Supporting information for

Investigating the hydration of C₃A and the evolution of AFm phases in the combined presence of anhydrite and limestone using solid-state NMR, XRD and TG techniques

Valentino Merlo^{a*}, Leonardo Marchese^{b,c}, Daniela Gastaldi^a, Enrico Boccaleri^{c,d*}, Fulvio Canonico^a, Geo Paul^b

^aBuilt - Buzzi Unicem Innovation Lab and Technology, Via Restano 3, 13100, Vercelli, Italy. Corresponding author: vmerlo@buzziunicem.it

^bDipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale A. Avogadro, viale T. Michel 11, 15121 Alessandria, Italy.

^cUPO4Sustainability Center, Viale T. Michel 11, 15121 Alessandria, Italy.

^dDipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale A. Avogadro, piazza S. Eusebio 5, 13100 Vercelli, Italy. Corresponding author: enrico.boccaleri@uniupo.it

²⁷Al MAS NMR

Aluminium is a fundamental building block for various types of minerals formed during the hydration of cement that contribute to the durability of concrete. There are a few aspects of aluminium that makes it a favourable NMR active nucleus for the spectroscopic study of cements and its NMR properties are given in Table S1. ²⁷Al is naturally 100% isotopically abundant and has a very high gyromagnetic ratio as well as very short relaxation time, therefore, routine observation is easy and fast (of the order of few minutes in oxides).

Properties	Magnitude (unit)
Spin number (I)	5/2
Nuclear magnetic moment (μ)	4.30869 μΝ
Gyromagnetic ratio (y)	$6.976 \times 10^7 rad T^{-1} s^{-1}$
Resonance frequency (at 11.75 T)	130.32 MHz
Quadrupole moment (Q)	148.2 mb
Isotopic natural abundance	100 %
Receptivity (relative to 13 C)	1.22×10 ³
Isotropic chemical shift (δ_{iso}) range (oxides)	+10020 ppm
Quadrupole coupling constant (C_Q)	0 - 20 MHz
Asymmetry parameter (η_Q)	0 - 1
Relaxation times (T_1)	< 5 s
Experimental approaches	Static, MAS, CPMAS, MQMAS, REDOR, STMAS

Table S1: NMR properties of ²⁷Al nucleus

²⁷Al nucleus in oxides generally has a large chemical shift range, with respect to the shift scale of proton, thereby making it an attractive nucleus for solid-state NMR. Aluminate minerals observed in cements usually resonate within the 100 to -20 ppm scale with distinguishable chemical shift ranges for the potentially coexisting AlO₄, AlO₅ and AlO₆ polyhedra with often sufficient resolution for quantification. The ²⁷Al NMR investigations on cement pastes showed different contributions in the range 50-100, 25-45 and -10-20 ppm, respectively, due to tetra-, penta- and octa-coordinated aluminium environments, respectively.

Although, crystalline and amorphous aluminate phases in hydrated cements can be equally detected and quantified by ²⁷Al NMR techniques, inherently low spectral resolution from quadrupolar broadening and chemical shift distribution due to the presence of disordered phases makes it challenging for the detailed interpretation, especially for species that appear in the octahedral region (-10 to 20 ppm). However, parameters such as quadrupolar coupling constant and asymmetry parameter can provide significant information that can help in identifying the structurally different Al sites [S1]. Owing to the importance

of chemical shift, most NMR studies of quadrupolar nuclide report isotropic chemical shift (δ_{iso}) along with quadrupolar coupling constant (C_Q) and asymmetry parameter (η_Q).

As stated in the previous section, amongst the C₃A hydration products such as hydrogarnet, ettringite and the various AFm phases, ²⁷Al appear in octahedral coordination and resonate in the narrow chemical shift range of 8.5 to 13.5 ppm. Especially, when multiple AFm phases and/or their solid-solutions exist simultaneously it can be challenging to distinguish the individual phases from their isotropic chemical shift values. In such cases, sometimes it is useful to detect peaks based on centre-of-gravity peak (δ_{CG}) position of the central transition which is related to isotropic chemical shift (δ_{iso}) according to the following equation.

$$\delta_{CG} = \delta_{iso} + \delta_{QIS} \quad (S1)$$

where δ_{QIS} is the quadrupolar induced chemical shift and for the central transition δ_{QIS} is always negative, meaning that δ_{CG} peak position will always be lower in ppm value than the isotropic chemical shift value. For a ²⁷Al nucleus residing in an extremely symmetric environment, the quadrupolar interaction becomes negligible and δ_{QIS} tends to be zero. Therefore, the maximized peak amplitude of the δ_{CG} peak does coincide with the isotropic chemical shift (δ_{iso}) [S1]. However, one must be careful while using δ_{CG} peak position for interpretation as it is affected by quadrupolar interactions leading to a field-dependent shift.

Phase	Site	Coordination	$\delta_{iso}(ppm)^1$	$\delta_{CG}(ppm)^2$	Reference
Tricalcium Aluminate (C_3A)	Al^{IV_1}	4	80.2 ± 0.2	-	S4
	$\mathrm{Al^{IV}}_2$	4	78.5 ± 0.2	-	34
Hydrogarnet (C_3AH_6)	$\mathrm{Al}^{\mathrm{VI}}$	6	12.4 ± 0.1	12.4 ± 0.1	S4
Hydroxy-AFm (C_2AH_8)	$\mathrm{Al}^{\mathrm{VI}}$	6	10.3 ± 0.2	10.3 ± 0.2	S6
Hydroxy-AFm (C_4AH_{13} and C_4AH_{19})	$\mathrm{Al}^{\mathrm{VI}}$	6	10.2 ± 0.2	10.2 ± 0.2	S4
Ettringite $(C_6 A \overline{S}_3 H_{32})$	$\mathrm{Al}^{\mathrm{VI}_1}$	6	13.1 ± 0.1	12.2 + 0.4	G1 0
	Al^{VI}_{2}	6	13.5 ± 0.1	13.3 ± 0.1	812
Monosulphate $(C_4 A \overline{S} H_{12})$	$\mathrm{Al}^{\mathrm{VI}}$	6	11.1 ± 0.2	10.7 ± 0.2	S12

Table S2: ²⁷Al MAS NMR data with isotropic chemical shifts (δ_{iso}), centre-of-gravity peak (δ_{CG}), and coordination for various Aluminium sites in hydrated aluminate phases identified in this study.

Monosulphate ($C_4 A \overline{S} H_{10.5}$)	$\mathrm{Al}^{\mathrm{VI}}$	6	10.2 ± 0.2	9.7 ± 0.2	This work
Monocarbonate ($C_4 A \overline{C} H_{11}$)	$\mathrm{Al}^{\mathrm{VI}}$	6	10.5 ± 0.2	8.6 ± 0.2	S6
Solid-solutions (OH ⁻ , SO ₄ ^{2–} , CO ₃ ^{2–})	$\mathrm{Al}^{\mathrm{VI}}$	6	9.5-11.5	9.5-11.5	This work

¹*Referenced to* $Al(H_2O)_6^{3+}$ *ion in* 1.0 *M* $AlCl_3$ *solution at* 0.0 *ppm,* ²*At* 11.75 *T*

²⁷Al MAS NMR spectra of C₃A, ettringite, monosulfate, monocarbonate, C₃AH₆ and hydroxy-AFm phases, have already been published [S2-S12]. In order to aid the interpretation of the ²⁷Al NMR spectra and peak assignments, Table S2 summarises the ²⁷Al chemical shifts observed for aluminate phases identified in this study.

Table S3: Chemical composition of Anhydrite and Limestone.

Anhyd	rite	Limest	tone
Compound	%	Compound	%
LOI	0.7	LOI	37.99
CaO	44.6	CaO	49.2
SiO ₂	0.1	SiO ₂	7.17
Al_2O_3	0.1	Al_2O_3	2.47
SO_3	54.3	Fe ₂ O ₃	0.99
Fe ₂ O ₃		SO ₃	0.24
MgO	0.1	Na ₂ O	0.06
K_2O		K ₂ O	0.76
Ti ₂ O		MgO	0.83
Na ₂ O		Ti ₂ O	0.1
Minor elements		Minor elements	0.19

Figure S2: ²⁷Al NMR chemical shifts of the main AFm phases.

References

S1. M. Edén, ²⁷Al NMR Studies of Aluminosilicate Glasses, Annual Reports on NMR Spectroscopy, Volume 86, 2015, Pages 237-331.

S2. B. Walkley, J. L. Provis, Solid-state nuclear magnetic resonance spectroscopy of cements, Materials Today Advances 1 (2019) 100007

S3. J. Skibsted, H. Bildsoe, H. Jakobsen, High-speed spinning versus high magnetic field in MAS NMR of quadrupolar nuclei. ²⁷A1 MAS NMR of 3CaO. A1₂0₃, J. Magn. Reson. 92 (1991) 669–676.

S4. J. Skibsted, E. Henderson, H. Jakobsen, Characterization of calcium aluminate phases in cements by ²⁷Al MAS NMR spectroscopy, Inorg. Chem. 32 (1993) 1013–1027.

S5. P. Pena, J. M. Rivas Mercury, A. H. de Aza, X. Turrillas, I. Sobrados, J. Sanz, Solid-state ²⁷Al and ²⁹Si NMR characterization of hydrates formed in calciumaluminate–silica fume mixtures, Journal of Solid State Chemistry 181 (2008) 1744–1752.

S6. P. Faucon, T. Charpentier, D. Bertrandie, A. Nonat, J. Virlet, and J. C. Petit, Characterization of calcium aluminate hydrates and related hydrates of cement pastes by ²⁷Al MQ-MAS NMR, Inorg. Chem. 37 (1998) 3726–3733.

S7. J.M. Rivas Mercury, P. Pena, A.H. De Aza, X. Turrillas, I. Sobrados, J. Sanz, Solid-state ²⁷Al and ²⁹Si NMR investigations on Si-substituted hydrogarnets, Acta Materialia 55 (2007) 1183–1191.

S8. A. Mesbah, C. Cau-dit-Coumes, F. Frizon, F. Leroux, J. Ravaux, G. Renaudin, A new investigation of the Cl–CO₃²⁻ substitution in AFm phases, J. Am. Ceram. Soc., 94 (6) 2011 1901–1910.

S9. T. F. Sevelsted, D. Herfort, J. Skibsted, ¹³C chemical shift anisotropies for carbonate ions in cement minerals and the use of ¹³C, ²⁷Al and ²⁹Si MAS NMR in studies of Portland cement including limestone additions, Cem. Concr. Res. 52 (2013) 100–111.

S10. S. Joseph, J. Skibsted, O. Cizer, A quantitative study of C₃A hydration. Cem. Concr. Res. 115 (2019) 145–59.

S11. T.T.H. Bach, C. Cau Dit Coumes, I. Pochard, C. Mercier, B. Revel, A. Nonat, Influence of temperature on the hydration products of low pH cements, Cem. Concr. Res. 42 (2012) 805–817.

S12. G. Paul, E. Boccaleri, C. Cassino, D. Gastaldi, L. Buzzi, F. Canonico, L. Marchese, Fingerprinting the hydration products of hydraulic binders using snapshots from time-resolved in situ multinuclear MAS NMR spectroscopy, J. Phys. Chem. C. 125 (2021) 9261–9272.