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The Hodge dual operator, recently introduced for supermanifolds, is used to reformulate super Yang-Mills
and supergravity in d ¼ 4. We first recall the definition of the Hodge dual operator for flat and curved
supermanifolds. Then we show how to recover the usual super-Yang-Mills equations of motion forN ¼ 1; 2
supersymmetry, and the obstacles (as seen from the Hodge dual point of view) in the case N ≥ 3. We
reconsider several ingredients of supergeometry, relevant for a superspace formulation of supergravity, in
terms of the Hodge dual operator. Finally we discuss how d ¼ 4 and N ¼ 1 supergravity is obtained in this
framework.
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I. INTRODUCTION

Since its early days, supergravity [1–4] has been
formulated using superspace [5,6] and supergroup mani-
fold [7–13] techniques. In both these approaches local
supersymmetry arises as invariance of the action under
superdiffeomorphisms. While the superspace actions
involve superfields, whose θ (anticommuting coordinates)
expansions contain the physical and auxiliary fields, the
group manifold actions are given directly in terms of these
fields, each of them originating from the supergroup
manifold vielbein.
In the superspace approach, supergravity actions

are constructed as integrals on superspace, and actions
on d-dimensional spacetime are obtained after Berezin
integration on the θ coordinates.
In the supergroup manifold approach, the action is

defined as an integral on a d-dimensional bosonic sub-
manifold of the supergroup manifold. The Lagrangian is a
d-superform, written in terms of the supergroup vielbein
and its exterior derivative.
A theory of integration on supermanifolds in the lan-

guage of differential forms has recently been developed in
Refs. [14–18] and makes use of integral forms, the analog

of top forms for supermanifolds. Earlier papers with
applications of integral and differential forms on super-
spaces to super Yang-Mills (SYM) and supergravity can be
found in [19,20]. Integral forms are instrumental for a
rigorous definition of an action principle and have been
applied in the past years to supersymmetric and super-
gravity models [14–18]. Only integral forms can be
integrated on supermanifolds, and therefore, the d-super-
form Lagrangian must be converted into an integral form.
This can be done by multiplying it with the analog of the
Poincaré dual (as in ordinary integration on submanifolds),
called picture changing operator (PCO), a representative of a
De Rahm cohomology class. It is characterized by a form
number equal to 0 and a “picture number” equal to the
fermionic dimension of the supermanifold, as explained in
Appendix A. If there exists only one such cohomology class,
one can still choose different representatives. For each
choice, the final form of the action will have a different
expression, but all these expressions are equivalent and
correspond to the same field theory. In the case of more than
one cohomology class, one can construct actions describing
physically different theories, each corresponding to a par-
ticular cohomology class.
This procedure extends the group manifold approach and

allows one to make contact with superspace formulations.
One starts from the group manifold (“rheonomic”) action,
determines the cohomology of the corresponding super-
group manifold, and chooses representatives in the coho-
mology classes, i.e., the PCOs. Multiplying the group
manifold Lagrangian by these PCOs yields the action as
an integral form. The choice of PCO within the same
cohomology class is dictated essentially by the (super)
symmetries one wishes to be manifest in the action. The
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superspace action is then obtained as described in Secs. 3
and 4.
Another way to construct integral forms is to combine

pieces with different form and picture numbers, without
reference to a d-superform Lagrangian. This second way
often makes use of a generalization of the Hodge dual for
supermanifolds, introduced in Refs. [16,21] by means of a
generalized Fourier transform.
In this paper we obtain two main results: (i) the extension

to d ¼ 4 of the integral form construction for supergravity,
and the proof of its equivalence with the superspace
formulation, with the same logic used in Ref. [17] for
the d ¼ 3 case, i.e., with the use of appropriate PCOs;
(ii) the reformulation of super Yang-Mills and supergravity
theories in d ¼ 4 by using the super Hodge dual of
Refs. [16,21].
The paper is organized as follows. In Sec. II we use

Cartan calculus and the super Hodge dual to translate
superspace geometry [5,22] in the language of differential
geometry of supermanifolds. We show how the Berezinian
emerges naturally and what its relation is with chiral
volume forms. Super Yang-Mills and supergravity in
d ¼ 4 are reformulated using the super Hodge dual. In
Sec. III we give the group manifold treatment of d ¼ 4
supergravity with the “old minimal” set [23] of auxiliary
fields. The resulting 4-form Lagrangian is then multiplied
by a suitably chosen PCO, thus obtaining an integral form
that can be integrated on superspace. The result is shown to
coincide with the superspace expression of the action as
given in [5], i.e., the superspace integral of the super-
determinant. A similar exercise is carried out in Sec. IV,
where the “new minimal” set of auxiliary fields [24] is
employed. Finally, in the appendixes we discuss in more
detail aspects of supermanifold geometry and give the
derivation of some useful formulas recalled in the text.

II. FIELD THEORIES AND HODGE DUAL
OPERATOR

In this section, we translate some of the superspace
equations in terms of the super Hodge dual introduced
in [16,21]. We use here the following notation: indices
A;B;… refer to the super tangent space: A ¼ ða; αÞ; B ¼
ðb; βÞ, where a; b;… ¼ 0;…; 3 are the tangent vector
indices and α; β;… ¼ 1;…; 4 the spinorial tangent indices.
We denote by M;N;… the curved indices of the super-
manifold M ¼ ðm; μÞ; N ¼ ðn; νÞ where m; n;… are the
indices of the bosonic coordinates and μ; ν;… the indices
of the fermionic coordinates. Collectively, we denote by
ZM ¼ ðxm; θμÞ the coordinates of the supermanifold. We
denote by Rð4j4Þ the superspace (flat supermanifold). In
Appendix A we collect the definitions for forms on
supermanifolds and integration theory; for more details,
we refer to the literature [15,25,26].
After fixing the geometrical setting and discussing some

properties of the super Hodge dual operator ⋆, we present

in this section simple applications to scalar field theory,
Abelian gauge theory, and supergravity. We will use
uniquely the Hodge dual operator, without referring
to the group manifold (or rheonomic) approach [10]
(see [12,13] for recent reviews), where the action is
constructed [14,15,17] from the rheonomic Lagrangian
as follows:

S ¼
Z
SM

Lð4j0Þ
rheo ∧ Y ð0j4Þ: ð2:1Þ

The suffix ð4j0Þ stands for form number equal to four and
picture number equal to zero (as defined in Appendix A).

Lð4j0Þ
rheo is the rheonomic Lagrangian written in terms of the

form fields and their differentials, while Y ð0j4Þ is the PCO
converting the action from a ð4j0Þ form to a ð4j4Þ form,
which can be integrated on the supermanifold SM. The
action S depends on the supergravity fields in the rheo-

nomic Lagrangian Lð4j0Þ
rheo and in the PCO Y ð0j4Þ, and being

integrated on the entire supermanifold SM is automati-
cally invariant under super-reparametrizations. In this
framework the action is built without using the Hodge
dual operator ⋆.
In the present section we adopt a different strategy: we

replace the factorized form of the action with a novel one,

S ¼
Z
SM

Lð4j4Þ
⋆ ; ð2:2Þ

where a suitable Hodge dual operator ⋆ is used. The
Lagrangian is no longer factorized into the wedge product

of a ð4j0Þ form with a ð0j4Þ form. Again, since Lð4j4Þ
⋆ is a

ð4j4Þ form integrated on the entire supermanifold SM, it is
invariant under super-reparametrizations.
Consider the actions for (free) scalar field theory and

Abelian gauge theory:

S½ϕ�¼
Z
M
dϕ∧⋆dϕ; S½A�¼

Z
M
dA∧⋆dA; ð2:3Þ

whereM is a bosonic manifold, ϕ is a scalar field, and A is
the 1-form potential. The operator ⋆ is the Hodge dual
operator related to a metric g on the manifold M and the
actions (2.3), which are 4-forms integrated on a four-
dimensional manifold, are manifestly reparametrization
invariant. In the following, we replace the manifold M
with a supermanifold SM, the ⋆ operator with a corre-
sponding super ⋆ operator (see [16,21] for a general
treatment); ϕ is replaced by a superfield at zero picture,
and A is replaced by a 1-superform at zero picture (the
picture number being defined in Appendix A).

A. Super Hodge dual operator

We define the super Hodge dual operator ⋆ as follows.
Given a form ωðx; θ; V;ψÞ, considered as a generalized
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function of the supervielbein ðVa;ψαÞ and of the coor-
dinates ðxa; θαÞ (see Appendix A), its Hodge dual is written
in terms of a Fourier transform

⋆ωðx; θ; V;ψÞ ¼ ir
2−n2il

Z
SM0

eiðνaηabVbþpαλCαβψ
βÞ

× ωðx; θ; ν; pÞ½d4νd4p�; ð2:4Þ

where r is the number of V ’s, l is the number of ψ ’s, n is the
bosonic dimension, and SM0 is the dual superspace whose
fundamental coordinates are ðνa; pαÞ (respectively, anti-
commuting and commuting). The symbol ½d4νd4p� denotes
the Berezin integral over νa and the Riemann-Lebesgue
integral over pα. The metric g to which ⋆ is related is given
by the tensor1

g ¼ ηabVa ⊗ Vb þ λCαβψ
α ⊗ ψβ; ð2:5Þ

where λ is a dimensionful constant. This constant is needed
in order to preserve the homogeneity of dimensions
between the two terms since Va scales as the square of
ψα. For λ → 0 the metric is degenerate. Cαβ is the charge
conjugation antisymmetric matrix (this holds specifically
for the case d ¼ 4). The function ωðx; θ; ν; pÞ is
the function obtained from ωðx; θ; V;ψÞ by substituting
V → ν and ψ → p, leaving the supermanifold coordinates
x, θ untouched.
We can easily compute the Hodge dual of the super-

vielbeins

⋆Va ¼ Va
3δ

4ðψÞ; ⋆ψα ¼ λ−1CαβV4ιβδ
4ðψÞ: ð2:6Þ

where

Vab
2 ≡ ϵabcd

1

2!
ηcc0ηdd0 ∧ Vc0 ∧ Vd0 ; Va

3 ≡ ϵabcd
1

3!
ηbb0ηcc0ηdd0Vb0 ∧ Vc0 ∧ Vd0 ;

V4 ¼ V4 ≡ 1

4!
ϵabcdVa ∧ Vb ∧ Vc ∧ Vd; δ4ðψÞ≡ 1

4!
ϵαβγδδðψαÞδðψβÞδðψγÞδðψδÞ;

ιαδ
4ðψÞ≡ ∂

∂ψα δ
4ðψÞ; Volð4j4Þ ≡ V4δ4ðψÞ; ð2:7Þ

and the pseudoform δðψαÞ (see Appendix A) naturally
arises as the Fourier transform δðψαÞ ¼ R

dpeipψ
α
. Notice

that the scaling dimensions of Va and of its dual ⋆Va are
the same, as well as for ψα and ⋆ψα. Using the above
definitions, we immediately find

Va ∧ ⋆Vb ¼ ηabVolð4j4Þ; ψα ∧ ⋆ψβ ¼ λ−1CαβVolð4j4Þ;

⋆Volð4j4Þ ¼ 1; ⋆1¼ Volð4j4Þ: ð2:8Þ

With our conventions, the dimension ofVolð4j4Þ is equal to 2.
As is well known, the Hodge dual operator for usual

manifolds is a key ingredient for defining the Laplace-
Beltrami operator acting on differential forms. In the
present context we can consistently extend the definition
of the Laplace-Beltrami operator to supermanifolds as

Δ¼ d†dþ dd† ≡⋆d⋆dþ d⋆d⋆≡ d†dþ dd†; ð2:9Þ

the conjugated differential operator being defined by
d† ≡ ⋆d⋆. Note that we can define a pairing between
two forms on a supermanifold, with complementary form
numbers p; 4 − p and complementary picture numbers
q; 4 − q, as

hω; ηi ¼
Z
SM

ω ∧ ⋆η ð2:10Þ

and consequently hω; dηi ¼ hd†ω; ηi. This pairing does not
define a positive definite scalar product on forms due to the
symplectic nature of the scalar product for the fermionic
components of a vector field. Because of that, even though
we have the identity hω;Δωi ¼ hdω; dωi þ hd†ω; d†ωi
based on Stokes’ theorem for supermanifolds, we cannot
conclude that dω ¼ 0 and d†ω ¼ 0 if Δω ¼ 0. The Hodge
theory for supermanifolds will be discussed in [27].
We can compute the Laplacian (2.9) on the simplest

examples of a superfield ϕ and of a top-integral form ϕð4j4Þ.
On a 0-form ϕ we find

dϕ ¼ Va∇aϕþ ψα∇αϕ;

⋆dϕ ¼ Va
3δ

4ðψÞ∇aϕþ λ−1V4Cαβιαδ
4ðψÞ∇βϕ;

dð⋆ϕÞ ¼ dðϕVolð4j4ÞÞ ¼ 0;

Δϕ ¼ ð⋆d⋆dþ d⋆d⋆Þϕ
¼ ðηab∇a∇b þ λ−1Cαβ∇α∇βÞϕ; ð2:11Þ

where ∇a ¼ EM
a ∂M, ∇α ¼ EM

α ∂M, EM
A is the supervielbein,

and ∂M ¼ ð∂m; ∂μÞ. Δ is the generalized Laplacian on
superfields, and the two terms of the last equation in
(2.11) scale with different powers of λ.

1Note that, since Va and ψα are, respectively, bosonic and
fermionic 1-forms, ψα ∧ ψβ ¼ ψβ ∧ ψα and Va ∧ Vb ¼
−Vb ∧ Va.
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In the same way, considering a top integral form
ϕð4j4Þ ¼ ϕVolð4j4Þ, where ϕ is its section, we have

Δϕð4j4Þ ¼ ð⋆d⋆dþ d⋆d⋆ÞðϕVolð4j4ÞÞ
¼

h
ðηab∇a∇b þ λ−1Cαβ∇α∇βÞϕ

i
Volð4j4Þ; ð2:12Þ

which is again the Laplacian operator on the section ϕ of
the integral form ϕð4j4Þ, multiplied by Volð4j4Þ.

B. Chiral superfields

The smallest irreducible representation of supersym-
metry with scalar bosonic degrees of freedom is described
by a chiral superfield (see the textbooks [5,6,22]). The
components of an off-shell chiral superfield describe a
complex scalar, its fermionic superpartner, and a complex
auxiliary field, i.e., 4 (2) bosonic and 4 (2) fermionic
degrees of freedom if off-shell (on-shell). A superfield ϕ is
in general a reducible representation: imposing some
invariant equations we can single out irreducible represen-
tations. This is done by setting DLϕ ¼ 0 and DRϕ̄ ¼ 0

for chiral ϕ and antichiral ϕ̄ superfields, where ðDLÞα ¼
1
2
ð1þ γ5Þαβ∇β and ðDRÞα ¼ 1

2
ð1 − γ5Þαβ∇β. In this sub-

section, we illustrate how a chiral superfield can be defined
using the Hodge dual operator ⋆ and its chiral/antichiral
relatives ⋆C;⋆C̄.
In the case of flat d ¼ 4 superspace, one can define a

chiral and an antichiral volume form as follows:

Volð4j2ÞL ¼ ϵabcdVa � � �Vdδ2ðψLÞ;
Volð4j2ÞR ¼ ϵabcdVa � � �Vdδ2ðψRÞ; ð2:13Þ

where ψ ¼ ψL þ ψR and ψL=R ¼ ð1� γ5Þ=2ψ . The vol-
ume forms VolL and VolR have a form degree equal to 4,
but a picture number equal to 2 unlike Volð4j4Þ. They
transform under the chiral transformations as

Vol0ð4j2ÞL ¼ SdetLðJÞ−1Volð4j2ÞL ;

Vol0ð4j2ÞR ¼ SdetRðJ̄Þ−1Volð4j2ÞR ; ð2:14Þ

where J (J̄) is a 6 × 6 supermatrix corresponding to
coordinate transformations in chiral (antichiral) superspace.
This means that the coordinate transformations are
generated by chiral/antichiral superfields as we now

describe. Notice that although Volð4j2ÞL and Volð4j2ÞR are

not top integral forms, they are closed, i.e., dVolð4j2ÞL ¼ 0

and dVolð4j2ÞR ¼ 0, since dVa ¼ ψ̄Lγ
aψR and either ψL or

πR are annihilated by δ2ðψLÞ or δ2ðψRÞ. The volume form
Volð4j4Þ is related to the chiral volume forms as

Volð4j4Þ ¼ RLVol
ð4j2Þ
L ∧ YR þRRVol

ð4j2Þ
R ∧ YL; ð2:15Þ

where YL and YR are suitable PCOs and whereRL andRR
are two superfields. We will discuss this point further in the
context of a generic supermanifold; it leads to Siegel’s
formula [see formula (5.5.21) in [22] ] for the volume of a
D ¼ 4, N ¼ 1 supermanifold.
Now we can define chiral and antichiral superfields as

follows:

dϕ ∧ Volð4j2ÞL ¼ 0; dϕ̄ ∧ Volð4j2ÞR ¼ 0: ð2:16Þ

Notice that dϕ ¼ Va
∂aϕþ ψ̄RDRϕþ ψ̄LDLϕ is a 1-super-

form, and therefore, the above equations select only the
following pieces:

ψ̄RDRϕ ∧ Volð4j2ÞL ¼ 0; ψ̄LDLϕ̄ ∧ Volð4j2ÞR ¼ 0; ð2:17Þ

since the remaining terms are set to zero either by the
product of V ’s or by δ2ðψL=RÞ. Therefore, by imposing
(2.17), we obtain the usual chiral and antichiral constraints
DRϕ ¼ 0 and DLϕ̄ ¼ 0.2

We introduce the chiral and antichiral Hodge dual
operators [defined in the same way as the full Hodge dual
operator (2.4), where the fermionic variables are replaced
by their chiral or antichiral counterparts], denoted by ⋆C
and ⋆C̄. Then we have

⋆Lϕ¼ ϕVolð4j2ÞL ; ⋆Rϕ̄¼ ϕ̄Volð4j2ÞR ;

⋆L1¼ Volð4j2ÞL ; ⋆R1¼ Volð4j2ÞR : ð2:18Þ

Acting with d yields

dð⋆LϕÞ ¼ dϕ ∧ Volð4j2ÞL ; dð⋆Rϕ̄Þ ¼ dϕ̄ ∧ Volð4j2ÞR :

ð2:19Þ

Acting again with ⋆L and ⋆R on both members of these
equations, we find

⋆Ldð⋆LϕÞ ¼ ψ̄RDRϕ̄; ⋆Rdð⋆Rϕ̄Þ ¼ ψ̄LDLϕ̄;

ð2:20Þ

and therefore, the chirality conditions are equivalent to

d†Lϕ ¼ 0; d†Rϕ̄ ¼ 0: ð2:21Þ

For a 0-form, we have d†ϕ ¼ 0 because
d†∶ΩðpjqÞ → Ωðp−1jqÞ. This is due to the fact that ⋆ϕ is a
top integral form, and therefore dð⋆ϕÞ automatically
vanishes. When using chiral Hodge dual operators ⋆L or
⋆R this is no longer true in general, but remains true on

2In the group manifold framework this is obtained by choosing
the differential of ϕ as dϕ ¼ Va∇aϕþ ψLWL whereWR is set to
zero from the beginning [10].
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chiral/antichiral superfields. With this language the chiral-
ity conditions have a clear geometrical origin.
If we compute the Laplace-Beltrami differential for a

chiral/antichiral superfield we get

ΔCϕ ¼ ðd†Cdþ dd†CÞϕ ¼ d†Cdϕ ¼ ðηab∇a∇b þ λ−1D2
LÞϕ;

ΔC̄ϕ̄ ¼ ðd†C̄dþ dd†C̄Þϕ̄ ¼ d†C̄dϕ̄ ¼ ðηab∇a∇b þ λ−1D2
RÞϕ;
ð2:22Þ

where D2
L ¼ D̄LDL and D2

R ¼ D̄RDR. The free equations
of motion ΔCϕ ¼ 0 and ΔC̄ϕ̄ ¼ 0 for chiral/antichiral
superfields are obtained in the limit λ → 0. Otherwise,
these equations are higher-derivative modifications of the
free equations of motion.
Before discussing the action, we consider another type of

multiplet. As is known, there is a second irreducible
multiplet with scalar bosonic degrees of freedom: the linear
superfield. It is defined to satisfy D2

Rϕ ¼ 0 and D2
Lϕ̄ ¼ 0,

and the difference with the chiral/antichiral superfields is
the different set of auxiliary fields for the off-shell
multiplet. From the computation (2.11), we see that

ðd† − d†CÞdϕ ¼ λ−1D2
Rϕ;

ðd† − d†C̄Þdϕ̄ ¼ λ−1D2
Lϕ̄; ð2:23Þ

and therefore, the requirement D2
Rϕ ¼ 0 and D2

Lϕ̄ ¼ 0

implies that on dϕ the two differentials d† and d†C coincide.
Since the linear superfields and the chiral superfields are
related by duality transformations (see [5]), it would be
interesting to verify whether indeed the geometric equa-
tion (2.23) emerges as dual to (2.21).
The action can be written using the Hodge dual operator

⋆ for a chiral superfield VolR ∧ dϕ ¼ 0 as follows:

S ¼
Z
SMð4j4Þ

⋆ϕ̄ϕ; ð2:24Þ

which reduces to the usual chiral superfield action by
integrating on the cotangent directions Va, ψL, and ψR.
Notice that a geometrical action S ¼ R

SMð4j4Þ dϕ̄ ∧ ⋆dϕ
would yield a high derivative theory after Berezin integra-
tion. In superspace language higher derivative theories can
be built in terms of prepotentials. The present approach
based on the Hodge dual naturally provides a specific
higher derivative extension.

C. Gauge fields

On a bosonic manifold M, the Bianchi identity and the
Maxwell equations for the Abelian potential A are given by

dF ¼ 0; d†F ¼ J; ð2:25Þ

where J is the conserved (d†J ¼ 0) electric current coupled
to the gauge field A and F ¼ dA is its field strength.
Moving to a supermanifold, one considers a gauge

superfield A and its field strength F which are superforms

A¼AaVaþAαψ
α; F¼FabVaVbþFaβVaψβþFαβψ

αψβ:

ð2:26Þ

They have many components since Aa and Aα are super-
fields. To single out the physical ones, one imposes the
condition that Fαβ ¼ 0 and by means of the Bianchi
identity dF ¼ 0, we find that there are only one gauge
vector field, the gaugino, and one auxiliary field. Thus, the
field strength can be written as

F ¼ fabVaVb þ W̄γaψVa; ð2:27Þ

whereWα is the gaugino field strength and γa are the Dirac
matrices in the Majorana representation. In the component
expansion of Wα (as illustrated in [5] or [6]) one retrieves
the physical degrees of freedom and the auxiliary fields.
The gauge field strength fab is not an independent super-
field since it satisfies fαβ ¼ 1

4
∇γabW as a consequence of

the Bianchi identity, where ∇α is the superderivative
introduced in the previous section. Again, as a consequence
of the Bianchi identities, we have ∇αWα ¼ 0.
Computing the Hodge dual of F we obtain

⋆F¼fabηaa
0
ηbb

0
ϵa0b0cdVcVdδ4ðψÞþλ−1ðV3ÞaW̄γaCιδ4ðψÞ:

ð2:28Þ

Notice that the charge conjugation matrix C enters because,
due to the Hodge dual operator, indices are contracted
covariantly. Then we compute the differential and finally
the Hodge dual again, finding

⋆d⋆F≡d†F¼ð∇afab−λ−1∇̄γbCWÞVbþðψ̄γa∇aWÞ¼0:

ð2:29Þ

Using the parametrization (2.27), we find ∇̄αWβ ¼
ðγabÞβαfab, so that ∇̄γbCW ¼ trðγbCγacÞfac ¼ 0 since
the trace vanishes. We finally obtain the usual free
equations of motion

∇afab ¼ 0; γa∇aW ¼ 0: ð2:30Þ

Since ∇̄αWβ ¼ ðγabÞβαfab, the field strength fab is not
independent of W; therefore, the first equation (which
looks like the Maxwell equations for the superfield fab) is a
high-derivative equation ∇bð∇γabWÞ ¼ ηab∇bð∇αWβÞ−
∇αðγaγb∇bWÞ ¼ 0, but it is satisfied if the Dirac equation
is satisfied (the first term vanishes because of the Bianchi
identities).
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Therefore, we have

F ∧ ⋆F ¼ ðfabfab þ λ−1W̄CWÞV4δ4ðψÞ; ð2:31Þ

which can be naturally integrated on the supermanifold
leading to the high-derivative actionZ
SMð4j4Þ

F∧⋆F¼
Z

ðfabfabþλ−1W̄CWÞ

¼
Z

ð∇γabW∇γabWþλ−1W̄CWÞ: ð2:32Þ

After integration on the integral forms we are left with the
conventional superspace integral for a function. The action
starts with the conventional fabfab term. To compute the
Berezin integral one has to expand fabfab into powers of
θ’s, and therefore, the final result will contain higher
derivatives of the field strength. The second term, however,
is the conventional superspace action, recovered in the limit
λ → 0. The equations of motion are easily retrieved by
introducing the potentials Aa, Aα and varying the action
with respect to them.
Let us consider now the N ¼ 2 case. The field strength

(after adopting the conventional constraints) is expanded as

F ¼ fabVaVb þWAγaψAVa þΦABψ̄Aγ5ψB; ð2:33Þ

and its Hodge dual is

⋆F ¼ fabηaa
0
ηbb

0
ϵa0b0cdVcVdδ8ðψÞ

þ λ−1ðV3ÞaϵAA0 ðW̄AγaCιA
0 Þδ8ðψÞ

− λ−2V4ϵAA0ϵBB0ϕAB ῑA
0
γ5ι

B0
δ8ðψÞ: ð2:34Þ

To take into account the correct mass dimensions, we
introduce again the scale λ. The action takes the formZ
SMð4j4Þ

F∧⋆F¼
Z

ðfabfabþλ−1W̄ACWA−λ−2Φ̄ABΦABÞ

ð2:35Þ

and is a high-derivative action. It is not possible to use the
same formula for values of N greater than 3, as the mass
dimensions are greater than the integration measure. This
aligns with the belief that there is no superspace action for
super Yang-Mills with N ¼ 4 extended supersymmetry.
However, for N ¼ 3, d ¼ 4 SYM, the harmonic super-
space technique provides a clear and supersymmetric
expression [28]. Connecting the current formalism with
integral forms and the rheonomic action to the harmonic
superspace formulation would be interesting. It is worth
noting that in [29], a bridge between the pure spinor
formulation of SYM d ¼ 10, N ¼ 1 has been established
using PCO’s and the group manifold approach.
Additionally, in [30], the relationship between d ¼ 10,

N ¼ 1 SYM in the pure spinor approach has been used to
derive the N ¼ 2 and N ¼ 3 harmonic superspace formu-
lation. Therefore, we anticipate that a relation can even-
tually be found, to link the two frameworks by selecting a
suitable class representative for the PCO.

D. Supergravity

Finally, we use the Hodge dual operator also for the
construction of the supergravity action. It has been
observed in [5] that the full supergravity action with
auxiliary fields can be expressed in terms of the super-
determinant. To write the supergravity action in our
framework we observe that, in the case of a curved
supermanifold, the volume form can be written as

Volð4j4Þ ¼ V4δ4ðψÞ ¼ SdetðEÞd4xδ4ðdθÞ; ð2:36Þ

where we express the vielbein Va and the graviton ψα in
terms EA ¼ ðVa;ψαÞ on a curved basis:

Va ¼ Ea
mdxm þ Ea

μdθμ;

ψα ¼ Eα
mdxm þ Eα

μdθμ. ð2:37Þ

All components are superfields and

SdetðEÞ ¼ detðEa
m − Ea

μðE−1ÞμαEα
mÞ

detðEα
μÞ

: ð2:38Þ

The ð4j4Þ form Volð4j4Þ is trivially closed (being a top
integral form) and, if it represents a cohomology class, it is
not exact. ThenZ
SMð4j4Þ

⋆1¼
Z
SMð4j4Þ

Volð4j4Þ ¼
Z

SdetðEÞðx;θÞ½d4xd4θ�;

ð2:39Þ

where the second integration is performed on the super-
space coordinates ðxm; θμÞ. The symbol ½d4xd4θ� denotes
only on which coordinates the integral has to be performed,
but it does not represent a measure. Since, as discussed in
the literature [5], the Berezin integral of the super-
determinant in (2.39) yields the action of d ¼ 4 super-
gravity, this action can be written as the integral of the
Hodge dual of a constant (Newton’s constant). In the next
sections, we derive this formula from the group-manifold
approach.
To make contact with other superspace formulations of

supergravity, it is convenient to define also the chiral/
antichiral volume forms (see also [18]) as follows:

Volð4j2ÞL ¼ ϵabcdVa∧…∧Vdδ2ðψLÞ¼V4δ2ðψLÞ;
Volð4j2ÞR ¼ ϵabcdVa∧…∧Vdδ2ðψRÞ¼V4δ2ðψRÞ; ð2:40Þ
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where ψL=R ¼ 1
2
ð1� γ5Þψ . Next, we separate in Va ¼

Va
L þ Ea

μdθ
μ
L the part of the vielbein along dθαL (in the flat

space, this means Va
L ¼ dxa þ θ̄Lγ

aψR), and, similarly, we
write ψα

L ¼ Eα
μdθ

μ
L þ Λα

aVa
L. Notice that in general, ψα

L ¼
Eα
μdθ

μ
L þ Λα

aVa
L þ Λα

βdθ
β
R but the last term can be set to zero

by choosing a suitable gauge (reached by a superdiffeo-
mophism) known as chiral/antichiral representation
(see [5,22]). Then, using the flat basis ðdxa; dθαL; dθαRÞ,
we have

Volð4j2ÞL ¼ ϵabcdðVa
L þ Ea

μdθ
μ
LÞ ∧ …

∧ ðVd
L þ Ed

μdθ
μ
LÞδ2ðEα

μdθ
μ
L þ Λα

aVa
LÞ ð2:41Þ

¼ ϵabcd
ðVa

L þ Ea
μdθ

μ
LÞ ∧ … ∧ ðVd

L þ Ed
μdθ

μ
LÞ

detðEα
μÞ

× δ2ðdθμL þ ðE−1ÞμαΛα
aVa

LÞ ð2:42Þ

¼detðδabþEa
μðE−1ÞμαΛα

bÞ
detðEα

μÞ
ϵabcdVa

L∧…∧Vd
Lδ

2ðdθμLÞ

¼ELϵabcdVa
L∧…∧Vd

Lδ
2ðdθμLÞ¼ELV4

Lδ
2ðdθμLÞ;

ð2:43Þ

EL ¼ detðδab þ Ea
μðE−1ÞμαΛα

bÞ
detðEα

μÞ
; ð2:44Þ

where ELðx; θLÞ is a chiral superfield3 according to our
definition. Indeed, we have

0 ¼ dVolð4j2ÞL ¼ dEL ∧ V4
Lδ

2ðψLÞ ¼ d ln EL ∧ Volð4j2ÞL ;

ð2:45Þ
implying that ln EL is a chiral superfield. In the same way,

we can study Volð4j2ÞR and the chiral density ER.
Let us now relate the volume form Volð4j4Þ to the chiral

ones. The superdeterminant E ¼ SdetðEÞ is a function of
ðx; θ; θ̄Þ and reads

SdetðEÞ ¼
det

�
Ea
m − Ea

μðE−1ÞμβEβ
m − Ea

μ̇ðĒ−1Þμ̇
β̇
Eβ̇
m

�
detðELÞ detðERÞ

¼ SdetRðÊÞ
detðERÞ

¼ SdetLðÊÞ
detðELÞ

; ð2:46Þ

where SdetLðÊÞ is the chiral superdeterminant written in
terms of a redefined vielbein Êa

m ¼ Ea
m − Ea

RμðE−1ÞμLβEβ
Lm.

In terms of the volume form we have

Volð4j4Þ ¼ 1

2
V4
Lδ

2ðψLÞ
1

detðERÞ
δ2ðdθRÞ þ

1

2
V4
Rδ

2ðψRÞ
1

detðELÞ
δ2ðdθLÞ

¼ 1

2
Volð4j2ÞL

1

detðERÞ
δ2ðdθRÞ þ

1

2
Volð4j2ÞR

1

detðELÞ
δ2ðdθLÞ; ð2:47Þ

where Va
L;ψ

α
L and Va

R;ψ
α
R are given in terms of the

redefined supervielbeins. Then, using the fact that
δ2ðdθRÞ and δ2ðdθLÞ are not the PCOs, unless they are
multiplied by θ2R and θ2R, we can expand 1=detðERÞ and
1=detðELÞ up to second order [we recall that δ2ðdθRÞ and
θαRδ

2ðdθRÞ are cohomologically trivial], and since Volð4j2ÞL

and Volð4j2ÞR are closed, we can always discard d-exact
terms. Therefore, we are left with

Volð4j4Þ ¼ Volð4j2ÞL D2
R

�
1

2 detðERÞ
�
YR

þ Volð4j2ÞR D2
L

�
1

2 detðELÞ
�
YL; ð2:48Þ

where YL and YR are the PCOs. The two expressions
D2

Rð1=2detðERÞÞ and D2
Lð1=2detðELÞÞ are computed

in [5,22] and are identified with the superfieldsRR andRL.
The superfields RR=L contain the auxiliary fields and the
Ricci scalar; they appear in the commutation relations
f∇α;∇βg ¼ −R̄Mαβ and are components of the torsion TA

as will be discussed in the forthcoming section. Finally, we
can write the volume form as

Volð4j4Þ ¼ Volð4j2ÞL RRYR þ Volð4j2ÞR RLYL: ð2:49Þ

The formula reproduces, in terms of integral forms, the
Siegel chiral-integration formula [5]. In superspace
language this formula reads

Z
SdetðEÞ ¼

Z
L
SdetLðÊÞRL þ

Z
R
SdetRðÊÞRR; ð2:50Þ

which turns out to be crucial in comparing the geometric
formulation of supergravity with its superspace formulation
(a clear derivation and discussion in the context of
conformal supergravity can be found in [22]).

3Several textbooks use the chiral coordinates zL ¼ ðxL; θLÞ
and identify the chiral measure with the Berezinian of the
transformation z0L ¼ z0LðzLÞ.
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III. OLD MINIMAL SUPERGRAVITY

In supergravity the supervielbeins Ea and Eα become
dynamical and satisfy equations of motion. In the present
section, we review the group manifold formulation of
d ¼ 4, N ¼ 1 supergravity, we define a suitable PCO,
and we finally show the equivalence with the superspace
formulation. In the end, we write the action in terms of the
Hodge dual operator.

A. Off-shell degrees of freedom

The theory contains a vielbein 1-form Va with 6 off-shell
degrees of freedom and a Majorana gravitino ψα with 12
off-shell degrees of freedom (d.o.f.). We can match off-
shell d.o.f. by adding three 0-form auxiliary fields: an axial
vector Aa with 4 d.o.f., a scalar S with one d.o.f., and a
pseudoscalar P with 1 d.o.f. This set of auxiliary fields was
first introduced in [23]. Here we reformulate the theory in
the group manifold approach.

B. The algebra and Bianchi identities

We start from the super Poincaré algebra, extended with
the three 0-forms Aa; S; P. The deformed Maurer-Cartan
equations for this extended superalgebra are given by

Ra ¼ dVa − ωa
cVc −

i
2
ψ̄γaψ ≡DVa −

i
2
ψ̄γaψ ; ð3:1Þ

Rab ¼ dωab − ωa
cω

cb; ð3:2Þ

ρ ¼ dψ −
1

4
ωabγabψ ≡Dψ ; ð3:3Þ

RðAÞa ¼ dAa − ωa
cAc; ð3:4Þ

RðSÞ ¼ dS; ð3:5Þ

RðPÞ ¼ dP: ð3:6Þ

These equations can be seen as the definition of curvatures.
Taking the exterior derivative of both sides yields the
Bianchi identities:

dRa − ωa
bRb þ Ra

bVb − iψ̄γaρ

≡DRa þ Ra
bVb − iψ̄γaρ ¼ 0; ð3:7Þ

dRab − ωa
cRcb þ ωb

cRca ≡DRab ¼ 0; ð3:8Þ

dρ−
1

4
ωabγabρþ

1

4
Rabγabψ≡Dρþ1

4
Rabγabψ ¼0; ð3:9Þ

DRðAÞa þ RabAb ¼ 0; ð3:10Þ

dRðSÞ ¼ 0; ð3:11Þ

dRðPÞ ¼ 0: ð3:12Þ

The Maurer Cartan equations, and therefore, also the
Bianchi identities, are invariant under the rescalings

ωab → λ0ωab; Va → λVa; ψ → λ
1
2ψ ;

Aa → λ−1Aa; S → λ−1S; P → λ−1P: ð3:13Þ

C. Parametrizations of the curvatures

According to the group manifold approach, we para-
metrize the curvatures so that their outer components (i.e.,
components along at least one fermionic direction) are
related to the inner components (i.e., components along
bosonic directions) and to the auxiliary fields. A para-
metrization compatible with the scalings (3.13) and Lorentz
invariance is given by

Ra ¼ 0; ð3:14Þ

Rab¼Rab
cdVcVdþ θ̄abc ψVcþc2

2
ψ̄ðγabηþηγabÞψ ; ð3:15Þ

ρ ¼ ρabVaVb þ ic3γ5ψVaAa þ ic4γaη0ψVa; ð3:16Þ

RðAÞa ¼ ðDAaÞbVb þ ψ̄ζa; ð3:17Þ

RðSÞ ¼ ð∂aSÞVa þ ψ̄ξ; ð3:18Þ

RðPÞ ¼ ð∂aPÞVa þ ψ̄χ; ð3:19Þ

with real c2, c3, c4. The only a priori choice is Ra ¼ 0,
i.e., vanishing (super)torsion. It can be shown that
Ra ¼ Ra

bcV
bVc would only lead to a redefinition of the

spin connection, in terms of V and ψ , while outer
components of Ra cannot be found using inner components
and auxiliary fields, due to scaling and Lorentz index
structure. The Bianchi identities will fix

θ̄abc ≡ 2iρ̄½ac γb� − iρ̄abγc; η ¼ η0 ≡ S − iγ5Pþ Aaγaγ5;

ð3:20Þ

and c2, c3 in terms of c4, which remains the only free
parameter. It is convenient to write the gravitino field
strength ρ as follows:

ρα ≡Dψα ¼ ραabVaVb þ ðρaψÞαVa; ð3:21Þ

where ðρaψÞα ¼ ραaβψ
β and the general form of the matrix

ραaβ is read off from the parametrization of the curvatures

ραaβ¼ ic4ðγαaβS− iðγaγ5ÞαβPþð2ðγ5Þαβδba−ðγ5γabÞαβÞAbÞ
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or, suppressing the spinorial indices

ρa ¼ ic4
�
γaS − iγaγ5Pþ γ5ð2δba − γbaÞAb

�
¼ ic4

�
1

2
γað1 − γ5ÞðSþ iPÞ þ 1

2
γað1þ γ5ÞðS − iPÞ

þ γ5ð2δba − γbaÞAb

�

¼ ic4
�
γaPLRþ γaPRR̄þ γ5ð2δba − γbaÞAb

�
ð3:22Þ

with PL; PR;R; R̄ defined by the last equality. It is a
function of the auxiliary fields S; P; Aa. Notice that if we
give a vacuum expectation value to S denoted by s, it
reduces to

ρaðS ¼ s; P ¼ 0; Aa ¼ 0Þ ¼ ic4γas:

D. The action

With the usual methods of the group manifold
approach [10], the Lagrangian is found to be

Lð4j0Þ ¼ RabVcVdϵabcd þ 4ψ̄γ5γaρVa

þ αðS2 þ P2 þ AaAaÞεabcdVaVbVcVd: ð3:23Þ
The action is obtained by considering the most general

SOð3; 1Þ scalar 4-form, invariant under the rescalings in
Eq. (3.13) and then requiring that the equations of motion
admit the vanishing curvature solution

Rab ¼ Ra ¼ ρ ¼ RðAÞa ¼ RðSÞ ¼ RðPÞ ¼ 0: ð3:24Þ
The remaining parameter α is fixed by requiring the
closure of Lð4j0Þ, i.e., dLð4j0Þ ¼ 0. This yields α ¼ −2ðc4Þ2
and ensures off-shell closure of the supersymmetry
transformations.
There are some remarks to be considered. Even though

the auxiliary fields appear in the new term in (3.23), they
are also hidden in the Lorentz curvature term and the
Rarita-Schwinger term. Then, if we define auxiliary field-
independent curvatures Rab� ; ρ� as

Rab� ¼ Rab −
c2
2
ψ̄ðγabηþ ηγabÞψ ;

ρ� ¼ ρ − ic3γ5ψVaAa − ic4γaηψVa; ð3:25Þ
we can rewrite the action as

Lð4j0Þ ¼ ϵabcdRab� VcVdþ4ψ̄γ5γaρ�Va

þϵabcdc4
�
Sψ̄γabψVcVd− iPψ̄γabγ5ψVcVd

�
þ16ic4Aaψ̄γbψVcVd

−2ðc4Þ2ðS2þP2þAaAaÞϵabcdVaVbVcVd: ð3:26Þ

In the second and third lines, we have made explicit the
auxiliary fields. The first line is the usual rheonomic N ¼ 1
supergravity action. Notice that the S field could acquire a
vacuum expectation value (which can be achieved also by
shifting S → Sþ 1

2l), and setting S ¼ Aa ¼ P ¼ 0 we
obtain the supergravity action with a cosmological term

Lð4j0Þ
AdS ¼ ϵabcdRab� VcVd þ 4ψ̄γ5γaρ�Va

þ ϵabcd
c4
2l

ψ̄γabψVcVd −
2ðc4Þ2
ð2lÞ2 ϵabcdVaVbVcVd:

ð3:27Þ
The third term is the usual gravitino mass term needed for
supersymmetry with the cosmological term.4 The resulting
action describes N ¼ 1 supergravity on AdS4. The positive
constant l is the radius of AdS4. The action turns out to be
invariant under the isometry supergroup OSpð1j4Þ, and
gauge invariant under local Lorentz symmetry and local
supersymmetry transformations. The vielbein Va, the
gravitino ψα, and the spin connection ωab (fixed in terms
of Va, ψα) are the Maurer-Cartan forms of the ospð1j4Þ
superalgebra. The spin connection is the gauge connection
of the Lorentz group, and therefore, we can consider Va, ψα

as the vielbeins of the coset manifold OSpð1j4Þ=SOð1; 3Þ.
While Lð4j0Þ in (3.23) is d-closed in the presence of
auxiliary fields (see the forthcoming subsection), the

new Lð4j0Þ
AdS is no longer d-closed.

E. Fixing coefficients

From Bianchi identity (3.7) for Ra, after substituting the
parametrizations, one finds in the ψVV sector the expres-
sion for θ̄ given in (3.20). In the ψψV sector one obtains the
relation

c2 ¼ c4: ð3:28Þ
Considering then the Bianchi identity for ρ, the ψψψ sector
yields

c3 ¼ 3c4; ð3:29Þ
while the ψψV sector fixes ζa; ξ; χ in the parametrizations:

ζa ¼ 1

c4

�
1

3
γ5γbρ

ab −
i
12

εabcdγbρcd

�
; ð3:30Þ

ξ ¼ −
1

6c4
γabρab; ð3:31Þ

χ ¼ i
6c4

γ5γ
abρab: ð3:32Þ

4By using the relation ϵabcdγ
cd ¼ 2iγ5γab, and c4 ¼ −1=2, we

match the conventional AdS4 expression.
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As a consequence of Bianchi’s identities, the relations

γaζ
a − 2iχ ¼ 0; γ5ξþ iχ ¼ 0; ð3:33Þ

follow. In superspace language [6] there are the identifi-
cations RL ¼ Sþ iP and RR ¼ S − iP. The two super-
fields RL and RR are chiral and antichiral; i.e.,
∇RRL ¼ ∇LRR ¼ 0 as a consequence of the Bianchi
identities. Using the decomposition ∇L ¼ 1

2
ð1þ γ5Þ∇

and ∇R ¼ 1
2
ð1 − γ5Þ∇, where ∇ is the covariant spinorial

derivative, we finally find

∇S − iγ5∇P ¼ 0; ð3:34Þ

and with the identifications (3.14) we obtain Eqs. (3.33). In
addition, another set of equations is reported in [5]:

∇αGαα̇ þ ∇̄α̇RR ¼ 0; ∇̄α̇Gαα̇ þ∇αRL ¼ 0; ð3:35Þ

with Gαα̇ real superfield, again as a consequence of the
Bianchi identities. Identifying Gαα̇ with the vector field
Aaγ

a
αα̇ reproduces the first of Eqs. (3.33).

F. Closure of the Lagrangian

Using the Bianchi identities (3.8) and (3.9), and the
definition of the torsion Ra in (3.1) we find

dLð4j0Þ ¼ 2RabRcVdεabcdþ iRabψ̄γcψVdεabcdþ4ρ̄γ5γaρVa

þ ψ̄γ5γcγabψRabVc−4ψ̄γ5γaρRa−2iψ̄γ5γaρψ̄γaψ

−4iðc4Þ2εabcdψ̄γaψVbVcVdðS2þP2þAaAaÞ
−4ðc4Þ2ðSdSþPdPþAaDAaÞεabcdVaVbVcVd:

ð3:36Þ

The gamma matrix identity

γcγab ¼ ηacγb − ηbcγa þ iεabcdγ5γd ð3:37Þ

implies ψ̄γ5γcγabψ ¼ iεabcdψ̄γdψ , so that the second and
the fourth terms cancel in (3.36). Moreover the Fierz
identity

γaψψ̄γ
aψ ¼ 0 ð3:38Þ

and ψ̄γ5γaρ ¼ ρ̄γ5γaψ imply that also the sixth term
in (3.36) vanishes. Using then the parametrization Ra ¼ 0
leads to

dLð4j0Þ ¼ 4ρ̄γ5γaρVa − 4iðc4Þ2εabcdψ̄γaψVbVcVdðS2 þ P2 þ AaAaÞ
− 4ðc4Þ2ðSdSþ PdPþ AaDAaÞεabcdVaVbVcVd: ð3:39Þ

Finally substituting into (3.39) the parametrizations for ρ
and dS; dP;DAa we can check that all terms cancel, and
therefore,

dLð4j0Þ ¼ 0: ð3:40Þ

The only remaining free parameter c4 essentially sets the
scale of the auxiliary fields (changing its value amounts to
rescale η) and can be chosen as

c4 ¼
1

6
ð3:41Þ

to make contact with the notations of Ref. [23].

G. Picture changing operators

To compute the superspace action starting from the
rheonomic Lagrangian (3.23), we have to introduce a
new picture changing operator. From the analysis per-
formed in [18], we know that in d ¼ 4,N ¼ 1 the nontrivial
PCO must have the form

Y ð0j4Þ ∼ θ2V2
0ι
2
Dδ

4ðψ0Þ; ð3:42Þ

with an explicit dependence on the θ coordinates. We used
the flat supervielbeins

Va
0 ¼ dxa þ θ̄γadθ; ψα

0 ¼ dθα: ð3:43Þ

Notice that the form number carried by the vielbeins
Va
0 is compensated by the negative form number

carried by the contractions along odd vector fields ιD.
This structure turns out to be the right expression to
translate the group manifold actions for N ¼ 1; 2 Wess-
Zumino and SYM into the corresponding well-known
superspace actions [18]. Notice that although the explicit
dependence on the θ’s might indicate a supersymmetry
breaking, it turns out that it corresponds to the chiral/
antichiral projections to sub-superspaces which are super-
symmetric invariant. The PCO can be built out of the
following terms:
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Y ð0j4Þ
S ¼ θ̄θVa

0 ∧ Vb
0 ῑγabιδ

4ðψ0Þ; ð3:44Þ

Y ð0j4Þ
P ¼ θ̄γ5θVa

0 ∧ Vb
0 ῑγabγ5ιδ

4ðψ0Þ; ð3:45Þ

Y ð0j4Þ
A ¼ ϵabcdθ̄γ

aγ5θVb
0 ∧ Vc

0 ῑγ
dιδ4ðψ0Þ: ð3:46Þ

Y ð0j4Þ
Ŝ

¼ θ̄θϵabcdVa
0 ∧ Vb

0 ῑγ
cdιδ4ðψ0Þ; ð3:47Þ

Y ð0j4Þ
P̂

¼ θ̄γ5θϵabcdVa
0 ∧ Vb

0 ῑγ
cdγ5ιδ

4ðψ0Þ; ð3:48Þ

Y ð0j4Þ
Â

¼ θ̄γaγ5θVa
0 ∧ Vb

0 ῑγbιδ
4ðψ0Þ: ð3:49Þ

Let us check which combination is closed. We compute
their exterior derivatives:

dY ð0j4Þ
S ¼ 2ψ̄θVa

0 ∧ Vb
0 ῑγabιδ

4ðψ0Þ þ iθ̄θψ̄γaψ0 ∧ Vb
0 ῑγabιδ

4ðψ0Þ
¼ −4Va

0 ∧ Vb
0 θ̄γabιδ

4ðψ0Þ þ 2iθ̄θtrðγaγabÞδ4ðψ0Þ ¼ −4Va
0 ∧ Vb

0 θ̄γabιδ
4ðψ0Þ;

dY ð0j4Þ
P ¼ 2ψ̄γ5θVa

0 ∧ Vb
0 ῑγabγ5ιδ

4ðψ0Þ þ iθ̄γ5θψ̄γaψ0 ∧ Vb
0 ῑγabγ5ιδ

4ðψ0Þ
¼ −4Va

0 ∧ Vb
0 θ̄γabιδ

4ðψ0Þ þ 2iθ̄γ5θtrðγaγabγ5Þδ4ðψ0Þ ¼ −4Va
0 ∧ Vb

0 θ̄γabιδ
4ðψ0Þ; ð3:50Þ

dY ð0j4Þ
A ¼ 2Va

0 ∧ Vb
0 θ̄γabιδ

4ðψ0Þ þ 2iϵabcdθ̄γabγ5θtr
�
γcγd

�
δ4ðψ0Þ

¼ 2Va
0 ∧ Vb

0 θ̄γabιδ
4ðψ0Þ;

dY ð0j4Þ
Ŝ

¼ 2ψ̄θϵabcdVa
0 ∧ Vb

0 ῑγ
cdιδ4ðψ0Þ þ iθ̄θϵabcdψ̄γaψ0 ∧ Vb

0 ῑγ
cdιδ4ðψ0Þ

¼ −4ϵabcdVa
0 ∧ Vb

0 θ̄γ
cdιδ4ðψ0Þ;

dY ð0j4Þ
P̂

¼ 2ψ̄γ5θϵabcdVa
0 ∧ Vb

0 ῑγ
cdγ5ιδ

4ðψ0Þ þ iθ̄γ5θϵabcdψ̄γaψ0 ∧ Vb
0 ῑγ

cdγ5ιδ
4ðψ0Þ

¼ −4ϵabcdVa
0 ∧ Vb

0 θ̄γ
cdιδ4ðψ0Þ;

dY ð0j4Þ
Â

¼ 2Va
0 ∧ Vb

0 θ̄γabγ5ιδ
4ðψ0Þ þ 2iθ̄γaγ5θVa

0δ
4ðψ0Þ

¼ 2Va
0 ∧ Vb

0ϵabcdθ̄γ
cdιδ4ðψ0Þ þ 2iθ̄γaγ5θVa

0δ
4ðψ0Þ; ð3:51Þ

and find that there are three independent closed Y ð0j4Þ’s.
Namely the most general solution of the equation
dY ð0j4Þ ¼ 0 is

Y ð0j4Þ ¼αY ð0j4Þ
S þβY ð0j4Þ

P þ2ðαþβÞY ð0j4Þ
A þσðY ð0j4Þ

Ŝ
−Y ð0j4Þ

P̂
Þ;

ð3:52Þ

where α, β, σ are arbitrary constants. However, to compute
the cohomology we have to check whether (3.52) is exact.
We observe that there are two possible candidates

ηð−1j4ÞS ; ηð−1j4ÞP ,

ηð−1j4ÞS ¼Va
0 ∧Vb

0ðθ̄θθ̄γ5ιþ θ̄γ5θθ̄ιÞῑγabιδ4ðψ0Þ;
ηð−1j4ÞP ¼Va

0 ∧Vb
0ðθ̄θθ̄γ5ιþ θ̄γ5θθ̄ιÞῑγabγ5ιδ4ðψ0Þ; ð3:53Þ

whose differentials can be added to Y ð0j4Þ as Y ð0j4Þþ
τdηð−1j4ÞS þ ρdηð−1j4ÞP . This implies that there is only one
cohomology class of Hð0j4ÞðdÞ and we can choose the
representative of the class by choosing τ and ρ. We find it
convenient to adopt the following representative:

Y ð0j4Þ ¼ Y ð0j4Þ
S þ Y ð0j4Þ

P þ 4Y ð0j4Þ
A

¼
�
θ̄θVa

0 ∧ Vb
0 ῑγabιþ θ̄γ5θVa

0 ∧ Vb
0 ῑγabγ5ι

þ ϵabcdθ̄γ
aγ5θVb

0 ∧ Vc
0 ῑγ

dι
�
δ4ðψ0Þ: ð3:54Þ

Note that we can combine the first two terms Y ð0j4Þ
S þ Y ð0j4Þ

P
into a chiral and an antichiral expression. Another con-
venient choice is α ¼ −β and σ ¼ 0. This leads to

Y ð0j4Þ ¼ Y ð0j4Þ
S − Y ð0j4Þ

P

¼
�
θ̄θVa

0 ∧ Vb
0 ῑγabι − θ̄γ5θVa

0 ∧ Vb
0 ῑγabγ5ι

�
δ4ðψ0Þ:
ð3:55Þ

Finally, note that all representatives are related also to

Y ð0j4Þ
comp ¼ θ̄θθ̄γ5θδ

4ðψ0Þ; ð3:56Þ

which is closed and not exact, but completely breaks
supersymmetry and, inserted into the action, yields the
component action.
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One may wonder whether it may be possible to build a
PCO Y ð0j4Þ which is manifestly supersymmetric invariant,
namely written in terms of Va

0;ψ
α
0 , and δ4ðψ0Þ and con-

tractions along the ψα
0’s of the Dirac deltas. The require-

ment to be a 0-form restricts the possible choices to

δ4ðψ0Þ; Va
0 ∧Vb

0 ῑγabιδ
4ðψ0Þ; Va

0 ∧Vb
0 ῑγabγ5ιδ

4ðψ0Þ:
ð3:57Þ

These three terms turn out to be exact. Therefore,
in the present case, there is no manifestly supersymmetric
PCO. The same situation occurs also for extended super-
symmetric models.
We want now to extend flat PCO (constructed out of flat

Va
0 and ψ

α
0) to a PCO for a dynamical curved manifold. We

can deform (3.54) without changing its cohomology class
by acting with a super-diffeomorphism. This can be done
by acting infinitesimally with a Lie derivative LX along a
vector field X since

δY ð0j4Þ ¼ LXY ð0j4Þ ¼ d
�
ιXY ð0j4Þ

�
ð3:58Þ

or, in the same way, by performing a finite transformation
generated by X such that

eLXVa
0 ¼ Va; eLXψα

0 ¼ ψα; eLXθα ¼ Θα; ð3:59Þ

whereΘα is the curved fermionic coordinate. Then we have

Y ð0j4Þ → eLXY ð0j4Þ

¼
�
Θ̄ΘVa ∧ Vb ῑγabιþ Θ̄γ5ΘVa ∧ Vb ῑγabγ5ι

þ ϵabcdΘ̄γaγ5ΘVb ∧ Vc ῑγdι
�
δ4ðψÞ ð3:60Þ

or, for the second choice (3.55),

Y ð0j4Þ → eLXY ð0j4Þ

¼
�
Θ̄ΘVa ∧ Vb ῑγabι − Θ̄γ5ΘVa ∧ Vb ῑγabγ5ι

�
δ4ðψÞ;
ð3:61Þ

where Va and ψα are the dynamical vielbeins. These curved
Y ð0j4Þ belong to the same cohomology class of the origi-
nal Y ð0j4Þ.5

H. Superspace action

Having found the group manifold Lagrangian using
geometric means, we use now the PCOs to construct
the action. On one side, using the flat nonsupersymmetric
PCO (3.56), namely Y ð0j4Þ ¼ θ̄θθ̄γ5θδ4ðψÞ, the action
reduces to the component supergravity action with
auxiliary fields on spacetime. On the other side, we would
like to use the supersymmetric PCO (3.61) to obtain the
superspace action as given in [5,6], which is manifestly
invariant under local supersymmetry. For this purpose, we
use (3.61) to project the action to only a few terms, and then
we use the parametrizations (3.14)–(3.19) to simplify the
result and discover that the complete superspace action is
encoded in the auxiliary superfields terms of (3.23). This
allows the comparison with the result given in [6]. Finally,
using the relation between chiral volume forms and the
superdeterminant (discussed in Sec. II D), we show the
equivalence with the superspace formulation of [5].
By inserting Y ð0j4Þ into the supermanifold integral, we

have

S ¼
Z
SMð4j4Þ

Lð4j0Þ ∧ Y ð0j4Þ: ð3:62Þ

The action Lð4j0Þ is a superform and therefore can be
expanded in powers of V and ψ as follows:

Lð4j0Þ ¼ LϵabcdVaVbVcVd þ Lα;abcψ
αVaVbVc

þ LIðψ̄MI;abψÞVaVb

þ LI
αabcψ

αðψ̄Mab
I ψÞVc

þ LIJ
ab;cdðψ̄Mab

I ψÞðψ̄Mcd
J ψÞ: ð3:63Þ

The indices I and J denote the different Dirac matrix
structures for bilinears ðψ̄Mab

I ψÞ. Inserting these
expressions in (3.62) and using the PCO (3.61) we are
left with

S ¼
Z
SMð4j4Þ

Lð4j0Þ ∧ Y ð0j4Þ

¼
Z
SMð4j4Þ

ðLIðψ̄MI;abψÞVaVbÞ ∧ Y ð4j0Þ

¼
Z
SMð4j4Þ

ð−SΘ̄Θþ iPΘ̄γ5ΘÞV4δ4ðψÞ: ð3:64Þ

A crucial role is played by the derivative of Dirac delta
functions of ψ ’s in the PCO: with integration by parts, only
the piece (3.64) is selected. To compare the result with
superspace literature [5,6,22] we use the chiral notation
ΘL=R ¼ 1

2
ð1� γ5ÞΘ, and rewrite the above expression as

S ¼
Z
SMð4j4Þ

ðRRΘ̄LΘL þRLΘ̄RΘRÞV4δ4ðψÞ; ð3:65Þ

5The topology of the manifold is unchanged by local diffeo-
morphisms, and therefore, we cannot study in this way the case of
curved rigid supermanifolds not connected by infinitesimal
diffeomorphisms to the flat space.

CASTELLANI and GRASSI PHYS. REV. D 108, 046018 (2023)

046018-12



where RL and RR are the auxiliary fields as discussed in
Sec. III E, Eq. (3.33). In [5,6] a complete description ofRL,
RR, and their component expansion is given. We notice
that, using the off-shell parametrization given in (3.14)–
(3.19), the complete action (3.63) reduces to the terms
containing the auxiliary superfields S, P, or equivalently to
the RL, RR terms. This is a well-known phenomenon (see
[18]), and the full superspace action is obtained by the
superspace expansion of the auxiliary field terms.
The expression (3.66) can be conveniently rewritten as

S¼
Z
SMð4j4Þ

ðRRVol
ð4j2Þ
R ∧YLþRLVol

ð4j2Þ
L ∧YRÞ; ð3:66Þ

where we used the notation YR ¼ ΘRΘRδ
2ðψRÞ and YL ¼

ΘLΘLδ
2ðψLÞ to denote the PCO projecting on the con-

straints ΘR ¼ 0 and ΘL ¼ 0. In the above equation, we

used Volð4j2ÞR and Volð4j2ÞL to denote the chiral densities.
Finally, integrating on the “cotangent” coordinates

ðVa;ψα
L;ψ

α
RÞ, we arrive at the simplified expression [6]

S ¼
Z
L
RLEL þ

Z
R
RRER ¼

Z
E ¼

Z
SMð4j4Þ

⋆1; ð3:67Þ

where we used a chiral integration formula by Siegel [5,22]
giving a relation between the chiral measures EL, ER and the
superdeterminant E. The integrals in the above formulaR
L=R are over the chiral superspaces, and the integral

R
E

is extended to the entire superspace. The last expression
finally shows the relation of the superspace action with the
Hodge dual of a constant. Reinstalling the appropriate
dimensions, this constant coincides with Newton’s constant.

IV. NEW MINIMAL SUPERGRAVITY

A. Off-shell degrees of freedom

We can match off-shell d.o.f. by adding an auxiliary
bosonic 1-form A (3 d.o.f.) and an auxiliary bosonic 2-form
T (3 d.o.f.). The theory with these auxiliary fields was first
constructed in Ref. [24], and recast in the group manifold
formulation in Ref. [9].

B. The extended super-Poincaré algebra

The starting superalgebra is the super-Poincaré algebra,
extended with a 1-form A and a 2-form T. The deformed
Cartan-Maurer equations for the extended soft super-
Poincaré manifold are

Rab ¼ dωab − ωa
cω

cb; ð4:1Þ

Ra ¼ dVa − ωa
bVb −

i
2
ψ̄γaψ ≡DVa −

i
2
ψ̄γaψ ; ð4:2Þ

ρ ¼ dψ −
1

4
ωabγabψ −

i
2
γ5ψA≡Dψ −

i
2
γ5ψA; ð4:3Þ

R□ ¼ dA; ð4:4Þ

R⊗ ¼ dT −
i
2
ψ̄γaψVa; ð4:5Þ

where D is the Lorentz covariant derivative. These equa-
tions can be considered definitions for the Lorentz curva-
ture, the (super)torsion, the gravitino field strength, and the
1-form and 2-form field strengths, respectively. The Cartan-
Maurer equations are invariant under rescalings

ωab → λ0ωab; Va → λVa; ψ → λ
1
2ψ ;

A → λ0A; T → λ2T: ð4:6Þ
Taking exterior derivatives of both sides yields the Bianchi
identities:

DRab ¼ 0; ð4:7Þ

DRa þ Ra
bVb − iψ̄γaρ ¼ 0; ð4:8Þ

Dρþ 1

2
γ5ρAþ 1

4
Rabγabψ −

i
2
γ5ψR□ ¼ 0; ð4:9Þ

dR□ ¼ 0; ð4:10Þ

dR⊗ − iψ̄γaρVa þ i
2
ψ̄γaψRa ¼ 0; ð4:11Þ

invariant under the rescalings (4.6).

C. Curvature parametrizations

According to the group manifold approach, we again
parametrize the curvatures so that “outer” components (i.e.,
components along at least one fermionic direction) are
related to inner components (i.e., components on bosonic
directions). The most general parametrization compatible
with the scalings (4.6) and SOð3; 1Þ × Uð1Þ gauge invari-
ance is the following:

Rab ¼ Rab
cdVcVd þ θ̄abcψVc þ ic1ϵabcdψ̄γcψfd; ð4:12Þ

Ra ¼ 0; ð4:13Þ

ρ ¼ ρabVaVb þ iaγ5ψfaVa − ic2γ5γabψVafb; ð4:14Þ

R□ ¼ FabVaVb þ ψ̄χaVa þ ic3ψ̄γaψfa; ð4:15Þ

R⊗ ¼ faVbVcVdϵabcd; ð4:16Þ

Dfa ¼ ðDbfaÞVb þ ψ̄Ξa: ð4:17Þ

The VV component Fab of F and the VVV component fa
of R⊗ scale, respectively, as Fab → λ−2Fab and
fa → λ−1fa. The Bianchi identities require that
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c1 ¼ c2 ¼
3

2
; c3 ¼ 3 − a; ð4:18Þ

and

θ̄abc ¼ 2iρ̄½ac γb� − iρ̄abγc; ð4:19Þ

Ξa ¼ −
i
3!
ϵabcdγbρcd; ð4:20Þ

χa ¼ 2

�
γ5γ

bρab þ
ia
3!

ϵabcdγ
bρcd

�
: ð4:21Þ

Note that thanks to the presence of the auxiliary fields,
the Bianchi identities do not imply equations of motion for
the spacetime components of the curvatures.

D. The group manifold action

With the usual group manifold methods, the action is
determined to be

Sd¼4SG¼
Z
M4

RabVcVdϵabcdþ4ψ̄γ5γaρVa−4R□T

þα

�
faR⊗Vaþ1

8
fefeVaVbVcVdϵabcd

�
: ð4:22Þ

This action is obtained by taking for the Lagrangian Lð4j0Þ
the most general SOð3; 1Þ × Uð1Þ scalar 4-form, invariant
under the rescalings discussed above, and then requiring
that the variational equations admit the vanishing curva-
tures solution

Rab ¼ Ra ¼ ρ ¼ R□ ¼ R⊗ ¼ fa ¼ 0: ð4:23Þ
The remaining parameter α is fixed by requiring the closure
of Lð4j0Þ, i.e., dLð4j0Þ ¼ 0. This yields α ¼ 4ð4a − 3Þ and
ensures off-shell closure of the supersymmetry transforma-
tions given below. Notice that a is essentially free, since the
term iaγ5ψfaVa in the parametrization of the gravitino
curvature ρ can be reabsorbed into the definition of the
SOð3; 1Þ ×Uð1Þ-covariant derivative on ψ , by redefining
A0 ¼ Aþ 2afaVa. Choosing a ¼ 3

4
simplifies the action,

reducing it to the first three terms, so that the 0-forms fa do
not appear.

E. Field equations

Varying ωab, Va, ψ , A, T, and fa in the action (4.22)
leads to the equations of motion:

2ϵabcdRcVd ¼ 0 ⇒ Ra ¼ 0; ð4:24Þ

2RbcVdϵabcd − 4ψ̄γ5γaρ

þ α

�
−faR⊗ þ 1

2
fefeϵabcdVbVcVd

�
¼ 0; ð4:25Þ

8γ5γaρVa − 4γ5γaψRa − iαγaψVafbVb ¼ 0; ð4:26Þ

R⊗ ¼ 0; ð4:27Þ

−4R□ þ α

�
VaDfa −

i
2
faψ̄γaψ − faRa

�
¼ 0; ð4:28Þ

R⊗ ¼ faVbVcVdϵabcd: ð4:29Þ

These equations are satisfied by the curvatures parame-
trized as in Sec. IV C and also imply

Ra ¼ R□ ¼ R⊗ ¼ fa ¼ 0; ð4:30Þ

Rac
bc −

1

2
δabR

cd
cd ¼ 0 ðEinstein eq:Þ; ð4:31Þ

γaρab ¼ 0 ðRarita − Schwinger eq:Þ: ð4:32Þ

The theory has therefore the same dynamical content
as the usual N ¼ 1, d ¼ 4 supergravity without auxiliary
fields.

F. Off-shell supersymmetry transformations

Supersymmetry transformations are obtained by apply-
ing the Lie derivative along the fermionic directions (i.e.,
along tangent vectors dual to ψ):

δεVa ¼ −iψ̄γaε; ð4:33Þ

δεψ ¼Dεþ i
2
γ5Aεþ iaγ5εfaVa−

3i
2
γ5γabεVafb; ð4:34Þ

δεA¼ ε̄

�
ia
3
ϵabcdγbρcd−2γ5γbρ

ba

�
þ2ið3−aÞε̄γaψfaVa;

ð4:35Þ

δωab ¼ θ̄abcεVc − 3iϵabcdψ̄γcεfd; ð4:36Þ

δεT ¼ −iψ̄γaεVa; ð4:37Þ

δεfa ¼ ϵ̄Ξa; ð4:38Þ

and close on all the fields without the need of imposing the
field equations (4.31) and (4.32).

G. Superspace action

Having found the rheonomic Lagrangian for the new
minimal set of auxiliary fields, by using the geometric
means of the group manifold approach, we would again
like to use the PCO to define its variational principle and
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write the corresponding action. On one side, it is easy to
check that using the flat nonsupersymmetric PCO
Y ð0j4Þ ¼ θ̄θθ̄γ5θδ4ðψÞ, we obtain the usual component
action with auxiliary fields. On another side, we would
like to verify that using the supersymmetric PCO (3.61)
leads to a superspace action for the new minimal d ¼ 4
supergravity. The latter has been discussed in [31–33] and
appears to be of a BF-type action. Therefore, the plan of the
present section is to insert the curved PCO which selects
some pieces of the Lagrangian and, using the parametriza-
tions, to compare the result with the superspace action
given in [33].
We begin by inserting Y ð0j4Þ into the supermanifold

integral and consider the Lagrangian with α ¼ 0 for
simplicity:

S ¼
Z
SMð4j4Þ

Lð4j0Þ ∧ Y ð0j4Þ: ð4:39Þ

The action Lð4j0Þ is a superform and therefore can be
expanded in powers of V, ψ as follows:

Lð4j0Þ ¼ LϵabcdVaVbVcVd þ Lα;abcψ
αVaVbVc

þ LIðψ̄MI;abψÞVaVb þ LI
αabcψ

αðψ̄Mab
I ψÞVc

þ LIJ
ab;cdðψ̄Mab

I ψÞðψ̄Mcd
J ψÞ: ð4:40Þ

The indices I and J denote the different Dirac matrix
structures for bilinears ðψ̄Mab

I ψÞ. Inserting these expres-
sions in (3.62) and using the curved PCO (3.61) we are left
with

S¼
Z
SMð4j4Þ

Lð4j0Þ∧Y ð0j4Þ

¼
Z
SMð4j4Þ

�
LIðψ̄MI;abψÞVaVb

�
∧Y ð4j0Þ

¼
Z
SMð4j4Þ

�
ϵabcdðFab ῑγcdιTþχaγbcιTaÞΘ̄Θ

þ iðFab ῑγ5γcdιTþχaγ5γbcιTaÞΘ̄γ5Θ
�
V4δ4ðψÞ: ð4:41Þ

The additional superfields ῑγcdιT and ιαTa are defined in
terms of the 2-form potential T ¼ TabVaVb þ TαaVaψαþ
Tαβψ

αψβ,

ῑγcdιT ¼ γαβcdTαβ; ιαTa ¼ Tαa: ð4:42Þ

Integrating on the cotangent space we are left with the
integral on the bosonic xa and on the fermionic θα

coordinates:

S ¼
Z �

EϵabcdðFab ῑγcdιT þ χaγbcιTaÞΘ̄Θ

þ iEϵabcdðFab ῑγ5γcdιT þ χaγ5γbcιTa

�
Θ̄γ5ΘÞ; ð4:43Þ

where Fab and χa are the superfields appearing in the
parametrization of F [see (4.12)]. The superfield fa is
absent due to the Dirac matrix structure of the PCO that
projects out the Dirac structure corresponding to fa. Notice
that at the end we have to compute the Berezin integral over
the fermionic coordinates, and this selects inside the
superfields Tαβ, Tαa, Fab, and χa all the needed pieces
for reconstructing the supergravity in the new minimal
formulation. Again, we notice that it is the auxiliary field
term that reproduces the entire supergravity action.
To compare the final action with the superspace action,

one needs to identify all components of the superfields in
(4.42) and then perform the integration. We do not present
this computation here; for this we refer to [31,32,34] and to
the review [33]. This concludes the proof of the equivalence
between the group-manifold approach and the superspace
approach to new minimal d ¼ 4 supergravity.

ACKNOWLEDGMENTS

We thank our friends and collaborators: L. Andrianopoli,
R. Catenacci, C. A. Cremonini, R. D’Auria, O. Hulik,
S. Noja, R. Norris, L. Ravera, G. Tartaglino-Mazzucchelli,
and M. Trigiante, for useful discussions and comments.
The work is partially funded by the University of Eastern
Piedmont with FAR-2019 projects. P. A. G. thanks the
Simons Center for Geometry and Physics (Stony Brook
University, NY), where the present work has been
completed.

APPENDIX A: FORMS ON SUPERMANIFOLDS

We collect here some basic definitions and facts about
integration on supermanifolds and on integral forms. For
exhaustive introductions to integral forms, we refer the
reader to [25,26], while for their use in physics, we refer
to [14,15,35].
Given a (smooth) supermanifold Mð4j4Þ, the cotangent

space T �
PM

ð4j4Þ at a given point P∈Mð4j4Þ has both an
even and an odd part, generated, in a given system of local
coordinates ðxa; θαÞ; i ¼ a;…; 4; α ¼ 1;…; 4, by the ð1j0Þ
forms fdxa; dθαg, called superforms, which are, respec-
tively, odd and even. They have the following (super)
commuting properties:

dxa ∧ dxb ¼ −dxb ∧ dxa; dθα ∧ dθβ ¼ dθβ ∧ dθα;

dxa ∧ dθα ¼ −dθα ∧ dxa: ðA1Þ

A generic ðpj0Þ form is an object of the (graded) symmetric
power of T �

PM
ð4j4Þ, and it locally reads as
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ωðpj0Þ ¼ ω½a1���ar�ðα1���αsÞðx; θÞdxa1 ∧ � � � ∧ dxar ∧ dθα1 ∧ � � � ∧ dθαs ; p ¼ rþ s; ðA2Þ

where the coefficients ω½a1���ar�ðα1���αsÞðx; θÞ are a set of
superfields and the indices a1 � � � ar, α1 � � � αs are antisym-
metrized and symmetrized, respectively, due to (A1). The
analog of the determinant bundle can be found in a different
form complex, the complex of integral forms. One can
introduce the Berezinian bundle BerðMð4j4ÞÞ, i.e., the
space of objects which transform as the Berezinian (i.e.,
the superdeterminant) under coordinate transformations.

Integral forms are then constructed on open sets starting
from this space and tensoring with (graded) symmetric
powers of the parity-changed tangent space (see the recent
review [26] for a rigorous introduction to the subject). A
practical and computationally powerful realization of the
Berezinian and integral forms is given in terms of (formal)
Dirac distributions on the cotangent space; a generic ðpj4Þ-
integral form can be locally described as

ωðpjNÞ ¼ ωðα1���αsÞ
½a1���ar� ðx; θÞdxa1 ∧ � � � ∧ dxar ∧ ια1 � � � ιαsδ

�
dθ1

�
∧ � � � ∧ δ

�
dθ4

�
; p ¼ r − s; ðA3Þ

and the second number of the ðpj4Þ form keeps track of the number of Dirac deltas and is called Picture number. The
contraction ια is defined as ια ≡ ∂=∂ψα. The formal Dirac deltas satisfy the following properties:Z

dθ
δðdθÞ ¼ 1; dθ ∧ δðdθÞ ¼ 0; δ

�
dθα

�
∧ δ

�
dθβ

�
¼ −δ

�
dθβ

�
∧ δ

�
dθα

�
;

dx ∧ δðdθÞ ¼ þδðdθÞ ∧ dx; δðλdθÞ ¼ 1

λ
δðdθÞ; dθ ∧ ιpδðdθÞ ¼ −pιp−1δðdθÞ: ðA4Þ

The first property defines how δðdθÞ’s have to be used to perform form integration along the commuting directions dθ’s; the
second property reflects the usual property of the support of the Dirac distribution; the third and fourth properties imply
δðdθÞ’s are odd objects and together with the fifth property they indicate that actually, these are not distributions, but rather
de Rham currents, i.e., they define an oriented integration; and the last property allows the usual integration by parts of the
Dirac delta.
A top form reads as

ωð4j4Þ
top ≡ ωð4j4Þ ¼ ωðx; θÞϵa1���a4dxa1 ∧ � � � ∧ dxa4 ∧ ϵα1���α4δðdθα1Þ ∧ � � � ∧ δðdθα4Þ; ðA5Þ

where ωðx; θÞ is a superfield. Any integral form of any form degree p can be obtained by acting with 4 − p contractions
on (A5).
One can also consider other classes of forms, called pseudoforms, with a nonmaximal and nonzero number of deltas.

A general pseudoform with q deltas is locally given by

ωðpjqÞ ¼ ω½a1���ar�ðα1���αsÞ½β1���βq�ðx; θÞdxa1 ∧ � � � ∧ dxar ∧ dθα1 ∧ � � � ∧ dθαs ∧ δðt1Þ
�
dθβ1

�
∧ � � � ∧ δðtqÞ

�
dθβq

�
; ðA6Þ

where we used the compact notation δðtÞðdθÞ≡ ðιÞtδðdθÞ.
The form number is obtained as

p ¼ rþ s −
Xq
i¼1

ti: ðA7Þ

If q ¼ 0, we have superforms; if q ¼ 4, we have integral
forms; and if 0 < q < 4, we have pseudoforms.
These kinds of forms are to be used, for example, in
[35] to construct objects which implement naturally the
self-duality condition on supermanifolds. This is a conse-
quence of the fact that the Hodge operator [14,15] on
supermanifolds changes not only the form number but also
the picture number:

⋆∶ΩðpjqÞ
�
Mð4j4Þ

�
→ Ωð4−pj4−qÞ

�
Mð4j4Þ

�
: ðA8Þ

A notable example of an integral form is the picture
changing operator: it is a ð0j4Þ form, in the cohomology
of the operator d. It is used to lift a superform to an integral
form by multiplication:

Y ð0j4Þ∶Ωðpj0Þ
�
Mð4j4Þ

�
→ Ωðpj4Þ

�
Mð4j4Þ

�
;

ωðpj0Þ ↦ ωðpj4Þ ¼ ωðpj0Þ ∧ Y ð0j4Þ: ðA9Þ
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APPENDIX B: CURVED SUPERSPACE

One interesting formula in [5,22] used in the context
of superspace supergravity gives the right action of an
even vector field K on a superfield. It is a complicated
formula, albeit useful and important, and can be translated
into our language using the Hodge dual operator. We
hope that our reformulation might add some new
insights to the original work in [5,22] from a different
perspective.
We consider the following definition:

ϕ · K⃖ ¼ ð−1ÞM∂MðϕKMÞ ðB1Þ

for an even superfield ϕ and an even vector K. This also
implies

ϕ · eK⃖ ¼ ð1 · eK⃖ÞeKϕ; ðB2Þ

where ϕ is a superfield.
We would like to translate (B1) using our Hodge

dual operator. For that we observe that (B1) corresponds
to the action of a vector field on a density, which can be
obtained by acting with the Hodge dual of a Lie derivative
on a top form. Then, using the Hodge dual operator ⋆
we set

ϕ · K⃖ ¼ L†
Kϕ≡ ⋆LKð⋆ϕÞ; ðB3Þ

where ⋆ϕ ¼ ϕVolð4j4Þ. The equation can easily be verified
using the properties of Volð4j4Þ and of the Lie derivative LK .
The derivation of (B2) is now straightforward:

ϕ · eK⃖ ¼
�
eLK

�†
ϕ ¼ ⋆eLK ð⋆ϕÞ

¼ ⋆eLK ð⋆1ϕÞ ¼ ⋆
�
eLK ð⋆1Þ

�
eLKϕ

¼
�
⋆eLKVolð4j4Þ

�
eLK ¼ ð1 · eK⃖ÞeKϕ; ðB4Þ

where ⋆1 ¼ Volð4j4Þ and

ð1 · eK⃖Þ ¼ ðeLK Þ†1 ¼ ⋆eLKωð4j4Þ

¼ ⋆
�
SdetðJÞωð4j4Þ

�
¼ SdetðJÞ: ðB5Þ

Another interesting formula is

ð1 · eK⃖Þ−1 ¼ eKð1 · e−K⃖Þ; ðB6Þ

which can be proven as follows:

ð1 · e−K⃖Þ · eK⃖ ¼
�
eLK

�†�
e−LK

�†
1 ¼ 1; ðB7Þ

therefore, the superfield ð1 · e−K⃖Þ is the inverse of the

operator ·eK⃖, and therefore, it is the inverse of ð1 · eK⃖ÞeK .
Analogously, ð1 · eK⃖Þ is the inverse of eKð1 · e−K⃖Þ.
This is only an example of how the use of the Hodge dual

operator simplifies several complicated computations in
superspace. We believe that this new point of view might
prove to be useful in the superspace formulation of
supergravity.

APPENDIX C: THE CHIRAL PROJECTORS
USING PICTURE LOWERING OPERATORS

Here we want to show the correspondence between
the geometric formulation of d ¼ 4, N ¼ 1 old minimal
supergravity, via the super-Hodge operator, with its super-
space formulation using the picture lowering operators. In
particular, we have seen that the action can be written asZ
SMð4j4Þ

Lð4j4Þ ¼
Z
SMð4j4Þ

⋆1

¼
Z
SMð4j2Þ

chiral

RLVol
ð4j2Þ
L þ

Z
SMð4j2Þ

antichiral

RRVol
ð4j2Þ
R :

ðC1Þ
We can obtain a ð4j2Þ form out of a ð4j4Þ form by decreasing
the picture number by two. The geometrical operator that
decreases the picture number is given by

Zð0j−1Þ
X ¼ fd;−iΘðιXÞg; ðC2Þ

where X is an odd vector field and the (odd) operator Θ is
defined via its Fourier integral representation:

ΘðιXÞ≡ −ilim
ϵ→0

Z
∞

−∞

dt
tþ iϵ

eitιX : ðC3Þ

The key point about the operator Z is that it is a
quasi-isomorphism; i.e., it maps cohomology classes into
cohomology classes. This means that it allows one to obtain
a formwith the same degrees of freedom but with a different
picture number out of a known form. This is strictly related
to the same properties of the picture-changing operator Y
described in the previous sections. Indeed, Y represents a
quasi-isomorphism and is related to Z via a quasi-inverse
relation (i.e., they are inverse on cohomology classes),
which can be schematically represented as

ZYZ ¼ Z; YZY ¼ Y : ðC4Þ
In the case under consideration, we can project from the
whole supermanifold to the chiral/antichiral submanifolds
using the following operator:

Zð0j−2Þ ¼ Zð0j−2Þ
C þ Z̄ð0j−2Þ

C̄ ¼ Z̄∇̄2̇
Z̄∇̄1̇

þ Z∇2
Z∇1

: ðC5Þ
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Thus, Zð0j−2Þ
c is made out of the two vector fields ∇̄α̇ and

Z̄ð0j−2Þ
ac is made out of the two vector fields ∇α.

6 We will

discuss the action of Zð0j−2Þ
c only, the antichiral calculation

being similar. Let us start by applying the first operator Z̄∇̄1̇

to the Lagrangian Lð4j4Þ ¼ ⋆1 ¼ VaVbVcVdϵabcdδðψαÞ
ϵαβδðψβÞδðψ̄ α̇Þϵα̇ β̇δðψ̄ β̇Þ; first of all, we notice that since

Lð4j4Þ is a top form, its exterior derivative is trivially zero;
hence, the action of the operator Z̄∇̄1̇

reads

Z̄∇̄1̇
Lð4j4Þ ¼ dΘ

�
ῑ∇̄α̇

�
VaVbVcVdϵabcdδðψαÞ

× ϵαβδ
�
ψβ

�
δ
�
ψ̄ α̇

�
ϵα̇ β̇δ

�
ψ̄ β̇

�
¼ d

�
Volð4j2ÞL

1

ψ̄ 1̇
δ
�
ψ̄ 2̇

��
: ðC6Þ

At this point, it is worth observing that the intermediate step
of calculation involves inverse forms, i.e., forms of the type
1=ψ . For details of their geometrical interpretation and
string-theoretic counterpart, we refer the reader to [36].
Here,we only note that inverse forms emerge in intermediate

passages, but disappear at the end of calculations. In (C6)we
collected the V’s and the undotted ψ ’s in the chiral volume

form Volð4j2ÞL [see (2.13)]; notice that this volume form is d-
closed (the same holds for the anti-chiral one): since the
expression is covariant, we can substitute the action of the
differential dwith the action of the covariant one, defined in
(3.1)–(3.3). The closure is directly verified: the covariant
derivative on V’s either involves the torsion Ra, which is
zero, or involves ψψ̄ , hence, giving zero because of the
presence of the two undotted delta’s δðψαÞϵαβδðψβÞ; the
covariant derivative on ψ ’s is the curvature ρ, which is
proportional to at least one V, which is then annihilated by
the presence of the other four V’s. Hence, (C6) becomes

Z̄∇̄1̇
Lð4j4Þ ¼ Volð4j2ÞL d

�
1

ψ̄ 1̇
δ
�
ψ̄ 2̇

��
: ðC7Þ

Now the key point is that the expression between square
brackets is not covariant; hence, the action of the exterior
derivative involves the spin connection. In particular,
we have

Volð4j2ÞL d

�
1

ψ̄ 1̇
δ
�
ψ̄ 2̇

��
¼ Volð4j2ÞL

�
−

1�
ψ̄ 1̇

�
2

�
ρ̄1̇ þ 1

4
ωab

�
σabψ̄

�
1̇
�
δðψ̄ 2̇Þ þ 1

ψ̄ 1̇

�
ρ̄2̇ þ 1

4
ωab

�
σabψ̄

�
2̇
�
δð1Þ

�
ψ̄ 2̇

��

¼ Volð4j2ÞL

�
−1

4ðψ̄ 1̇Þ2 ω
ab
�
σabψ̄

�
1̇
δðψ̄ 2̇Þ þ 1

4ψ̄ 1̇
ωab

�
σabψ̄

�
2̇
�
δð1Þ

�
ψ̄ 2̇

�
; ðC8Þ

where the terms involving ρ have been dropped, since they contain at least one vielbein V. We use the notation

−ðσabψ̄Þα̇ ¼ ½P−ðγabψÞ�α̇ ¼ ½ðγabP−ψÞ�α̇; P− ¼ 1 − γ5
2

;

σa
α
β̇ ¼ ð1; σiÞαβ̇; σa

α̇
β ¼ ð1;−σiÞα̇β; γa ¼

�
0 σa

α
β̇

−σaα̇β 0

�
; ðC9Þ

σi being the Pauli matrices. We could move to the more convenient chiral notation for the action of Lorentz generators:

ωabðσabψÞα ¼ ωα
βψ

β; ωab
�
σabψ̄

�
α̇ ¼ ωα̇

β̇ψ
β̇; ωαβ ¼ ωβα; ωα̇ β̇ ¼ ωβ̇α: ðC10Þ

Equation (C8) then becomes

Z̄∇̄1̇
Lð4j4Þ ¼ Volð4j2ÞL

�
−1

4ðψ̄ 1̇Þ2
�
ω1̇
1̇
ψ̄ 1̇ þ ω1̇

2̇
ψ̄ 2̇

�
δðψ̄ 2̇Þ þ 1

4ψ̄ 1̇

�
ω2̇
1̇
ψ̄ 1̇ þ ω2̇

2̇
ψ̄ 2̇

��
δð1Þ

�
ψ̄ 2̇

�

¼ −Volð4j2ÞL

�
ω1̇
1̇

4ψ̄ 1̇
þ ω2̇

2̇

4ψ̄ 1̇

�
δ
�
ψ̄ 2̇

�
þ 1

4
ωð4j2Þ
c ω2̇

1̇
δð1Þ

�
ψ̄ 2̇

�

¼ 1

4
Volð4j2ÞL ω2̇

1̇
δð1Þ

�
ψ̄ 2̇

�
: ðC11Þ

6In the present section we use the Weyl/anti-Weyl notation to simplify the computations; see [6] for the conventions.
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Notice that the terms containing inverse forms have canceled, as expected, because of the relation ω1̇
1̇
¼ −ω2̇

2̇
. We can now

act with the second PCO Z̄∇2̇
; since Z̄ is a cohomology operator, its action can be simplified as

Z̄∇̄2̇
Z̄∇̄1̇

Lð4j4Þ ¼ dΘðι∇̄2̇
Þ
�
1

4
Volð4j2ÞL ω2̇

1̇
δð1Þ

�
ψ̄ 2̇

��
¼ −

1

4
Volð4j2ÞL d

"
ω2̇
1̇

1�
ψ̄ 2̇

�
2

#
: ðC12Þ

Again, inverse forms arise, but they cancel after the action of the exterior derivative. In particular, we have

−
1

4
Volð4j2ÞL d

"
ω2̇
1̇

1�
ψ̄ 2̇

�
2

#
¼ −

1

4
Volð4j2ÞL

"
dω2̇

1̇

1�
ψ̄ 2̇

�
2
þ 2ω2̇

1̇

1�
ψ̄ 2̇

�
3

�
ω2̇
1̇
ψ̄ 1̇ þ ω2̇

2̇
ψ̄ 2̇

�#

¼ −
1

4
Volð4j2ÞL

1�
ψ̄ 2̇

�
2

h
dω2̇

1̇
þ 2ω2̇

1̇
ω2̇
2̇

i
: ðC13Þ

The expression in square brackets represents exactly a
component of the curvature (3.2) in the chiral/antichiral
notation. The terms containing V’s and ψ ’s are automati-

cally annihilated by the presence of ωð4j2Þ
c , while only after

some algebra is it possible to verify that only the ðψ̄ 2̇Þ2 term
survives. In particular, we arrive at the final expression (up
to an overall factor)

Z̄∇̄2̇
Z̄∇̄1̇

Lð4j4Þ ¼ Volð4j2ÞL ðSþ iPÞ ¼ Volð4j2ÞL RL: ðC14Þ

Analogous computations can be performed by acting on
Lð4j4Þ with the picture lowering operators along the ∇α

directions, so that finally one obtains

ðZ̄∇̄2̇
Z̄∇̄1̇

þ Z∇2
Z∇1

ÞLð4j4Þ ¼ Volð4j2ÞL RL þ Volð4j2ÞR RR;

ðC15Þ

reproducing the usual action (C1).

APPENDIX D: SOME FORMULAS FOR
SUPERGRAVITY

In this appendix, we give some explicit formulas used in
the text and their Hodge dual. Using supergravity para-
metrizations we have

Ta ¼ 0;

ρα ¼ ραbcV
b ∧ Vc þ ραβcψ

β ∧ Vc; ðD1Þ

with ραβc ¼ iðγaS − iγaγ5Pþ γ5ð2δba − γbaÞAbÞαβ (where I
set c4 ¼ 1). Then,

⋆Ta ¼ 0;

⋆ρα ¼ ραbcV
de
2 δ4ðψÞ þ ραcβC

βγVc
3ιγδ

4ðψÞ: ðD2Þ

Now acting with the differential d, we finally get

∇⋆Ta ¼ 0;

∇⋆ρα ¼ ∇bρ
α
cdϵ

bcda0ηa0aVa
3δ

4ðψÞ
þ ðηbc∇bρ

α
cβ þ ραabρ

γ
cdϵ

abcd þ ραcβC
βρργdρη

cbÞ
× V4ιγδ

4ðψÞ; ðD3Þ

and

⋆∇⋆ρα ¼ ∇bρ
α
cdϵ

bcda0ηa0aVa

þ ðηbc∇bρ
α
cβ þ ραabρ

γ
cdϵ

abcd þ ραcβC
βρργdρη

cbÞ
× Cγσψ

σ: ðD4Þ

It is very instructive to compute d⋆dϕ explicitly using a
generic supergravity parametrization for the super vielbeins7

∇Va ¼ Ta ¼ Ta
bcV

b ∧ Vc þ Ta
βcψ

β ∧ Vc þ Ta
βγψ

β ∧ ψγ;

∇ψα ¼ ρα ¼ ραbcV
b ∧ Vc þ ραβcψ

β ∧ Vc þ ραβγψ
β ∧ ψγ;

ðD5Þ

where the superfields Ta
bc;…; ραβγ are defined in terms of the

superspace constraints (also known as rheonomic con-
straints) and using the Bianchi identities. Then, we get

7Following the conventions of [10] we use the notation
Tα ¼ ρα.
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d⋆dϕ ¼ dðVa
3δ

4ðψÞ∇aϕÞ þ dðCαβV4ιαδ
4ðψÞ∇αϕÞ

¼ 1

2
ϵabcd∇VbVcVdδ

4ðψÞ∇aϕ − Va
3∇ψαιαδ

4ðψÞ∇aϕ − Va
3δ

4ðψÞðVd∇d∇aϕþ ψδ∇δ∇aϕÞ

þ Cαβ

3!
ϵabcd∇VaVbVcVdιαδ

4ðψÞ∇βϕþ CαβV4∇ψγιγιαδ
4ðψÞ∇βϕþ CαβV4ιαδ

4ðψÞðVd∇d∇βϕþ ψδ∇δ∇βϕÞ

¼ 1

2
ϵabcdTbrsVrVsVcVdδ

4ðψÞ∇aϕ − Va
3ðραβcψβVcÞιαδ4ðψÞ∇aϕ − Va

3δ
4ðψÞVd∇d∇aϕ

þ Cαβ

3!
ϵabcdTaβrψ

βVrVbVcVdιαδ
4ðψÞ∇βϕþ CαβV4ραβγψ

βψγιγιαδ
4ðψÞ∇βϕþ CαβV4ιαδ

4ðψÞψδ∇δ∇βϕ

¼ V4δ4ðψÞ½ðTab
a − ραbα Þ∇bϕþ ðTaβ

a þ ραβα Þ∇βϕ − ðηab∇a∇bϕþ Cαβ∇α∇βϕÞ�; ðD6Þ

where the coefficients in front of ∇aϕ and ∇αϕ are obtained by a suitable contraction of the supertorsion T, ρ.
Applying the Hodge dual directly on the torsion, we find

⋆Ta ¼ Ta
bcV

bc
2 δ4ðψÞ þ Ta

βcV
c
3ιαδ

4ðψÞ þ Ta
βγV

4ιβιγδ4ðψÞ;
⋆ρα ¼ ραbcV

de
2 δ4ðψÞ þ ραβcV

c
3ιαδ

4ðψÞ þ ραβγV
4ιβιγδ4ðψÞ: ðD7Þ
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