significance taken at p < 0.05. 

Bioinformatics analysis of proteomic data was performed using Ingenuity Pathways Analysis (IPA) 

software (Qiagen, Redwood City, CA, USA). 

3.4.3 Results and Discussion 

To elucidate the mutual influence between SARS-CoV-2 infection and cancer, we analyzed the global 

proteome profile of PBMCs samples collected from healthy subjects (n = 7), CP (n = 7), SARS-CoV-2 

(n = 19) and SARS-CoV-2/CP (n = 8), with mild or severe symptoms. A total of 869 proteins were 

quantified in all PBMCs samples. 264 proteins were differentially expressed in the comparison 

between SARS-CoV-2/CP and CP (Fig. 3.9a and suppl. Table 3.2), while 20 proteins were 

differentially expressed in SARS-CoV-2/CP vs SARS-CoV-2 patients (fold change > 1.3, p-value ≤0.05) 

(Fig. 3.9e and suppl. Table 3.3). 
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PLS-DA models were built for both the comparisons and they showed a good separation between 

the two groups of patients (Fig. 3.9b and g). The variable importance measured in PLS-DA were 

reported in figures 1c and h, which list the top 15 important features identified by PLS-DA analysis. 

The color boxes indicate the relative concentrations of the corresponding proteins in each group 

under study. The proteomic clustering results are showed in the form of heat maps (Fig. 3.9d and 

i). The figures report the top 25 regulated proteins (t-test) of the two comparisons. 

Canonical pathway analysis was used to identify the main pathways associated with SARS-CoV-2 

infection in oncological patients (Figure 3.9e and l). EIF2 signaling resulted the most significant 

modulated pathway, predicted inactivated, in SARS-CoV-2/CP vs CP (Figure 3.9e). This inactivation 

could be related to the first host defense mechanism against viral infection. In fact, double strand 

RNAs and viral proteins accumulations induce a cellular stress and lead to the activation of two eIF2α 

kinases, PERK and PRK [102,103]. As result, the phosphorylation of eIF2α induces a global inhibition 

of host translational machinery which does not affect virus replication, but rather favor viral protein 

production. This could explain the decreased concentration of non-phosphorylated IF2A (fold-

change 0.55) in SARS-CoV-2/cancer patients compared to cancer patients (Fig. 3.10a). Noteworthy, 

the eIF2α kinase PERK mediates proteasomal degradation of p53 independently of translational 

control [104], suggesting that SARS-CoV-2 infection may in perspective favor the onset of DNA 

damage, increasing the susceptibility to oncological diseases. 

The mechanism used by SARS-CoV-2 to avoid the suppression of viral mRNA translation and to 

ensure continuous viral protein production is not clear yet [105]. In our study, 31 modulated proteins 

were associated to the EIF2 signaling pathway, of which IF2A, ACTB, HNRNPA1, RPL15, RPL23, 

RPL23A, RPL26L1, RPL29, RPL3, RPL30, RPL31, RPL34, RPL4, RPL8, RPS21, RPS4X, RPS5, RPS6, RPS9, 

RPL19, RPL32, RPL27, RPS17, RPS20 were down-regulated, while IF2A, EIF3D, HSPA5, RPL24, RPL27A, 

and RPS3 were up-regulated (Suppl. Table 3.2).  

Moreover, a significant decrease in ribosomal protein L26 like 1 (RPL26L1) level was associated with 

disease severity (Fig. 3.10b). RPL26L1 was identified by affinity proteomics analysis in the 

interactome between host proteins and both Zika virus [106] and SARS-CoV-2 virus [107], while GRB2 

was reported as cellular target of SARS-CoV-2 encoded microRNAs [108]. 
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Figure 3.9: proteomic characterization of PBMCs. Comparison of cancer patients with and without COVID-19: (a) volcano 
plot reporting the modulation of 264 proteins (FC > 1.3 and p-value < 0.05); (b) partial least square discriminant analysis 
of the PBMCs proteomic profiles showing the presence of two separate groups of patients and the most important 
discriminating variables for each group (c). Colored boxes indicate the most predictive or discriminative features in each 
group (red, high; blue, low). (d)The hierarchical heat maps of quantified proteins, highlighting the two clusters of 
samples, with cancer COVID-19 patients in orange and cancer patients in purple. e) Bar-plot presenting the top canonical 
pathway analysis of significantly altered PBMCs proteins regulated in the comparison SARS-Cov-2/cancer and CP. Panels 
(f) to (l) report the volcano plot, the heatmap, partial least square analysis and canonical pathway analysis in SARS-CoV-
2/CP versus SARS-CoV-2 patients.    
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Pathway analysis also revealed a predicted alteration of the Integrin Signaling and the Leucocyte 

Extravasation Signaling pathway in the comparison of SARS-CoV-2/CP vs CP (Fig. 3.9e), suggesting a 

dominant influence of SARS-CoV-2 infection on this inflammatory trait [109–111]. Among proteins 

involved in Integrin Signaling pathway (Figure 3.10c-e), our data show reduced levels of both beta 

(β)-actin (ACTB), required for embryonic development and cell recruitment [112] and Ras-related 

C3 botulinum toxin substrate 2 (RAC2), whose activation was linked to infantile-onset combined 

immunodeficiency and susceptibility to viral infections [113].  

 

Figure 3.10:  box-plot plot of proteins involved in the main modulated pathways in cancer patients with COVID-19. 
Integrin Signaling pathway: Actin (a), ADP-ribosylation factor 5 (b), Ras-related C3 botulinum toxin substrate 2 (c); EIF2 
Signaling: Growth factor receptor-bound protein 2 (d), 60S ribosomal protein L26-like 1 (e); NAD Signaling: Histone H2B 
type 1-K, H2B K (f), Histone H2B type 1-D (g); Sirtuin Signaling: Isocitrate dehydrogenase [NADP], mitochondrial (h), 
Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial (i); Leucocyte extravagation signaling: CD99 
antigen (j). (* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001; **** p-value < 0.0001). 

 

RAC2 is a plasma membrane-associated small GTPase belonging to the Rho family, together with 

RAC1 and RAC3 [114]. While RAC1 and RAC2 share a redundant role in later stages of T-cell 

development, RAC1 has been reported to be down-regulated in COVID-19 patients with mild 

symptoms compared to healthy subject [115]. Interestingly, activating mutation of RAC2 causes 

infantile-onset combined immunodeficiency and susceptibility to viral infections [113]. In contrast, 

increased levels of ADP-ribosylation factor 5 (ARF5) were observed in SARS-CoV-2/CP, as compared 

to CP (Figure 3.10d). ARF5 is a member of the human ARF gene family, which is involved in cell 

proliferation, motility and differentiation by regulating cellular traffic as well as cancer cell survival, 
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migration and invasion [116]. Noteworthy, NAD-dependent ADP-ribosylation is emerging as an 

important regulator of innate immunity, through modulation of IFN type I and II activity, that is 

targeted by some viruses to counteract host antiviral mechanisms [117,118]. In SARS-CoV-2/CP the 

expression of ARF5 resulted 7.9-fold higher, as compared to CP, while in contrast ACTB expression 

resulted 1.6-fold down-regulated (Fig. 3.10c, d). We then compared the canonical pathways’ 

significance (-log[p-value]) and prediction (z-score) obtained from all the proteomic-bioinformatic 

analysis to investigate the main pathways responsible of the immunometabolic changes describing 

the mutual influence between SARS-CoV-2 and cancer. (Fig. 3.11)  

 

 

Figure 3.11: canonical pathway analysis. (a) Bar-plot presenting the main modulated canonical pathways (-log(p-value)) 
related to PBMCs proteins in SARS-CoV-2/CP (yellow bar), SARS-CoV-2 (blue bar) and CP (red bar) compared to healthy 
subjects and their prediction score (b). Positive z-score indicates a predicted activation, while negative z-score indicates 
a predicted inhibition 

 

Main modulated canonical pathways Prediction score of canonical pathways 
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Interestingly, the analysis reported a reduced modulation of NAD Signaling and Sirtuin Signaling 

Pathway in SARS-CoV-2/CP compared to SARS-CoV-2, suggesting a regulatory action of cancer over 

the influence of SARS-CoV-2 on NAD metabolism (Fig. 3.11). It has been postulated that cancer may 

enhance NAMPT/NAD+, promoting anti-inflammatory effect against COVID-19 inflammation[96]. . 

Sirtuin-1 (SIRT1), a NAD-dependent protein deacetylase, plays regulatory roles in different cellular 

processes such as chromatin structure, gene transcription, metabolism, circadian rhythm, and 

inflammation [119]. In response to microbial moieties or inflammatory cytokines (i.e., IFN) cells 

increase NAMPT expression and the consequent NAD-dependent activation of SIRT1 deacetylase, 

thus limiting inflammation and restoring tissue homeostasis [120]. Our data indicate that the 

predicted inactivation of Sirtuin Signaling pathway can be also related to EIF2a signaling inactivation, 

whose alteration may result in slower post-stress translation recovery. In this regard, Ghosh et al. 

[121] demonstrated that SIRT1 regulates EIF2a phosphorylation through the interaction with two 

mediators of its dephosphorylation, GADD34 and CReP, suggesting a role for SIRT1 in maintaining 

the steady-state level of phospho-eIF2a.  

Intriguingly, the analysis also reported a predicted activation of Estrogen Receptors Signaling (ERs) 

in both SARS-CoV-2/CP (z-score=2.23) and SARS-CoV-2 patients (z-score=1.34) compared to healthy 

(Fig. 3b) Different studies have already supported that estrogen and ERs may be related to SARS-

CoV-2 infection [122]. 

Researchers have shown that ERs have a function in regulating cells and pathways in the innate and 

adaptive immune systems [123]. Both estrogen and ERs contribute to the activation and proliferation 

of T-lymphocytes and lead to high expression of IFN [124]. Interestingly, experimental studies in 

male and female mice infected with SARS-CoV2 showed that ovariectomy or treatment with 

estrogen receptor antagonist in female mice increased death rate, which indicates estrogen 

receptors play a protective effect in mice infected with SARS-CoV-2 [125]. On the other hand, the 

phosphatidyl-inositol-3-kinase (PI3K)/AKT signaling pathway is significantly over-expressed in SARS-

CoV-2 patients compared to healthy. The PI3K/AKT signaling pathway regulates different aspects of 

cell survival such as protein synthesis, apoptosis inhibition, and cell proliferation. In recent years the 

link between this cellular pathway and blood clot generation has been reported in several studies. 

Recently, Pelzl et al. studied the activation status of platelets and PI3/AKT signaling in COVID-19 

patients [126]. Interestingly, the results of this study showed that PI3K/AKT phosphorylation is 

significantly associated with platelet activation in severe COVID-19 patients suggesting that the 



60 
 

inhibition of PI3K/AKT phosphorylation could be a promising strategy to prevent onset of 

thrombosis in patients with severe COVID-19. Moreover, our data showed a more significance 

modulation of HIF1α Signaling in SARS-CoV-2/CP vs healthy than SARS-CoV-2 vs healthy. COVID-19 

can induce hypoxemia and an overexpression of hypoxia-inducible factor-1α (HIF-1α)[127] which 

may be involved in the genesis, angiogenesis, invasion and metastasis of lung cancer[128]. 

3.4.3.1 Conclusions  

Despite cancer patients are generally considered more susceptible to SARS-CoV-2 infection [129], 

the mechanisms that drive their predisposition towards severe forms of COVID-19 have not been 

deciphered yet. Since metabolic disorders are associated with homeostatic frailty, that predispose 

to the onset of infection and cancer [91,92] we have carried out a proteomic analysis to identify 

immuno-metabolic pathways that intersect SARS-CoV-2 infection and cancer.  

The emerging proteomic profile of SARS-CoV-2 and cancer patients show alterations in the 

modulation of pathways and proteins associated with immunodeficiency, susceptibility to viral 

infection and inflammatory modulation. The alterations observed in this preliminary analysis 

suggest also that the NAD pathways may represent a fragile metabolic node in both COVID-19 and 

cancer patients, which undergoes further deterioration in SARS-CoV-2/cancer patients.  

In conclusion, this proteome-profiling study, together with additional data coming from 

metabolomic, lipidomic and flow cytometric analysis (not presented here), could offer a great 

opportunity to explore the interdependence between COVID-19 and cancer. The better 

understanding of the interference mechanisms elicited by viral infections and tumors coexistence 

may provide not only an overview of the balance of benefits and risks when planning normally 

routine cancer treatments, but also new therapeutic targets for the treatment of patients with 

cancer affected by COVID-19. 

 

3.4.4 Supplementary Data 

Supplementary Table 3.2:  list of modulated protein in SARS-CoV-2/CP vs CP (FC>1.3, p-value<0.05). 

Protein Name P-value Fold Change 

RAB7A_HUMAN 0,02704 1,052886239 

RASA3_HUMAN 0,00508 1,014559683 

S10A9_HUMAN 0,02854 0,991753121 

SET_HUMAN 0,02209 0,904025369 

RAB6B_HUMAN 0,0384 0,895451389 

FAS_HUMAN 0,00214 0,851851911 
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CATG_HUMAN 0,03601 0,838678828 

FA5_HUMAN 0,00034 0,829981102 

ITB3_HUMAN 0,00175 0,770982726 

ARF5_HUMAN 0,04313 0,748687892 

ML12B_HUMAN 0,00194 0,738167018 

FIBB_HUMAN 0,00741 0,688902908 

GLOD4_HUMAN 0,00629 0,683195557 

PDLI1_HUMAN 0,00116 0,67765214 

URP2_HUMAN 0,00726 0,67739476 

PGH1_HUMAN 0,03844 0,672986946 

PRPS3_HUMAN 0,00401 0,669571588 

1A11_HUMAN 0,00899 0,643468329 

CD177_HUMAN 0,01443 0,643466276 

GP1BA_HUMAN 0,0256 0,62854069 

MYO1G_HUMAN 0,01003 0,625702249 

ITA6_HUMAN 0,0006 0,624676352 

CALD1_HUMAN 0,01618 0,616862356 

ITA2B_HUMAN 2,00E-04 0,615751204 

ELNE_HUMAN 0,04995 0,610951346 

TGFB1_HUMAN 0,01319 0,606689322 

ELOB_HUMAN 0,04135 0,594004373 

GLU2B_HUMAN 0,00089 0,585609028 

MMRN1_HUMAN 0,01613 0,584135817 

GRP2_HUMAN 0,00644 0,582987371 

AMPL_HUMAN 0,02382 0,581222728 

ZN195_HUMAN 0,0246 0,577877199 

HEM2_HUMAN 0,02737 0,575533384 

LIMS1_HUMAN 0,00041 0,566453595 

ETFA_HUMAN 0,02039 0,565232165 

JAM3_HUMAN 0,0126 0,56160607 

HPSE_HUMAN 0,00835 0,558907534 

GDIA_HUMAN 0,02487 0,557671606 

HSPB1_HUMAN 0,01001 0,555735652 

OXSR1_HUMAN 0,02443 0,553415653 

SC31A_HUMAN 0,02317 0,550497166 

CD36_HUMAN 0,00076 0,55014748 

TBA4A_HUMAN 0,03187 0,549847409 

COPA_HUMAN 0,00451 0,542516933 

UBE2N_HUMAN 0,02597 0,541902151 

MX1_HUMAN 0,00484 0,539038466 

LSM7_HUMAN 0,01617 0,532211244 

ANX11_HUMAN 0,00376 0,524313869 

RL24_HUMAN 0,00784 0,522720059 

G3P_HUMAN 0,01101 0,522630465 

CYFP1_HUMAN 0,0058 0,518314236 

CBX3_HUMAN 0,00118 0,511488727 

ARPC5_HUMAN 0,00103 0,50832478 

ENDD1_HUMAN 0,00723 0,505665826 

GPDM_HUMAN 0,02998 0,501948882 

PPIB_HUMAN 0,00267 0,492713482 

CAVN2_HUMAN 0,01826 0,489624175 

FIBG_HUMAN 0,00039 0,4869748 

RB27B_HUMAN 0,01815 0,486307909 

ILK_HUMAN 0,00077 0,481818281 

CAN1_HUMAN 0,0114 0,479045765 

CATD_HUMAN 0,04998 0,476877509 

ILF3_HUMAN 0,01048 0,475618885 

DCTN2_HUMAN 0,00478 0,474542632 

RL27A_HUMAN 0,04411 0,471974943 
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TBB1_HUMAN 0,00853 0,465164667 

ALBU_HUMAN 0,022 0,464660147 

TFR1_HUMAN 0,02069 0,458757007 

ITB1_HUMAN 0,00393 0,457816332 

GRAA_HUMAN 0,0408 0,45702265 

GELS_HUMAN 0,00089 0,447191763 

EIF3D_HUMAN 0,02077 0,44574565 

PDC10_HUMAN 0,01202 0,444198772 

TYPH_HUMAN 0,00993 0,443226281 

CAND2_HUMAN 0,04111 0,442349318 

KPCB_HUMAN 0,03015 0,440136701 

CXCL7_HUMAN 0,01357 0,432961869 

HNRPD_HUMAN 0,01847 0,425179188 

TCPG_HUMAN 0,01289 0,416430686 

SORCN_HUMAN 0,00068 0,415747485 

NDUA4_HUMAN 0,0024 0,413176987 

SYUA_HUMAN 0,0012 0,412767235 

RS13_HUMAN 0,02716 0,412129502 

TLN1_HUMAN 0,00517 0,410085976 

AKCL2_HUMAN 0,04962 0,404273961 

NDKB_HUMAN 0,01684 0,398639092 

IPYR_HUMAN 0,0026 0,398340847 

NONO_HUMAN 0,01082 0,397455544 

6PGD_HUMAN 0,00678 0,392282036 

RAP1B_HUMAN 0,00367 0,391250961 

VINC_HUMAN 0,00301 0,3881077 

ACTN1_HUMAN 0,0055 0,385947424 

PDIA1_HUMAN 0,02824 0,385686132 

ECHA_HUMAN 0,02778 0,37944155 

CBR1_HUMAN 0,0172 0,375284073 

CASP3_HUMAN 0,0481 0,363399085 

TPM1_HUMAN 0,03164 0,356024838 

ATP5I_HUMAN 0,0198 0,348108745 

UGPA_HUMAN 0,04883 0,345629009 

GRP78_HUMAN 0,00702 0,344926335 

FIBA_HUMAN 0,01993 0,339040714 

STOM_HUMAN 0,004 0,335844887 

RS3_HUMAN 0,0183 0,334107731 

TSP1_HUMAN 0,00334 0,315928539 

NASP_HUMAN 0,04861 0,306719832 

TCPH_HUMAN 0,02354 0,301723637 

ACTZ_HUMAN 0,02739 0,291810238 

EF1A3_HUMAN 0,01917 0,289999985 

MYL6_HUMAN 0,04347 0,281836339 

ALDOA_HUMAN 0,01244 0,279737023 

FCERG_HUMAN 0,01265 0,279270606 

SRC_HUMAN 0,00343 0,279187969 

TPM4_HUMAN 0,00347 0,273306551 

NTF2_HUMAN 0,01312 0,266717209 

DECR_HUMAN 0,03113 0,265821443 

COX6C_HUMAN 0,02059 0,265135794 

PGM1_HUMAN 0,0431 0,261871468 

HNRPU_HUMAN 0,03701 0,253052051 

PLEK_HUMAN 0,01349 0,247475697 

IDHP_HUMAN 0,02547 0,247193439 

1433Z_HUMAN 0,03581 0,244642484 

HXK1_HUMAN 1,50E-04 0,238990503 

H4_HUMAN 0,03076 0,233840755 

NNTM_HUMAN 0,01903 0,233296864 
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CISY_HUMAN 0,02185 0,231086102 

RSU1_HUMAN 0,04498 0,23095947 

ZYX_HUMAN 0,0345 0,225685465 

PDIA4_HUMAN 0,01644 0,221157465 

ACTN4_HUMAN 0,02903 0,220554264 

BIN2_HUMAN 0,00023 0,219930887 

TERA_HUMAN 0,02116 0,207769091 

F13A_HUMAN 0,04759 0,206664982 

GSTO1_HUMAN 0,02546 0,204686532 

PDIA3_HUMAN 0,01851 0,168996239 

TPM3_HUMAN 0,00635 0,159500865 

CAP1_HUMAN 0,03113 -0,165756909 

RS6_HUMAN 0,03201 -0,167928839 

PLEC_HUMAN 0,00382 -0,170389279 

MIC19_HUMAN 0,03626 -0,182737023 

RANG_HUMAN 0,03299 -0,184018559 

TCPE_HUMAN 0,02832 -0,195509103 

TCPD_HUMAN 0,01952 -0,195556638 

RL4_HUMAN 0,04552 -0,197294673 

MGST3_HUMAN 0,0177 -0,205196036 

VIME_HUMAN 0,0477 -0,206712327 

LSP1_HUMAN 0,00692 -0,209396447 

ACTB_HUMAN 0,04482 -0,210804972 

HNRH3_HUMAN 0,00683 -0,211498725 

HXK3_HUMAN 0,02755 -0,212672153 

HP1B3_HUMAN 0,04175 -0,212898056 

SF3B6_HUMAN 0,01845 -0,213519807 

EF1A1_HUMAN 0,04533 -0,21633873 

PTN6_HUMAN 0,00268 -0,221189224 

RL8_HUMAN 0,02574 -0,239299902 

ENOG_HUMAN 0,00332 -0,239962712 

CALM1_HUMAN 0,00361 -0,241154637 

HNRL2_HUMAN 0,04713 -0,241971951 

NHRF1_HUMAN 0,01207 -0,244910941 

RS4X_HUMAN 0,00051 -0,245446781 

AN32A_HUMAN 0,0109 -0,246660495 

TALDO_HUMAN 0,00113 -0,247285246 

ICAL_HUMAN 0,0003 -0,248531426 

DPYL2_HUMAN 0,0036 -0,248550263 

SH3L3_HUMAN 0,001 -0,253861171 

RS21_HUMAN 0,0214 -0,254902825 

HMGA1_HUMAN 0,00407 -0,25899856 

RBMX_HUMAN 0,00038 -0,259143562 

FYB1_HUMAN 0,01899 -0,263230054 

UE2NL_HUMAN 0,00525 -0,264503278 

CAZA1_HUMAN 0,02605 -0,266088809 

IF2A_HUMAN 0,02538 -0,266274666 

ROA2_HUMAN 6,94E-05 -0,26788545 

SRP14_HUMAN 0,00159 -0,276051845 

NUDC_HUMAN 0,02272 -0,278325971 

K2C73_HUMAN 0,02463 -0,280259499 

RL26L_HUMAN 0,00288 -0,282960326 

SSBP_HUMAN 0,00462 -0,287688171 

1433F_HUMAN 0,02697 -0,295670186 

HNRPM_HUMAN 0,00129 -0,29856186 

AHNK_HUMAN 0,03676 -0,304187772 

PSIP1_HUMAN 0,04409 -0,30931089 

STX7_HUMAN 0,01888 -0,309413595 

LBR_HUMAN 0,00062 -0,312467063 
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CHM1B_HUMAN 0,04267 -0,313097743 

H2B1B_HUMAN 0,00943 -0,3148353 

NUCKS_HUMAN 0,01862 -0,31739422 

CD14_HUMAN 0,02706 -0,318475597 

ENOA_HUMAN 0,01714 -0,318832541 

ROA0_HUMAN 0,01158 -0,323450334 

PRAF3_HUMAN 0,033 -0,324613682 

RL23_HUMAN 0,02216 -0,326108213 

TYB10_HUMAN 0,03618 -0,327497741 

PA2G4_HUMAN 0,00189 -0,327698773 

CPNE1_HUMAN 0,04972 -0,329415766 

IGHG3_HUMAN 0,02312 -0,334164556 

H1X_HUMAN 0,00091 -0,334208037 

SEPT7_HUMAN 0,00171 -0,334622104 

RL3_HUMAN 0,0054 -0,341682508 

PCBP1_HUMAN 6,61E-06 -0,347916075 

PAIRB_HUMAN 1,40E-04 -0,35373383 

APEX1_HUMAN 0,00053 -0,360285243 

TMA7_HUMAN 0,0325 -0,365384597 

RBM39_HUMAN 0,01073 -0,368218303 

LEUK_HUMAN 0,00138 -0,36859064 

GLRX1_HUMAN 0,00072 -0,369371884 

ALDR_HUMAN 0,0004 -0,369831088 

LMNA_HUMAN 0,0044 -0,375158254 

EVL_HUMAN 0,03798 -0,378555335 

CY24B_HUMAN 0,02287 -0,382944407 

RBM8A_HUMAN 0,00027 -0,389206925 

HMGN4_HUMAN 0,00062 -0,389956747 

COTL1_HUMAN 4,55E-05 -0,391923638 

SDHB_HUMAN 0,00142 -0,394625753 

TES_HUMAN 0,02235 -0,39676227 

DNJC8_HUMAN 0,00021 -0,407454588 

IF5A1_HUMAN 0,00029 -0,409187864 

RL29_HUMAN 0,0282 -0,410084515 

PEBP1_HUMAN 6,40E-05 -0,41080161 

RL31_HUMAN 4,07E-05 -0,412123169 

HNRPC_HUMAN 1,58E-05 -0,413448918 

RL23A_HUMAN 1,20E-04 -0,423238528 

SEPT2_HUMAN 0,00297 -0,427001906 

PRKDC_HUMAN 0,03265 -0,428859973 

ACON_HUMAN 1,22E-05 -0,430139719 

JAGN1_HUMAN 0,02548 -0,432879555 

CD44_HUMAN 0,03608 -0,438391054 

SARNP_HUMAN 0,00149 -0,440429696 

RL15_HUMAN 0,01403 -0,448072998 

DPYL5_HUMAN 0,00022 -0,44883726 

H2AX_HUMAN 0,00135 -0,450443898 

RL34_HUMAN 0,00115 -0,45230952 

H2B1K_HUMAN 9,52E-05 -0,458780797 

H2B1M_HUMAN 5,22E-05 -0,461223912 

PABP3_HUMAN 0,00029 -0,462659718 

CYBP_HUMAN 0,01569 -0,463317701 

NUDT5_HUMAN 0,00443 -0,473684381 

RGS12_HUMAN 2,10E-04 -0,473692349 

RS5_HUMAN 1,60E-04 -0,475221454 

CAPG_HUMAN 0,00118 -0,4774619 

RBM3_HUMAN 0,00497 -0,479584191 

KYNU_HUMAN 5,62E-05 -0,487031508 

GIMA4_HUMAN 0,0017 -0,488550068 
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KHDR1_HUMAN 1,01E-05 -0,490975524 

H2B3B_HUMAN 0,02824 -0,491918709 

ROA1_HUMAN 3,51E-05 -0,532796076 

PTMA_HUMAN 1,78E-06 -0,535862824 

CD5_HUMAN 0,00361 -0,540379605 

H2B2F_HUMAN 0,03171 -0,548985366 

H2B2E_HUMAN 0,02895 -0,556978994 

HMGN2_HUMAN 0,01381 -0,566580349 

CREM_HUMAN 5,36E-06 -0,567808919 

RAC2_HUMAN 0,04407 -0,572843444 

SNRPA_HUMAN 2,07E-06 -0,58111308 

CD99_HUMAN 3,21E-06 -0,584871572 

CYC_HUMAN 0,02039 -0,600883926 

RL30_HUMAN 0,00524 -0,617672678 

H2B1D_HUMAN 0,01999 -0,637724123 

PSB10_HUMAN 6,32E-06 -0,648373968 

NFKB1_HUMAN 0,04317 -0,686337875 

SPTCS_HUMAN 0,01531 -0,722532328 

RS9_HUMAN 0,00078 -0,725168945 

ROA3_HUMAN 1,83E-05 -0,750747903 

UTRO_HUMAN 0,00141 -0,786560827 

H2A2C_HUMAN 0,02713 -1,035164935 

 

Supplementary Table 3.3: list of modulated proteins in SARS-CoV-2/CP vs SARS-CoV-2 

Protein Name P-value Fold Change 

COX6C_HUMAN 0,00015 2,435401674 

GRAA_HUMAN 0,00688 1,658566627 

DCTN2_HUMAN 0,01043 1,894606152 

RHOG_HUMAN 0,01052 0,290692187 

K2C73_HUMAN 0,01055 1,594499206 

S10A4_HUMAN 0,01481 0,2736431 

1433E_HUMAN 0,01602 1,598506229 

CBX3_HUMAN 0,02163 0,397119987 

ARL8B_HUMAN 0,0314 2,331087125 

SNF5_HUMAN 0,0341 2,650942551 

UTRO_HUMAN 0,03523 1,524168087 

H15_HUMAN 0,03653 0,540303543 

VDAC3_HUMAN 0,0371 2,816672981 

RL27_HUMAN 0,03968 2,046211294 

ZN195_HUMAN 0,04112 1,908297563 

RASA3_HUMAN 0,04155 1,801245009 

GLOD4_HUMAN 0,04263 0,468490396 

F13A_HUMAN 0,04712 2,015220337 

GNAI2_HUMAN 0,04739 22,62881957 

H2A1_HUMAN 0,04928 0,276434847 
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4 VIRAL INFECTION 

4.1 FUNCTIONS AND ROLES OF EXOSOMES IN PATHOGEN INFECTIONS 
 

Exosomes are extracellular vesicles derived from cell endocytosis and released by all kinds of 

mammalian cells [130]. Vesicle contains a variety of proteins, lipids, mRNAs and miRNAs [131], 

which are specific to the origin of the exosomes and contribute to cell-cell communication [132]. 

Consequently, they can reflect the physiological or pathological conditions of tissues and organs. 

Emerging evidence demonstrates that proteomic analysis of exosomes is of great significance in 

studying and evaluating the development, diagnosis, treatment, and prognosis of diseases. [133–

135] Respect the traditional circulating markers, such as hormones and cytokines, exosomes can 

remain stable in body fluids for several months at -80 °C without repeated freezing and thawing. 

Due to the advantages of easy sampling and less trauma, the analysis of exosomes in body fluid 

specimens is more acceptable than biopsy and histopathology examination [136]. For this reason, 

there are many potential applications for exosomes to be used as disease-specific biomarkers and 

targeted therapeutic approaches in clinical studies [137]. The interest in exosomes is consistently 

growing, with an increasing number of studies focusing on the function and application of exosomes 

in pathogen infections. In particular, exosomes play a crucial role in pathogen infections accelerating 

or inhibiting the process of infection [138]. In both cases, exosomes make possible connections 

between host cells or between pathogens and host cells. As carriers of proteins and RNAs derived 

from pathogens, exosomes can promote infections by transmitting pathogen-related molecules, 

participating in the immune escape of pathogens, and inhibiting immune responses by favoring 

immune cell apoptosis [138]. Although exosomes play an important role in the process of infection 

by pathogens, they may also participate in the fight against infections by inhibiting pathogen 

proliferation and transmission and stimulating host immune response.  
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4.2 PROTEOMICS ANALYSIS OF CIRCULATING EXOSOMES REVEALED THEIR 

INVOLVEMENT IN SARS-COV-2 INFECTION 

4.2.1 Background and Rationale  

The novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), was firstly reported in Wuhan, China, in December 2019, and is now 

responsible for over 6 million deaths worldwide (18TH December 2022) [139]. The clinical 

presentation of COVID-19 is very heterogeneous [140], ranging from asymptomatic patients to 

severe respiratory distress syndromes (ARDS), requiring invasive mechanical ventilation [141,142]. 

Advanced age and presence of certain disorders, including hypertension, diabetes mellitus, chronic 

obstructive pulmonary disease, cardiovascular diseases, and chronic kidney disease, can be 

considered as risk factors for the development of severe COVID-19 and poor prognosis 

[141,143,144]. Even though respiratory failure is the most common clinical presentation, it is also 

known that COVID-19 patients can rapidly progress to a multiple organ dysfunction syndrome 

(MODS) [145]. The involvement of different organs and systems, such as liver, kidney, heart, and 

gastrointestinal, hematological, and nervous system, in severe patients results in lengthening the 

hospitalization duration and increasing the mortality rate [146].  

In spite of the COVID-19 vaccine development success, the SARS-CoV-2 pandemic is still challenging 

due to slow vaccination globally and fast-evolving mutant strains [147–149]. Furthermore, there is 

always the risk of future emerging coronaviruses infecting human. Consequently, it is urgent to 

develop novel therapeutic tool that can broadly target distinct strains of evolving SARS-CoV-2 and 

future coronaviruses. Although a wide range of distinct therapeutic protocols have been 

investigated, adequate therapeutic options, together with optimal prevention and early diagnosis, 

are still needed. Extracellular vesicles (EVs) could represent a useful tool for COVID-19 management. 

Extracellular vesicles (EVs) are microparticles, including large microvesicles (200–1000 µm), small 

exosomes (50–200 µm), and newly identified exomeres (<50 µm) [150–152], released from several 

types of activated cells. EVs, as a carrier for cell-to-cell transfer of biomolecules such as mRNA, 

microRNA, proteins, receptors, lipids and metabolites play a crucial role in the mechanisms of cell-

to-cell communication [153]. They can reprogram the target cells in fate, function, and morphology, 

resulting in physiological or pathological effects [154,155]. EVs can be transported or accumulate in 

a variety of biological fluids, such as blood, saliva, urine, pleural fluid, bronchoalveolar lavage fluid 

(BAL), peritoneal fluid, cerebrospinal fluid, breast milk, amniotic fluid, and so on [156,157]. 
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Exosomes are amongst the best characterized small EVs that likely participate in a variety of 

physiological and pathobiological functions such as cancer progression [158], transmitting viral 

infection and immune response activation [159]. It was found that EVs can function as vectors of 

viral infection by transferring viral components, for example, virus-derived miRNAs and viral 

proteins from virus-infected cells to healthy cells [160,161]. Studies have shown that during SARS-

CoV-2 infection the number of EVs secreted from infected cells increased significantly highlighting 

an important role of EVs in the pathogenesis of diseases [162]. Proteomics technology has been 

widely used to characterize and study EVs. [163]. Characterization of exosomal cargo is of significant 

interest because it can provide information on exosome biogenesis, targeting, and cellular effects 

and may be a source of novel biomarkers and therapeutic targets.  

It was reported that EVs promoted the pathogenesis of diseases such as cancer, neurodegenerative, 

inflammatory and infectious diseases [164,165]. The interesting interaction between EVs and the 

virus provides a new perspective on the treatment of COVID-19 [166]. Viral infection may affect the 

exosomal-loading mechanisms of the host cells, resulting in changes in protein and nucleic acid 

content. Recent improvements of EVs isolation and characterization protocols [167], offered new 

opportunities to study their roles both as biomarkers and as mediators of several human diseases. 

[168]. Here, we investigated —via proteomic analysis— how SARS-CoV-2 infection modulates 

exosome content, exosomes’ involvement in disease progression, and the potential use of plasma 

exosomes as biomarkers of disease severity. 

 

4.2.2 Materials and Methods  

4.2.2.1 Patients 

Plasma samples from 17 subjects, admitted to Novara University Hospital for pneumonia and/or 

respiratory failure from March to April 2020 were collected at the Emergency Department or at 

COVID-19 wards including the Intensive Care Unit. All the patients had a confirmed diagnosis of 

SARS-CoV-2 infection by reverse-transcriptase polymerase chain reaction (RT-PCR). We considered 

critical patients those with respiratory failure admitted to the intensive care unit requiring 

mechanical ventilation, while non-critical patients all other patients with mild to severe respiratory 

failure requiring oxygen supplementation but neither invasive nor noninvasive mechanical 

ventilation. Out of the 17 COVID-19 patients enrolled, 7 were critical and 10 non-critical. Healthy 
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individuals (n=7) were enrolled as controls. For the validation phase 36 COVID-19 patients, including 

non-critical (23) and critical (13) subjects, and on 39 non-COVID-19 patients, including 6 critical 

patients, 8 non-critical patients, 7 healthy subjects and 7 healed COVID-19 subjects were used. The 

Institutional Review Board (Comitato Etico Interaziendale Novara) approved this study. Clinical 

characteristics of the patients involved in the study are reported in table 4.1, 4.2.  

 

Table 4.1: characteristics of the patients included in the discovery study 

 

Variable 

Non-COVID-19 

patients  COVID-19 patients 

 Healthy Control (N=7) Total (N=17) 

Non-critical 

(N=10) 

Critical 

(N=7) 

Sex (no.) 

Male  2 8 5 3 

Female  5 9 5 4 

Age (year) 

Mean ± SD 51.4 ± 4.8 64.3 ± 16.5 68.3 ± 19.7 58.7 ± 8.8 

Range 43.0 - 56.0 37.0 - 97.0 37.0 - 97.0 47.0 - 70.0 

Time from onset to admission (days) 

Mean ± SD  5.2 ± 5.0 6.2 ± 5.8 3.6 ± 3.5 

Range  1.0 - 18 1.0 - 18.0  1.0 - 9.0  

Time from admission to severe (days) 

Mean ± SD    3.8 ± 2.9 

Range    1.0 - 8.0 

Symptoms (n°) 

Fever   8 4 4 

Cough  6 5 2 

Headache   0 0 0 

Fatigue   1 1 0 

Dyspnea  3 2 1 

Diarrhea   2 1 1 

Chest pain   1 1 0 

Abdominal pain   1 0 1 

Vomiting  1 1 0 

Comorbidity (n°) 

Hypertension  4 1 3 

Diabetes   6 2 4 

Respiratory system   9 6 3 

Cardiovascular system  6 3 3 

Other endocrine system  2 0 2 

Chronic kidney   3 0 3 

Digestive system   4 1 3 

Oxygen saturation index (%) 

Mean ± SD  93.4 ± 7.1 94.3 ± 4.4 92.1 ± 10.5  

Range  71.0 - 99.0 86.0 - 99.0 71.0 - 98.0 
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Table 4.2: characteristics of the patients included in the validation study 

Variables COVID-19 Non-COVID-19 

 

Total 
(N=36) 

Non-
Critical 
(N=23) 

Critical 
(N=13) 

Total 
(N=29) 

Non-
Critical 
(N=8) 

Critical 
(N=6) 

Healthy 
Control 
(N=8) Healed(N=7) 

Sex - no.  

Male  21 13 8 12 5 3 2 2 

Female  15 10 5 17 3 3 6 5 

Age-year 

Mean ±SD 
65.6 ± 
17.6 66.5 ± 20.6 

53.8 ± 
10.7 

60.4  ± 
17.0 76  ± 12.9 68.6 ± 8.9 50.4 ± 5.4 46.8 ±17.6 

Range 
35.0 - 
101.0 

35.0 - 
101.0 

49.0 - 
84.0 30.0 - 96.0 59.0 - 96.0 

56.0 - 
82.0 

43.0 - 
56.0 30.0 - 72.0 

Time from Onset to Admission, Days 

Mean ±SD 4.3 ± 4.5 4.5 ± 5.0 4 ± 3.6 4.8 ± 6.1 5.7 ± 7.0 1.0 ± 0.0     

Range 1.0 - 19.0 1.0 - 19.0  
1.0 - 
10.0  1.0-21.0 1.0-21.0 1.0-1.0     

Time from Admission to Severe, Days 

Mean ±SD     3.1 ± 2.8     3.0 ± 4.9     

Range     1.0 - 8.0     1.0 - 13.0     

No covid score - no. 

Mean ±SD 3.0 ± 1.9 3.5 ± 2.0 4 ± 1.4           

Range 1.0 - 6.0 1.0 - 6.0  1.0 - 4.0           

Symptoms - no.  

Fever  18 11 7 3 1 2     

Cough 16 11 5 3 0 3     

Headache  0 0 0 2 0 2     

fatigue  3 2 1 3 0 3     

Dyspnea 8 6 2 5 1 4     

Diarrhea  4 2 2 0 0 0     

Chest pain  1 1 0 2 0 2     

Abdomial Pain  2 1 1 0 0 0     

vomit 1 1 0 1 1 0     

Comorbility - no. 

Hypertension 10 5 5 6 4 2     

Diabetes  8 4 4 1 0 1     

Respiratory system  4 2 2 1 1 0     

Cardiovascolar system 16 8 8 1 0 1     

Other Endocrine system 1 0 1 8 8 0     

Chronic Kidney  3 1 2 1 1 0     

Oxygen saturation index - % 

Mean ±SD 91.3 ± 7.4 93.3 ± 5.2 
97.4 ± 

9.6  92.1 ± 5.6  94.0 ± 4.1 85.5 ± 6.4     

Range 
71.0 - 
99.0 81.0 - 99.0 

71.0 - 
98.0 81.0 - 99.0 87.0 - 99.0 

81.0 - 
90.0     
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4.2.2.2 Isolation of plasma exosomes 

Exosomes were isolated using Exo-Spin exosome purification kit for plasma (Cell Guidance Systems, 

UK). In brief, 250 μL of plasma samples were centrifuged first at 300g and then at 16 000g for 10 

and 30 minutes, respectively, to remove platelets and larger vesicles. Half the volume of Exo-Spin 

buffer was added to the plasma samples, which were then mixed by inverting and incubated at 4 °C 

for 1 h before centrifugation at 16 000g for 60 min. Exosome pellets were resuspended in 100 μL 

phosphate-buffered saline (PBS) and purified using the Exo-Spin column. Finally, exosome were 

eluted in 200 μL PBS. 

4.2.2.3 Nanoparticle Tracking Analysis (NanoSight NS300) 

Particle size and concentration of plasma-derived exosomes were analyzed by NTA using the 

NanoSight Technology NS300. In brief, exosomes were diluted in sterile saline buffer solution 

(1:100) and analyzed by the Nanoparticle Analyses System using the NTA 1.4 Analytical Software.  

4.2.2.4 Western blotting 

Analysis of exosomes by immunoblotting was performed using standard protocols: proteins were 

denatured, separated on 4–12% polyacrylamide gels, transferred onto a nitrocellulose membrane 

and probed with antibodies against tetraspanins CD9 (Santa Cruz Biotechnology) and CD63 (Santa 

Cruz Biotechnology). The immunocomplexes were visualized by chemiluminescence using the 

Chemidoc MP imaging system (Bio-Rad Laboratories). Signal intensity of the bands was measured 

by using Image Lab software (Bio-Rad Laboratories). 

4.2.2.5 One-Step Reverse Transcription-Droplet digital Polymerase Chain Reaction (RT-ddPCR) 

Total RNA was extracted from 50 µL of plasma-derived exosomes using NucleoZOL (Macherey-

Nagel) following manufacturer’s instruction. SARS-CoV-2 RNA was quantified by means of the 

QX200TM Droplet Digital TM PCR System (ddPCR, Biorad) using the Bio-Rad SARS-CoV-2 ddPCR Kit 

and following manufacturer’s instruction. Data were analyzed using the QuantaSoftTM 1.7.4 

Software (Bio-Rad) and SARS-CoV-2 quantification was expressed in number copies/10 µl of 

exosomes. 
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4.2.2.6 Immunodepletion of high-abundant plasma proteins and digestion 

Exosomes were lysed using 200 μL of RIPA buffer (50mM Tris HCl pH 7.2, 0.05%SDS) and sonication. 

Proteins were then precipitated overnight using cold acetone at -20°C. The pellet was then 

resuspended using urea buffer and ammonium bicarbonate.  In order to improve the 

identification and quantification of exosomal proteins we depleted high-abundance proteins using 

the Seppro IgY14 spin column kit (Sigma-Aldrich Inc., St. Louis, MO, USA) according to the 

manufacturer's procedure. The samples were then prepared as reported in paragraph  3.3.2.3. 

4.2.2.7 Proteomics analysis and data processing 

The digested peptides were analyzed with an EASY nano-LC 1200 system (Thermo Scientific, Milano, 

Italy) coupled to a 5600+ TripleTOF system (AB Sciex, Concord, Canada). The liquid chromatography 

parameters were as follows: analytical column Acclaim PepMap C18 2μm 75µm x 150mm and 

injection volume 2 μL. The flow rate was 300 nL/min, phase A was 0.1% formic acid/water and phase 

B was 80% acetonitrile/0.1% formic acid/20% water. A two-hour gradient was used (3-45%). For 

identification purposes the mass spectrometer analysis was performed using a mass range of 100–

1600 Da (TOF scan with an accumulation time of 0.25 s), followed by a MS/MS product ion scan 

from 400 to 1250 Da (accumulation time of 5.0 ms) with the abundance threshold set at 30 cps (40 

candidate ions can be monitored during every cycle). The ion source parameters in electrospray 

positive mode were set as follows: curtain gas (N2) at 30 psig, nebulizer gas GAS1 at 25 psig, ionspray 

floating voltage (ISFV) at 2700 V, source temperature at 90 °C and declustering potential at 85V.  

For label-free quantification, samples were then subjected to cyclic data independent analysis (DIA) 

of the mass spectra, using a 25-Da window. A 50-ms survey scan (TOF-MS) was performed, followed 

by MS/MS experiments on all precursors. These MS/MS experiments were performed in a cyclic 

manner using an accumulation time of 40 ms per 25-Da swath (36 swaths in total) for a total cycle 

time of 1.5408 s. The ions were fragmented for each MS/MS experiment in the collision cell using 

the rolling collision energy. The MS data were acquired with Analyst TF 1.7 (SCIEX, Concord, Canada).  

The mass spectrometry files were searched using Protein Pilot (AB SCIEX, Concord, Canada) and 

Mascot (Matrix Science Inc., Boston, USA). Samples were input in the Protein Pilot software v. 4.2 

(AB SCIEX, Concord, Canada), with the following parameters: cysteine alkylation, digestion by 

trypsin, no special factors and False Discovery Rate at 1%. The UniProt Swiss-Prot reviewed database 

containing human proteins (version 01/02/2018, containing 42271 sequence entries) and SARS-
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CoV-2 (version 28/04/2020, containing 13175 sequence entries) were used. The Mascot search was 

performed on Mascot v. 2.4, the digestion enzyme selected was trypsin, with 2 missed cleavages 

and a search tolerance of 50 ppm was specified for the peptide mass tolerance, and 0.1 Da for the 

MS/MS tolerance. The charges of the peptides to search for were set to 2 +, 3 + and 4 +, and the 

search was set on monoisotopic mass. The instrument was set to ESI-QUAD-TOF and the following 

modifications were specified for the search: carbamidomethyl cysteines as fixed modification and 

oxidized methionine as variable modification [53,54].  

The quantification was performed by integrating the extracted ion chromatogram of all the unique 

ions for a given peptide. The quantification was carried out with PeakView 2.2 and MarkerView 1.2. 

(Sciex, Concord, ON, Canada). Six peptides per protein and six transitions per peptide were extracted 

from the SWATH files. Shared peptides were excluded as well as peptides with modifications. 

Peptides with FDR lower than 1.0% were exported in MarkerView for the t-test.  

Statistical analysis and related graphical representations were done using GraphPad Prism v. 8 and 

MetaboAnalyst software (www.metaboanalyst.org). Ingenuity Pathways Analysis (IPA) software 

(Qiagen, Redwood City, CA, USA) and FunRich (http://www.funrich.org) were used for 

bioinformatics analysis. 

4.2.3 Results  

4.2.3.1 Exosomes incorporate SARS-CoV-2 RNA  

The presence of viral RNA in the exosome cargo was investigated using reverse transcription-droplet 

digital polymerase chain reaction (RT-ddPCR). RT-ddPCR enables a significant gain in dynamic range 

while decreasing the cost of analysis. In addition, it is more sensitive than qPCR, and it provides 

more accurate data—especially at low target copy numbers [169]. Analysis of exosome content 

purified from critical and non-critical patients revealed the presence of SARS-CoV-2 RNA in the 

exosomal cargo. We found viral material that ranges from 15 to 88 copies/10 µL with no significant 

differences between the two groups. No viral material was detected in healthy subjects.  

4.2.3.2 Proteomic analysis of plasma-derived exosomes from COVID-19 patients 

Untargeted proteomic analysis was performed on plasma-derived exosomes from 17 SARS-CoV-2 

positive patients and seven healthy controls. The patients enrolled in this study resided in Northern 

Italy, which was the COVID-19 pandemic’s Italian epicenter.  
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We divided our patient group in two cohorts: critical (patients with respiratory failure who were 

admitted to intensive care units, requiring mechanical ventilation), and non-critical (all other 

patients, with mild to severe respiratory failure, requiring oxygen supplementation but neither 

invasive nor noninvasive mechanical ventilation). Out of 17 patients, seven patients were in critical 

condition, and 10 were in non-critical condition. Critical COVID-19 patients’ blood levels of white 

blood cells (WBCs) and eosinophil were significantly higher than non-critical patients’. On the 

contrary, we found a slight increase in red blood cells and lymphocyte counts among non-critical 

COVID-19 patients (Supplementary Table 4.1). 

 

Figure 4.1: overview of this study’s experimental design: plasma exosomes from 10 non-critical COVID-19 patients, seven 
critical COVID-19 patients, and seven healthy subjects were isolated using a commercial kit. The exosomes’ protein 
content was analyzed using proteomics analysis (nanoLC-HRMS), and the identified and modulated proteins were 
elaborated with bioinformatics in order to identify the host-derived exosome response to SARS-CoV-2 and its associated 
pathways. The analysis suggested the presence of new biomarkers. The validation of potential exosomal biomarkers was 
performed on an external cohort of patients using a proteomics approach on a microLC-HRMS. 36 COVID-19 patients, 
including non-critical (23) and critical (13) subjects, and on 28 non-COVID-19 patients, including 6 critical patients, 8 non-
critical patients, 7 healthy subjects and 7 healed COVID-19 subjects were analyzed. 
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Figure 4.1 provides an overview of this study’s experimental design. A brief description follows here. 

Exosomes were isolated from plasma. The purification of the exosomes was subjected to several 

control analyses. Nanosight and Western blotting were employed to characterize the quality of the 

method of purification; these analyses, which were performed only on healthy subjects for safety 

reasons, confirmed the isolation protocol of exosomes with a size ranging from 30 to 100 nm (peak 

37.70 ± 3 nm) and a concentration of 3x1011 particles/mL (Supplementary Figure 4.1). In addition, 

the typical exosomal markers CD9 and CD63 were detected, confirming these vesicles as exosomes. 

Exosomal proteins were then extracted, digested, and analyzed using a nano-liquid 

chromatography/tandem mass spectrometry (nanoLC-MS/MS). The results were elaborated using 

bioinformatics tools to highlight the main functions and pathways associated with the host response 

to SARS-CoV-2 infection.  

The validation of potential biomarkers was then performed using a microLC-MS/MS on 36 COVID-

19 patients, including non-critical (23) and critical (13) subjects, and on 39 non-COVID-19 patients, 

including 6 critical patients, 8 non-critical patients, 7 healthy subjects and 7 healed COVID-19 

subjects. 

4.2.3.3 Circulating exosomes in COVID-19 patients have a specific proteomic signature  

To identify the proteins potentially involved in the development of SARS-CoV-2 infection and in any 

immunomodulatory functions mediated by circulating exosomes, plasma exosomes from COVID-19 

patients with varying disease severity were analyzed using shotgun proteomic analysis.  

A total of 913 different proteins were identified in plasma exosomes; among them, 281 were found 

in critical, non-critical, and healthy subjects, as Figure 4.2 shows. Interestingly, non-critical patients 

are characterized by the presence of a higher number of proteins (706), while a similar number of 

proteins were identified in critical patients (478) and healthy subjects (454).  

By analyzing exosomal cargo, we found that it was mainly characterized by the presence of 

extracellular, exosomal, lysosome, and cytoskeleton proteins (Fig. 4.2B). Moreover, these proteins 

are involved in transport activity, complement activity, protease inhibitor activity, extracellular 

matrix structural constituents, and defense/immunity activity (Fig. 4.2C). Interestingly, some 

proteins are associated with immune response and coagulation (complement activity, immune 

response, regulation of complement activation, Fc-gamma receptor signaling pathway, 

immunoglobulin production, and antimicrobial humoral response), as Figure 4.2D shows.  
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The samples were also classified using a supervised partial least square discriminant analysis (PLS-

DA), which was exploited to achieve maximum separation between the two patient groups (Fig. 

4.4A). 

 To assess overall differences between exosomes from COVID-19 patients and healthy subjects, 

protein abundances were analyzed using multivariate statistical analysis. Principal component 

analysis (PCA)—in particular, the first and second principal components—clearly separated the 

samples according to the groups. 

 

 

Figure 4.2: plasma-exosomes protein content. A Venn diagram (A) of identified proteins in critical and non-critical COVID-
19 patients and in healthy subjects. A gene ontology classification of identified proteins based on body component (B), 
molecular function (C), and biological process (D). 

The first component explained the differences between COVID-19 samples (red and yellow dots) 

and non-COVID-19 samples (green dots), while the second component mainly explained the 

differences between in disease severity (Fig. 4.3A). Figure 4.3B reports a bi-plot of the scores and 
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individual proteins’ loading information. The plot reports the proteins that are “driving the 

separation” between the patient groups. For example, interestingly, CRP protein (CRP_HUMAN) was 

able to discriminate positive patients from non-positive patients but also critical patients from non-

critical patients.  

 

 

Figure 4.3: principal component analysis. The score plot (A) of PC1 and PC2 shows a clear separation of healthy subjects 
(green dots) from critical COVID-19 patients (red dots) and non-critical (yellow dots) COVID-19 patients. (B) The bi-plot 
of the scores (black) and loading (red) of PC1 and PC2. 

 

The most predictive or discriminative features that are potentially useful in helping sample 

classification were also determined through the VIP (variable of importance in projection) score. 

The VIP score summarized the most prominent proteins contributing to the observed phenotypic 

variations in the COVID-19 plasma exosomes (Fig. 4.4B). Proteomics differences between the three 

groups of samples were mostly due to haptoglobin (HPT_HUMAN), C-reactive protein 

(CRP_HUMAN), Beta-2-glycoprotein 1 (APOH_HUMAN) and Complement factor H (CFAH_HUMAN). 

The dendrogram of hierarchical clustering of protein abundance in exosomes from critical patients 

(red), non-critical patients (yellow), and healthy subjects (green) confirmed that exosomal proteins 

correlated with the SARS-CoV-2 infection and with the disease’s severity (Fig. 4.4C).  
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Figure 4.4: partial least square discriminant analysis (PLS-DA) of critical patients (red dots), non-critical patients (yellow 
dots), and healthy subjects (green dots). The three groups are well separated (A). Important features identified by PLS-
DA (B): colored boxes indicate the most predictive or discriminative features in each group (red, high; blue, low; white, 
middle). A dendrogram from the hierarchical clustering (C) of protein abundance in the exosomes from critical patients 
(red), non-critical patients (yellow), and healthy subjects (green). 

4.2.3.4 Exosomal proteins are strongly involved in the host response to SARS-CoV-2 

Next, we performed a univariate analysis of quantified proteins using the relative abundance of 518 

proteins quantified in all samples. A total of 157 proteins were modulated in exosomes from critical 

COVID-19 patients compared to healthy subjects, while 97 proteins were regulated in non-critical 

patients (p-value < 0.05, fold change > 1.3). Volcano plots (Fig. 4.5A and Fig. 4.5B) showed the most 

significant differences among proteins and the positive or negative fold-changes in exosomes from 

critical and non-critical COVID-19 patients compared to the healthy group. To summarize the 

univariate results, we used a heat map (Fig. 4.5C) to display the fold changes of the top modulated 

proteins. This heat map allowed visualization of the three clusters of samples and different protein 

levels. The complete list of modulated proteins is reported in supplementary tables 4.2 and 4.3.  
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Figure 4.5: modulated exosomal proteins in SARS-CoV-2 infection. Volcano plots of quantified proteins (A and B). A total 
of 157 and 97 proteins were modulated in critical (A) and non-critical (B) COVID-19 patients, respectively (p-value < 0.05 
and fold change > 1.3). Hierarchical heat maps of quantified proteins (C) highlighting the three clusters of samples, with 
critical COVID-19 patients in red, non-critical COVID-19 patients in yellow, and healthy subjects in green. 

 

The top regulated proteins in both critical and non-critical patients, compared to healthy subjects, 

mainly included inflammatory, immune-response, and coagulation proteins. In critical patients, C-

reactive protein (122-fold), alpha-1-acid glycoprotein 1 (38-fold), lysozyme C (13-fold), titin (12-

fold), and zinc-alpha-2-glycoprotein (12-fold) were up-regulated while putative trypsin-6 (31-fold), 

coiled-coil domain-containing protein 34 (18-fold), C4b-binding protein alpha chain (18-fold), C4b-

binding protein beta chain (15-fold), and pre-mRNA-processing factor 19 (14-fold) were down-

regulated. Among non-critical COVID-19 patients, the top five up-regulated proteins were 

haptoglobin (41-fold), C-reactive protein (40-fold), trypsin-3 (14-fold), adenomatous polyposis coli 

protein (11-fold), and hyaluronan-binding protein 2 (10-fold) while immunoglobulin kappa variables 

1–5 (10-fold), immunoglobulin heavy variables 3–64D (7-fold), fibrinogen gamma chain (5-fold), 

C4b-binding protein alpha chain (5-fold), and C4b-binding protein beta chain (5-fold) were under-

expressed. 
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4.2.3.5 Circulating exosomes in COVID-19 patients may modulate immune response, inflammation, 

and coagulation pathways  

To obtain a global overview of the exosome proteomic response in COVID-19, modulated proteins 

were analyzed with bioinformatics tools. Ingenuity pathway analysis (IPA) was employed to identify 

the main pathways, biological processes, molecular functions, and cellular component associated 

with SARS-CoV-2 infection. The canonical pathways involved in the host response mainly related to 

immune response, inflammation, and coagulation. The chord diagrams in figures 4.6A and 4.6B 

report the top 10 pathways and their relative proteins involved in critical (4.6A) and non-critical 

(4.6B) patients. The main pathways involved in non-critical and critical patients were the 

complement system pathway, acute-phase response signaling, the coagulation system, the LXR/RXR 

activation pathway, the extrinsic and intrinsic prothrombin activation pathway, the FXR/RXR 

activation pathway, IL-12 signaling and production in macrophages, the production of nitric oxide 

and reactive oxygen species in macrophages, and clathrin-mediated endocytosis signaling. As Figure 

4.6C shows, some pathways were more altered in non-critical patients—specifically, acute phase 

response signaling, LXR/RXR, and FXR/RXR activation. Meanwhile, other pathways—such as the 

complement system, the coagulation system, and the extrinsic and intrinsic prothrombin activation 

pathway—were more altered in critical patients.  

Diseases and disorders analysis highlighted the involvement of the inflammatory response and 

immunological disease, while physiological system development and function elaboration showed 

that the protein cargo is associated with a humoral immune response and immune cell trafficking 

(Fig. 4.6D and Fig. 4.6E). 

4.2.3.6 Upstream analysis highlighted the relation between inflammation and protein cargo  

To predict the upstream molecules (transcription factor, microRNA, etc.) that could play a role in 

the observed proteome modulation and, thus, in the host response to SARS-CoV-2 infection, we 

performed upstream regulator analysis through IPA software. IPA analysis suggested that 

interleukin IL-6 (IL-6) and transforming growth factor (TGF)-beta1 (TGFB1) are the most significant 

upstream regulators (fig. 4.7A and fig. 4.7C). Among other upstream regulators, IL-1 was marked as 

a significantly activated regulator (z score=2.6) while IRF2 was predicted as an inhibited regulator (z 

score=-2.0), as figures 4.7B and 4.7D show.  
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Figure 4.6: canonical pathway analysis. A Chord diagram presenting a pathway analysis of significantly altered proteins 
in response to SARS-CoV-2 infection in critical (A) and non-critical (B) patients. Each pathway’s width is determined by 
the number of proteins associated with each pathway. Canonical pathways’ significance (-log[p-value]) was also 
compared (C): this analysis showed similar exosome responses in critical and non-critical patients. The diseases and 
disorders analysis (D), molecular and cellular functions (E), and physiological system development and function 
elaboration (F) are also shown. 

 

The dysregulation of IL-6–targeted genes (FGA, FGB, FGG, FGL1, HSPA5, IGHM, LRG1, PPBP, S100A9, 

SAA4, SERPINA3, SGK1, SPP1, TIMP1, VCAM1, A2M, AGT, APCS, and CP) and of TGFB1-targeted 

genes (VCAM1, TIMP1, SPP1, SGK1, SERPINA3, PSEM4, LYVE1, KNG1, IGHM, HSPG2, HSPA5, GSN, 

FN1, FGG, FGB, FGA, FCGR3A/FCGR3B, CP, CFH, C4BPB, C4BPA, C1R, and ADAMTS2) may contribute 
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to SARS-CoV-2–related dysfunctions. As mentioned above, most of these regulated genes are 

involved in inflammation, immune response, and coagulation.  

 

 

Figure 4.7: upstream gene regulator analysis. IL-6 (A) and transforming growth factor (TGF)-beta1 (B) are the most 
significant upstream regulators. IL-1 resulted significantly activated (z score=2.6) while interferon regulatory factor 2 
was predicted as an inhibited regulator (z score=-2.0). 

 

4.2.3.7 Association of exosome cargo with pathologically relevant clinical indices 

We then evaluated whether exosomal protein cargo in COVID-19 patients significantly correlated 

with CRP and d-dimer levels, platelets, neutrophil, and monocytes counts. Spearman correlations 

were performed, and only correlations with p<0.05 were considered and shown in supplementary 

tables 4.4–4.8. We found that circulating CRP levels positively correlated with CRP, IBP2, CHI3L1, 

FGB, FHR5, IGHV3-73, FGG, PRSS2, CFP, CFH, CD163, FCGBP, and CAT exosomal proteins, which are 

linked to inflammation, complement activation, and pulmonary fibrosis [170]. Fibronectin, alpha-2-

HS-glycoprotein, and alpha-1-acid glycoprotein 1 protein positively correlated with d-dimer levels, 

A B 

C 

D 
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and platelet counts positively correlated with TIMP1, COL6A3, SPINK1, IGFBP4, IGHV1-8, NCAM1, 

COL18A1, APOA2, CFB, and MYH7 exosomal proteins, which are involved in platelets’ aggregation, 

adhesion, or activation and complement activation [171]. 

Regarding neutrophil count, we found an increase in neutrophil among critical COVID-19 patients, 

and our analysis of exosomal cargo revealed a positive correlation with FGA protein, which is 

implicated in neutrophil activation [172], but also with TPI1 protein, which has already been found 

in exosome cargo [173], and with other inflammatory proteins (i.e., SAA1, coagulation factor XI, 

etc.). Monocyte counts positively correlated with IGFALS, CFP, CLU, and SERPINC1 exosomal 

proteins, which are involved in the migration and chemotaxis of human monocytes [174]. 

4.2.3.8 Circulating exosomes are potential biomarkers of COVID-19 

Potential biomarkers were explored by carefully analyzing modulated proteins’ distribution and by 

using ROC curves. We firstly evaluated modulated proteins obtained from the discovery phase. 

Interestingly, we found that the abundance of several proteins directly correlated with the disease’s 

severity. In particular, critical patients displayed higher levels of CRP, A1AG1, A1AG2, CXCL7, SAMP, 

and ZA2G and lower levels of CCD34, C4BPA, and GELS than non-critical patients (Fig. 4.8A–I). In 

addition, this analysis reported the presence of several proteins that are able to discriminate 

between COVID-19 patients and healthy subjects. 

Biomarkers were validated on a new cohort of patients that included not only COVID-19 critical 

(n=13) and non-critical (n=26) patients and healthy subjects (n=7), but also critical (n=6) and non-

critical (n=8) patients admitted for pneumonia and/or respiratory failure with negative nucleic acid 

test results (NON-COVID-19) and COVID-19 healed patients (n=7). Interestingly, fibrinogen proteins 

fibrinogen alpha chain (FIBA_HUMAN), fibrinogen beta chain (FIBB_HUMAN) and fibrinogen gamma 

chain (FIBG_HUMAN) showed an AUC value of 0.94 (sensitivity (SE): 86%; specificity (SP): 97%), 0.90 

(sensitivity (SE): 92%; specificity (SP): 86%) and 0.93 (sensitivity (SE): 83%; specificity (SP): 91%), 

respectively. In addition, fibronectin (FINC_HUMAN), Complement C1r subcomponent 

(C1R_HUMAN) and Serum amyloid P-component (SAMP_HUMAN) showed an AUC value of 0.92 

(sensitivity (SE): 94%; specificity (SP): 82%), 0.93 (sensitivity (SE): 89%; specificity (SP): 82%) and 0.91 

(sensitivity (SE): 89%; specificity (SP): 82%), respectively (Fig. 4.8J–O). 
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Figure 4.8: box-plots and ROC curves for the best potential biomarkers identified using proteomic analysis of the exosome 
cargo. For (A–I), box-plots of proteins that are well correlated with the disease’s severity are reported. Red dots indicate 
critical COVID-19 patients while yellow dots indicate non-critical COVID-19 patients. Fibrinogen alpha chain (J), 
fibrinogen beta chain (K), fibrinogen gamma chain (L) fibronectin (M), Complement C1r subcomponent (N) and Serum 
amyloid P-component (O) were confirmed as good biomarkers in the validation. Purple dots indicate NON-COVID-19 
patients while green and blue dots and indicate healthy and healed subjects, respectively. 

 

We also compared modulated exosomal proteins with regulated serum proteins in COVID-19 

patients reported in the literature ([175–177].Table 4.2 reports the list of common differentially 

expressed proteins. Interestingly, more than 50% of proteins (27 out of 50) presented the same 

direction of modulation identified in previous research on serum circulating proteins—even if the 

fold-change levels in plasma-exosome were higher than in serum. 
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Table 4.2: comparison of modulated exosomal proteins with regulated serum proteins in COVID-19 patients reported in 
literature. Protein modulation (Up or Down) is indicated 

 

4.2.4 Discussion 

This study provides the first proteomic characterization of plasma-derived exosomes from COVID-

19 patients and healthy controls. Participating patients were enrolled from a hospital located in 

Northern Italy, the first western epicenter of the COVID-19 pandemic. WBC, neutrophil, and 

eosinophil counts were increased in critical COVID-19 patients while the number of red blood cells, 

as well as lymphocytes, were significantly decreased [178]. 
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Exosomes and EVs play significant roles in various biological functions and, particularly, in both 

physiological and pathological processes [151]. Indeed, they are associated with immune responses, 

viral pathogenicity, pregnancy, cardiovascular diseases, central nervous system–related diseases, 

and cancer progression [179]. Several examples of scientific evidence have shown that viruses might 

use EVs to enter uninfected cells [180]. During the course of infections, EVs can convey pathogen 

molecules that serve as antigens or agonists of innate immune receptors to induce host defense and 

immunity or serve as regulators of host defense and mediators of immune evasion [181,182]. Our 

data reports, for the first time, the presence of viral material in COVID-19 patients’ host exosomal 

cargo. This finding suggests that SARS-CoV-2 may use the endocytosis route to spread infection 

throughout the host. We did not identify viral proteins via the purification of exosomes; thus, we 

can conclude that viral particles were not purified together with exosomes, suggesting that the RNA 

material was originally present in the cargo. A very recent study showed that exosomal microRNAs 

may drive thrombosis in COVID-19 patients [183] while Song and colleagues found that GM3-

enriched exosomes positively correlated with disease severity, suggesting that they may participate 

in the pathological processes associated with COVID-19 progression (Song et al., 2020). Moreover, 

exosome-based strategies were also proposed to treat COVID-19 [184] or prevent SARS-CoV-2 

infection [185].  

Our findings show that circulating exosomes are strongly involved in the processes associated with 

SARS-CoV-2 infection. Interestingly, our proteomic analysis of plasma-derived exosomes from 

COVID-19 patients revealed a specific proteomic signature. This signature was particularly evident 

using multivariate statistical analysis (PCA and PLS-DA), which highlighted the presence of proteomic 

features that are able to clearly discriminate between the samples, according to the diagnosis. 

Bioinformatics analysis revealed the presence of proteins related to the coagulation process, 

transport activity, complement activity, protease inhibitor activity, and defense/immunity protein 

activity. 

Interestingly, exosomal proteins’ relative abundance in COVID-19 patients significantly differed 

from healthy subjects. Indeed, 157 and 97 proteins were significantly modulated in critical and non-

critical COVID-19 patients, respectively. Our canonical pathway analysis performed on modulated 

proteins revealed the involvement of pathways associated with immune response, coagulation, and 

inflammation, as in Figure 4.9 summarizes.  
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The complement pathway is a double-edged sword for our immune system: it may offer protection 

by favoring viral clearance, but unrestrained activation may also result in pathological acute and 

chronic inflammations, tissue injury, and activation of the coagulation pathway [186]. Complement 

activation has been linked to the pathophysiology of ARDS caused by various underlying diseases, 

and it has also been associated with COVID-19 [187]. Chahar et al. demonstrated that exosomes 

derived from respiratory syncytial virus–infected cells were able to activate an innate immune 

response by inducing cytokine and chemokine release from human monocytes and airway epithelial 

cells [188]. As figures 4.6A and 4.6B show, we found a dysregulation of 17 proteins (C1QB, C1QC, 

C1R, C1S, C2, C3, C4A/C4B, C4BPA, C4BPB, C5, C6, C8A, C8G, CFI, CR1, MBL2, SERPING1) in critical 

patients associated with the complement system pathway while, in non-critical patients, 11 proteins 

were modulated (C1R, C4A/C4B, C4BPA, C4BPB, C8A, C8G, C9, CFH, CFI, MBL2, SERPING1). In 

addition, the complement system pathway appeared more altered in critical patients (-log [p-value] 

=27.6) than non-critical patients (-log [p-value] =17.7). Among complement-related proteins, CFH 

and C4BPA had already been identified as transcriptional markers associated with severe SARS-CoV-

2 infection: these molecules play central roles in complement activation and innate immunity  [189]. 

Moreover, we found a 2.5-fold increase of C9 in non-critical patients and a down-regulation of CFH; 

these findings suggest that, in critical COVID-19 patients, the C9 complement component might be 

impaired due to SARS-CoV-2 infection, as has already been shown for the hepatitis C virus [190]. 

Interestingly, a global down-regulation of proteins coding for antibodies such as IGHV1-2, IGHV3-

15, IGHV3-23, IGHV3-9, IGHV4-28, IGHV4-38-2, IGKV1-5, and IGKV4-1 was especially found in critical 

COVID-19 patients, suggesting the involvement of the humoral immune response, as Rolla et al. 

(2020) have already shown in reporting a significantly lower count of antibody-synthesizing 

lymphocyte among critical COVID-19 patients. Our results provide the first evidence of circulating 

exosomes’ potential immunomodulatory contribution in response to SARS-CoV-2 infection. 

Furthermore, our analysis highlighted the implication of proteins in the acute-phase response 

pathway. The human immune system plays a key role in the defense against pathogens [191]. The 

acute-phase response is an innate body defense activated during acute illnesses, and it involves 

increased production of acute-phase proteins such as CRP and cytokines. In the case of an infection, 

the inflammatory response stimulates the liver to synthesize and release anti-inflammatory proteins 

that suppress inflammation and regulate immunity in the body [192]. As already reported, SARS-

CoV-2 infected patients show high levels of pro-inflammatory cytokines and chemokines associated 

with pulmonary inflammation and extensive lung involvement; such inflammation has also been 
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observed in SARS and MERS patients [193]. Other studies have reported an elevation in acute-phase 

reactants among patients with COVID-19, including ESR, C-reactive protein (CRP), serum amyloid A, 

and ferritin—suggesting a rapid activation of the innate immune response [194]. Moreover, serum 

changes in acute-phase response proteins were used as indicators to identify the degree and 

progression of COVID-19. A significant increase in CRP and SAA content and a decrease C3 and C4 

content have been associated with the disease’s severity [195]. In our study, among acute-phase 

proteins, exosomal CRP resulted in 122-fold and 40-fold up-regulation in critical and non-critical 

patients, respectively. A preliminary analysis of hematological and inflammatory parameters was 

associated with elevated CRP, IL-6, and NLR values and with worse outcomes as well as a lack of 

response to treatment [196,197]. High C-reactive protein independently predicted the risk of 

mortality in a cohort of 183 COVID-19 patients [198]. Another study identified increased CRP levels 

in a limited number (31.0%) of COVID-19 patients [199]. While high CRP levels were already reported 

during inflammation processes, our results indicate that CRP can be transported to other cells 

through EVs, thus driving the infection’s inflammatory effect. Alpha-1-acid glycoprotein protein 

(AGP), which is one of the major acute-phase proteins in humans, was up-regulated in both critical 

and non-critical patients. During the acute-phase response, the serum concentration of AGP 

increases as a liver hepatocytes response to the cytokines that are released by monocytes and other 

cells in the early phase of inflammation or infection [200]. Alpha 1-antichymotrypsin 

(AACT_HUMAN) is another acute-phase protein that was found to be overexpressed in critical 

COVID-19 patients.  

IL-12 signaling and production in macrophages pathways were significantly altered in both critical 

and non-critical patients, although we did not identify IL-12 protein directly in exosome cargo. 

Experimental evidence has shown that IL-12 rapidly activates both innate and specific immune 

responses, promoting host cellular responses, the clearance of the virus, and host recovery from 

infection [201]. 

Interestingly, we found a significant modulation of the MSP-RON signaling pathway. This pathway 

contributes to the macrophage-induced immune response in order to assist the host in viral 

recognition via the macrophage stimulating protein (MSP) and the transmembrane receptor kinase 

RON Protein Tyrosine Kinase/Receptor d. 

Coagulation’s involvement in SARS-CoV-2 infection has been extensively reported in COVID-19 

[202,203]. Proteins involved in platelet degranulation were down-regulated in SARS-CoV-2–infected 
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patients [204], together with the low platelet count associated with severe COVID-19 and mortality 

[176,205]. Our bioinformatics analysis demonstrated that exosomal proteins are associated with 

the coagulation system pathway and with the intrinsic and extrinsic prothrombin activation 

pathways. Complement factors are able to increase tissue factor activity, form activated thrombin 

from prothrombin, increase platelet activity and aggregation, increase prothrombinase activity, and 

release platelet-derived procoagulant granules [206].  

Among the effects of the viral ACE2 used by SARS-CoV-2 for cell entry, the connection between ACE2 

and the Kallikrein/Kinin system—which regulates coagulation, fibrinolysis, and complement 

cascade—has resulted in great interest [207] Indeed, ACE2 physiologically binds and cleaves Lys-

des-Arg9-Bradykinin and Des-Arg9 Bradykinin, which are potent ligands of Bradykinin Receptor 1 in 

the lungs [208]. When the virus blocks ACE2, the degradation of bradykinin cannot be performed, 

causing the accumulation of bradykinin itself; consequently, bradykinin—a product of high-

molecular-weight kininogen—binds to its receptor (bradikynin-1receptor), triggering acute 

inflammation in the lungs due to the release of pro-inflammatory chemokines and cytokines such 

as the well-known IL-6 [207]. Moreover, the kallikrein/kinin and renin-angiotensin systems also play 

a thrombo-regulatory role [209]. Our data showed a two-fold up-regulation of Kininogen-1 in the 

exosomes of COVID-19 patients. Kininogen-1 itself has a relationship with the coagulation cascade, 

and it is considered an anti-thrombotic target. Indeed, its gene deletion has been associated with a 

reduced risk of induced thrombosis in mice [209]. Hemostatic and thrombotic manifestations are 

common in critical COVID-19 patients, and they are among the leading causes of death [203], while 

a high number of venous thromboembolism (VTE) events among severely ill patients with COVID-

19 pneumonia has been observed worldwide [210]. Relying on the role of Kininogen-1 and our 

findings, we speculate that exosomes may serve as a reserve and carrier of Kininogen-1. 

Bioinformatic analysis has also pointed out the IL-6 and TGFβ1 cytokines’ involvement as upstream 

regulators of modulated protein. IL-6 is recognized as the main mediator of the inflammatory and 

immune response initiated by SARS-CoV-2 infection [211]. As an upstream regulator of the exosomal 

proteins in COVID-19 patients, we speculate that IL-6 may also affect protein secretion from cells 

through EVs. TGFβ1 is a pleiotropic cytokine with regulatory capabilities, and it is involved in the 

resolution of the inflammatory response [212]. The host response to infection could be regulated 

by TGFβ1 with the help of a cytokine storm and the presence of TNF, IL-1β, and IL-6 [213]. Lung 

fibrosis is among the clinical hallmarks of COVID-19 infection. It was identified as a leading cause of 
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pulmonary damage, as reported by Polak et al. (2020), who showed that 22% of patients presented 

a fibrotic pattern of lung injury characterized by interstitial fibrosis. Our data also suggest a 

correlation between TGFβ1, glucose, and exosomes. Interestingly, a correlation between a high 

concentration of glucose and worsening COVID-19 has been reported; for example, diabetic patients 

with uncontrolled glucose levels are evidently more prone to manifesting COVID-19 complications 

and consequent increased mortality—though the molecular mechanism currently remains 

undetermined [214]. Prolonged and uncontrolled hyperglycemia was also described as a prognostic 

factor [215]. Most importantly, exosomes’ key role was already reported in the pathogenesis of 

diabetes nephropathy: high glucose leads to increased excretion of exosomes from macrophages 

through the TGF-β1 mRNA, which acts as a bridge between macrophages and mesangial cells [216]. 

A similar connection might also be applied to COVID-19, between macrophages and lung cells, even 

if other research is needed to investigate this hypothesis. 

We also investigated exosomal proteins’ potential role as diagnostic biomarkers for COVID-19 

infection and disease severity. Several exosomal proteins—such as C-reactive protein, fibrinogen 

gamma chain, C4b-binding protein alpha chain, and alpha-1-acid glycoprotein 1—presented very 

good biomarker candidates, reporting an AUC of 1. 

 

Figure 4.9: host-derived exosome response to SARS-CoV-2 infection. Circulating exosomes are characterized by proteins 
and pathways involved in inflammation, immune response, and coagulation. 

 

Interestingly, the abundance of CRP, A1AG1, A1AG2, CXCL7, SAMP, and ZA2G proteins directly 

correlated with the disease’s severity, as their increase among critical patients showed, by 

suggesting a potential use of these proteins not only for diagnosis but also for monitoring the 

disease’s outcome and, potentially, any response to therapies. In line with our hypothesis, the 
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exosomal proteome was already investigated to monitor sepsis progression[217] and HIV patients 

subjected to antiretroviral therapy [218]. Huan et al. found that COVID-19 patients had significantly 

increased SAA and CRP levels, suggesting that SAA could serve as a biomarker to monitor the 

respiratory diseases’ progression [219]. CRP levels positively correlated with the diameter of lung 

lesions and severe presentation [220,221], but also with an increased risk of organ failure and death 

[222]. Another interesting protein that we found to be up-regulated in critical patients is Fetuin-A. 

Exosomal Fetuin-A was already identified as a novel urinary biomarker for detecting acute kidney 

injury. We speculate that its up-regulation in critical COVID-19 patients can explain kidney injury, 

which is often reported in severe patients [223]. 

Further, among the exosomal proteins modulated in SARS-CoV-2 infection we found LYVE1, TIMP1 

and CXCL7 (fig. 4.5C). This expression profile supports to some extent the role of macrophage 

activation syndrome (MAS) as the main driver of hyperinflammatory response in COVID-19 patients 

[224]. Indeed, while LYVE-1-expressing macrophages control arterial stiffness through modulation 

of the metalloproteinase-dependent proteolysis of the MMP-9 matrix [225], the expression of the 

MMPs inhibitor TIMP1 is related to the frequency of pulmonary macrophages and is involved in 

influenza-induced lung injury [226] and CXCL7 is a known attractant of macrophages in lung 

inflammation [227]. 

In addition, our data revealed the presence of several exosomal proteins that present the same 

expression pattern as proteins detected in the serum of COVID-19 patients. Serum proteomics is 

usually performed on circulating serum proteins, with a bias not to discriminate between proteins 

contained in the exosome cargo used for cell-to-cell communication, and it may represent a picture 

of the mechanisms involved in COVID-19. Exosomes’ role may be particularly relevant in COVID-19 

because SARS-CoV-2 infection is associated with tissue damage and multiple organ dysfunctions and 

circulating exosomes can potentially reach several distant target cells and organs.  

Taken together, our study’s findings provide the first evidence that circulating exosomes are 

strongly modulated during COVID-19 infection and might be involved in pathogenesis. The presence 

of viral material in the exosomal cargo showed that SARS-CoV-2 could use the cell-to-cell 

communication system to spread infection in the host. Proteomic analysis of plasma exosomes 

identified several molecules involved in immune response, inflammation, and the activation of 

coagulation and complement pathways, suggesting a significant role for exosomes in the 

mechanisms associated with tissue damage and multiple organ dysfunctions typical of COVID-19. 
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Another remarkable result emerging from these data is the presence of several potential biomarkers 

that are well correlated with the disease’s severity. Although, to date, ours is the first study that 

characterizes the circulating exosomal proteins and pathways from SARS-CoV-2 infected patients, 

future studies are needed to determine the number and size of EVs in COVID-19. Moreover, 

monitoring exosomal content during infection may contribute to a better understanding of whether 

exosomes support viral spreading or induce immunological protection. 

The present research has been carried out at the beginning of the pandemic. Several studies on 

vesicles were published after that. Pesce et al. showed that exosomes recovered from the plasma 

of COVID-19 Patients efficiently display SARS-CoV-2 Spike-derived fragments and can be used as a 

source of antigen presentation to enhance immune responses and through promote T-cell 

activation [228]. Interestingly, circulating EVs contribute to the production of antibodies and 

protective immunity [229,230]. Antibodies were found in circulating EVs 14 days after the second 

immunization and their levels were 12-fold higher compared to 14 days after the first vaccination 

[231]. In addition, clinical trials have shown some positive results in the therapeutical use of EVs 

indicating that EVs can help patients recover from COVID-19 [232]. Their findings showed that 

treatment with stem cell-derived EVs could play an important role in anti-SARS-CoV-2 and COVID-

19-related inflammatory responses. Even though inactivated or attenuated viruses, single peptides, 

or viral vectors are currently being used for vaccine development [233], they  failed to provide long-

term immunity. EVs, as carriers for pathogenic vaccines, have been proposed as a new path for the 

development of effective novel COVID-19 pneumonia vaccines [234,235].  

4.2.5 Supplementary data 
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Supplementary figure 4.1: characterization of exosomes isolated from the plasma of healthy patients. (A) Western blot 

analysis of the expression of proteins enriched in exosomes, including CD63 and CD9. (B) Nanoparticle tracking analysis 

to quantify the size and concentration of exosomes. 

 

Supplementary Table 4.1: clinical indices of critical and non-critical COVID-19 patients.  

 
Critical 
(n=7) 

Non-critical 
(n=10) 

p-value 

D-dimer ng/mL 1927.40(1137-3030) 1127.37(298-2799) 0.12 

Circulating CRP mg/L 14.22(2.84-32.21) 5.96(0.38-15.82) 0.073 

PLTs (*103/µl) 305.57(45-514) 207.40(33-350) 0.13 

RBCs (*103/µl) 3.18(2.79-3.99) 4.53(2.67-6.07) 0.0071 

WBC (*103/µl) 13.52(6.48-23.05) 6.80(1.75-14.11) 0.017 

Neutrophils (*102/µl) 81.88(65.6-93.1) 69.51(47.7-89.8) 0.063 

Lymphocytes (*102/µl) 11.04(3.9-19.4) 23.18(6.7-46) 0.034 

Monocytes (*102/µl) 5.14(2.2-11) 6.59(2.6-9.8) 0.32 

Eosinophils (*102/µl) 1.55(0-4.6) 0.28(0-1.2) 0.027 

Basophils (*102/µl) 0.37(0.1-1.1) 0.44(0-1.7) 0.75 

 

Supplementary Table 4.2: list of modulated proteins in critical COVID-19 patients  compared to healthy subjects (Fold 

change > 1,3 and p-value < 0,05) 

Protein name p-value Fold Change 

C4BPB_HUMAN 6,2342E-06 0,057068043 

C4BPA_HUMAN 0,000022124 0,056619354 

CATA_HUMAN 0,000086701 9,986360014 

FIBG_HUMAN 0,00012 0,177521543 

F13B_HUMAN 0,00012 0,203419412 

C1S_HUMAN 0,00015 0,237813833 

KV401_HUMAN 0,00016 0,29879762 

A2MG_HUMAN 0,00017 0,130823636 

ITIH2_HUMAN 0,0002 0,386749369 

CFAI_HUMAN 0,00022 0,263697741 

CO4A_HUMAN 0,00023 0,195003252 

KV127_HUMAN 0,00027 0,441843837 

CO2_HUMAN 0,00029 4,650412509 

LYVE1_HUMAN 0,00043 9,661245093 

TRY6_HUMAN 0,00045 0,002252562 

FINC_HUMAN 0,00046 0,262336941 

CCD34_HUMAN 0,00057 0,032457006 

LYAM1_HUMAN 0,00066 2,919229176 

PRDM9_HUMAN 0,00066 0,168694524 

FIBA_HUMAN 0,00068 0,3358245 

CO5_HUMAN 0,00073 0,420694062 

HV226_HUMAN 0,00073 0,281968213 
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GELS_HUMAN 0,00076 0,199232169 

FIBB_HUMAN 0,0008 0,376638163 

PROS_HUMAN 0,00083 0,256666978 

CO4B_HUMAN 0,00089 0,285894083 

C2CD3_HUMAN 0,001 0,197743042 

PSME4_HUMAN 0,00128 0,1354769 

ZA2G_HUMAN 0,00131 11,64577619 

TIMP1_HUMAN 0,00135 11,14554671 

EXD1_HUMAN 0,00176 0,128289368 

TRY1_HUMAN 0,00191 0 

IGHM_HUMAN 0,00218 0,210444517 

PRP19_HUMAN 0,00223 0,068783288 

C1QC_HUMAN 0,00262 0,186194923 

APOE_HUMAN 0,00274 0,47584927 

H33_HUMAN 0,00295 3,309966072 

NOLC1_HUMAN 0,00314 0,357875978 

TITIN_HUMAN 0,00376 11,92626787 

HV64D_HUMAN 0,0038 0,254752775 

PERM_HUMAN 0,0038 5,290529099 

HV601_HUMAN 0,00398 0,286883525 

ITIH1_HUMAN 0,00427 0,434659046 

SEMG2_HUMAN 0,00435 2,470272462 

FA12_HUMAN 0,00463 0,395176878 

SHRM3_HUMAN 0,00495 6,527870333 

SAA4_HUMAN 0,00525 3,159165246 

FCN3_HUMAN 0,00609 0,128247693 

ANXA2_HUMAN 0,00657 2,346901685 

HGFA_HUMAN 0,00667 1,917309949 

CXCL7_HUMAN 0,0071 9,392765707 

S10A9_HUMAN 0,0071 9,422251773 

C1R_HUMAN 0,00771 0,14933392 

ILDR2_HUMAN 0,00773 3,302530646 

APOH_HUMAN 0,00781 3,318007921 

IC1_HUMAN 0,00795 3,427063096 

K2C78_HUMAN 0,00799 4,527978891 

1B51_HUMAN 0,00804 3,111992864 

CO1A1_HUMAN 0,00816 3,018184279 

CO6_HUMAN 0,00817 0,301476058 

AT1A1_HUMAN 0,00864 0,12594374 

C1QB_HUMAN 0,00875 0,32003548 

VTDB_HUMAN 0,00878 3,201480222 

APOB_HUMAN 0,0088 0,26104253 

LYSC_HUMAN 0,00903 13,65084913 
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CAH1_HUMAN 0,0092 4,747490261 

FBLN1_HUMAN 0,00957 0,383056767 

CD5L_HUMAN 0,00957 0,210198015 

HV372_HUMAN 0,00998 0,360344636 

CO3_HUMAN 0,01013 0,251835626 

SAMP_HUMAN 0,01037 5,959375175 

S10A8_HUMAN 0,0104 5,050026135 

CHIT1_HUMAN 0,01058 2,840403577 

AMY1_HUMAN 0,01079 6,094253621 

KV106_HUMAN 0,01129 0,486089866 

FA11_HUMAN 0,01169 0,282835232 

VWF_HUMAN 0,01216 0,329685708 

CERU_HUMAN 0,01227 3,376122098 

FGL1_HUMAN 0,01254 2,769790781 

PI16_HUMAN 0,01259 2,307028384 

CO8G_HUMAN 0,0129 0,209817223 

SRCRL_HUMAN 0,01309 3,94947218 

VCAM1_HUMAN 0,0134 4,493661069 

TETN_HUMAN 0,01378 0,251628074 

SGK1_HUMAN 0,01381 4,8289747 

FCG2C_HUMAN 0,01381 3,428590231 

HV428_HUMAN 0,01386 0,434828534 

MNS1_HUMAN 0,01443 5,435953758 

HV315_HUMAN 0,01472 0,457275916 

KV224_HUMAN 0,01529 0,334545421 

IGJ_HUMAN 0,01607 0,330227766 

LYST_HUMAN 0,01643 0,451086431 

HBB_HUMAN 0,01664 4,691635447 

IGL1_HUMAN 0,01781 0,372168417 

A1AG1_HUMAN 0,01795 38,43218244 

FA10_HUMAN 0,01852 2,682969182 

KNG1_HUMAN 0,01859 1,984182793 

HV551_HUMAN 0,01889 0,461950379 

DMKN_HUMAN 0,0189 3,482605646 

OSTP_HUMAN 0,02028 5,272393106 

IPSP_HUMAN 0,02226 3,875684488 

DCD_HUMAN 0,02273 3,849522843 

H4_HUMAN 0,02282 3,434246449 

HV309_HUMAN 0,02427 0,432314978 

HNRH2_HUMAN 0,02454 5,113294387 

IFFO2_HUMAN 0,02509 2,980791689 

PC_Human 0,02671 2,512048554 

PTPRC_HUMAN 0,02728 2,608309747 
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BST1_HUMAN 0,02837 2,470849689 

SNED1_HUMAN 0,02922 3,054256726 

CATS_HUMAN 0,03021 3,668176032 

MBL2_HUMAN 0,0306 0,475917868 

CYTA_HUMAN 0,03073 3,451870845 

A20A4_HUMAN 0,03155 5,051623717 

JHD2C_HUMAN 0,03163 5,920581658 

A2GL_HUMAN 0,03209 5,393946144 

APOF_HUMAN 0,03219 2,063805162 

TPM4_HUMAN 0,0325 4,347605515 

THIO_HUMAN 0,03257 2,971901497 

AACT_HUMAN 0,03296 5,575361494 

FHR3_HUMAN 0,03304 3,309404011 

SODE_HUMAN 0,0335 3,527582679 

CRP_HUMAN 0,034 122,0134602 

LV949_HUMAN 0,03522 0,439982297 

CR1_HUMAN 0,03548 3,857242056 

HV323_HUMAN 0,03562 0,304537476 

A1BG_HUMAN 0,03644 3,038527378 

ACTB_HUMAN 0,03672 4,784631774 

SRRM1_HUMAN 0,03784 0,072398658 

QSOX1_HUMAN 0,03803 2,109645278 

HPTR_HUMAN 0,03817 0,377157268 

TIMP2_HUMAN 0,03821 3,043441212 

HBA_HUMAN 0,03827 3,043410786 

FETUA_HUMAN 0,0384 2,747753339 

PROC_HUMAN 0,03848 0,261749402 

CBG_HUMAN 0,03854 2,966059111 

CYTC_HUMAN 0,0393 8,83023845 

TBA1A_HUMAN 0,03954 2,678010139 

IGG1_HUMAN 0,0396 0,623000452 

H2B1J_HUMAN 0,03962 3,177320683 

TNPO1_HUMAN 0,04043 3,746682361 

AFAM_HUMAN 0,04066 3,054642422 

TKT_HUMAN 0,04077 2,058223139 

CCL14_HUMAN 0,04084 11,40462505 

PAP1L_HUMAN 0,04122 0,311776305 

BGH3_HUMAN 0,04135 2,204790137 

LV657_HUMAN 0,04161 0,585207638 

CO8A_HUMAN 0,0419 0,254931084 

AXDN1_HUMAN 0,04235 2,975056289 

CBPB2_HUMAN 0,04243 0,500084574 

SRGN_HUMAN 0,04367 4,437883439 
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K2C1B_HUMAN 0,04379 3,024623582 

FBLN1_HUMAN 0,04449 0,187130142 

HV118_HUMAN 0,04516 0,546925874 

HGFL_HUMAN 0,04549 0,462200139 

FBLN3_HUMAN 0,04642 0,427911564 

IGHG3_HUMAN 0,04957 0,434122795 

 

 

Supplementary Table 4.3: list of modulated proteins in non-critical COVID-19 patients compared to healthy subjects 

(Fold change > 1,3 and p-value < 0,05). 

Protein name p-value Fold Change 

CRP_HUMAN 5,5248E-07 40,4018464 

FIBB_HUMAN 1,9737E-06 0,30600139 

C4BPB_HUMAN 5,1798E-06 0,20579365 

FIBG_HUMAN 0,000006867 0,1931 

C4BPA_HUMAN 0,00001503 0,194354342 

A1AG1_HUMAN 0,000057988 5,799444828 

FIBA_HUMAN 0,00016 0,275962221 

A1AG2_HUMAN 0,00018 4,069317641 

MBL2_HUMAN 0,00033 0,222591309 

HV64D_HUMAN 0,00034 0,145197669 

KV401_HUMAN 0,00041 0,382486948 

PRDM9_HUMAN 0,00042 0,233036509 

KVD30_HUMAN 0,00043 0,305092188 

HV309_HUMAN 0,00055 0,278452627 

FBLN1_HUMAN 0,00069 0,304220987 

HV372_HUMAN 0,00069 0,275015185 

FGL1_HUMAN 0,00069 6,184636789 

PGRP2_HUMAN 0,0008 0,336908232 

CFAH_HUMAN 0,00103 0,363171483 

CCD34_HUMAN 0,00106 0,24274253 

ZA2G_HUMAN 0,00135 4,053021644 

KV127_HUMAN 0,00136 0,403975815 

MOONR_HUMAN 0,00138 0,403644554 

ALBU_HUMAN 0,00187 5,166482861 

ATS2_HUMAN 0,00263 0,298665866 

AACT_HUMAN 0,00296 8,398893959 

FA11_HUMAN 0,00316 0,28986986 

HGFL_HUMAN 0,00324 0,260521693 

FCN2_HUMAN 0,00369 5,858964805 

PKP1_HUMAN 0,00548 2,692385236 

CFAI_HUMAN 0,00644 0,465444934 
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B2MG_HUMAN 0,00694 5,134931064 

HEP2_HUMAN 0,00707 5,220725291 

HV323_HUMAN 0,00715 0,227460187 

HVD82_HUMAN 0,00732 0,287649455 

JHD2C_HUMAN 0,00755 4,057396809 

C1R_HUMAN 0,00775 0,273841296 

A2GL_HUMAN 0,00787 5,68147206 

HV364_HUMAN 0,00803 0,34998924 

IGHG2_HUMAN 0,00833 0,496151782 

FINC_HUMAN 0,00849 0,495880541 

VCAM1_HUMAN 0,00888 3,870749324 

A1AT_HUMAN 0,00954 3,79142094 

KV105_HUMAN 0,00959 0,104961724 

SAMP_HUMAN 0,01029 3,646505404 

CO8G_HUMAN 0,01068 0,300000335 

APOA2_HUMAN 0,01139 8,504293381 

CO4A_HUMAN 0,01174 0,498299509 

HV551_HUMAN 0,01196 0,403565587 

PSME4_HUMAN 0,01265 0,404291151 

F13B_HUMAN 0,01384 0,465788971 

APOH_HUMAN 0,01394 0,356661201 

CATA_HUMAN 0,01489 1,994838608 

SAA4_HUMAN 0,01537 9,534034159 

TENA_HUMAN 0,01539 4,867651292 

NCAM1_HUMAN 0,01676 2,092365207 

CO9_HUMAN 0,01782 2,552254852 

IC1_HUMAN 0,01789 3,551246946 

AMBP_HUMAN 0,01946 3,127272694 

IGHM_HUMAN 0,01976 0,410331102 

FCG3B_HUMAN 0,0199 0,319699988 

GELS_HUMAN 0,02037 0,519283985 

HV102_HUMAN 0,02105 0,465136952 

APOD_HUMAN 0,02108 5,761049855 

ANGT_HUMAN 0,02177 3,770039234 

IGHG3_HUMAN 0,02297 0,41724942 

KV224_HUMAN 0,02317 0,432151711 

A1BG_HUMAN 0,02432 5,468056453 

ITIH3_HUMAN 0,02491 8,915050778 

ITIH4_HUMAN 0,02656 1,880666769 

GGH_HUMAN 0,02816 2,102032915 

CXCL7_HUMAN 0,02817 3,719329452 

APC_HUMAN 0,02845 10,69922885 

ILDR2_HUMAN 0,02897 2,029607667 
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CO4B_HUMAN 0,0294 0,523361586 

IGLL1_HUMAN 0,02941 0,376986418 

TITIN_HUMAN 0,02962 3,017172332 

A2AP_HUMAN 0,03029 2,552497644 

PSA5_HUMAN 0,03139 3,738470765 

SRCRL_HUMAN 0,03185 4,763554475 

IGA2_HUMAN 0,03204 2,286289975 

NOLC1_HUMAN 0,03231 0,40015027 

HV349_HUMAN 0,03236 0,373924209 

CO8A_HUMAN 0,03244 0,312816789 

TPM4_HUMAN 0,03351 2,571856485 

KNG1_HUMAN 0,03393 3,552948208 

LG3BP_HUMAN 0,03664 2,712516234 

HPT_HUMAN 0,03667 40,5088796 

PON1_HUMAN 0,03925 2,638056721 

TPM1_HUMAN 0,04091 3,131972523 

IGHG4_HUMAN 0,04133 0,353915401 

RET4_HUMAN 0,04222 2,447074625 

PIT1_HUMAN 0,0455 8,455563275 

HABP2_HUMAN 0,04575 9,690248441 

KNG1_HUMAN 0,04671 5,04949148 

LYVE1_HUMAN 0,04866 2,984066259 

TRY3_HUMAN 0,04919 13,9783535 

 

Supplementary Table 4.4: correlation analysis between proteins abundance and platelets count. The p-value, R square 

and r are reported for the most correlated proteins.  

accession name Protein name gene P (two-tailed) R squared r 

TIMP2_HUMAN Metalloproteinase inhibitor 2 TIMP2  0,0108 0,3608 0,6007 

K2C6A_HUMAN Keratin, type II cytoskeletal 6A KRT6A K6A, 
KRT6D  

0,0116 0,3547 -
0,5956 

ANXA6_HUMAN Annexin A6 ANXA6 ANX6  0,0146 0,3368 0,5804 

CO6A3_HUMAN Collagen alpha-3(VI) chain COL6A3  0,0147 0,3362 0,5799 

ISK1_HUMAN Serine protease inhibitor Kazal-typ... SPINK1 PSTI  0,0165 0,327 0,5718 

IBP4_HUMAN Insulin-like growth factor-binding ... IGFBP4 IBP4  0,0209 0,3074 0,5544 

IBP2_HUMAN Insulin-like growth factor-binding ... IGFBP2 BP2, IBP2  0,0222 0,3025 0,55 

HV108_HUMAN Immunoglobulin heavy variable 1-8 IGHV1-8  0,0223 0,3019 0,5495 

VSIG4_HUMAN V-set and immunoglobulin domain-con... VSIG4 CRIg, Z39IG, 
UNQ317/PRO362  

0,0258 0,2899 0,5384 

NCAM1_HUMAN Neural cell adhesion molecule 1 NCAM1 NCAM  0,0278 0,2833 -
0,5323 

COIA1_HUMAN Collagen alpha-1(XVIII) chain COL18A1  0,0326 0,2697 0,5193 

APOA2_HUMAN Apolipoprotein A-II APOA2  0,0334 0,2678 -
0,5175 

APOC2_HUMAN Apolipoprotein C-II APOC2 APC2  0,0343 0,2655 -
0,5153 

CFAB_HUMAN Complement factor B CFB BF, BFD  0,0351 0,2636 0,5134 

MYH7_HUMAN Myosin-7 MYH7 MYHCB  0,0399 0,2523 0,5023 
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K2C75_HUMAN Keratin, type II cytoskeletal 75 KRT75 K6HF, KB18  0,043 0,2457 -
0,4957 

CH3L1_HUMAN Chitinase-3-like protein 1 CHI3L1  0,0487 0,2348 0,4846 

 

Supplementary Table 4.5: correlation analysis between proteins abundance and circulating CRP levels. The p-value, R 

square and r are reported for the most correlated proteins.  

accession name Protein name gene P (two-tailed) R squared r 

CRP_HUMAN C-reactive protein CRP PTX1  0,0002 0,6994 0,8363 

IBP2_HUMAN Insulin-like growth factor-binding ... IGFBP2 BP2, IBP2  0,0003 0,6762 0,8223 

CH3L1_HUMAN Chitinase-3-like protein 1 CHI3L1  0,0005 0,6534 0,8083 

MOONR_HUMAN Protein moonraker KIAA0753 MNR, 
OFIP  

0,0007 0,6324 0,7952 

ISK1_HUMAN Serine protease inhibitor Kazal-typ... SPINK1 PSTI  0,0011 0,6049 0,7778 

IBP4_HUMAN Insulin-like growth factor-binding ... IGFBP4 IBP4  0,0023 0,5521 0,743 

FIBB_HUMAN Fibrinogen beta chain FGB  0,0028 0,5392 0,7343 

FHR5_HUMAN Complement factor H-related protein... CFHR5 CFHL5, 
FHR5  

0,0028 0,5378 0,7333 

HV373_HUMAN Immunoglobulin heavy variable 3-73 IGHV3-73  0,0082 0,4542 0,674 

FIBG_HUMAN Fibrinogen gamma chain FGG PRO2061  0,009 0,4469 0,6685 

TRY2_HUMAN Trypsin-2 PRSS2 TRY2, 
TRYP2  

0,0145 0,4045 0,636 

LYVE1_HUMAN Lymphatic vessel endothelial hyalur... LYVE1 CRSBP1, 
HAR, XLKD1, 

UNQ230/PRO263  

0,0161 0,3949 0,6284 

PROP_HUMAN Properdin CFP PFC  0,0164 0,3931 0,627 

FIBA_HUMAN Fibrinogen alpha chain FGA  0,0195 0,3772 0,6142 

APC_HUMAN Adenomatous polyposis coli protein APC DP2.5  0,0316 0,3303 -
0,5747 

CFAH_HUMAN Complement factor H CFH HF, HF1, HF2  0,0332 0,3254 0,5705 

C163A_HUMAN Scavenger receptor cysteine-rich ty... CD163 M130  0,0352 0,3193 0,565 

FCGBP_HUMAN IgGFc-binding protein FCGBP  0,0366 0,3155 0,5617 

CATA_HUMAN Catalase CAT  0,0426 0,3001 0,5478 

Supplementary Table 4.6: correlation analysis between proteins abundance and D-dimer levels. The p-value, R square 

and r are reported for the most correlated proteins.  

accession name Protein name gene P (two-
tailed) 

R squared r 

FETUA_HUMAN Alpha-2-HS-glycoprotein AHSG FETUA, 
PRO2743  

0,0053 0,5219 0,7224 

KPYM_HUMAN Pyruvate kinase PKM PKM OIP3, PK2, PK3, 
PKM2  

0,007 0,498 0,7057 

FINC_HUMAN Fibronectin FN1 FN  0,0143 0,4342 -0,6589 

A1AG1_HUMAN Alpha-1-acid glycoprotein 1 ORM1 AGP1  0,0228 0,3887 0,6235 

VSIG4_HUMAN V-set and immunoglobulin domain-con... VSIG4 CRIg, Z39IG, 
UNQ317/PRO362  

0,0256 0,5329 -0,73 

TRY6_HUMAN Putative trypsin-6 PRSS3P2 T6, TRY6  0,0416 0,4697 -0,6853 

SAMP_HUMAN Serum amyloid P-component APCS PTX2  0,0418 0,3253 -0,5703 

MOONR_HUMAN Protein moonraker KIAA0753 MNR, OFIP  0,0446 0,4601 -0,6783 

CO4B_HUMAN Complement C4-B C4B CO4, CPAMD3  0,0448 0,3178 -0,5637 
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Supplementary Table 4.7: correlation analysis between proteins abundance and neutrophils counts. The p-value, R 

square and r are reported for the most correlated proteins.  

Accession name Protein name Gene P (two-
tailed) 

R squared r 

FIBA_HUMAN Fibrinogen alpha chain FGA 0.0051 0.41 0.64 

TPIS_HUMAN Triosephosphate isomerase TPI1 0.010 0.36 -0.60 

IGLC7_HUMAN Immunoglobulin lambda constant 7 IGLC7 0.010 0.36 -0.6 

CLUS_HUMAN Clusterin CLU 0.012 0.34 0.58 

SAA1_HUMAN Serum amyloid A-1 protein SAA1 0.013 0.34 0.58 

APC_HUMAN Adenomatous polyposis coli protein APC 0.016 0.32 -0.57 

FA11_HUMAN Coagulation factor XI F11 0.017 0.32 0.56 

SAA2_HUMAN Serum amyloid A-2 proteincur SAA2 0.018 0.31 0.56 

QSOX1_HUMAN Sulfhydryl oxidase 1 QSOX1 0.027 0.28 0.53 

ANT3_HUMAN Antithrombin-III SERPI 0.027 0.28 0.53 

PLAK_HUMAN Junction plakoglobin JUP 0.030 0.27 -0.52 

EMSY_HUMAN BRCA2-interacting transcriptional  EMSY 0.032 0.26 -0.51 

NUCL_HUMAN Nucleolin NCL 0.036 0.26 0.51 

TRY3_HUMAN Trypsin-3 PRSS3 0.039 0.25 -0.50 

ANXA6_HUMAN Annexin A6 ANXA6 0.040 0.25 0.50 

IGHG4_HUMAN Immunoglobulin heavy constant gamma IGHG4 0.040 0.25 0.50 

ZA2G_HUMAN Zinc-alpha-2-glycoprotein AZGP1 0.041 0.24 0.49 

TRY6_HUMAN Putative trypsin-6 PRSS3P2 0.042 0.24 -0.49 

CO8A_HUMAN Complement component C8 alpha chain C8A 0.046 0.23 0.48 

 

 

Supplementary Table 4.8:  correlation analysis between proteins abundance and monocytes counts. The p-value, R 

square and r are reported for the most correlated proteins.  

Accession name Protein name Gene P (two-tailed) R squared  r 

ALS_HUMAN Insulin-like growth factor-binding  IGFALS  0.0032 0.45 -0.67 

PROP_HUMAN Properdin CFP  0.0049 0.41 0.64 

CLUS_HUMAN Clusterin CLU  0.0071 0.39 -0.62 

ZA2G_HUMAN Zinc-alpha-2-glycoprotein AZGP1  0.011 0.35 -0.59 

ANT3_HUMAN Antithrombin-III SERPINC1  0.013 0.34 -0.58 

FA11_HUMAN Coagulation factor XI F11  0.018 0.31 -0.56 

QSOX1_HUMAN Sulfhydryl oxidase 1 QSOX1  0.027 0.28 -0.53 

HV373_HUMAN Immunoglobulin heavy variable 3-73 IGHV3-73  0.028 0.28 0.52 

GPX3_HUMAN Glutathione peroxidase 3 GPX3  0.034 0.26 -0.51 

TPM4_HUMAN Tropomyosin alpha-4 chain TPM4  0.037 0.25 -0.50 

A2GL_HUMAN Leucine-rich alpha-2-glycoprotein LRG1  0.042 0.24 -0.49 

APOC3_HUMAN Apolipoprotein C-III APOC3  0.044 0.24 -0.49 

AACT_HUMAN Alpha-1-antichymotrypsin SERPINA3  0.044 0.24 -0.49 

SEPP1_HUMAN Selenoprotein P SELENOP  0.047 0.23 -0.48 

IFFO2_HUMAN Intermediate filament family orphan IFFO2  0.048 0.23 0.48 
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5 METABOLIC DISEASE 

5.1 METAPROTEOMICS AND METABOLOMICS FOR CHARACTERIZING THE 

TAXONOMY AND FUNCTIONALITY OF THE GUT MICROBIOTA 

The term gut microbiome describes the vast collection of symbiotic microorganisms in the human 

gastrointestinal system that have co-evolved with our species and are essential for human health 

[236]. The gut microbiome performs numerous important biochemical functions for the host, and 

disorders of the microbiome are associated with many and diverse human disease processes [237]. 

Many factors, such as environment, aging, diet, and the immune system, can disturb the intestinal 

microbiota composition, known as dysbiosis. Changes in the bacterial composition of the gut 

microbiota have been associated not only with the dysfunction of the digestive system, such as 

inflammatory bowel diseases (IBDs) [238] and obesity [239], but also with the etiopathogenesis of 

circulatory disease [240], autism [241] and cancer [242]. Whereas the next-generation sequencing 

can be readily used to determine the composition of the microbiota, metaproteomics and 

metabolomics enables the functional study of proteins and metabolites as they are expressed and 

produced by microbial communities [243]. Considering that the gut microbiome may be directly 

modulated for the benefit of the host organism, it represents a fertile ground for the development 

of the next generation of therapeutic drug targets [244]. Quantitative metaproteomics and 

metabolomics emerged as powerful approaches to characterize microbial function in diseases 

pathogenesis [245]. 

5.2 METAPROTEOMICS AND METABOLOMICS INVESTIGATION OF MICROBIOME 

ALTERATIONS IN PEDIATRIC OBESE PATIENTS SUBJECTED TO A DIETARY 

INTERVENTION WITH MEDITERRANEAN DIET 

5.2.1 Background and Rationale  

In 1997, the W.H.O. (World Health Organization) recognized obesity in childhood as a global 

phenomenon with epidemic character and important health implications (World Health 

Organization, 1997). From 1980 to 2013, the worldwide prevalence of overweight and obesity in 

children and adolescents increased by 47.1%, with alarming data especially in developing countries 

[164]. Several studies reported a close association between pediatric obesity and co-morbidities 
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such as cardiovascular diseases and diabetes [246]. In addition, obese children and adolescents are 

likely to maintain excess weight in adulthood [247], and although acute cardiovascular events are 

rare in children, problems related to hypertension, dyslipidemia, insulin resistance and endothelial 

dysfunctions are often diagnosed in young obese subjects [248,249]. 

However, the progression of obesity-associated co-morbidities can be delayed or even prevented in 

pediatric age if appropriate lifestyle modifications, such as diet and physical activity, are 

implemented. Indeed, among adults, a Mediterranean lifestyle has been inversely associated with 

mortality and development of chronic disorders, such as cardiovascular disease, obesity, metabolic 

syndrome, type 2 diabetes mellitus, and neoplasms, but also an improved cognitive status, 

longevity, and overall health well-being [250]. The MD is characterized by a high intake of 

vegetables, legumes, fruits, nuts, and grains, with a moderate-to-high intake of fish and unsaturated 

fats (in particular, olive oil), and a low-to-moderate intake of dairy products and meats, which are 

low in saturated fat [251]. Despite the enthusiasm derived from the results on the Mediterranean 

lifestyle, few but alarming data suggest its poor adherence in pediatric age, who usually prefer 

unhealthy food [164]. 

Although the great efforts in public health and policy to reverse childhood obesity, limited 

interventional studies with effective long-term maintenance of weight loss in children are available. 

However, a growing interest on the use of educational training and gamification to influence lifestyle 

and to improve well-being is emerging.  

Recently, several evidence linked obesity to the gut microbiota [252]. Human gut microbiota is the 

set of microorganisms that colonize the human intestine establishing a symbiosis that in a 

physiological situation brings multiple benefits to the host (eubiosis). Both genetic and 

environmental factors can cause dysbiosis of the gut microbiota, thus contributing to pathological 

states such as obesity. The state of intestinal dysbiosis can be improved through the modulation of 

several factors, including lifestyle and diet, with the latter being one of the main determinants. To 

date, several studies investigated the relationships between nutrition, microbiota and obesity[252], 

and a future goal will be the modulation of the gut microbiota through nutrition to improve the 

pathological condition of obesity and other diseases. 

Although the study of intestinal microbiota is still challenging, today, thanks to recent developments 

of omics techniques such as metagenomics, metaproteomics and metabolomics, the gut microbiota 

characterization is possible. Metagenomics has been widely applied to investigate bacteria 

alterations [253], while metaproteomics and metabolomics involves non-targeted mass 
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spectrometry to assess the diversity and abundance of microbial proteins and the impact of 

microbiota on small molecules production, respectively [254]. 

In the present research we aimed to assess the impact of a MD intervention on the gut microbiota 

of pediatric obese patients. The dietary intervention was based on educational training using 

gamification, while untargeted metaproteomics and metabolomics were employed to study 

alterations of the gut microbiota and plasma after six and twelve months of diet.   

5.2.2 Material and methods 

5.2.2.1 Experimental design 

The study involved 15 pediatric obese subjects (9 male and 6 female) aged between 10 and 15 years 

(Table 5.1). The obesity condition was defined according to the International Obesity Task Force 

(IOTF) criteria [255]. The inclusion criteria were:  waist circumference ≥ 90th percentile, BMI z-score 

> 25 and no previous adherence to any diet. The exclusion criteria were: secondary obesity 

associated to endocrine or genetic causes, type 1 diabetes and previous kidney diseases.  

The enrolled patients received a standard diet, based on the Mediterranean pyramid,  according to 

Good Clinical Practice1. The diet expected the consumption of 55-60% of carbohydrates (45-50% 

complex and no more than 10% refined and processed sugars), 25-30% lipids and 15% proteins. The 

dietary plan at the individual level was calculated in accordance with the Italian Reference Dietary 

Intakes (LARN) guidelines for age and gender [256]. The dietary intakes of macronutrients before, 

at 6 and 12 months of MD are shown in table 4.1. Before starting the diet, patients followed a MD 

educational training with explanation of MD Pyramid and gamification of the dietary plan  through 

"The Mediterranean Goose". The game has been proposed in an educational project known as 

"Mediterranean diet and enhancement of traditional foodstuff - MedDiet", founded by European 

Union in the framework of the ENPI CBC Mediterranean Sea Basin Program [257]. In addition, all 

subjects received general recommendations about performing physical activity. Patients were 

subjected to biochemical and ultrasound evaluations at the time of enrollment and during the first 

2 weeks after study started. During the year of diet intervention, patients were also evaluated after 

6 and 12 months through the collection of stool and blood samples. 

 

 

 
1 Good Clinical Practice: the protocol will be conducted in accordance with the declaration of Helsinki. Informed consent 
will be obtained from all parents prior to the evaluations and after careful explanations to each patient.   
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Table 45.1: demographic characteristics and macronutrient intake of the subjects enrolled in the study. 

Variable  Obese subjects  
 

0 months 6 months  12 months 
 

Mean  Range  Mean  Range  Mean  Range  

Gender (n°) 15 
     

Male 9 
     

Female 6 
     

Age Mean (years) 12 10.0 - 15.0 
    

BMI for age 
(percentile)  

97 95 - 99 94 82 - 99 96 92 - 99 

Carbohydrate intake  254 177 - 354 237 192 - 344 248 191 - 323 

Protein intake (g) 74 50 - 93 79 60 - 93 72 59 - 84 

Fiber intake (g) 17 7.6 - 30.2 19 10.7 - 27.1 18 7.8 - 25.2 

Fat intake (g) 89 57 - 139 77 56 - 96 74 57 - 93 

 

5.2.2.2 Metaproteomics analysis 

Each stool sample underwent microbial cell and protein extractions. Following protein purification, 

proteins were subjected to tryptic proteolytic digestion and desalting to obtain purified peptides. 

Peptides were separated, analyzed, and quantified by nano liquid chromatography coupled to mass 

spectrometry (nanoLC-MS/MS). Through metaproteomics analysis of the identified peptides, 

phylogenetic and functional analyses were performed to assign the identified peptides to bacterial 

taxa, biological processes, molecular functions, and enzymes. An appropriate statistical analysis was 

conducted aimed at understanding and discussing the statistically significant results.  

5.2.2.3 Sample preparation and proteins extraction 

Fecal samples were collected from patients and immediately stored at −80 °C.  100 mg of stool 

sample was weighted under a biological hood and deposited in a screw top tube with 1.4mm 

ceramic beads, 0.1mm silica beads and 4mm glass beads. 1ml of PBS was added and vortexed. 

Samples were then lysed using a Tissue Lyser FastPrep-24 5G (MP Biomedical, LCC) for 40 seconds 

at 6 m/s. The samples were then subjected to 300 x g of centrifugation for 5 minutes at 4 °C. The 

supernatant was transferred to new centrifuge tube and stored at 4 °C. The pellet was subjected to 

an additional 3 cycles of Tissue Lyser with the addition of 1 mL of PBS each time. Next, for each 

sample, the resulting supernatants were combined and subjected to centrifugation at 14.000 x g for 

20 minutes at 4 °C. The supernatants were then discarded, the pellets resuspended with 1 mL PBS 

and centrifuged at 14.000 x g for 20 min at 4 °C. Next, the supernatant was discarded, and the pellet 

resuspended in 200 µL of NH4HCO3 100 mM. Then, 200 µL of lysis buffer (4% SDS, 6M Urea, 50 mM 
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Tris HCl pH8) were added and mixed thoroughly by vortexing. Samples were sonicated for 2 minutes 

at 27% amplitude (10 second pulse + 10 second rest for 6 times). Successively, samples were 

subjected to protein precipitation: 1.5 mL of acetone:ethanol (1:1) acidified with HCl (pH 2) were 

added and mixed well. Samples were left over night (approximately 18 hours) at -20 °C. 

Subsequently, samples were centrifuged at 5.000 x g of centrifugation for 30 min at 4 °C. The 

supernatant was discarded and the pellet containing bacterial proteins was resuspended with 1.5 

mL of acidified (pH 2) acetone:ethanol (1:1) and centrifuged at 20.000 x g for 10 minutes at 4°C. 

Finally, the supernatant was removed and the pellet containing only bacterial proteins was 

resuspended in 200 µl of urea buffer (8M urea, 10 mM tris HCl pH 8) and stored at 4°C. Protein 

quantification was performed using Bradford assay.  

5.2.2.4 Protein digestion and peptides purification 

For each sample, 80 µg  of total protein was then subjected to reduction with DTT 200 mM, 

alkylation with IAM 200 mM, and to complete enzymatic digestion with trypsin 0.2 ug/uL at a 1:25 

protein ratio (Sigma-Aldrich Inc., St. Louis, MO, USA). 

Peptides were desalted on the Discovery® DSC-18 solid phase extraction (SPE) 96-well plate (25 

mg/well) (Sigma-Aldrich Inc., St. Louis, MO, United States) as described previously (paragraph. 

2.3.2.3). After the desalting process, the samples were vacuum-evaporated and reconstituted in 

mobile phase (0.1 % formic acid in water) for successive analysis.  

5.2.2.5 NanoLC-MS/MS analysis 

NanoLC-MS/MS analysis was performed with an Easy nano-LC 1200 system (Thermo Scientific, 

Milan), on a 200-cm PharmaFluidics µPACTM C18 column. The injection volume for each analysis 

was 2.0 µL. The mobile phases consisted of 0.1% formic acid in water (solvent A) and 0.1% formic 

acid in 80:20 acetonitrile:water (solvent B), the column flow rate was 300 nL min-1. The solvent 

gradient used for the chromatographic run was 210 min: 2 to 30% solvent B for 147 min, 56% solvent 

B for 56 min, and 99% solvent B for 7 min. The LC system was interfaced with a TripleTOF 5600+ 

(Sciex, Concord, Canada) equipped with a DuoSpray ion source. The mass spectrometry analysis was 

performed in a mass range of 100 to 1600 Da (TOF scan with an accumulation time of 0.25 s), 

followed by an MS/MS scan of product ions from 400 to 1250 Da (accumulation time 5.0 ms) with 

an abundance threshold set at 30 cps (40 candidate ions could be monitored per cycle). The MS data 

were acquired with Analyst TF 1.7 (AB SCIEX, Concord, Canada). Peptides (and proteins) were 

identified using DDA followed by database search.  
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5.2.2.6 Proteins and peptides identification 

Protein identification was performed by building a database using the adapted MetaProIQ approach 

[258]. The mass spectrometry files were searched using Mascot v. 2.4 (Matrix Science Inc., Boston, 

USA). The digestion enzyme selected was trypsin with 2 missed cleavages and the following 

modifications: carbamidomethyl cysteines as fixed modification and oxidized methionine as variable 

modification. The peptide mass tolerance was set to 50 ppm, while 0.1 Da were used for the MS/MS 

tolerance. The charges of the peptides to search for were set to 2 +, 3 + and 4 +, the search was put  

on monoisotopic mass, and the instrument was set to ESI-QUAD-TOF. Each sample was searched 

against a reduced database generated by merging two existing databases: UniProt-KB Swiss-Prot 

Bacteria (331.559 sequences) [259] and Integrated Gene Catalog (IGC) [260]. IGC is a database of 

bacterial protein sequences built by combining data from 249 sequenced samples of the 

Metagenomics of the Human Intestinal Tract (MetaHit) project with 1018 samples previously 

sequenced in other works. IGC contains 9879896 genes related to most human intestinal bacteria. 

The MetaProIQ approach consists of an initial search against the entire database and the creation 

of a reduced database generated with the proteins identified by the first search without filtering for 

FDR and converted in FASTA sequences. This was done for each sample. Each sample was finally 

analyzed against the corresponding reduced database and the proteins identified at this stage were 

filtered with FDR 1%. 

5.2.2.7 Metaproteomics data analysis and statistical analysis 

Metaproteomics analysis of the data was performed by evaluating the peptides identified by mass 

spectrometry analysis. The identified peptides were processed on Unipept version 4.0 [261] in order 

to analyze phylogenetical and functional variations of the microbiota of obese pediatric patients at 

time 0 and following the six-month and twelve-months of MD intervention. 

Unipept analysis provides graphical representations of the microbiota composition (Kingdom, 

Phylum, Class, Order, Family, Genus and Species) and simultaneously allows the download of results 

related to the number of peptides assigned to each component of each taxonomic level. Through 

the use of Unipept, the proteomic analysis of the previously identified peptides was carried out not 

only for a phylogenetic framework (phylum, order, genus and species levels were analyzed in the 

present work) but also for the evaluation of the functions of the intestinal microbiota in order to 

assess differences in metabolic activities of taxa present within the microbiota community following 

six and twelve months of treatment with MD. To this end, Unipept, through its accurate database 
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search, allows to assign the identified unique peptides to EC number (Enzyme Commission number) 

and to GO term (Gene ontology term). It must be pointed out that an EC number does not indicate 

a specific enzyme but rather a specific reaction. If different enzymes catalyze the same reaction 

(e.g., of different organisms) they receive the same EC number.  

All graphs of biometric analysis, heat maps and statistical analysis were performed using 

Metaboanalyst 5.0 [262], while box-plots were made using GraphPad v. 8.0.  

5.2.2.8 Extraction of short chain fatty acids from feces 

SCFAs were extracted from 30 mg of fecal sample. Briefly, 300 μL of water and 16 μL of the internal 

standard propanoic acid d2 (20,5 ppm) and 5 μL of tridecanoic acid (500 ppm) were added. The 

sample was then homogenized with FastPrep-24 5G (MP Biomedicals, USA) for 40 s at 6.0 m/s and 

vortexed at 1000 rpm at 4°C for 30 minutes. The sample centrifuged at 21.1 x g for 30 minutes at 

4°C. 100 μL of supernatant were placed in a new tube, bringing the pH to 2 using 6 M HCl. For the 

extraction of SCFAs, 140 μL of MTBE were added and the tube was placed on a rotator for 15 minutes 

at 40 rpm, followed by a centrifugation for 10 minutes at 4°C at 21.1 x g. Then, 100 μL of the organic 

phase, that contains the SCFAs, were analyzed with bi-dimensional gas chromatography coupled to 

mass spectrometry (GCxGC-TOFMS). Calibration curve for the absolute quantification of the main 

SCFAs were also built.  

5.2.2.9 Extraction of short chain fatty acids from plasma 

Plasma SCFAs were extracted using a liquid–liquid extraction with methyl tert-butyl ether (MTBE). 

Briefly, 50 uL of plasma was placed in a tube, then 2,5 μL of the internal standard propanoic acid d2 

and acetic acid d4 (20.4 ppm) were added, and the sample was vortexed for 20 s, followed by a spin 

centrifugation for 15 s. The sample was then brought to pH 2 using 6 M HCl. 140 μL of MTBE was 

added, and the tube was placed on a rotator for 15 min, followed by centrifugation for 10 min at 4 

°C and 21.1×g. Then, 100 μL of the organic phase containing the SCFAs was analyzed with GCxGC-

TOFMS. 

5.2.2.10 GCxGC-TOFMS analysis 

For the analysis, a LECO Pegasus BT 4D GCxGC-TOFMS instrument (Leco Corp., St. Josef, MI, USA) 

equipped with a LECO dual stage quad jet thermal modulator was used. The GC part of the 

instrument was an Agilent 7890 gas chromatograph (Agilent Technologies, Palo Alto, CA), equipped 

with a split/splitless injector. The first dimension column was a 30 m Rxi-5Sil (Restek Corp., 
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Bellefonte, PA) MS capillary column with an internal diameter of 0.25 mm and a stationary phase 

film thickness of 0.25 μm for metabolite from aqueous solution, while for SCFAs analysis the column 

was a 30 m DB-FATWAX-UI (Agilent Technologies, Santa Clara, CA) with a diameter of 0.25 mm and 

a film thickness of 0.25 μm, and the second dimension chromatographic columns was a 2 m Rxi-

17Sil MS (Restek Corp., Bellefonte, PA) with a diameter of 0.25 mm and a film thickness of 0.25 μm. 

High-purity helium (99,9999%) was used as the carrier gas with a flow rate of 1.4 mL/min.  1 μL of 

sample was injected in splitless mode at 250°C. The temperature program for metabolites analysis 

was as follows: the initial temperature was set at 70°C for 2 minutes, then ramped 6°C/min up to 

160°C, 10°C/min up to 240°C, 20°C/min to 300 and then held at this value for 6 minutes. The 

secondary column was maintained at +5°C relative to the GC oven temperature of the first column. 

The temperature program for SCFAs was as follows: the initial temperature was 40°C for 2 minutes, 

then ramped 7°C/min up to 165°C, 25°C/min up to 240°C, maintained for 5 minutes. The secondary 

column was maintained at +5°C relative to the GC oven temperature of the first column. Electron 

impact ionization was applied (70 eV). The ion source temperature was set at 250°C, the mass range 

was 40 to 300 m/z with an extraction frequency of 32 kHz, for the SCFAs analysis, while for the 

metabolites the mass range was 25 to 550 m/z. The acquisition rates were 200 spectra/s. The 

modulation periods for both programs were 4s for the entire run. The modulator temperature offset 

was set at +15°C relative to the secondary oven temperature, while the transfer line was set at 

280°C.  

5.2.2.11 Data analysis 

The chromatograms were acquired in TIC (total ion current) mode. Peaks with signal to- noise (S/N) 

value lower than 500.0 were rejected. ChromaTOF version 5.31 was used for raw data processing. 

Mass spectral assignment was performed by matching with NIST MS Search 2.3 libraries adding 

Fiehn Library. Commercial mix standard of free fatty acids composed by acetic acid, propanoic acid, 

propanoic acid 2-methyl, butanoic acid, butanoic acid 3-methyl and pentanoic acid was run 

individually and EI spectra were matched against the NIST library. The calibration curves of the SCFAs 

were obtained using excels, while the analytical results were processed and compared with the 

opensource software MetaboAnalyst 5.0 [262].  
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5.2.3 Results 

5.2.3.1 BMI Z-score decreased after MD intervention  

A total of 15 pediatric obese patients, diet naïve or with failure to a previous weight loss program 

were recruited and involved in the present study. All the subjects were characterized by a measure 

of relative weight adjusted for child age and sex (BMI z-score) higher than 25. Patients followed an 

educational training to MD with gamification aimed at the improvement of their dietary regime and 

lifestyle. Clinical and auxological data were collected before the beginning of the study, after 6 and 

12 months. Stools and plasma samples were also collected and then used to investigate the impact 

of MD on microbiota and plasma using untargeted proteomics and metabolomics (Figure 5.1). The 

MD intervention for six and twelve months caused a significant reduction of the BMI z-score (Figure 

5.2A). This result supports the use of educational training to MD performed with gamification for 

the development of public health strategies to reduce the impact of obesity in children.  

 

 

Figure 5.1: design of the study: pediatric obese patients followed an educational training to MD and were then monitored 
for 12 months through metaproteomic and metabolomics analysis performed on fecal and serum samples before the 
dietary intervention and after 6 and 12 months. 

 

Impact of an educational training to
Mediterranean Diet on:
• Microbiota

• Small molecules
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5.2.3.2 Metaproteomics revealed strong taxonomic gut microbiota changes after MD 

Stool samples were then used to study the impact of MD on microbiota. A metaproteomic approach 

was employed to extract bacterial proteins from fecal samples and to identify their proteins. A total 

of 254583 peptides were identified, 68121 of which were unique while 13200 were in common with 

all the three experimental times (Figure 5.2B). The analysis allowed the identification of 70116 total 

proteins, 32367 of which were unique (Figure 5.2C). Identified peptides were then used to perform 

phylogenetic and functional analysis of the gut microbiota. 

 

 

Figure 5.2: impact of MD on BMI, on peptides and proteins identified in fecal samples. Changes in the BMI z-score after 
6 (green) and 12 months (blue) of MD intervention (A); identified peptides (B) and proteins (C) in the fecal samples before 
(red), after 6 (green) and 12 months (blue) of MD intervention.  

 

Phylogenetic analysis allowed the identification of 43 unique phyla (29 of which were identified at 

0 months, 33 at 6 months and 33 at 12 months) and 24 phyla in common between the three time 

points of the experimental design (Figure 5.3A). The distribution of the major phyla at each time 

(Figure 5.3B) and for each subject (Figure 5.3C) showed that the most abundant bacterial species 

belong to Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes (Supplementary table 5.1).  

Although statistical analysis did not reveal a significant variation, an overall change in Firmicutes 

and Bacteroidetes abundances can be appreciated (Figure 5.3D-E). These changes led to an overall 

increase of the ratio Bacteroidetes/Firmicutes after 12 months (Figure 5.3F). In addition, the 

hierarchical clustering heatmap showed the presence of a phyla distribution clearly associated to 

the effect of the diet (Figure 5.3G).  
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Figure 5.3:  impact of MD on microbiota at the phyla level. Venn diagram of identified phyla before (red) and after (green 
and blue) MD (A); bar graphs reporting the distribution of the most abundant phyla in the three groups (B) and in each 
subject (C); box-plots of Firmicutes (D), Bacteroidetes (E) and their ratio (F); hierarchical clustering heatmap of the most 
relevant phyla within each time point. 

 

Metaproteomics analysis also allowed the classification of bacteria based on orders: a total of 121 

unique orders were detected, 107 of which were identified in the samples before the intervention, 

103 in the samples after 6 months and 105 after 12 months. Of these, 92 orders were found in all 

the conditions (Figure 5.4A). The analysis performed at this taxonomic level showed that the most 

abundant orders found within the fecal samples were Clostridiales, Bacteroidales, Bifidobacteriales, 

Coriobacteriales, Veillonellales, Lactobacillales, Enterobacteriales and Bacillales, as reported in the 

bar graph in figure 5.4B. Among all orders, only Nitrosomonadales showed a statistically significant 

modulation during the MD intervention (Figure 5.4C). In addition, other orders were impacted by 

MD, some increased their abundances (Bacteroidales, Bifidobacteriales) while other decreased 

(Clostridiales, Coriobacteriales, Bacillales, and Pasteurellales) (Supplementary table 5.2). 

Multivariate analysis also highlighted the presence of an order-level signature between the three 

groups, as reported by PLS-DA and the heatmap (Figure 5.4D-E). 
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Figure 5.4: impact of MD on microbiota at the order level. Venn diagram of identified orders before (red) and after MD 
(green and blue) (A); bar graphs reporting the distribution of the most abundant orders in the three groups (B); box-plots 
of Nitrosomonadales, Clostridiales, Coriobacteriales, Bacillales, Bacteroidales, Bifidobacteriales and Pasteurellales (C); 
score plot of PLS-DA reporting the three clusters of patients before (red) and after 6 (green) and 12 (blue) months of MD; 
hierarchical clustering heatmap of the most relevant orders within each time point (E). 

 

At the genus level, 529 unique genera were identified among all samples (Supplementary figure 

5.1). Bifidobacterium, Bacteroides, Faecalibacterium, Ruminococcus, Prevotella and Collinsella were 

among the most abundant genera identified (Supplementary table 5.3). Coprobacillus and 

Alkaliphilus significantly changed their abundances in gut microbiota after twelve months of MD 

(Figure 5.5A-B), while other genera such as Oscillibacter, Parabacteroides, bacillus, eubacterium, 

Coprococcus, Alistipes, clostridium, Collinsella, Bacteroides and Bifidobacterium reported increased 

or decreased trends over the time (Figure 5.5C to L). 
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Figure 5.5: impact of MD on bacteria at the genera level. Box plots of Coprobacillus, Alkaliphilus, Oscillibacter, 
Parabacteroides, bacillus, eubacterium, Coprococcus, Alistipes, clostridium, Collinsella, Bacteroides and Bifidobacterium 
before (red) and after 6 (green) and 12 months (blue).  

 

Finally, the taxonomic analysis performed at the species level showed the identification of 873 total 

unique species distributed among the three groups (Supplementary figure 5.2). Table 5.2 reports 

the distribution of the most abundant species: among them there are Faecalibacterium prausnitzii, 

Ruminococcus bromiii, Collinsella aerofaciens, Prevotella copri, Ruminococcaceae bacterium, 

Roseburia faecis and Bacteroides uniformis. The statistical analysis reported a significant modulation 

of Eubacterium ventrosium and Bifidobacterium animalis, both increased after 6 months, with 

higher levels of the latter increased also after 12 months. In addition, Bifidobacterium adolescentis, 

Collinsella aerofasciens, Bacteroides stercoris, Akkermansia muciniphila, Acidaminococcus 
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fermentas, Eubacterium rectale, Roseburia inulinivorans e Lactobacillus reuteri also reported 

different changes over the MD treatment (Figure 5.6). 

 

Table 5.2: distribution of bacterial species before the MD intervention, after 6 and 12 months. 
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Figure 5.6: impact of MD on bacteria at the species level. Box plots of Eubacterium ventriosum, Bifidobacterium animalis, 

Bifidobacterium adolescentis, Collinsella aerofaciens, Acidaminococcus fermentas, Lactobacillus reuteri and 

Eubacterium rectale before (red) and after 6 (green) and 12 months (blue).  

 

5.2.3.3 Gut microbiota functions are altered after MD  

Intestinal microbiota functions were also evaluated to investigate metabolic activities alterations 

within the microbiota community after twelve months of MD intervention. The distribution of 

peptides/proteins associated to molecular functions, biological processes and chemical reactions 

catalyzed by enzymes (EC enzymes) was then calculated and compared between the three time 

points of the intervention (Supplementary figure 5.3).  

Among modulated molecular functions, an increase of proteins related to acyl-CoA hydrolase 

activity, long-chain fatty acyl-CoA binding, glycerol-3-phospate dehydrogenase [NAD+] activity, and 

glycerol kinase activity was found after 12 months of MD. In addition, an increase of biological 

processes related to cellular amino acid catabolic processes, glycerol-3-phosphate metabolic and 

catabolic processes, glycerol catabolic processes, acyl-CoA metabolic processes and lipid catabolic 

processes were detected at the same time point. Finally, a significant increase of glycerol kinase was 

identified after 12 months of MD (Figure 5.7).  
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Figure 5.7: molecular functions, biological processes and enzymes changes before (red) and after 6 (green) and 12 

months (blue) of MD intervention.  

 

5.2.3.4 MD caused a decrease of gut and serum SCFA levels 

Fecal and serum concentration of SCFAs were quantified before and after the MD intervention 

(Figure 5.8). The metabolomic analysis revealed a significant decrease of the fecal acetic acid (FC = 

0.63), butanoic acid (FC = 0.46), and propanoic acid (FC = 0.56) after twelve months of MD. Similarly, 

a significant down regulation of serum acetic acid (FC = 0.63), butanoic acid (FC = 0.72), and 

propanoic acid (FC = 0.59) was detected, as well as serum butanoic acid 3-methyl (FC = 0.56), 

pentanoic acid (FC = 0.41), and propanoic acid 2-methyl (FC = 0.69), suggesting an important effect 

of MD on the obese gut microbiota and microbial metabolite production.  
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Figure 5.8: alteration of fecal and serum short chain fatty acids (SCFAs) after MD. A global decrease of SCFAs was 

observed. 

 

5.2.4 Discussion  

The MD intervention performed through educational training on 15 pediatric obese patients caused 

a significant reduction of the BMI z-score after 6 and 12 months. Metaproteomics and metabolomics 

analyses were able to identify the main gut microbiota and plasma changes, demonstrating the 

impact of MD on gut and on circulating molecules, especially SCFAs. Although no dietary restrictions 

were used, but only a qualitative improvement in nutritional intake through education, both 

taxonomic and functional modifications were detected in the gut ecosystems.  

At the phylum level, after twelve months of MD, the Bacteroidetes/Firmicutes ratio was slightly 

increased: this behavior it has been widely associated with a BMI decrease [263–266]. Firmicutes 

are more efficient in energy extraction from food than Bacteroidetes, thus promoting a better 

intestinal absorption of nutrient (and calories), resulting in weight gain [267]. The orders Bacillales 

and Clostridiales, which are both Firmicutes, decreased after six and twelve months of MD. An 

opposite behavior has been associated with high-fat dietary interventions [268,269]. At the same 

time, an increase of Bacteroidales, which are an order of the Bacteroidetes, was detected after 

twelve months of MD. Bacteroidales were already used to alleviate intestinal dysbiosis and 

metabolic syndrome induced by high-fat diets. Some Bacteroidales have been also shown to 

decrease fat accumulation and inflammation [270]. 
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At the order-level, the MD intervention caused a significant increase of Nitrosomonadales. The 

abundance of Nitrosomonadales was linked to a healthy condition and its decrease has been 

observed in alcoholic fatty liver disease [271]. Of particular interest is also the decrease of 

Coriobacteriales and Pasteurellales. An increase of Coriobacteriales has been observed during 

consumption of high-fat diet [272], while Pasteurellales were classified among the pro-inflammatory 

strains inversely associated with well-balanced diets [273]. 

Statistical analysis at the genus-level showed that Coprobacillus and Alkaliphilus both increased 

their abundance after twelve months of MD. An enrichment of Coprobacillus was observed in gut 

microbiota of healthy children compared to obese children [274], while an enrichment of 

Alkaliphilus, was negatively correlated with BMI [275]. Our results are in agreement with an overall 

health improvement of subjects after MD. 

Improved nutritional intake for twelve months also determined a decrease of Oscillibacter, 

Coprococcus, Clostridium and Collinsella, while Parabacteroides, Eubacterium, Alistipes and 

Bifidobacterium increased their abundances. These changes are in agreement with previous studies 

that demonstrated the presence of a correlation between their levels and improved health 

conditions. In fact, low levels of Collinsella were linked to anti-inflammatory dysbiosis in type 2 

diabetes, high consumption of fibers, improvement of nonalcoholic steatohepatitis and metabolic 

endotaxemia conditions [276,277]. Low abundances of Oscillibacer was associated to normal and 

healthy gut microbiota compared to gut microbiota from high fat diet interventions [278,279], while 

Coprococcus and Clostridium were lowest in lean subjects than overweight/obese patients and 

researchers proposed that they may contribute to the improvement of gut dysbiosis conditions 

[280,281]. Finally, the increase of Eubacterium spp., Alistipes and Bifidobacterium may have a 

beneficial role in the modulation of inflammation [282–284]. 

Interestingly, at the species-level, the statistical analysis revealed significantly changes in 

Bifidobacterium animalis and Eubacterium ventriosum: they were enriched after twelve and six 

months of MD, respectively. Researchers already associated high levels of B. Animalis to normal 

weight, and they suggested a potential role of the specie in controlling weight gain. In addition, 

there are much evidence that B. Animalis may improve the epithelial integrity by rebalancing a 

dysbiotic state induced by obesogenic and high fat diets [196,285,286]. Regarding E. Ventriosum, it 

was already associated to healthy conditions when compared to inflammatory conditions in 

colorectal adenoma [283]. 
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In addition, MD intervention determined an overall taxonomic change, including the modulation of 

several bacterial species that were already linked to a general improvement of obesity conditions 

and gut symbiosis. For example, the increase of B. adolescentis was associated to an improvement 

of high fat diet-induced obesity [287], while the decreasing of C. aerofaciens, which is classified as a 

pro-inflammatory species of gut microbiota, was linked to an improvement of inflammation in T2D 

[288]. Other studies suggested the presence of an inverse correlation between E. rectale and 

dysbiosis in ulcerative colitis and Crohn disease [289,290]. Finally, a study demonstrated that a 

treatment with L. reuteri could alleviate mucosal inflammation by microbe-host interactions that 

protect intestinal epithelial cells from injury [291]. 

 

Functional analysis performed on modulated peptides/proteins suggested an alteration of bacterial 

metabolism caused by MD. A global reduction of glucidic metabolism and an increase of non-glucidic 

metabolism was observed. In fact, after twelve months of MD a significant increase of Acyl-CoA 

metabolism, of its hydrolase activity and of long-chain fatty Acyl-CoA binding was detected. Acyl-

CoA is a group of coenzymes that metabolize fatty acids. At the same time, a decrease of glucose 

metabolism and carbohydrate derivative metabolism after six and twelve months of MD was 

observed. 

In addition, through EC enzyme analysis, changes of some specific glycolytic enzymes emerged. 

Some enzymes such as Glyceraldehyde-3-P dehydrogenase, Phosphopyruvate hydratase and 

Piruvate kinase, increased, bringing to pyruvate production. Piruvate synthase is also increased 

resulting in the decarboxylation of pyruvate with the formation of Acetyl-CoA which then enters the 

citric acid cycle. 

A statistically significant increase of glycerol metabolism was also detected. Metabolic and catabolic 

processes of glycerol and glycerol 3-P were increased together with glycerol kinase and glycerol 3-P 

dehydrogenase activities. Glycerol kinase catalyzes the production of glycerol 3-phosphate. Glycerol 

3-P dehydrogenase converts glycerol 3-phosphate to dihydroxyacetone phosphate (DHAP). The 

main consequence is an increased production of dihydroxyacetone phosphate (DHAP) that may be 

used in glycolysis or gluconeogenesis pathways. 

 

 A significant increase of cellular amino acid and lipid catabolic processes after twelve months of 

MD was also observed, suggesting their use for the synthesis of glucose.  
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MD also impacted the production and use of SCFAs which are organic fatty acids with one to six 

carbon atoms and are the major molecules produced by microbial fermentation of undigested 

carbohydrates. Butyrate, propionate, and acetate account for 90% to 95% of the SCFAs present in 

the human colon. 

One of the main mechanisms by which the gut microbiota contributes to obesity is through an 

improved energy extraction from diet by the conversion of dietary fibers to SCFAs [292]. 

Bacterial SCFAs affect host energy metabolism and contribute to the development of diet-induced 

obesity through increasing de novo hepatic lipogenesis and lipid accumulation in the host. In 

addition, the production of bacterial SCFAs also depends on the taxonomic composition of the gut 

microbiota, even if this relationship in humans has not yet been clarified [293]. 

In our study, a statistically significant decrease of some SCFAs (acetic acid, butanoic acid, butanoic 

acid-3-methyl, pentanoic acid, propanoic acid and propanoic acid-2-methyl) in response to 12-

month intervention with MD was detected. SCFAs, mainly butyrate, propionate and acetate are a 

key energy source for the intestinal epithelium and liver [294], and participate in a variety of 

metabolic and physiologic processes, including hepatic gluconeogenesis and lipogenesis [295,296], 

gut motility [297], gut barrier function [298,299], and immune responses [300,301]. Fecal and serum 

concentration of SCFAs depends on the balance between their production, absorption and excretion 

[302]. Alterations in diet can lead to rapid and significant changes in gut bacterial composition and 

metabolite production including SCFAs [303]. While plant-based diets, rich in complex 

carbohydrates, are associated with increased abundance of SCFA-producing bacteria [304–306], 

greater intake of simple sugars, animal products and saturated fats are associated with a decrease 

in SCFA-producing bacteria [307,308]. Consequently, subjects that follow a Mediterranean-type 

diet, characterized by a high content of plant-based food, showed a higher percentage of SCFAs and 

of fiber-degrading bacteria in the feces compared with subjects with poor adherence to the MD 

[309]. However, diet alone is not a consistent predictor of SCFA production or abundance. The 

amount of SCFAs depends also on various host, environmental, and gut microbiota factors. There is 

growing evidence from both animal and human studies that suggests an important role of gut 

microbiota and its metabolites, particularly SCFAs, in obesity [310–312]. These studies reported that 

micronutrients and SCFAs produced by intestinal microbiota can alter host energy metabolism in 

the development of diet-induced obesity, increasing lipid accumulation and de novo lipogenesis in 

the liver. It has been observed that the gut microbiota of obese children has a higher ability to 

ferment carbohydrates when compared to lean volunteers [313] leading to a higher concentration 
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of fecal SCFAs. However, in human studies, contrasting results regarding SCFAs-obesity relationship 

were reported. For example, some studies have reported a positive correlation between fecal SCFAs 

levels and obesity [314–316], while other studies have reported a negative relationship between 

SCFAs concentrations and obesity. [317]. SCFAs may indirectly contribute to obesity through the 

modulation of intestinal and systemic inflammation, promoting or exacerbating metabolic 

dysfunction [318]. Thus, in the setting of inflammation and obesity, obese individuals could have an 

impaired utilization of SCFA that translates into a higher lipogenic effect and contribute to lipid 

accumulation in adipocytes, leading to energy harvest compared to lean individuals who might 

better take advantage of the anti-inflammatory role. 

5.2.5 Conclusions 

Since diet is one of the main determinants of gut microbiota dysbiosis contributing to pathological 

states such as obesity [222], modulation of the gut microbiota through nutrition may improve the 

pathological condition of obesity and other diseases. In our study, twelve months of MD 

intervention determined overall taxonomic and functional changes on the gut microbiota of 

pediatric obese patients, including the modulation of several bacterial species that were already 

linked to a general improvement of high fat-induced obesity conditions, gut symbiosis and 

inflammation. MD also impacted the production and use of  gut and circulating SCFAs, suggesting 

an indirect contribution of bacteria-produced SCFAs to obesity. 

 

5.2.6 Supplementary Data 

Supplementary Table 5.1: distribution of bacterial phyla before the MD intervention, after 6 and 12 months. 
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Supplementary Table 5.2: distribution of bacterial orders before the MD intervention, after 6 and 12 months. 

 

 

 

 

Supplementary Figure 5.1: impact of MD on microbiota at the genus level. Venn diagram of identified genera before 
(red) and after (green and blue) MD (A); bar graphs reporting the distribution of the most abundant genera in the three 
groups (B) and in each subject (C); score plot of  O-PLS-DA reporting the three clusters of patients before (red), after 6 
(green) and 12 (blue) months of MD; hierarchical clustering heatmap of the most relevant genera within each time point 
(E). 
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Supplementary table 5.3: distribution of bacterial Genera before the MD intervention, after 6 and 12 months. 
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Supplementary Figure 5.2: impact of MD on microbiota at the specie level. Venn diagram of identified species before 
(red) and after (green and blue) MD (A); bar graphs reporting the distribution of the most abundant genera in the three 
groups (B) and in each subject (C); score plot of  O-PLS-DA reporting the three clusters of patients before (red), after 6 
(green) and 12 (blue) months of MD; hierarchical clustering heatmap of the most relevant species within each time point 
(E). 

 

 

 Supplementary Figure 5.3: GO term and EC Enzyme analysis of the identified microbial peptides/proteins. Distribution 
of peptides/proteins associated to molecular functions (A), biological processes (B) and chemical reactions catalyzed by 
enzymes (C) was compared between the three time points of MD intervention: before (red), after 6 (green) and 12 (blue) 
months. 
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6 CONCLUSIONS AND FUTURE PERSPECTIVES  

 

In the present thesis, proteomic, peptidomic and metabolomic analysis were performed to 

investigate various biological aspects of cancer, viral infection, and metabolic diseases. All the 

studies were carried out through using untargeted approach using a high-resolution mass 

spectrometry coupled with liquid or gas chromatography. 

The first part of the thesis focused on MS-based cancer proteomics. Currently, cancer proteomics is 

playing a crucial role in understanding mechanisms of disease pathogenesis, metastasis and 

chemoresistance [319], and in identifying novel biomarkers [320] or therapeutic targets [321] for 

diagnosis, prognosis, and treatment of patients.  

Proteins and peptides have been proposed as active targets of most cancer therapeutics including 

the growing field of immunotherapies. The first study focused on cancer vaccine-based 

immunotherapies. Our findings demonstrated that salmonella infection of STSs/bone sarcoma 

primary human cells induces the release of immunogenic peptides in the extracellular medium. The 

peptides resulted not patient specific but are shared among several patients. They have been 

selected for their overrepresentation in Salmonella treated cell secretomes and for their HLA-

binding ability. In vitro results showed their immunogenic activities. These preliminary results 

suggested that these 12 peptides can be considered as a ‘‘signature’’ of antigens that could be used 

as a universal sarcoma vaccine treatment. Future studies will purify the candidate peptides and will 

validate their immunogenic capabilities through in vivo experiments. If successful, the use of 

universal peptides will have tremendous translational relevance because providing immediate 

benefit to metastatic sarcoma patients. 

 

The ability to effectively cure and treat cancer is directly dependent on the ability to detect cancers 

at their earliest stages. MS-based proteomic analysis is a key method for the rapid identification of 

cancer-specific biomarkers, which may contribute to the detection of early-stage cancer. Currently, 

invasive procedures are required for definitive histological and bio-molecular diagnosis of MPM 

[37]. Consequently, there is a critical need for a specific non-invasive biomarker-based screening 

test to potentially diagnose mesothelioma at an early stage and thus to improve the overall survival 

of patients. In the second study of the present thesis, we employed an untargeted proteomic 

discovery approach to identify potential MPM biomarkers in serum and pleural effusion that were 
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then validated on a bigger cohort of patients including lung adenocarcinoma patients, healthy 

subjects, and patients with lung hyperplasia. Two candidate biomarkers were confirmed by ELISA: 

Gelsolin for serum and Lumican for pleural effusion. Their levels were also higher in patients with 

sarcomatous, and biphasic subtypes compared to the epithelioid one, suggesting their potential use 

for the detection of the histological subtype. Moreover, high Lumican and Gelsolin levels were 

significantly associated with shorter survival times, confirming them as markers for poor MPM 

prognosis. Finally, the bioinformatic analysis highlighted the overall involvement of proteins related 

to the inflammatory and immune response in the disease. Our data reported new and high-specific 

biomarkers for the diagnosis and treatment of MPM in an early stage to have better outcome and 

overall survival of patients. The diagnostic accuracy of our proteomic signature was comparable 

with standard biomarker assays already optimized for clinical use. Its increased sensitivity and 

sensibility for the detection of MPM may complement current diagnostic approaches for monitoring 

people at risk for the cancer. Its prognostic ability may support patient's stratification and treatment 

selection. We believe that the results reported in this exploratory study represent an additional 

diagnostic approach for informing clinical decisions for patients at risk for MPM using MS-based 

proteomics in plasma and pleural effusions. Future research should focus on combinations into 

biomarker panels and a combination of biomarker matrices, as well as new markers. 

 

The third study of the thesis mainly focused on cancer patients affected by COVID-19 disease. Cancer 

patients, as elderly and immunosuppressed subjects, are particularly at risk of SARS-CoV2 infection 

and may present a more serious form of COVID-19 disease [129]. The mechanisms that drive their 

predisposition towards severe forms of COVID-19 have not been deciphered yet. Since metabolic 

disorders are associated with homeostatic frailty, that predispose to the onset of infection and 

cancer [91,92]. In the third part of the thesis we have carried out a proteomic analysis to identify 

immuno-metabolic pathways that intersect Sars-Cov-2 infection and cancer. The emerging 

proteomic profile of Sars-Cov-2 and cancer patients showed alterations in the modulation of 

pathways and proteins associated with immunodeficiency, susceptibility to viral infection and 

inflammatory modulation. These results suggest that the concomitant presence of cancer condition 

and viral infection may increase the inflammatory state of patients, contributing to extra pulmonary 

inflammatory complications and fragility in cancer patients. Another remarkable result emerging 

from these data is the presence of several potential biomarkers correlated with the 

immunometabolic status of CA-COVID-19 patients. This is the first study that characterizes the 
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proteomic content of PBMCs from CA-COVID-19 patients. This proteome-profiling study, together 

with additional data obtained from metabolomic, lipidomic and flow cytometric analysis, could offer 

a great opportunity to explore the interference mechanisms elicited by viral infections and tumors 

coexistence providing not only an overview of the balance of benefits and risks when planning 

normally routine cancer treatments, but also new therapeutic targets for the treatment of patients 

with cancer affected by COVID-19. Future studies will validate in vitro the molecular mechanism and 

pathways altered in CA-COVID-19 patients. 

 

The fourth study discussed in the present thesis focused on the investigation – via proteomic 

approach - of the host circulating exosome’s response to Sars-CoV-2 infection. Our findings showed 

that circulating exosomes are strongly involved in the processes associated with SARS-CoV-2 

infection. The proteomic analysis of plasma exosomes identified several molecules involved in 

immune response, inflammation, activation of coagulation and complement pathways, suggesting 

a significant role of the exosomes in the mechanisms associated to tissue damage and multiple 

organ dysfunctions, which are typical of COVID-19 disease. Another remarkable result emerging 

from these data is the presence of several potential biomarkers that are well correlated with the 

severity of the disease.  

At the beginning of the pandemic, ours was the first study that characterizes the circulating 

exosomal proteins and pathways from SARS-CoV-2 infected patients. Monitoring exosomal content 

during infection may contribute to a better understanding of whether exosomes support viral 

spreading or induce immunological protection, not only for COVID-19 but also for other diseases. 

Following studies on vesicles showed that circulating EVs contribute to the production of antibodies 

and protective immunity [229,230]. In addition, clinical trials have shown some positive results in 

the therapeutical use of EVs indicating that EVs can help patients recover from COVID-19 [232]. EVs, 

as carriers for pathogenic vaccines, have been proposed as a new path for the development of 

effective novel COVID-19 pneumonia vaccines [234,235]. 

The last part of the thesis reports a metaproteomics and metabolomics analysis of the gut 

microbiota in pediatric obese children before and after six and twelve months of MD intervention. 

Gut microbiome is important in multiple aspects of physiological processes related to health and 

diseases [236,237]. Several factors, including nutrition, have been shown to affect the composition 

of gut microbiota [220]. Our results showed that MD induces in pediatric obese patients an 
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increasing of the Bacteroidetes/Firmicutes ratio and the modulation of several bacterial species that 

were already linked to a general improvement of intestinal dysbiosis, inflammation and metabolic 

syndrome induced by high-fat diets. In addition, MD also impacted the production and use of gut 

and circulating SCFAs, suggesting an indirect contribution of bacteria-produced SCFAs to obesity. 

Although the modification of the gut microbiota composition by diet has been reported before, 

there are remarkably few studies investigating, via metaproteomic and metabolomic 

approaches, their influence on the microbiota activity and functionality. In this scenario, mass 

spectrometry can play a central role in the study of the interaction of the gut microbiome with the 

human health state. The combination of more than one omics science looks to be a promising 

strategy for studying the complex relations between the host, the gut microbiota, and diet. 
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