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Abstract: Cannabis (Cannabis sativa L.) is an outstanding source of bioactive natural products, with
more than 150 different phytocannabinoids isolated throughout the decades; however, studies of
their bioactivity have historically concentrated on the so-called “big four” [∆9-THC (1a), CBD (2a),
CBG (3a) and CBC (4a)]. Among the remaining products, which have traditionally been referred
to as “minor cannabinoids”, cannabinol (CBN, 5a) stands out for its important repercussions and
implications on the global scientific landscape. Throughout this review, we will describe why CBN
(5a) deserves a prominent place within the so-called “cannabinome”, providing an overview on its
history, the syntheses developed, and its bioactivity, highlighting its promising pharmacological
potential and the significant impact that the study of its chemistry had on the development of new
synthetic methodologies.
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1. Introduction

There is extensive historical evidence that cannabis (Cannabis sativa L.) has been used
for different purposes, among them industrial [1], ornamental [2], and pharmaceutical (e.g.,
treating rheumatic pain, constipation, gout, and gynecological disorders) [3] applications.
Nowadays, the intake of marijuana is permitted in many countries of the world for the
treatment of different pathologies [4], including nausea caused by chemotherapy, anorexia
in patients suffering from AIDS, and pain management [5,6].

The biological activity of cannabis is strictly related to phytocannabinoids, the hall-
mark secondary metabolites of this remarkable plant [7]. This class of meroterpenoids
is characterized by great chemical diversity among its constituents; however, a general
phytocannabinoid structure is easily identifiable due to its characteristic hybrid nature;
since this class derives from the merging of polyketides and amevalonate biosynthetic
pathway, a resorcinyl core decorated with p-oriented isoprenyl residues and an alkyl side
chain is easily identifiable [8].

Despite this impressive variety, early studies in this field focused almost exclusively
on the narcotic principle of marijuana, ∆9-tetrahydrocannabinol (∆9-THC, 1a, Figure 1),
eventually expanding to the other related compounds, which are cannabidiol (CBD, 2a,
Figure 1), cannabigerol (CBG, 3a, Figure 1), and cannabichromene (CBC, 4a, Figure 1), that
together form a group of compounds often referred to as “the major cannabinoids” or “big
four”[9]. As our understanding of the biological mechanisms underlying ∆9-THC narcotic
properties developed, the endocannabinoid system (ECS) was discovered [10], and its
complexity, homeostatic role, and potential for drug discovery prompted a reconsideration
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of the other three major cannabinoids derived from cannabis. In addition to these studies,
CBD (2a) was developed into a standardized extract (Sativex) and as an active pharma-
ceutical ingredient (API) (Epidiolex). The latter is the drug of choice for the treatment of
certain rare genetic forms of epilepsy, while Sativex (a combination of ∆9-THC and CBD) is
used to treat spasticity associated with multiple sclerosis [5]. Likewise, CBG (3a) and CBC
(4a) found their way into the literature as well [11,12].
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Most of the studies on phytocannabinoids, both chemical and biological, have focused
on the “big four” due to their high extraction yield from vegetable sources or easy accessibil-
ity through total synthesis [11–17]. However, cannabis plants are also capable of producing
more than 150 other compounds referred to as “minor cannabinoids” [18], which have
significant structural differences and specific biological properties [19,20]; among these
compounds, one stands out in particular, namely cannabinol (CBN, 5a, Figure 1).

CBN (5a) is one of the most famous phytocannabinoids in C. sativa, and although
several phytocannabinoids have been identified in different plants and fungi, CBN (5a) has
only been identified in cannabis. In the cannabinoid family, CBN (5a) is unique in several
ways, the main one being its origin: whereas the acidic precursors of major cannabinoids
(1b, 2b,4b, Figure 1) are generated by the result of different cyclizations of the terpenyl
moiety of cannabigerolic acid (CBGA, 3b, in turn obtained from the condensation of olive-
tolic acid with geranylpyrophosphate) mediated by particular cyclases [21], a biosynthetic
pathway for cannabinolic acid (CBNA, 5b, Figure 1), and so of CBN (5a) itself, has not been
identified; the latter is a degradation artifact of ∆9-THC (1a) which, as result of air oxidation,
undergoes aromatization at the level of the menthyl moiety [22]. However, small amounts
of CBNA (5b) have been found in some hemp samples [23], suggesting that, in particular
conditions, oxidative degradation may also occur to tetrahydrocannabinolic acid (THCA,
1b, Figure 1), the acidic precursor of ∆9-THC (1a), as well as before decarboxylation.

CBN (5a) was probably considered a “minor” phytocannabioid owing to its unfortu-
nate and confusing discovery: it was the first phytocannabinoid to be isolated from hashish
in the late 19th century, but its structure was not fully solved until 1940 due to some issues
related to both nomenclature misunderstandings and the nature of the plant material used
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for the extraction (see Section 2). This confusing situation—associated with its limited
availability and the discovery of more interesting bioactive phytocannabinoids—severely
hindered its characterization from a biological and pharmacological standpoint.

Therefore, our purpose is to give this forgotten and mistreated phytocannabinoid due
prominence and attention, focusing on its well-known synthetic pathways and highlighting
the urgent need to fill the gaps in its biological field.

2. History

Marijuana is perhaps one of the oldest plants grown by mankind, so much that we
can say that Cannabis sativa L. and humanity share a close and intertwined history [24].
From the perspective of time, CBN (5a) probably plays the most important role of all
the cannabinoids: due to its exceptional stability and direct chemical relationship with
the psychoactive constituent ∆9-THC (1a), the natural product has been assumed to be
the most relevant marker [25] for the identification of narcotic cannabis in archaeological
plant samples.

CBN’s (5a) extraordinary stability has been demonstrated by the discovery of plant
material (seeds) dating back to 750 BC, found in a tomb in the Xinjiang-Uighur autonomous
region (China), still containing high levels of the molecule [26].

Also attributed to CBN (5a) are the great uncertainty and ambiguity that plagued
the first studies on the psychotropic properties of C. sativa: a significant limitation of the
initial researches was related to the poor quality of the plant material investigated, which
was mostly imported, directly or through Egypt, from India [27]. As a result of the long
journey between the collection site and the European laboratories, usually lasting months,
combined with uncontrolled and careless storage conditions, a sharp reduction in ∆9-THC
(1a) levels in favor of CBN (5a) was achieved, leading to a relative falsification of the
biological observations [28].

Wood coined the term “cannabinol” at the end of the 19th century in order to describe
the “red oil”, a dense resin containing both CBN (5a) and other major phytocannabinoids as
well [29]; these compounds are brownish and colorless oils or white solids, whereas the ruby
red color likely resulted from quinoid structures [30] forming during the oil purification. Ob-
taining this resin required a difficult and complex preparation optimized by Wood himself,
Spivey, and Easterfield at Cambridge University, and entailed the distillation of ethanolic or
ethereal Cannabis extract at reduced pressure (2 mm) and collecting the vapors at a temper-
ature of between 100 and 220 ◦C (corresponding to a bath temperature of 170–300 ◦C) [29].
Initially considered to be a pure compound, “red oil” was acetylated by Easterfield resulting
in a crystalline compound with an optically inactive nature (6a, Figure 2). Its natural phenol
(5a) was then referred to as “cannabinol”, taking the name used previously for the narcotic
red oil and making CBN (5a) the first phytocannabinoid isolated [31].
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A tragic fate marked by CBN (5a) awaited the trio of scientists, despite their initial
promising results: Spivey died in an explosion during the nitration of the “red oil” [32],
while Wood became severely ill after voluntarily testing its effects [33]. Aside from this,
Easterfield is also reported to have died during this research, due to an explosion associated
with the hydrogenation of the “red oil”, though later sources report that he survived and
relocated to New Zealand [34].

An additional intriguing, albeit tragic episode related to the first research on CBN (5a)
involves another scientist of the same age, C. R. Marshall, who ingested approximately
100 mg of “red oil” as a means of combating boredom during the distillation of diethylzinc,
a highly flammable liquid, to assess whether the hypothetic compound was narcotic.
A little more than 45 min later, he was found leaning against the distillation flask in the
lab, giggling and repeating “this is lovely” as flames spread around him due to oxygen
leaks that set fire to diethylzinc. Only the prompt intervention of Marshall’s colleagues
prevented a catastrophe, and he recovered quickly afterward [35]. Despite its historical
significance, the “red oil” brought, in addition to the tragedies mentioned above, a great
deal of confusion to the cannabis research community during its early years, mainly due
to two major factors: first, the issue of the name “cannabinol” itself, which has been
transferred from the distillate (narcotic) to the natural product (inactive) [31]; the second
reason is related to the fact that the plant material from which the oil was distilled often
exhibited a fluctuating phytochemical profile resulting from different methods of storage
under ambiguous conditions, a profile further influenced by the dramatic conditions of the
resin distillation [27].

A “full stop” to the confusion that hovered over CBN (5a) was posed in the 1930s
by Cahn (famous for nomenclature and stereochemistry with the Cahn–Ingold–Prelog
rules [36]): by defining red oil as “raw cannabinol” and the pure compound as “cannabinol”,
he was able to elucidate almost completely the structure of the natural product through
degradation studies, identifying a dibenzopyranic structure with the presence of a phenol
and of a n-pentyl on the resorcinyl portion, indicating their relative positions [37].

In the following decade, two scientists worked independently on elucidating this struc-
ture, Roger Adams from Illinois State University and Alexander R. Todd (“Tod Almighty”
to his students [38]) from the University of Manchester, obtaining several results that still
have significant implications for the field of cannabinoids research. In his own experiments,
the first obtained crystalline phenylurethane of CBN (6b) during a procedure involving
3,5-dinitrobenzoylazide treatment of “red oil” [39]; instead, the second sought to remove
virtually all CBN from the mother liquor as p-nitrobenzoyl chloride ester (6c) [40], allowing
him to isolate another cannabinoid, later identified as CBD (2a) [41]. Through a total
synthesis of the CBN (5a) in 1940, Adams was able to establish the structure of the molecule
definitively [42] (see Section 3.2).

Over the following decades, with the isolation and characterization of major phyto-
cannabinoids, research on CBN (5a) was slowly set aside, eclipsed by the important and
marked pharmacological activity of two compounds in particular, ∆9-THC (1a) and CBD
(2a). The diphenyl structure of the natural compound, however, makes it an important
model compound for the development of new synthetic methodologies that have led to the
design of numerous total syntheses (see Section 3).

3. Synthesis

In today’s world, total synthesis has advanced dramatically thanks to powerful
methodologies and sophisticated instruments; however, even for structures that may
appear small and simple at first glance, the total synthesis of organic molecules still poses
significant challenges for chemists, especially in terms of time efficiency, yields and, more
importantly, environmentally friendly processes [43].

The need for simple and effective syntheses of CBN (5a) arises from the fact that ex-
tractions from plant sources are extremely limited for the following reasons: first, the yields
are not very reproducible, since the concentration of the natural product is closely related



Plants 2022, 11, 2896 5 of 21

to the state of conservation of the plant materials; in addition, CBN (5a) exhibits character-
istics of polarity and solubility that are similar to those of other cannabinoids—primarily
∆9-THC (1a)—factors that make extraction a disadvantageous option. In addition to deriva-
tization from “red oil” [29], currently new, more modern methods have been reported,
primarily using long-lasting liquid extraction in a Soxhlet apparatus or pressurized liquid
extraction [44], with ultrasonication of the extract reported to be an effective method for
increasing the extraction yield [45].

Throughout the course of the last century, synthetic methodologies have been refined,
leading to several strategies to finally synthesize CBN (5a) in excellent yields and solving
the problem of obtaining this compound through extraction from the plant.

3.1. Semisynthesis

Since CBN (5a) is an oxidative degradation product of D9-THC (1a), aromatization of
its natural precursor or its analogues is one of the simplest and most effective ways to finally
achieve it. Different methods have been proposed for oxidizing the C ring of D9-THC
(1a) and several of its regioisomers to CBN (5a): Adams first reported this reaction under
relatively harsh conditions (heating with sulfur at approximately 250 ◦C) [42]. The reaction
can be performed, in a less extreme environment, using N-bromosuccinimide and carbon
tetrachloride in the presence of UV light as well, as reported by Razdan [46]. Recently,
chloranyl (tetrachloro-1,4-benzoquinone) was found to selectively oxidize D9-THC (1a)
while leaving other isomeric tetrahydrocannabinols unaffected [47]. Another protocol for
dehydrogenation, involving selenium dioxide and trimethylsilyl polyphosphate (prepared
from P4O10 and hexamethyldisiloxane), has also been described [23].

We have recently reported that the iodine treatment of D9-THC (1a) and THCA (1b)
directly produces CBN (5a) through a series of iodination–dehydroiodination steps driven
by the transition from menthyl to p-cymyl aromatization (Scheme 1) [48]. Likewise, CBD
(2a) or CBC (4a) can be used as starting materials, yielding between 50 and 70%. As
a result of the acidic environment, CBD (2a) in situ cyclization occurs to D9-THC (1a),
whereas with CBC (4a), the addition of iodine to the chromene bond causes the electrocyclic
opening of the heterocyclic ring, followed by a hetero Diels–Alder reaction, which leads
to tetrahydrocannabinol derivatives that are then aromatized through iodine addition-
hydroiodic acid elimination reactions [49].

3.2. Total Synthesis through Lactonic Intermediate

The majority of the total synthesis of CBN (5a) involves the achievement of lactone
intermediate 7a or 7b (Figure 3), which is then converted into 5a by gem-methylation, and
the subsequent deprotection of the phenolic hydroxyl, if needed.

This includes the first total synthesis of CBN (5a) conducted by Adams in 1940 in order
to confirm the chemical structure of the natural product (Scheme 2) [42]. In his synthesis,
Adams relied on the condensation of 5-n-amyl-1,3-cyclohexanedione (9), obtained from the
hydrogenation of olivetol (8) with Nickel–Raney, with methyl-2-bromobenzoic acid (10) to
form the corresponding pyrone 11. The subsequent aromatization carried out with sulfur
provides lactone 7a, which was gem-methylated through the use of methyl magnesium
iodide to finally provide 5a with an overall moderate yield.

Nevertheless, in the most recent synthetic strategies, the aromatization step has been
set aside in favour of other techniques, which allow for a greater degree of efficiency
and yield to be achieved. Depending on the method by which lactone 7a was obtained,
these can be grouped into two main categories: through a biphenyl coupling and through
cyclization reactions.
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3.2.1. Synthesis through a Biphenyl Coupling Approach

In order to complete the tricyclic structure of CBN (5a), one of the most common
approaches is to combine two aromatic portions in a coupling reaction to connect rings A
and C of the natural product, then an intramolecular reaction to complete the formation of
ring B; this is probably due to the extensive amount of research and development that has
been undertaken in the last decades in an attempt to optimize the synthesis of the biphenyl
core, one of the most common privileged structures in medicinal chemistry [50].

Salemink et al. exploited Grignard’s chemistry for the coupling of the two aro-
matic moieties of rings A and C [51]. The Grignard’s reagent derived from 2-bromo-1,3-
dimethoxy-5-pentylbenzene (13) was reacted with the oxazoline derivative 12 to achieve
the corresponding biphenyl 14. Next, deprotection of the phenolic hydroxyls and lac-
tonization are obtained in a one-pot through the use of an HI/acetic anhydride mixture,
which generated lactone 7a, successively methylated to 5a using MeMgI in accordance with
Adams’ method [42] (Scheme 3). An optimized version of this approach by Miyano et al.
is not based on the use of the oxazoline derivative 12, but on its more stable and easily
available 2,6-dialkylphenolic benzoate ester analogues [52].
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Göttlich et al. synthesized the biphenyl core through a modified Ullmann–Ziegler
approach using Gilman’s cuprate 16, obtained through ortho-lithiation of bis-methylolivetol
(15) with n-butyl lithium and a subsequent treatment with copper bromide-dimethylsulfide
complex. Cuprate 16 then reacted with iodobenzamide 17 to provide the corresponding
biphenyl 18 according to the Ullmann–Ziegler cross-coupling, and, after demethylation
and subsequent acid-catalyzed cyclization, 7a was achieved with 51% yield [53]. Moreover,
Göttlich modified the insertion of geminal dimethyl by using two equivalents of methyl-
lithium to afford tertiary benzylic alcohol 19, which was then cyclized by treatment with
trifluoroacetic acid to produce 5a with a yield of 85% over two steps (Scheme 4).
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Wang et al. relied instead on a Suzuki coupling and then two subsequent Pd(II)/Pd(IV)-
catalyzed carboxyl-directed C-H activation/C-O cyclization for the synthesis of the biaryl
lactone precursor and the insertion of the phenolic oxygens [54] (Scheme 5). After a first
cyclization of compound 22, obtained by the Suzuki coupling of boronic acid 20 and
bromide 21, the corresponding lactone 23 underwent nucleophilic attack of NaOMe was
then quenched with MeI. Next, hydrolysis of the ester gave the corresponding acid 24.
An additional C-H activation/C-O cyclization was conducted in order to complete assembly
of the molecule’s B ring, resulting in the biphenyl lactone 25, which was then deprotected
and gem-methylated using the Göttlich’s protocol [53].
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Wang’s group also exploited an intramolecular aromatic C−H/C−H coupling cat-
alyzed by palladium to obtain the corresponding biphenyl core [55] (Scheme 6). A sul-
fonylpyridyl protection on the precursor 26 is required for the coordination of palladium and
activation of the C-H bond (27), which resulted in excellent yields of 6H-benzo[c]chromene
28. The subsequent oxidation and deprotection of the O-(2-pyridyl)sulfonyl group allowed
for obtaining lactone 7a, which was been gem-methylated by means of the protocol opti-
mized by Göttlich [53].
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The work of Hertweck et al. was instead characterized by a totally different inspiration:
bypassing the use of transition metals, where a photochemical approach was used to
synthesize the biphenyl portion [56] (Scheme 7). By irradiation of sulfonamide 31, easily
obtained by a nucleophilic substitution reaction involving sulfonyl chloride 30 and benzyl
amine derivative 29, the biaryl nitrile 32 was obtained, which could be simultaneously
demethylated, hydrolyzed and lactonized with a yield of 67% to obtain lactone 7a, readily
converted into 5a as previously described [55].
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3.2.2. Synthesis through a Cyclization Approach

In addition to the previously described methodologies, a second class of common
approaches for the synthesis of biaryl lactone 7a takes advantage of different cyclization
reactions to easily build one or more cycles of the triciclyc natural product.

Through a regioselective [2 + 2 + 2] cyclotrimerization reaction catalysed by transition
metals, Deiters et al. were able to achieve the formation of rings B and C in a single
step [57] (Scheme 8): the substituted diyne 35, obtained from salicylaldehyde derivative 33
after O-alkylation with 34 and reaction with TMS-diazomethane, underwent an efficient
and regioselective Cp*Ru(cod)Cl catalyzed [2 + 2 + 2] cyclotrimerization reaction with
propargyltrimethylsilane (36) under microwave irradiation, providing pyran 37 with a yield
of 88% as a single regioisomer. Subsequent removal of the silyl protections using TFA
afforded 38, and its next oxidation, gem-methylation and deprotection finally resulted in
5a with a promising yield.
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The multicomponent approach used by Bodwell et al. is also of interest, synthesizing
6H-dibenzo[b,d]pyran-6-ones via multicomponent domino reactions [58] (Scheme 9). The
general transformation was comprised of six reactions: Knoevenagel condensation between
salicylaldehyde derivative 33 and diester 39, followed by transesterification to lactone 40;
enamine formation from acetone and pyrrolidine that then participated in an inverse elec-
tron demand Diels–Alder reaction (IEDDA) with 40, affording the corresponding tricyclic
derivative 41, a 1,2-elimination to diene 42, and, next, dehydrogenation to 43. During the
key inverse electron demand Diels–Alder (IEDDA) step, both diene and dienophile were
generated in situ using a secondary amine.

On the other hand, Minuti et al. used another Diels–Alder cyclization approach to
obtain the final biphenyl 47 [59] (Scheme 10). Using olivetolic derivative 44 and methyl
propiolate 45 as starting materials, phenylcyclohexadiene 46 was formed with excellent
yields, and this was then aromatized with the aid of DDQ. The following steps followed
what has already been reported in the literature [42].

Chang et al. also used Diels–Alder chemistry, although with a different point of view:
their synthesis relied upon intramolecular Diels–Alder cyclization between a pyranonic
moiety and a propargyl portion (48), then a retro-hetero Diels–Alder (49) in order to obtain
the 6H-benzo[c]chromene 50 with the loss of a carbon dioxide molecule [60]. After oxidation
to lactone, gem-dimethylation and deprotection of the propargyl group, CBN (5a) was
obtained with reasonable yields (Scheme 11).
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Scheme 11. Chang’s synthesis of CBN (5a) by intramolecular Diels–Alder approach.

The approach taken by Chi et al. involved instead a formal [4 + 2] method to construct
a new benzene ring, which enabled them to obtain different benzocoumarins, including
cannabinol [61] (Scheme 12). In this process, the C ring was formed in excellent yields
through the interaction between the enol form (53) of aldehyde 51 and the acetylcoumarin
derivative 52. The reaction proceeded via a Michael-type addition of the enal g-carbon of in-
termediate 53 to coumarin 52 forming intermediate 54, which underwent an intramolecular
aldol reaction to form tricyclic intermediate 55. Following intramolecular acetal forma-
tion, 56 was obtained. As a result of the elimination of an acetate from 56, compound 57
was formed; then, the reaction was completed via spontaneous oxidative aromatization
(with air as an oxidant) to 25. The subsequent synthetic steps followed what has already
been reported [57].

3.3. Total Synthesis through Non-Lactonic Intermediate

The development of syntheses without the lactone intermediate 7a is relatively rare;
however, these syntheses are equally important and play a fundamental role in the back-
ground of the chemistry of CBN (5a).

As part of their studies on the synthesis of 6-alkyl-6H-benzo[c]chromenes, Ruchirawat
et al. developed a one-pot cyclization/selective ether cleavage reaction which was then
applied to the total synthesis of CBN (5a) [62] (Scheme 13). During the event, the product of
Suzuki coupling (60) between bromide 58 and boronic acid 59 was gem-dimethylated to 61
before the formation of the B ring, obtained by treatment of the latter with PBr3, followed
by the addition of LiI, which led to the corresponding benzo[c]-chromene derivative 62.
Final demethylation afforded CBN (5a) in good yields.

More recently, our research group, inspired by the reactivity studies of natural phyto-
cannabinoids with molecular iodine [48,63], developed the first one-pot total synthesis of
CBN (5a) from commercially available starting material exploiting an iodine-mediated decon-
structive annulation [49] (Scheme 14). In the event, olivetol (8) and citral (63) reacted in basic
condition to afford the corresponding homoisoprenylchromene CBC (4a), which, treated
with iodine after removal of the amine catalyst using ionic acidic resin, underwent electrore-
version and then hetero Diels–Alder cyclization through a prenylchromene-benzochromane
rearrangement, affording a stereoisomeric mixture of THC derivatives 65. The final iodine-
catalyzed aromatization was a driving force strong enough to move the overall equilibrium
toward the final product CBN (5a), afforded in an outstanding 82% yield.
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4. Biological Profile

The ECS is an extremely important biological system and the main target of the
phytocannabinoids: it modulates a wide range of cognitive and physiological processes
that are necessary for regulating the body’s homeostatic state [64]. Although the mechanism
by which the ECS regulates metabolism is not completely understood, it is thought that its
action is largely through cannabinoid ligands activating cyclic AMP/receptor activation-
related pathways [65].

The majority of the biological studies conducted on the cannabinome have focused
on the “big four” phytocannabinoids; nevertheless, different studies have been conducted
to elucidate CBN (5a) pharmacological potential, which have revealed a peculiar and
interesting, although sometimes contradictory, biological profile.

4.1. Biochemical Assays
4.1.1. Cannabinoid Receptors (CBs)

CBs are the primary and most studied targets of phytocannabinoids, as well as
eponymic receptors. They belong to the G protein-coupled receptor superfamily, and
currently two subtypes of cannabinoid receptors are known, namely CB1 and CB2. Gen-
erally speaking, the direct activation of CB1 can be characterized by narcotic (euphoric)
effects, as well as analgesic, orexic, and anxiety-modulating activities, with the narcotic
ones absent in allosteric activators. The activation of CB2 has instead anti-inflammatory
and immunity-modulating properties [64]. Despite the fact that CBN (5a) is an agonist
of both types of CBs, it exhibits different properties depending on the receptor type. The
affinity of CBN (5a) for the CB1 receptors are 10 times lower when compared to that of
D9-THC (1a) [66–68]; moreover, CBN (5a) is less effective than D9-THC (1a) at inhibiting
the CB1 receptor-mediated activity of adenylyl cyclase [66]. The activity on CB2, on the
other hand, has been reported to have a changeable profile from study to study; while
previously CBN (5a) was considered an agonist with the same potency as D9-THC (1a) [69],
it has recently been reported to have a potency between 2–4 times lower [66]. It is possible
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that the discrepancies are caused by different concentrations of CBN (5a) used in each
experiment, as well as by the different conformational states of the receptors in the different
tissues involved in the test.

As for CBN (5a) activity on the hypothetical CB3 receptor—the GPR55—there is very
little information published, and the few available data show that it has an almost negligible
effect in vitro [70].

4.1.2. Transient Receptor Potential Channels (TRPs)

Several types of animal cells contain TRP channels, which are ionic channels located
primarily on their plasma membranes. Various chemical and physical stimuli (as an ex-
ample, heat and cold somatosensation) are transduced by these membrane proteins, and
pain signals are also generated by them. They are also capable of causing and sustaining
inflammation as a result of their activation [71].

Several types of TRPs are modulated by CBN (5a): it acts as an agonist at TRPV1,
TRPV2, TRPV3 and TRPV4 channels, stimulating the Ca2+ influx, as well as activating Ca2+-
dependent pathways in the cells [71]. Regarding other TRP variants, CBN (5a) inhibits the
icilin-induced activation of TRPM8 (also known as the cold and menthol receptor 1, CMR1)
by acting as a potent antagonist [71]. The natural compound has also been demonstrated to
stimulate the TRPA1 channel in a potent and effective manner, exhibiting an EC50 value of
0.18 ± 0.02 mmol [71].

4.2. Pre-Clinical and Clinical Assays

It does not appear that CBN (5a) has been extensively investigated preclinically or
clinically (no human pharmacokinetic and metabolism data have been reported), although
the published results indicate that CBN (5a) has a promising pharmacological profile.
Despite the positive results of the studies that have been published so far, the results are
often still open to doubt, since a large number of the research did not test the most suitable
pathological endpoints and did not achieve the outcomes that were expected.

4.2.1. Analgesic and Anti-Inflammatory Activity

As an analgesic and anti-inflammatory agent, CBN (5a) has been found to be poten-
tially useful in the treatment of pain. Previous researches have reported that CBN (5a)
can mitigate the symptoms of myofascial pain disorders, including temporomandibular
disorders and fibromyalgia in rats by reducing the mechanical sensitivity induced by intra-
muscular injections of nerve growth factor in the masseter muscles [72], with an increasing
activity when administered in a 1:1 mixture with CBD (2a). CBN (5a) could attenuate the
production of interleukins 2, 4, 5, 13 and decrease allergen mucus production in OVA-
sensitized and challenged A/J mice, classifying it as a potential treatment for allergic
airway diseases [73]. The use of CBN (5a) for the treatment of glaucoma was also suggested
since it prevents inflammation which causes elevated intraocular pressure [74]. Moreover,
preliminary studies have demonstrated that CBN acts as an antioxidant and decreases cell
damage in a cell culture model of Huntington disease [75].

4.2.2. Antibacterial Activity

In the same way that other cannabinoids have been shown to be effective against
a number of antibiotic-resistant bacteria, e.g., CBG (3a) and CBC (4a), CBN (5a) also appears
to have antibacterial properties; it has been proven to be highly effective against multiple
bacteria that are resistant to antibiotics, including methicillin-resistant Staphylococcus
aureus (MRSA), making it a potentially effective treatment for staph infections [76].

4.2.3. Orexigenic Activity

As well as stimulating hyperphagia, CBN (5a) increases food consumption and feeding
time in rats [77,78]. However, since CBN (5a) is not a narcotic, it may have greater potential
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as an orexic drug in conditions where the stimulation of appetite is beneficial, such as
terminal cancer and HIV infection.

4.2.4. Treatment of Epidermolysis Bullosa

The use of CBN (5a) has recently been shown to be effective in the treatment of
epidermolysis bullosa, a group of rare medical conditions characterized by easy blistering
of the skin and mucous membranes. Phase 2 studies undertaken by InMed Pharmaceuticals
are currently in progress [79] as a follow-up of the previous Phase 1 studies conducted
by the same, showing that the CBN (5a) based preparation in development was safe
and well-tolerated on induced open epidermal wounds, causing no systemic or serious
adverse effects [80].

4.2.5. Sleep Induction

As already shown in Section 2, high concentrations of CBN (5a) are found in aged
cannabis products, since it is the main degradation product of D9-THC (1a). As a result
of unclear reasons, CBN (5a) has been associated with the induction of sleep, causing the
cannabinoid to be marketed under the name “the sleepy cannabinoid in old weed” at
dosages generally less than 5 mg/die [81]. Despite this, sleep studies involving CBN (5a)
have not reached a clear conclusion as to whether this claim is true.

CBN (5a) was reported to increase barbiturate-induced sleep time in one study [82],
but this result was not replicated in disaccordance with a previous study [83]. Nevertheless,
as shown in a murine study [84], CBN (5a), combined with D9-THC (1a), increased sedation
synergistically, and this observation was reproduced in a small clinical trial involving
five male volunteers who received oral CBN (50 mg), D9-THC (12.5 mg), or two different
combinations of them (12.5 mg ∆9-THC + 25 mg CBN or 25 mg D9-THC and 50 mg
CBN), separated by a one-week washout period [84]. As well as pain threshold and
skin sensitivity, which are not affected by CBN alone, the combination did not alter the
effects of D9-THC (1a) on heart, blood pressure, and body temperature [84]. Nonetheless,
the combination led to modest increases in some subjective outcomes (drowsiness and
dizziness). It is therefore unsubstantiated that CBN (5a) has sleep-inducing properties,
from a clinical perspective [85].

5. Conclusions

The studies reviewed demonstrate the significant contribution that CBN (5a) has made
to the development of knowledge pertaining, from chemical and biological perspectives,
to the field of cannabinoids, even if in a sometimes indirect and particular manner. Since
the beginning of the chemistry associated with the study of this class of compounds, CBN
(5a) has played a crucial role, actively participating in the clarification of their biological
properties, the elucidation of the structure of the major cannabinoids, and the development
of innovative and efficient extraction and purification processes.

As a result of the subsequent isolation of the major cannabinoids, particularly CBD (2a)
and ∆9-THC (1a), and the discovery of the remarkable biological activity associated with
them, CBN (5a) has unfortunately often been overlooked in favor of its analogues which
demonstrate a more marked and promising biological profile; however, it has recently
regained prominence following the discovery of the ECS and the multitude of targets that
comprise it and provide new avenues for the study and treatment of a broad spectrum
of diseases. Despite the large number of biological studies conducted on this compound,
further research is necessary: extensive data on pharmacokinetics and pharmacodynamics
are required, especially on larger mammals, as well as a complete screening on the large
number of secondary targets correlated to the ECS.

The peculiar biphenyl structure of CBN (5a) has made it the target compound for the
validation of numerous and diversified synthetic techniques, keeping it in high regard from
the 1940s to the present day, and a number of important synthetic methodologies have
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been developed through the study of its chemistry, including a straightforward one-pot
protocol for its synthesis from commercially available source materials.

The current simplicity of synthesis, both of CBN (5a) and its analogues, combined
with the largely unknown biological properties, make this class of benzo[c]-chromenic
structured compounds one of the most powerful platforms for exploration of the biological
space associated with the chemotype of cannabinoids.
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