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Abstract
In this paper we are interested in the approximation of fractional powers of self-adjoint
positive operators. Starting from the integral representation of the operators, we apply the
trapezoidal rule combined with a double-exponential transform of the integrand function.
In this work we show how to improve the existing error estimates for the scalar case and
also extend the analysis to operators. We report some numerical experiments to show the
reliability of the estimates obtained.
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Laplacian
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1 Introduction

In this work we are interested in the numerical approximation of L−α , α ∈ (0, 1). Here L
is a self-adjoint positive operator acting in an Hilbert space H in which the eigenfunctions
of L form an orthonormal basis of H, so that L−α can be written through the spectral
decomposition of L. In other words, for a given g ∈ H, we have

L−αg =
+∞∑

j=1

μ−α
j 〈g, φ j 〉φ j (1)
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where μ j and φ j are the eigenvalues and the eigenfunctions of L, respectively, and 〈·, ·〉
denotes theH-inner product. Throughout the paper we also assume σ(L) ⊆ [1,+∞), where
σ(L) denotes the spectrum of L.

Applications of (1) include the numerical solution of fractional equations involving the
anomalous diffusion, in which L is related to the Laplacian operator, and this is the main rea-
son for which in recent years a lot of attention has been placed on the efficient approximation
of fractional powers. Among the approaches recently introduced we quote here the meth-
ods based on the best uniform rational approximations of functions closely related to λ−α

that have been studied in [8–11]. Another class of methods relies on quadrature rules arising
from theDunford-Taylor integral representation of λ−α [1–4, 6, 7, 19, 20]. Very recently, time
stepping methods for a parabolic reformulation of fractional diffusion equations, proposed
in [21], have been interpreted by Hofreither in [12] as rational approximations of λ−α.

In this work, starting from the integral representation (see [5])

L−α = 2 sin(απ)

π

∫ +∞

0
t2α−1(I + t2L)−1dt, α ∈ (0, 1), (2)

where I is the identity operator inH, we consider the trapezoidal rule applied to the double-
exponential transform of the integrand function. We recall here that the method based on the
single-exponential (SE) transform has been extensively studied in [6, 7], where the authors
also provide reliable error estimates. The rate of convergence has been shown to be of type

exp(−c
√
n), (3)

where n is closely related to the number of nodes. The double-exponential transform has
been widely investigated in [14–18] for general scalar functions. In this work we show how
to improve the existing error estimates for the function λ−α . We also extend the analysis to
operators, showing that it is possible to reach a convergence rate of type

exp

(
−c

√
n

ln n

)
.

While theoretically disadvantageous with respect to the single-exponential approach, we
show that the double-exponential approach is actually faster at least for α ∈ (1/2, 1).

The paper is organized as follows. In Sect. 2 we make a short background concerning the
trapezoidal rule with particular attention to functions that decay exponentially at infinity. In
Sect. 3 we consider the trapezoidal rule combined with a double-exponential transform. Here
the convergence analysis is derived for the approximation of the scalar function λ−α and is
then extended in Sects. 4 and 5 to the case of the operator L−α. Some concluding remarks
are finally reported in Sect. 6.

2 A General Convergence Result for the Trapezoidal Rule

Given a generic continuous function f : R → R, in this section we make a short background
concerning the trapezoidal approximation

I ( f ) =
∫ +∞

−∞
f (x)dx ≈ h

+∞∑

�=−∞
f (�h),
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where h is a suitable positive value. GivenM and N positive integers, we denote the truncated
trapezoidal rule by

TM,N ,h( f ) = h
N∑

�=−M

f (�h).

For the error we have

EM,N ,h( f ) := ∣∣I ( f ) − TM,N ,h( f )
∣∣ ≤ ED + ETL + ETR ,

where

ED =
∣∣∣∣∣

∫ +∞

−∞
f (x)dx − h

+∞∑

�=−∞
f (�h)

∣∣∣∣∣ ,

ETL = h
−M−1∑

�=−∞
| f (�h)| , ETR = h

+∞∑

�=N+1

| f (�h)| .

The quantities ED and ET := ETL + ETR are referred to as the discretization error and the
truncation error, respectively.

Definition 1 [13,Definition 2.12] For d > 0, let Dd be the infinite strip domain of width 2d
given by

Dd = {ζ ∈ C : |Im(ζ )| < d}.
Let B(Dd) be the set of functions analytic in Dd that satisfy

∫ d

−d
| f (x + iη)|dη = O(|x |a), x → ±∞, 0 ≤ a < 1,

and

N ( f , d) = lim
η→d−

{∫ +∞

−∞
| f (x + iη)|dx +

∫ +∞

−∞
| f (x − iη)|dx

}
< +∞.

The next theorem gives an estimate for the discretization error of the trapezoidal rule when
applied to functions in B(Dd).

Theorem 1 [13,Theorem 2.20] Assume f ∈ B(Dd). Then

ED ≤ N ( f , d)

2 sinh(πd/h)
e−πd/h . (4)

Theorem 2 Assume f ∈ B(Dd) and that there are positive constants β, γ and C such that

| f (x)| ≤ C

{
exp(βx), x < 0,
exp(−γ x), x ≥ 0.

(5)

Then,

EM,N ,h( f ) ≤ N ( f , d)

2 sinh(πd/h)
e−πd/h + C

β
e−βMh + C

γ
e−γ Nh . (6)

Proof By (5) we immediately have

ETL ≤ C

β
e−βMh, ETR ≤ C

γ
e−γ Nh .

Using Theorem 1 we obtain (6). �
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The above result states that for functions that decay exponentially for x → ±∞ it may be
possible to have exponential convergence after a proper selection of h. When working with
the more general situation

I (g) :=
∫ b

a
g(t)dt, (7)

one can consider a conformal map

ψ : (−∞,+∞) → (a, b),

and, through the change of variable t = ψ(x), transform (7) to

I (gψ) :=
∫ +∞

−∞
gψ(x)dx, gψ(x) = g(ψ(x))ψ ′(x).

A suitable choice of the mapping ψ may allow to work with a function gψ that fulfills the
hypothesis of Theorem 2 so that I (g) can be evaluatedwith an error that decays exponentially.

Since the aim of the paper is the computation of L−α with σ(L) ⊆ [1,+∞), for λ ≥ 1
we consider now the integral representation (2)

λ−α = 2 sin(απ)

π

∫ +∞

0
t2α−1(1 + t2λ)−1dt, α ∈ (0, 1). (8)

Defining
gλ(t) := t2α−1(1 + t2λ)−1, (9)

and a change of variable t = ψ(x), ψ : (−∞,+∞) → (0,+∞), let

gλ,ψ(x) = gλ(ψ(x))ψ ′(x). (10)

Let moreover

Qα
M,N ,h(gλ,ψ) = 2 sin(απ)

π
h

N∑

�=−M

gλ,ψ(�h)

be the truncated trapezoidal rule for the computation of λ−α , that is, for the computation of

2 sin(απ)

π

∫ +∞

0
gλ(t)dt = 2 sin(απ)

π

∫ +∞

−∞
gλ,ψ(x)dx .

We denote the error by

EM,N ,h(λ) = ∣∣λ−α − Qα
M,N ,h(gλ,ψ)

∣∣

= 2 sin(απ)

π
EM,N ,h(gλ,ψ), (11)

and for operator argument

EM,N ,h(L) = ∥∥L−α − Qα
M,N ,h(gL,ψ )

∥∥
H→H . (12)

3 Double-Exponential Transformation

The DE transform we use here is given by

ψDE (x) = τ−1/2 exp
(π

2
sinh(x)

)
, τ > 0. (13)
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We consider in (8) the change of variable

τ t2 = τ (ψDE (x))2 = exp(π sinh(x)), τ > 0.

The function involved in this case is

gλ,ψDE (x) = π

2
τ 1−α exp(απ sinh(x))

τ + λ exp(π sinh(x))
cosh(x)

= π

2
λ−α (λ/τ exp(π sinh(x)))α

1 + λ/τ exp(π sinh(x))
cosh(x), (14)

and we employ the trapezoidal rule to compute

λ−α = 2 sin(απ)

π

∫ +∞

−∞
gλ,ψDE (x)dx .

The parameter τ needs to be selected in someway and the analysis is provided in Sect. 5.4. Its
introduction is motivated by the fact that, when moving from λ to L, the method (the choice
of M , N and h) and the error estimates have to be derived by working uniformly in the
interval [1,+∞) containing σ(L). As in the SE case applied to (8), the function gλ,ψDE (x)
exhibits a fast decay for x → ±∞ (see [7]), but the definition of the strip of analyticity is
now much more difficult to handle since everything now depends on λ and τ .

3.1 Asymptotic Behavior of the Integrand Function

In order to apply Theorem 2 we need to study |gλ,ψDE (x + iη)|. From (14) we have

|gλ,ψDE (x + iη)| = π

2
λ−α

∣∣∣∣
(λ/τ exp(π sinh(x + iη)))α

1 + λ/τ exp(π sinh(x + iη))

∣∣∣∣ |cosh(x + iη)|.

After simple manipulations based on standard relations we find

|cosh(x + iη)| =
√
cosh2 x − sin2 η,

and therefore
|cosh(x + iη)| ≤ cosh x .

Moreover

∣∣(λ/τ exp(π sinh(x + iη)))α
∣∣ =

(
λ

τ

)α

|exp(απ sinh x cos η))| .

In addition, we can bound the denominator using the results given in [15, p. 388], that is,
∣∣∣∣

1

1 + λ/τ exp(π sinh(x + iη))

∣∣∣∣ ≤ 1

1 + λ/τ exp(π sinh x cos η) cos(π/2 sin η)
.

From the above relations we find

∣∣gλ,ψDE (x + iη)
∣∣ ≤ π

2
λ−α cosh x

cos(π/2 sin η)
Gα(x, η),

where

Gα(x, η) = (λ/τ exp(π sinh x cos η))α

1 + λ/τ exp(π sinh x cos η)
.
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Let x∗ be such that
π sinh x∗ cos η = ln(τ/λ);

we have

Gα(x, η) ≤
{

(λ/τ)α exp(απ cos η sinh x), x ≤ x∗,
(λ/τ)α−1 exp(−(1 − α)π cos η sinh x), x > x∗. (15)

3.2 Error Estimate for the Scalar Case

The bound (15) implies that

N (
gλ,ψDE , d

) = lim
η→d−

{∫ +∞

−∞
∣∣gλ,ψDE (x + iη)

∣∣ dx +
∫ +∞

−∞
∣∣gλ,ψDE (x − iη)

∣∣ dx
}

≤ lim
η→d− πλ−α

{
1

cos(π/2 sin η)

∫ +∞

−∞
Gα(x, η) cosh xdx

}

≤ lim
η→d−

πλ−α

cos(π/2 sin η)

{
(λ/τ)α

∫ x∗

−∞
exp(απ cos η sinh x) cosh x dx

+ (λ/τ)α−1
∫ +∞

x∗
exp(−(1 − α)π cos η sinh x) cosh x dx

}

≤ 1

α(1 − α)

2

cos d cos(π/2 sin d)
λ−α.

In addition, assuming d = d(λ, τ ) < π/2, it can be observed that

∫ d(λ,τ )

−d(λ,τ )

|gλ,ψDE (x + iη)|dη ≤ π

2
λ−α

∫ d(λ,τ )

−d(λ,τ )

Gα(x, η) cosh x

cos(π/2 sin η)
dη

= O(1) for x → ±∞.

Using Theorem 1, for the discretization error we have
∣∣∣∣∣

∫ +∞

−∞
gλ,ψDE (x)dx − h

+∞∑

�=−∞
gλ,ψDE (�h)

∣∣∣∣∣ ≤ ξ(d)
1

α(1 − α)
λ−α e−πd/h

2 sinh(πd/h)
,

where

ξ(d) = 2

cos d cos(π/2 sin d)
. (17)

The remaining task is to estimate the truncation error. Using (15) we obtain

h
−M−1∑

�=−∞

∣∣gλ,ψDE (�h)
∣∣ ≤ π

2
τ−αh

−M−1∑

�=−∞
exp(απ sinh(�h)) cosh(�h)

≤ π

2
τ−α

∫ −Mh

−∞
exp(απ sinh x) cosh(x)dx

≤ τ−α

2α
exp (−απ sinh(Mh))

≤ τ−α

2α
exp

(απ

2

)
exp

(
−απ

2
exp(Mh)

)
.
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Similarly,

h
+∞∑

�=N+1

∣∣gλ,ψDE (�h)
∣∣ ≤ π

2
λ−1τ 1−αh

+∞∑

�=N+1

exp(−(1 − α)π sinh(�h)) cosh(�h)

≤ π

2
λ−1τ 1−αh

∫ +∞

Nh
exp(−(1 − α)π sinh x) cosh(x)dx

≤ λ−1τ 1−α

2(1 − α)
exp

(
(1 − α)π

2

)
exp

(
− (1 − α)π

2
exp(Nh)

)
.

The above results are summarized as follows.

Proposition 3 Using the double-exponential transform, for the quadrature error it holds

EM,N ,h(gλ,ψDE ) ≤ 1

α(1 − α)
ξ(d)λ−α e−πd/h

2 sinh(πd/h)
+ (18)

τ−α

2α
exp

(απ

2

)
exp

(
−απ

2
exp(Mh)

)
+ (19)

λ−1τ 1−α

2(1 − α)
exp

(
(1 − α)π

2

)
exp

(
− (1 − α)π

2
exp(Nh)

)
, (20)

where ξ(d) is defined by (17).

Defining

h = ln

(
4dn

μ

)
1

n
, for n ≥ μe

4d
, μ = min(α, 1 − α) (21)

as in [15,Theorem 2.14], we first observe that (see (18))

exp
(−πd

h

)

2 sinh
(

πd
h

) ≤ 1

1 − e− π
2 μe

exp

⎛

⎝ −2πdn

ln
(
4dn
μ

)

⎞

⎠ . (22)

Setting M = N = n, the choice of h as in (21) leads to a truncation error that decays faster
than the discretization one, because for an arbitrary constant c (see (19)-(20))

exp (−c exp (nh)) = exp

(
−4cdn

μ

)
.

As consequence the idea is to assume the discretization error as estimator for the global
quadrature error, that is, using (18) and (22),

En,n,h(gλ,ψDE ) ≈ Kαξ(d)λ−α exp

⎛

⎝ −2πdn

ln
(
4dn
μ

)

⎞

⎠ , (23)

where

Kα = 1

α(1 − α)

1

1 − e− π
2 μe

. (24)

Formula (23) is very similar to the one given in [15,Theorem 2.14], that reads

ÊM,N ,h(gλ,ψDE ) ≈ τ−α

μ
α(1 − α)

(
Kαξ(d) + e

π
2 ν

)
exp

⎛

⎝ −2πdn

ln
(
4dn
μ

)

⎞

⎠ (25)
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Fig. 1 Error for the trapezoidal rule applied with the double-exponential transform (error DE), estimates (23)
and (25) versus the number of inversions, for the computation of λ−α with λ = 1012 and τ = 100

where ν = max (α, 1 − α) and M = n, N = n − χ (or viceversa depending on α), where
χ > 0 is defined in order to equalize the contribute of the truncation errors [15,Theorem
2.11]. The important difference is given by the factor λ−α that replaces τ−α , and this is
crucial to correctly handle the case of λ → +∞. In this situation the error of the trapezoidal
rule goes 0 because gλ,ψDE (x) → 0 as λ → +∞ (see (14)). Anyway, as we shall see, d → 0
as λ → +∞, so that the exponential term itself is not able to reproduce this situation. An
example is given in Fig. 1 in which we consider λ = 1012 and τ = 100.

4 The Poles of the Integrand Function

All the analysis presented so far is based on the assumption that the integrand function

gλ,ψDE (x) = π

2
τ 1−α exp (απ sinh x)

τ + λ exp (π sinh x)
cosh x

is analytic in the strip Dd , for a certain d = d(λ, τ ). Therefore we have to study the poles of
this function, that is, we have to study the equation

τ + λ exp (π sinh x) = 0.

123
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We have

exp (π sinh x) = τ

λ
eiπ ,

sinh x = 1

π
ln

τ

λ
+ i(2k + 1), k ∈ Z.

By solving the above equation for each k, we obtain the complete set of poles. Assuming to
work with the principal value of the logarithm and taking k = 0, we obtain the poles closest
to the real axis x0 and its conjugate x0, where

x0 = sinh−1
(
1

π
ln

τ

λ
+ i

)

= ln

⎛

⎝ 1

π
ln

τ

λ
+ i +

√(
1

π
ln

τ

λ

)2

+ 2i
1

π
ln

τ

λ

⎞

⎠ . (26)

In order to apply the bound on the strip we have to define

d = d(λ, τ ) = r Im x0, 0 < r < 1. (27)

The introduction of the factor r is necessary to avoid ξ(d) → +∞ as Im x0 → π/2, which
verifies for λ → τ (see (17)).

4.1 Asymptotic Behaviors

Setting

s = 1

π
ln

λ

τ
,

we have
1

π
ln

τ

λ
= −s,

and therefore we can write (26) as

x0 = ln

(
s

(
−1 + i

s
+

√
1 − 2i

s

))
.

Assuming λ � τ , that is, s � 1, and using

√
1 − x ≈ 1 − 1

2
x − 1

8
x2 − 1

16
x3, x ≈ 0, (28)

we obtain √
1 − 2i

s
≈ 1 − i

s
+ 1

2s2
+ i

2s3
.

Using also ln(1 + x) ≈ x ,

x0 ≈ ln

(
s

(
−1 + i

s
+ 1 − i

s
+ 1

2s2
+ i

2s3

))

= ln

(
s

(
1

2s2
+ i

2s3

))

123



   55 Page 10 of 18 Journal of Scientific Computing            (2022) 91:55 

= ln

(
1

2s

)
+ ln

(
1 + i

s

)

≈ ln

(
1

2s

)
+ i

s
.

Therefore, for λ � τ ,

Im x0 ≈ 1

s
= π

ln λ
τ

. (29)

Assume now λ = 1 and τ � 1. By (26) we have

x0 = ln

⎛

⎝ 1

π
ln τ + i +

√(
1

π
ln τ

)2

+ 2i
1

π
ln τ

⎞

⎠ .

Setting

s = 1

π
ln τ,

we have

x0 = ln

(
s

(
1 + i

s
+

√
1 + 2i

s

))

≈ ln

(
s

(
1 + i

s
+ 1 + i

s

))

= ln

(
2s

(
1 + i

s

))

≈ ln (2s) + i

s
,

that finally leads to

Im x0 ≈ 1

s
= π

ln τ
. (30)

5 TheMinimax Problem

Let us define the function

ϕ(λ, τ) = ξ(d)λ−α exp

⎛

⎝ −2πdn

ln
(
4dn
μ

)

⎞

⎠ , d = d(λ, τ ),

representing the (λ, τ )-dependent factor of the error estimate given by (23), that is,

En,n,h(gλ,ψDE ) ≈ Kαϕ(λ, τ ),

where Kα is defined by (24). Since our aim is to work with a self-adjoint operator with
spectrum contained in [1,+∞) the problem consists in defining properly the parameter τ.

This can be done by solving
min
τ≥1

max
λ≥1

ϕ(λ, τ). (31)

As for the true error, experimentally one observes that τ must be taken much greater than 1,
independently ofα. Therefore, from now on the analysis will be based on the assumption τ �

123
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1. Regarding the function ϕ(λ, τ), by taking d = d(λ, τ ) as in (27) and n sufficiently large,
again, one experimentally observes that with respect to λ the function initially decreases,
reaches a local minimum (for λ = τ in which d = rπ/2), then a local maximum (much
greater than τ ), and finally goes to 0 for λ → +∞ (see Fig. 2). In this view, denoting by λ

the local maximum, for n sufficiently large the problem (31) reduces to the solution of

ϕ(1, τ ) = ϕ(λ, τ). (32)

5.1 Evaluating the Local Maximum

Since 0 < d ≤ rπ/2, 0 < r < 1, we have

0 < C ≤ cos d cos
(π

2
sin d

)
< 1,

where C is a constant depending on r . Therefore by (17),

2 < ξ(d) ≤ 2

C
,

so that we neglect the contribution of this function in what follows.
Since the maximum is seen to be much larger than τ , we consider the approximation (29).

Therefore we have to solve

d

dλ
λ−α exp

⎛

⎜⎜⎝−
2πr π

ln λ
τ

n

ln

(
4
μ
nr π

ln λ
τ

)

⎞

⎟⎟⎠ = 0,

that, after some manipulation leads to

d

dλ
λ−α exp

(
− c1n

ln λ
τ
q(λ)

)
= 0,

where

c1 = 2π2r , q(λ) = ln (c2n) − ln

(
ln

λ

τ

)
, c2 = 4

μ
πr . (33)

We find the equation

−αλ−1 − d

dλ

(
c1n

ln λ
τ
q(λ)

)
= 0,

and since

d

dλ

(
c1n

ln λ
τ
q(λ)

)
= c1n

λ

1 − q(λ)
(
ln λ

τ

)2
q(λ)2

,

we finally have to solve

α + c1n
1 − q(λ)

(
ln λ

τ

)2
q(λ)2

= 0. (34)

For large n we have

123
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Fig. 2 Plot of the function ϕ(λ, τ∗) for n = 40 and α = 1/2. The asterisk represents the approximation of the
local maximum given by (35), that is, the point

(
λ∗, ϕ(λ∗, τ∗)

)
. The diamond represents the approximation

of ϕ(λ∗, τ∗) stated in (38). Finally the circle is the approximation of ϕ(1, τ∗) given in (39)

q(λ) ≈ ln (c2n) ,

q(λ) − 1

q(λ)2
≈ 1

q(λ)
≈ 1

ln (c2n)
,

so that the solution of (34) can be approximated by

λ∗ = τ exp

(√
c1n

α ln (c2n)

)
. (35)

For any given τ ≥ 1, it can be observed experimentally that λ∗ is a very good approximation
of the local maximum (see Fig. 2).

We also remark that the assumption on n stated in (21), that leads to the error estimate
(23), is automatically fulfilled for λ = λ∗, at least for α not too small. Indeed, using (27) and
(29) we first observe that

d(λ∗, τ ) ≈ rπ

ln λ∗
τ

= rπ

√
α ln (c2n)

c1n
. (36)

Then by (33), using μ ≤ 1/2 and assuming for instance 0.9 < r < 1, after some simple
computation we find

μe

4d(λ∗, τ )
≈ μe

4πr

√
c1n

α ln (c2n)

≤ 1

3

√
n

α
.

Therefore the condition (21) holds true for n ≥ 1/(9α).
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5.2 The Error at the Local Maximum

By (36) clearly d(λ∗, τ ) → 0 for n → +∞, and therefore from (17) we deduce that
ξ(d(λ∗, τ )) → 2 for n → +∞. As consequence

ϕ(λ∗, τ ) ≈ 2
(
λ∗)−α exp

⎛

⎝−2πd(λ∗, τ )n

ln
(
4d(λ∗,τ )n

μ

)

⎞

⎠ .

By defining

sn =
√

c1n

α ln (c2n)
, (37)

from (35) and (36) we have

λ∗ = τ exp (sn) ,

d(λ∗, τ ) ≈ rπ

sn
,

and hence, after some computation

(
λ∗)−α exp

⎛

⎝−2πd(λ∗, τ )n

ln
(
4d(λ∗,τ )n

μ

)

⎞

⎠ ≈ τ−α exp (−αsn) exp

⎛

⎜⎜⎝
−2π rπ

sn
n

ln

(
4 rπ
sn

n
μ

)

⎞

⎟⎟⎠

= τ−α exp

⎛

⎝−α

⎛

⎝sn + c1n

αsn ln
(
c2n
sn

)

⎞

⎠

⎞

⎠ .

By (37) we have

sn + c1n

αsn ln
(
c2n
sn

) =
√

c1n

α ln (c2n)
+ c1n√

αc1n
ln(c2n)

ln
(
c2n
sn

)

=
√

c1n

α ln (c2n)

⎛

⎝1 + ln (c2n)

ln
(
c2n
sn

)

⎞

⎠

≈ 3
√

c1n

α ln (c2n)
,

because
ln (c2n)

ln
(
c2n
sn

) → 2 for n → +∞.

Joining the above approximations we finally obtain

ϕ(λ∗, τ ) ≈ 2τ−α exp

(
−3

√
α

√
c1n

ln (c2n)

)

= 2τ−α exp (−3αsn) . (38)
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5.3 Error at � = 1

By (30), that is,

d(1, τ ) ≈ r
π

ln τ
, τ � 1,

we have again ξ(d(1, τ )) ≈ 2 and therefore

ϕ(1, τ ) ≈ 2 exp

⎛

⎝−2πd(1, τ )n

ln
(
4d(1,τ )n

μ

)

⎞

⎠ .

Using (33) we find

ϕ(1, τ ) ≈ 2 exp

⎛

⎝− 2πr π
ln τ

n

ln
(
4
μ
nr π

ln τ

)

⎞

⎠

= 2 exp

(
− c1n

ln τ (ln (c2n) − ln (ln τ))

)

≈ 2 exp

(
− c1n

ln τ ln (c2n)

)

= 2 exp

(
−αs2n
ln τ

)
. (39)

5.4 Approximating the Optimal Value for �

We need to solve (32) for τ. Using the approximations (39) and (38) we impose

exp

(
−αs2n
ln τ

)
= τ−α exp (−3αsn)

= exp (−3αsn − α ln τ) ,

that is,

−αs2n
ln τ

= −3αsn − α ln τ.

Solving the above equation we find

ln τ =
(
−3 + √

13
)
sn

2
≈ 0.3sn,

so that
τ ∗ = exp (0.3sn) (40)

represents an approximate solution of (32).
In Fig. 2 we plot the function ϕ(λ, τ ∗) for λ ∈ [1, 1020], in an example in which n = 40,

α = 1/2, and τ ∗ ∼= 84.4 defined by (40).Moreoverwe show the results of the approximations
(35), (38) and (39), for τ = τ ∗. Clearly the ideal situation would be to have τ ∗ such that
ϕ(1, τ ∗) = ϕ(λ, τ ∗), but notwithstanding all the approximations used, the results are fairly
good and allow to have a simple expression for τ ∗.
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Fig. 3 Error for the trapezoidal rule applied with the double-exponential transform (error DE), with the single-
exponential transform (error SE) and error estimate given by (42)

By using (40) in (38) we obtain

ϕ(λ∗, τ ∗) ≈ 2 exp

(
−3.3

√
α

√
c1n

ln (c2n)

)
. (41)

Remembering that by (11)

En,n,h(L) ≤ 2
sin (απ)

π
max
λ≥1

En,n,h(g≥,ψDE ),

using (41) we finally obtain the error estimate

En,n,h(L) ≈ K α exp

(
−3.3

√
α

√
c1n

ln (c2n)

)
, (42)

where

K α = 4
sin (απ)

π
Kα

= 4
sin (απ)

π

1

α(1 − α)

1

1 − e− π
2 μe

.

In Fig. 3 we show the behavior of the method for the computation of L−α , where L is the
artificial operator

L = [diag(1, 2, . . . , 100)]8, σ (L) ⊆ [1, 1016],
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Fig. 4 Spectral norm of the error of the method applied to the computation of L−α, where L is the discrete
one dimensional Laplacian

together with the estimate (42). For comparison, in the same pictures we also plot the error
of the SE approach. As mentioned in the introduction, the DE approach appears to be faster
for 1/2 < α < 1.

Finally, we also consider the case of L equal to the operator obtained by applying the
three point finite difference discretization to the one dimensional Laplacian on (0, π), with
Dirichlet boundary conditions. In Fig. 4 we show the results obtained by considering a
uniform mesh with N = 200 internal points.

6 Conclusions

In this work we have analyzed the behavior of the trapezoidal rule for the computation of
L−α , in connection with the double-exponential transformations. All the analysis has been
based on the assumption of L unbounded, so that the results can be applied even to discrete
operators, with spectrum arbitrarily large, without the need to know its amplitude, that is, the
largest eigenvalue. In particular we have introduced new error estimates for the scalar and
the operator case for the double-exponential transform. The sharp estimate obtained for the
scalar case has been fundamental for the proper selection of the parameter τ that is necessary
to obtain good results also for the operator case.
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