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Abstract: The incidence of traumatic brain injury (TBI) has increased over the last years with an
important impact on public health. Many preclinical and clinical studies identified multiple and
heterogeneous TBI-related pathophysiological mechanisms that are responsible for functional, cogni-
tive, and behavioral alterations. Recent evidence has suggested that post-TBI neuroinflammation
is responsible for several long-term clinical consequences, including hypopituitarism. This review
aims to summarize current evidence on TBI-induced neuroinflammation and its potential role in
determining hypothalamic-pituitary dysfunctions.
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1. Introduction

Traumatic brain injury (TBI) is defined as the consequence of an external impact force,
which is able to induce a transient or permanent damage of the structure and function of the
central nervous system (CNS) [1,2]. TBI can be sustained by multiple and heterogeneous
pathophysiological mechanisms that are responsible for complex functional, cognitive, and
behavioral alterations [2]. The mechanical injury of brain tissue can originate from contu-
sion, hemorrhage, hypoxia, and/or direct axonal injury [1,3]. The primary damage initiates
a cascade of biochemical, metabolic, and inflammatory alterations leading to secondary
injury, which is associated with glutamatergic excitotoxicity, vascular dysfunction, calcium
overload, and neuroinflammation [4–8]. In recent studies, the key intermediary role of the
immune system and neuroinflammation has been proposed to explain TBI pathophysiology,
both in acute and long-term conditions [2,9–12]. In fact, neuroinflammatory processes can
persist for several months, thereby contributing to chronic TBI alterations and accelerated
brain aging in post-TBI patients [13–15].

The incidence of TBI has been increasing worldwide over the last few decades, reach-
ing an incidence rate between 134 and 618 persons per 100,000 per year in different coun-
tries [16]. TBI represents the most frequent cause of death and disability in adult men in
Europe [17]. Falls as well as motor vehicles and work-related accidents account for the
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most frequent causes of TBI [18]. The Glasgow Coma Scale (GCS) is used to classify TBI
according to the level of consciousness into three categories: mild (score between 13 and
15), moderate (score between 9 and 12), and severe (score equal to or less than 8) [1]. A
correlation exists between long-term clinical consequences of TBI and post-traumatic GCS
severity classification [19–21].

Clinical consequences of TBI are heterogeneous and include both physical and cogni-
tive disorders [22]. Depending on exogenous and endogenous factors associated with the
TBI (i.e., entity and dynamics, involved anatomical sites, patient’s characteristics and physi-
cal/fitness, neurorehabilitation, and recovery outcomes), its effects may impair the function
of brain areas responsible for neuroendocrine homeostasis partaking in the stress response,
metabolic regulation, reproductive function, tissue trophism, and physical health. The pitu-
itary gland plays a central role in orchestrating, along with the hypothalamus, the complex
regulatory function of peripheral glands through synthesis/secretion of adenohypophy-
seal hormones (FSH and LH, TSH, GH, PRL, ACTH) and excretion of neurohypophyseal
hormones (vasopressin and oxytocin). Alterations in pituitary functions can affect this
hierarchical organization and generate global consequences in the short and long term.
Hypopituitarism, the condition of pituitary hormone deficiency, results from impaired
production of one or more anterior trophic hormones. Reduced pituitary function can
originate from inherited disorders or, more commonly, from the damage generated by
acquired conditions such as newly developing tumors or vascular, inflammatory, and infec-
tious disorders. These processes may also impair synthesis or secretion of hypothalamic
hormones, with resultant pituitary failure [23].

Partial or total loss of pituitary function is a known consequence of TBI. Several studies
clarified epidemiology, causes, and consequences relating to post-TBI neuroendocrine disor-
ders, conveying key information on the contribution of hypothalamic-pituitary dysfunction
following mild-to-severe TBI on post-TBI morbidity and mortality [24–35]. The prevalence
of post-TBI hypopituitarism is estimated to be 15–68% and progressively increases among
the three categories of TBI severity described above [32,36–38]. Somatotropic axis defi-
ciency represents the most frequent alteration, followed by gonadotropic, thyrotropic, and
corticotropic axis deficiencies and diabetes insipidus [26,39,40]. In most cases, post-TBI
hypopituitarism is transient with complete recovery within 1 to 3 years, whereas in some
patients, pituitary dysfunction persists chronically or appears years after TBI [41].

The factors hypothesized to be implicated in the onset and progression/regression
of post-TBI hypopituitarism include a direct mechanical injury or a vascular/hypoxic
insult to the hypothalamus and/or pituitary gland and/or pituitary stalk, an increase in
intracranial pressure, and alterations associated with secondary post-TBI injury [35,42–44].
Recently, persistent neuroinflammation has been reckoned as a potential determinant in
the pathogenesis of post-TBI pituitary dysfunction [45–47]. The aim of the present review
is to update the current data regarding TBI-related neuroinflammation and its potential
role in determining hypothalamic-pituitary dysfunction.

2. CNS Immunometabolism, Neuroinflammation and TBI

The homeostasis of the CNS strictly depends on physiological mechanisms that are
able to curb immune-mediated damage and loss of neuronal function. Encased in a rigid
skull, the brain is unable to tolerate inflammation-related edema, which represents a poten-
tially life-threatening condition [48]. The blood–brain barrier (BBB) is one of the strategies
developed to finely tune the intrathecal inflammatory responses and to protect cerebral
tissue. BBB is a highly selective barrier comprising the cerebral microvascular endothelium,
which constitutes the interface between the peripheral circulation and the CNS, together
with astrocytes, pericytes, microglia, neurons, and extracellular matrix [49,50].

In several neurological inflammatory diseases, BBB breakdown and dysfunction
lead to leakage of harmful blood components into the CNS, immune cell infiltration,
and aberrant passage and clearance of several molecules, contributing to neurological
deficits [50,51].
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In the context of TBI, the development of BBB dysfunction appears to be biphasic [51–53]
and occurs both as a direct result of the primary BBB injury and as a consequence of sustained
inflammatory and cellular responses originating from the primary injury (Figure 1) [54–56].
The primary direct injury to BBB endothelial cells results in loosening of tight junctions
with the subsequent barrier disruption [57,58]. Other mechanisms can further contribute
to the local damage of BBB structural integrity, such as vasospasm, impairment of blood
flow, and dysmetabolic processes [52,56]. The increased transcellular permeability of the
BBB allows for the extravasation of immune cells, proteins, and solutes from the cerebral
vasculature toward the interstitial space, thereby promoting edema formation, perpetuating
the inflammatory response, and causing further neuronal injury [59,60]. These processes
trigger a cascade of complex events directly leading to the acute complications of TBI, such as
increased intracranial pressure, severe ischemic cell damage, seizure, and death [52].
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Figure 1. Pathophysiological events in traumatic brain injury (TBI). The primary direct injury includes vascular and brain
tissue damage, associated with ischemia, hypoxia, dysmetabolic processes, and neuronal excitotoxicity. The dysfunction
of the blood–brain barrier resulting from direct damage leads to extravasation of immune cells, protein, and solute into
brain tissue promoting further BBB damage, cerebral edema, neuroinflammation, and neuronal damage. These mechanisms
trigger a cascade of subsequent events including impaired regulation of cerebral blood flow, dysfunction of microglia
and astrocytes, changes in synaptic wiring, and neuronal degeneration, which perpetuate neuroinflammation and brain
tissue damage.

Cellular membrane disruption associated with the primary mechanical injury causes
the release of damage associated molecular patterns (DAMPs) such as DNA and RNA, high
mobility group box 1 (HMGB1), S-100 proteins, adenosine triphosphate, uric acid, lysophos-
pholipids, and lipid peroxidation-derived carbonyl adducts of proteins [61,62]. Through
their binding to the Pattern Recognition Receptors (PRRs) on myeloid and dendritic cells,
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these molecules initiate the complex cascade of mechanisms that lead to post-traumatic
neuroinflammation [61,63,64]. This TBI-related inflammatory response begins within hours
after the injury as a part of the endogenous repairing mechanisms that should promote
function restoration and lasts up to several months [65].

Post-TBI neuroinflammation can be described as an intricate interaction between
cells of innate and adaptive immune systems [66]. The BBB dysfunction induces a focal
activation of the microglia/macrophages, which exert dual beneficial and detrimental roles
after CNS injury through polarization from a classical pro-inflammatory M1-like state
to an alternative anti-inflammatory M2-like state [67,68]. Classical M1-like phenotype is
characterized by reactive oxygen species (ROS) generation and pro-inflammatory cytokines
production, e.g., tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), whereas M2-
like phenotype includes different sub-phenotypes that reflect the functional plasticity of
microglia in dealing with changes of tissue microenvironment [69,70]. Studies on mice
models of TBI have demonstrated microglial polarization [71,72] and the transient up-
regulation of the M2-like phenotype, which is subsequently replaced by a predominant
M1- or mixed Mtransition (Mtran) phenotype, associated with increased cortical and
hippocampal neurodegeneration [67]. Oppositely, inhibition of M1-like phenotype has
been demonstrated to improve early functional and recovery outcomes in post-TBI mice
models [73].

On the other hand, astrocytes may undergo reactive astrogliosis in response to
TBI, which is characterized by morphological and functional adaptation including up-
production of cytokines and chemokines that further recruit and activate immune cells [74].
Elevated concentrations of glial fibrillary acidic protein (GFAP) and other astrocyte interme-
diate filaments (nestin and vimentin) have been shown to be associated with the severity of
cellular damage, as GFAP expression is highest in reactive astrocytes in post-TBI damaged
brain tissue [75]. Moreover, YKL-40, a marker of reactive astrocytes, has been found to be
significantly elevated in the CNS of adults with severe TBI [76].

Pro-inflammatory cytokines and ROS are able to induce direct neuronal damage
and perpetuate the pathological activation of resident CNS immunological cells, thus
further increasing BBB permeability [77–79]. Increased systemic and intrathecal levels
of pro-inflammatory mediators, e.g., TNF-α, IL-1β, and IL-18, have been documented
in post-TBI patients [52,66]. In TBI animal models, it has been demonstrated that the
neutralization of IL-1β is associated with an improvement of cerebral edema, contusion
volume, neurodegeneration, cognitive deficits, and overall neurological recovery [80–82].
Improvements in post-TBI neurological outcome have also been observed in a rat model
following the administration of monoclonal antibodies against TNF-α [83].

Within the injured tissue, the inflammatory mediators are able to coordinate the re-
cruitment, expansion, and survival of peripheral immune cells [12,54,55]. Neutrophils
are the first circulating immune cells to infiltrate the CNS after TBI [84,85]. Subsequently,
activated T-cells are recruited along with monocytes/macrophages into traumatically in-
jured brain areas and reflect the involvement of the adaptive immune system [86]. Whilst
CNS autoreactive T-cells are typically considered harmful in autoimmune disease such
as multiple sclerosis [87], their role in post-TBI setting is not yet fully understood. Some
evidence suggested that the presence of autoreactive T-cells is not necessarily associated
with the development of pathological autoimmunity [88], and a T cell-dependent neuropro-
tective response after TBI has been documented in different models of CNS injury [89]. This
represents the so-called “protective autoimmunity”, which is mediated by the production
of neurotropic factors from autoreactive lymphocytes that are capable of promoting the
recovery of injured neurons [90,91]. In animal studies, it was demonstrated that T-cell-
deficient mice exhibited poor clinical outcomes following CNS injury as compared to
T-cell-competent mice, which potentially hints at the neuroprotective function of these
cells [92,93]. However, other studies did not provide any evidence that T-cell-deficient
mice had better outcomes than non-deficient ones in terms of BBB dysfunction, neuroin-
flammation, cell death, and neurological impairment [94].
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In terms of duration, disseminated and chronic inflammation can persist for months
after TBI [8,95–97], thereby favoring the pathogenesis of several degrees of cognitive
dysfunction and neurodegenerative disorders, including Alzheimer’s disease (AD) and
chronic traumatic encephalopathy (CTE) [8,96,98,99].

The long-term consequence of this inflammatory response for the BBB depends on
the degree of the injury and on brain’s ability to reorganize and re-establish homeosta-
sis [49]. In fact, mild to moderate TBI can result in transient opening of endothelial tight
junctions of BBB cells, resulting in a temporally limited influx of inflammatory molecules
and cells. Conversely, severe or repetitive TBI can result in a chronic alteration of BBB
function, initiating focal and systemic inflammatory processes that may last for months or
years [54,55,96,100,101].

Furthermore, the leaking of CNS debris and inflammatory mediators into the periph-
ery can promote a specific complication referred to as the systemic inflammatory response
syndrome (SIRS) [55,102–105]. SIRS is characterized by a state of hyper-inflammation,
which elicits stress-mediated release of cortisol and catecholamines by the hypothalamus-
pituitary-adrenal (HPA) axis and the sympathetic nervous system [102,103,105]. High cor-
tisol levels can in turn affect immune system by influencing the expression of chemokines,
cytokines, and adhesion molecules as well as by inducing immune cell maturation, differ-
entiation, and migration [106,107]. These events can further worsen the neuroinflammatory
setting and neurogenesis process.

In summary, TBI encompasses a complex spectrum of injuries largely related to the
immune-inflammatory response during its acute and chronic phases. The immediate
primary injury is considered untreatable. Instead, the pathology of the delayed second
phase of damage allows a time window in which physician may act to prevent progressive
neuronal death and improve patient’s recovery. Yet, improvements in the understanding of
the mechanisms underlying the long-term complications of TBI could aid the development
of new management strategies and effective therapeutic interventions.

Post-TBI BBB Dysfunction in the Hypothalamic Area

In several brain areas, particularly in periventricular areas, the BBB is structured to
facilitate the passage of specific substances from systemic circulation into the CNS [108].
In these areas, the BBB is more permeable thanks to the presence of highly fenestrated
capillaries and fewer tight junctions [108]. The hypothalamic-pituitary area is one of the
periventricular regions that exhibit these barrier properties. Moreover, in this region, the
presence of a different type of radial glial cells, termed tanycytes, has also been demon-
strated in the interface between the capillaries and the cerebrospinal fluid [109]. These cells
have a particular aspect, which partly reflects both the morphology of ependymal cells and
that of astrocytes, differing from the latter ones by having a single basal projection directed
towards the brain tissue [109]. Tanycytes have a key role in regulating the passage of sev-
eral substances and are able to respond to pituitary hormone production, contributing to
hormone delivery to specific anatomical sites and systemic circulation [110,111]. Post-TBI
BBB dysfunction can elicit specific consequences on hypothalamic-pituitary activity. First,
an increase in the permeability of tanycytes could induce an imbalanced distribution of
incoming and outcoming substances resulting in edema, metabolic toxicity, and local neu-
roinflammation, which likely alter neuroendocrine nerve terminals and homeostasis, thus
potentially compromising the hypothalamic control of pituitary function [112]. Secondly,
TBI-related tight-junction alterations can modify the distal end-feet of tanycytes, that are
known to regulate the secretion of hypothalamic neuropeptides [113], thus compromising
the physiological functioning of the hypothalamus-pituitary axis.

3. Molecular Patterns: Inflammasome and Inflammaging

Neuroinflammation is characterized by a host of cellular and molecular changes
within the brain. Inflammasome-mediated molecular patterns and inflammatory-related
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aging processes (inflammaging) act synergistically so as to perpetuate post-TBI damage
and associated long term complications [114].

3.1. Inflammasome

The inflammasome is a multi-protein platform of cytosol that is linked to the innate
immune system and allows for the activation of pro-inflammatory caspases, particularly
caspase-1. This platform involves important regulators of the innate immune system and
hosts inflammatory responses, also defined as nucleotide oligomerization domain (NOD)-
like receptors. This family of pattern recognition receptors includes three elements, namely
a sensor molecule, an adaptor protein, and an effector component. Several inflammasomes
have been identified in mammals, with the NLRP3 and NLRP1 being the most extensively
studied in TBI [115,116]. Within the CNS, NLRP3 is mainly located in microglia, but it has
also been identified in oligodendrocytes and astrocytes, while NLRP1 and a third sensor,
AIM2, are expressed in neurons [116–118].

The molecular mechanism/s regulating NLRP3 inflammasome activation involve
NRLPs as the sensors, apoptosis-associated speck-like protein (ASC, also known as PY-
CARD) as the adaptor protein, and caspase-1 as the effector. The first step of the process
is the inflammasome priming. This is characterized by the transcriptional upregulation
of NLRPs and pro-IL-1β, and post-translational modifications of NLRPs that stabilize the
signal-component. The activating stimulus induces the assembly of the complete inflam-
masome, which is made up of seven NLRPs inflammasomes molecules arranged in a ring
structure. The multimeric complex allows for the cleavage of pro-caspase-1 into the active
isomer, caspase-1, which then cleaves pro-IL-1β and pro-IL-18 into active IL-1β and IL-18,
respectively [116–118]. These cytokines are involved in the innate immune response to
infections and tissue damage by creating a pro-inflammatory environment and are related
to several inflammatory diseases [118,119]. While NLRP inflammasome activity seems
essential to protect the host, its excessive activation can promote a form of cell necrosis
termed pyroptosis, capable of mediating the neuronal death due to membrane alterations
(e.g., pore formation and loss of integrity) and osmotic swelling [119].

The inflammasome can be activated by a huge variety of ligands. The best inves-
tigated are the DAMPs and pathogen-associated molecular patterns (PAMPs). Among
the currently identified DAMPs and PAMPs, the prominent components include ROS,
HMGB1, extracellular matrix molecules, heat shock proteins, potassium, chloride, sodium,
and calcium efflux, altered calcium signaling, extracellular ATP, lysosomal destabilization,
and product of mitochondrial dysfunction [70,118].

Within the CNS, inflammasome platforms are mainly expressed by astrocytes, mi-
croglia, and macrophages, and are activated by TBI-related neuroinflammation [70]. Ani-
mal studies showed that tissue or circulating inflammasome markers of both priming and
activation processes (NLRP3, ASC, pro-caspase-1 mRNA and protein, caspase-1, IL1β, and
IL18) are upregulated 6 h after a brain injury and remain elevated for more than seven days
afterword [115,120]. Although studies conducted in humans are limited, they reported
similar results in the blood or cerebral spinal fluid [115,121,122].

This pilot evidence suggests that the inflammasome machinery can act as a potential
biomarker of TBI damage and could partly predict neuroinflammatory-related conse-
quences.

3.2. Inflammaging

Several studies demonstrated that patients with TBI can develop long-term behavioral
alterations, cognitive dysfunctions, and neurodegenerative diseases, including parkin-
sonisms and accumulation of the amyloid-β (Aβ) [13–15,123]. Recently, Fann et al. con-
ducted a nationwide population-based observational cohort study with the aim of evalu-
ating long-term outcome of TBI individuals [124]. These authors observed that TBI was
associated with a significant increased risk of dementia as compared to subjects without
TBI or suffering from non-TBI trauma [124].
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As mentioned earlier, neuroinflammation represents a landmark of the secondary
injury cascade and can often persist for months after the traumatic event, contributing
to the setting of a chronic post-TBI status [2,11]. The resulting condition of chronic in-
flammatory post-TBI brain disease has been hypothetically linked to accelerated brain
aging through a process that can be classified under the umbrella definition of inflam-
maging [13–15]. Inflammaging is characterized by a subclinical chronic inflammatory
process that perpetuates neuroinflammatory post-TBI processes by modulating glial cells
towards a more active pro-inflammatory state, leading to neuronal dysfunctions, loss of
neuroprotective functions, and accumulation of brain tissue damage [125–127]. Moreover,
post-TBI pro-inflammatory process associated with BBB damage, immune cell activation as
well as microglia and astrocyte polarization can also contribute to decrease the production
of neurotrophic factors, such as insulin-like growth factor-1 (IGF-1) and brain-derived
neurotrophic factor (BDNF), which exert a key role in neuronal plasticity [125,128–130].
These alterations decrease neurogenesis processes and have detrimental effects for the
normal neuronal homeostasis and functioning, thus contributing to an increasing risk of
neurodegenerative conditions and cognitive impairment (Figure 2) [2,125].
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Figure 2. Mechanism of post-TBI inflammaging. Vascular damage caused by inflammatory molecules
leads to extravasation of immune cells and pro-inflammatory cytokines into the brain tissue. These
components are able to activate astrocytes and microglia, which produce further pro-inflammatory
cytokines. In this setting, macrophages shift from the protective M2 phenotype towards the pro-
inflammatory M1 phenotype. The consequent chronic neuroinflammation together with the de-
creased production of neurotrophic factors (IGF-1 and BDNF) lead to impaired neuronal functioning
and neurogenesis processes.

Early evidence suggested an increased expression of the amyloid precursor protein
in the acute phase of TBI, by examining post-TBI cortical brain tissue [131]. Subsequently,
evidence that Aβ accumulation is accelerated by TBI has been prompted by animal and
clinical studies demonstrating that TBI can acutely induce rapid Aβ production and
accumulation [132–134].

Years after the traumatic event, changes in the perivascular matrix can still be de-
tected in terms of increased concentration of profibrotic proteins (i.e., fibronectin and
perlcan), overexpression in large blood vessels of the gatekeeper of neurological function
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claudin-5, as well as decreased expression of the brain-capillary transporter P-glycopreotein
(P-gp) [123,135,136]. Like in the acute phase, changes in the matrix composition have been
hypothesized to instigate neurodegenerative processes through Aβ accumulation and
microglial activation [123,136]. The presence of Aβ plaques has been shown in 30% of
TBI victims [131,137]. Post-TBI, Aβ deposits have also been found in relation to an in-
creased expression of enzymes involved in Aβ-genesis, including the beta and gamma
secretase complex proteins [138–140]. The synergistic action of vascular dysfunction and
Aβ accumulation can activate the complement pathways around the Aβ deposits, thus
perpetuating neuroinflammation and brain aging processes [2]. Similar alterations have
been described in neurodegenerative CNS diseases, including AD [141]. Like in TBI, com-
plement plays a key role in the pathogenesis of AD [142,143], where the impaired clearance
of Aβ mediated by erythrocyte CR1 receptor, as well as the consequent Aβ deposition,
promotes activation of the complement pathway [144]. Progressive accumulation of Aβ

favors an increase in C3 complement protein, thus inducing the expression of anaphylactic
C3a/C5a proteins and the formation of membrane attack complex (MAC) [145,146]. The
receptors of these proteins are expressed on several CNS cell membranes including astro-
cytes, microglia/macrophage cells and endothelial cells. Overstimulation of such receptors
and accumulation of the complement proteins are capable of damaging neurons, increasing
activated glial cells and disrupting dendritic function [145,146].

All these findings could help to explain the potential role of complement in promoting
post-TBI inflammaging processes [2]. As such, activation of the complement pathway
has been documented in the early post-TBI stages and is possibly involved in promoting
the secondary injury cascade by inducing neuronal death and alterations of the synaptic
network. A complement-mediated damage could, hence, be a potential cause of long-term
cognitive impairment and CNS alterations in chronic TBI [147–149].

4. The Clinical Involvement of TBI on Pituitary Functions

The first study describing pituitary damage as a potential outcome of TBI was pub-
lished in 1918 as observed in a patient with a skull base fracture showing pituitary necrosis
at autopsy [150]. However, clinical awareness of hypopituitarism has expanded in the
last 15 years following observations of high incidence of neuroendocrine alterations due
to moderate and severe TBI [34,35,151]. Diagnosis of hormonal deficiencies is insidious,
and symptoms can be non-specific and/or potentially attributed to post-traumatic stress
disorder (PTSD) (i.e., fatigue, attention impairment, depression, apathy, anorexia) [152,153].
Keeping this assorted clinical context in mind, it is important to underline that delays in
diagnostic processes and late initiation of appropriate replacement therapy for hypopitu-
itarism are associated with increased morbidity and mortality [35].

Post-TBI hypopituitarism is characterized by a heterogeneous clinical spectrum that
ranges from mild and non-specific symptoms to urgent conditions requiring emergency ad-
mission, including water and salt imbalance, adrenal crisis, and severe hypoglycemia [154].
Clinical manifestations depend on the number and type of pituitary axes involved, the
severity of hormone deficiency, and time elapsing between hypopituitarism onset and the
actual diagnosis and treatment [35].

Overall, growth hormone deficiency (GHD), ACTH insufficiency, and gonadotropin
deficiency are the most frequent abnormalities observed in post-TBI patients [27,32,38,155].
The prevalence of these hormonal alterations varies according to the different phases
of the trauma: Acute phase (1–14 days post event) and chronic phase (3–6 months post
event) [156]. Each phase is characterized by specific hormonal imbalance (Table 1).
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Table 1. Clinical features, investigative findings, and diagnostic criteria of post TBI hypopituitarism.

Hormones
Deficiency Clinical Features Finding Diagnosis

ACTH Acute phase:
Life-threatening adrenal crises:

- Weakness, dizziness
- Nausea, vomiting
- Fever
- Shock

Chronic phase:

- Fatigue
- Pallor
- Anorexia, Weight loss

- Hypoglycemia
- Hypotension
- Anemia
- Lymphocytosis
- Eosinophilia
- Hyponatremia

Acute phase:
Serum cortisol ≤10 µg/dL
Chronic phase:
- Serum cortisol ≤3 µg/dL
is diagnostic
- Serum cortisol ≥18 µg/dL
exclude diagnosis
- Serum cortisol 3–18 µg/dL
consider stimulation test
(corticotrophin)

TSH Chronic phase:

- Tiredness
- Cold intolerance
- Constipation
- Hair loss, Dry skin
- Hoarseness
- Cognitive slowing

- Weight gain
- Bradycardia
- Hypotension

fT4 below the reference range
with low or inappropriately
normal TSH

FSH/LH Chronic phase:
Men:

- Loss of libido
- Impaired sexual function
- Mood impairment
- Loss of facial, scrotal and

trunk hair
- Weight changes

Women:

- Oligoamenorrhea
- Loss of libido
- Dispareunya
- Infertility
- Weight changes

Men:

- Decreased muscle mass
- Osteoporosis
- Anemia

Women:

- Osteoporosis

Men:
Low or inappropriately normal
gonadotropins with low serum
testosterone
Women:

- Low or inappropriately
normal gonadotropins with
low serum estradiol in
premenopausal women in
absence of regular menses

- Gonadotropins below the
reference range for age in
postmenopausal women

GH Chronic phase:

- Decreased muscle strength
- Visceral obesity
- Fatigue
- Decreased quality of life
- Impairment of attention and

memory

- Dyslipidemia
- Premature atherosclerosis
- Decreased muscle mass

- Low-normal IGF-I levels
according to sex and age
cutoffs associated with more
than three others pituitary
deficits

- Impaired response to GH
stimulation test (GHRH +
arginine, glucagon, ITT)

ADH Acute and chronic phase:

- Polyuria
- Polydipsia

- Decreased urine osmolality
- Hypernatremia
- Polyuria

24 h output of 3.5 L or more of
hypotonic urine and serum
sodium above the reference range

In the acute phase, ACTH-cortisol deficiency and salt/water imbalance are the most
clinically relevant dysfunctions [28,153]. Growing evidence demonstrated that neuroen-
docrine alterations during the acute phase can be transient and likely reflect adaptative
responses to post-TBI alterations [31,33,156–159]. The recovery of pituitary function has
been documented, in fact, in 50% of patients with hypoadrenalism and up to 90% of pa-
tients with diabetes insipidus [156,160]. In this phase, appropriate assessment of secondary
hypoadrenalism may be challenging because cortisolemia can be influenced by intrinsic
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factors linked to the trauma (i.e., trauma severity, presence of sepsis, therapeutic use of
steroids) and the stimulatory tests may not be reliable in critically ill patients [159]. In
the absence of sepsis, a morning serum cortisol ≤10 µg/dL in critical patients can be
considered as inappropriately low [153,161]. In the case of central diabetes insipidus, the
clinical picture is generally less confusing, and a 24 h output of 3.5 L or more of hypotonic
urine in the presence of serum sodium level above the reference range can confirm the
diagnosis [162]. The complete recovery occurs within days or months after traumatic event,
whereas new hormone deficiency may appear in the post-acute phase [28,33].

In the chronic post-TBI phase, gonadotropin and GH deficiency are the most common
pituitary alterations and are potentially responsible for chronic morbidity [163–166]. From
a diagnostic viewpoint, secondary hypogonadism during the chronic phase is defined by
low or inappropriately normal gonadotropins with low serum testosterone in men, low or
inappropriately normal gonadotropins with low serum estradiol in premenopausal women
in the absence of regular menses, and gonadotropins below the reference range for age in
postmenopausal women. On the other hand, the diagnostic evaluation of the GH/IGF-I
axis should be performed one year after the injury. GHD is diagnosed in the presence
of impaired GH response to the GH stimulation-test (e.g., GHRH + arginine, glucagon,
insulin-tolerance test), or in the presence of low-normal age- and sex-related IGF-I levels if
associated with ≥3 other pituitary hormone deficits [167].

Clinically speaking, hypogonadism as well as GHD-related syndromes are charac-
terized by decreased muscle mass and reduced bone mineral density. In addition, GHD
syndrome induces peculiar metabolic and body composition alterations, including dyslipi-
demia, obesity, and increased visceral adiposity. Several studies demonstrated that higher
BMI and abnormal lipid profile are typical of patients with post-TBI hypopituitarism and
in particular if suffering from GHD, when compared to patients with normal pituitary
function [168,169]. Cardiovascular alterations including premature atherosclerosis and
impaired cardiac function have also been demonstrated in these patients, with a significant
negative impact on quality of life (QoL) [154,169].

Along with classic endocrine symptoms of hypopituitarism, post-TBI pituitary defi-
ciency and particularly GHD are characterized by cognitive impairment and neuropsycho-
logical complications. Although neuropsychiatric and neurobehavioral symptoms were
previously considered only in the wide context of post-concussive syndrome, growing evi-
dence demonstrated greater cognitive distress in TBI patients affected by GHD as compared
to those with normal GH secretion [170], as well as more pronounced psychological distress
in untreated versus treated GHD patients [169,171]. Neuropsychiatric and neurobehavioral
changes range from deficit of attention, memory, information processing and execution, to
more severe alterations, such as impairments in language and visuospatial constructional
skills [34,170,171]. These alterations are independent of TBI severity [170]. A correlation
between GH response to stimulatory tests and memory deficits has been described in
patients with post-TBI GHD, as well as lower IGF-I levels have been associated to visual
and memory impairment in these patients [29]. This evidence is supported experimentally
by a correlation between low serum IGF-I levels and hippocampal neuron loss and spatial
memory deficits [172].

Early identification of post-TBI hypopituitarism and a timely initiation of hormonal
replacement therapy represent key elements to allow for a significant improvement of QoL
and the real possibility of returning to the normal activities of daily living.

5. Dynamics of Post-TBI Pituitary Damage and Neuroinflammation

The mechanisms underlying post-TBI pituitary damage remain unclear. Several
mechanisms have been hypothesized to exist, including the direct injury to the pituitary
gland due to skull fractures, and the secondary insults relating to hypotension, hypoxia,
increased intracranial pressure, changes in cerebral blood flow, and metabolism [173].
Moreover, in the last decades, a potential role of CNS inflammation in determining pituitary
dysfunction has been suggested [22,47].
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Given the anatomical location of the pituitary gland, both anterior and posterior
gland could be susceptible to direct mechanical injury at the time of the impact. In par-
ticular, fractures through the skull base and sella turcica and the subsequent hemorrhage
could directly compromise pituitary integrity and damage the pituitary stalk, leading to
hypopituitarism [24,173–177].

The peculiar vascularization of the pituitary gland, which is characterized by long
portal vessels originating from the subarachnoid space, is often compromised in TBI and is
a likely pathogenetic determinant of post-TBI pituitary dysfunctions [178,179]. Shearing
forces or compression due to increased intracranial pressure during TBI can damage these
vessels and determine pituitary necrosis [175,176,180]. Additional secondary damage
associated with hypovolemia, hypoxia, anemia, and brain swelling, which often occur as a
consequence of TBI, can provide further damaging mechanisms to explain pituitary gland
ischemia [173,181]. The impaired vascular-supply hypothesis could be confirmed by the
anatomical pattern of hormone deficiency developing after TBI. In fact, the most frequently
observed hormone defect involves GH and gonadotropins, which are indeed located in the
lateral portions and pars tuberalis of the anterior pituitary gland, respectively. These areas
are known to be more susceptible to ischemia due to the peculiar distribution of the portal
vessels [179].

In 2009, Kasturi and Stein observed that traumatic cortical damage in male mice
was associated with GHD two months after injury. The authors further demonstrated an
increased concentration of GFAP and IL-1β in the hypothalamus and anterior pituitary
gland [182]. Hence, they suggested that post-TBI GHD is possibly caused by local inflam-
matory changes and persistent astrocytosis that could involve hypothalamus and pituitary
gland leading to hypopituitarism [182]. In different studies, Tanriverdi et al. observed that
polymorphisms in apolipoprotein-E (APOE) are more prone to the onset of TBI-induced
pituitary deficiency [43]. It is known that APO-E can downregulate the neuroinflamma-
tory response, and it is produced in different CNS areas including the hypothalamus and
the pituitary [183,184]. After the initial direct head injury, secondary neuronal damage
is related to a neuroinflammatory response, which stimulates expression and release of
ROS and several inflammatory cytokines such as IL-1, IL-6, and TNF [185]. APOE3 is the
isoform with more pronounced anti-inflammatory properties, being able to downregulate
inflammatory cytokines, both in systemic circulation and in the CNS [43,186]. Based on
these findings, the authors hypothesized that TBI-induced neuroinflammatory response
and the individual expression of APOE isoforms could have a key role in the pathogenesis
of TBI-related pituitary damage [45].

In the last two decades, a potential role for TBI-induced autoimmunity has also
emerged in association with hypopituitarism. Studies in mice reported on the presence
of IgG autoantibodies against neuronal components after a cortical injury in adult rats
and serum autoreactive antibodies against neurons in experimental TBI [187]. In 2008,
Tanriverdi et al. showed for the first time the presence of serum autoantibodies against
pituitary (APA) after TBI in humans [42]. Here the authors demonstrated APA in 45% of
patients three years after TBI, whereas they did not find autoantibodies in the control group.
A significant association between the presence of APA and TBI-induced hypopituitarism
was also found [42]. Oppositely, the absence of APA was related to a significant pituitary
recovery in a five-year prospective study [46]. These results led to speculate that TBI could
increase the BBB permeability and cause an excessive exposure of sequestered pituitary and
hypothalamic antigens [42]. It is intriguing to notice that serum APA and autoantibodies
against the hypothalamus (AHA) were also assessed in a group of 61 amateur boxers, who
were exposed to sport-related TBI. Serum APA and AHA concentrations were detected
in 22.9% and 21.3% of subjects, respectively, and were directly associated with the onset
of pituitary dysfunctions, thus strengthening the hypothesis that autoimmunity could be
involved in the onset of TBI-induced hypopituitarism [45].

More recently, another mechanism has been proposed in relation to the hypothalamus-
pituitary damage after TBI [22,47]. This mechanism is focused on the previously discussed
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tanycytes, the barrier cells of the third ventricle, which are compromised in TBI. Several
studies demonstrated that tanycytes are able to regulate the hypothalamus-pituitary axes
through not yet fully known mechanisms [112,113,188]. Tanycytes seem to contribute
actively to the regulation of GHRH, GnRH, and TRH neuronal function, through a direct
interaction with GHRH, GnRH, and TRH neuroendocrine terminals, which could be able to
modulate hormonal release and pulsatility [112,188,189]. Post-TBI, altered permeability at
the tanycytes barrier could represent a potential mechanism of deregulated hypothalamic-
pituitary communication and, hence, function [190]. In such scenario, the pathophysiology
of hypopituitarism would be predominantly caused by hypothalamic dysfunction and
only secondary pituitary impairment.

In summary, neuroinflammation seems to be strongly involved in the pathogenesis
of post-TBI hypopituitarism and pituitary autoimmunity could contribute to neuronal
injury, intensifying the detrimental effects of neuroinflammatory patterns. An accurate
identification of inflammation biomarkers and autoantibodies potentially involved in the
onset and maintenance of pituitary dysfunction could allow the identification of high-risk
patients and the development of therapeutic algorithms.

6. The Interplay between Neural Post-TBI Damage, Residual Pituitary Activity and
Rehabilitation Outcomes

Short- and long-term neurophysiopathological processes act synergistically after
TBI to contribute to impairment of neurological and functional outcomes [191,192] via
neuroinflammation. As said earlier, peculiar central cellular and molecular patterns
promote widespread neuronal damage, which compromises motor and cognitive func-
tions [2,193,194]. From a clinical viewpoint, physical and cognitive disorders following
mild to severe TBI include headache, nausea, dizziness, fatigue, sleep pattern alterations
and motor dysfunctions, including loss of fine motor control and coordination, as well as
difficulty with balance [193,194]. Cognitive and neuropsychological dysfunctions can be
extremely disabling as they can include mental slowness, confusion, dual tasking inability,
impaired memory, attention, problem solving and executive functions, which cause anxiety,
irritability and depression [194–196].

Intriguingly, many post-TBI clinical symptoms are nonspecific and overlap with those
relating to hypopituitarism [35,152]. In recent literature, post-TBI pituitary dysfunctions
have been suggested to exert a detrimental effect on functional outcome at 6 months af-
ter the traumatic event, as assessed by functional independence measure (FIM) scores
and mini-mental state examination (MMSE) [34]. Moreover, patients with post-TBI hy-
popituitarism show fatigue and a wide range of cognitive symptoms, including reduced
memory performances, increased mental distress conditions, and lower scores on neu-
ropsychological tests [197,198]. Due to this overlapping symptomatology, the diagnosis of
pituitary dysfunction is often overlooked or delayed in post-TBI subjects with important
consequences in terms of reduced QoL, worse neurological and functional recovery, and
increased mortality [34,35,168].

As detailed earlier, GHD represents the hormonal alteration most frequently associated
with both functional and cognitive impairments in post-TBI patients [163–166] and systemic
consequences of GHD on lean body mass, bone mineral density, cardiac function, and
cognitive impairment can negatively affect motor and functional recovery [154,169].

It is also worth mentioning that replacement with recombinant human GH (rhGH)
in patients with GHD can significantly change the concentration of neurotransmitters in
the cerebrospinal fluid (i.e., dopamine metabolite homovanillic acid and NMDA receptor
ligand aspartate), thus improving cognitive functions [199–204]. However, data on the
role of rhGH replacement on neurocognitive recovery after TBI are not univocal. Several
studies demonstrated that rhGH replacement significantly improved cognition and QoL,
while others failed to show significant effects of rhGH therapy on cognitive skills while
suggesting that rhGH treatment was still able to improve fatigue and depression symptoms,
which affect approximately 25–40% of post-TBI patients [29,205,206]. Of note, a recent
phase II randomized, double-blind, placebo-controlled trial evaluating the efficacy of rhGH
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on rehabilitation outcomes from discharge after inpatient rehabilitation to the end of a
12-month follow-up failed to document significant GH-related improvements in disability
scales and neuropsychological functions, while observing an improvement in FIM scores as
compared to the GH-untreated group [207]. However, further studies on larger cohorts are
needed to investigate the efficacy of rhGH supplementation on rehabilitation outcomes and
to better define the correct timing of rhGH administration and the duration of treatment.

7. Concluding Remarks

The link between neuroinflammation and neurotoxic hypothalamo-pituitary outcomes
is an intriguing research area to investigate mechanisms of post-TBI pituitary damage.
Immune, endothelial, and neuronal cells promote individual and synergistic responses that
contribute to the impairment of pituitary homeostasis and, more in general, neuroendocrine
dysfunction relating to hypothalamic-pituitary function.

Evidence collected on the role of the inflammasome and inflammaging prompts
attention on the potential role of molecular pathways aiding diagnostic workup and
therapeutic approach in post-TBI hypopituitarism. Pituitary involvement after TBI has
detrimental systemic effects and may negatively impact neurorehabilitation outcomes.
Hence, attention is also warranted to scrutinize the role of the hypothalamic-pituitary unit
on neuromotor and neurocognitive outcomes following post-TBI rehabilitation, since both
neural damage and hypopituitarism have a negative influence on functional and cognitive
outcomes in post-TBI patients.

Hypopituitarism, and particularly GHD, can act centrally and peripherally through
modulation of neurotransmitters (alteration of neuronal homeostasis), changes in body
mass, and induction of metabolic alterations in muscle and bone. We hypothesize that
these two components may, in a yet unknown number of cases, act synergistically to impair
individual skills and rehabilitation outcomes. When clinical assessment and endocrine
testing show abnormal responses, replacement therapy of hormone deficiencies could
contribute to improve functional and cognitive skill in candidate patients’ subsets. Inter-
ventional studies are thus needed to determine the potential role for hormone replacement
on rehabilitation outcomes.
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Abbreviations

Aβ Amyloid-β
AD Alzheimer’s disease
AHA Autoantibodies against the hypothalamus
APA Autoantibodies against pituitary
APOE Apolipoprotein-E
BBB Blood–brain barrier
BDNF Brain-derived neurotrophic factor
CNS Central nervous system
CTE Chronic traumatic encephalopathy
DAMPs Damage-associated molecular patterns
FIM Functional independence measure
GCS Glasgow Coma Scale
GFAP Glial fibrillary acidic protein
GHD Growth hormone deficiency
HMGB1 High mobility group box 1
HPA Hypothalamus-pituitary-adrenal
IGF-1 Insulin-like growth factor-1
IL Interleukin
MAC Membrane attack complex
MMSE Mini-mental state examination
NOD Nucleotide oligomerization domain
P-gp P-glycopreotein
PAMPs Pathogen-associated molecular patterns
PRRs Pattern recognition receptors
PTSD Post-traumatic stress disorder
QoL Quality of life
rhGH Recombinant human GH
ROS Reactive oxygen species
SIRS Systemic inflammatory response syndrome
TBI Traumatic brain injury
TNF- α Tumour necrosis factor-α
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