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Chronic lymphocytic leukemia (CLL) cells display features consistent with a defect in apoptosis and exhi-
bit prolonged survival in vivo. Survival of these malignant cells is influenced by interactions with non-leu-
kemic cells located in permissive niches in lymphoid organs. Leukemic cells subvert the normal
architecture of the lymphoid organs, recruiting stromal cells, dendritic cells and T lymphocytes, all
reported as playing active roles in the survival and proliferation of CLL. The same survival-promoting
environment also rescues/protects leukemic cells from cytotoxic therapies, giving way to disease relapse.

This review summarizes and discusses current knowledge about the intricate network of soluble and
cell-bound signals regulating the life and death of CLL cells in different districts. At the same time, it seeks
to hone in on which discrete molecular elements are best suited as targets for treating this still incurable
disease.

� 2012 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Chronic lymphocytic leukemia (CLL), one of the most common
types of adult leukemia in Western countries, is characterized by
the accumulation of mature CD5+ B cells in the peripheral blood
and lymphoid organs [1]. Mainly diagnosed in older adults, CLL is
widely heterogeneous in terms of progression, therapeutic re-
sponse and outcome. Research to identify prognostic biologic
markers for CLL has thus been a major priority, and has yielded
fruitful results [2]. Today, the early recognition of patients charac-
terized by an aggressive form of the disease is guided by a number
of different molecular markers, including the absence of mutations
of the IgHV genes [3], the surface expression of CD38 [4] and
CD49d [5] and the intracellular presence of ZAP-70 [6]. Cytogenetic
abnormalities are also powerful prognosticators, with deletion of
17p and 11q strongly associated with rapid disease progression,
short survival and resistance to conventional DNA-damaging
chemotherapies [7]. Single gene mutations are rapidly being
uncovered by sequencing the coding genome of CLL cases, includ-
ing NOTCH1 [8], splicing factor 3b subunit 1 (SF3B1) [9,10], bacul-
oviral IAP repeat-containing 3 (BIRC3) [11], exportin 1 (XPO1),
d Ltd. All rights reserved.
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myeloid differentiation primary response gene 88 (MYD88) and
Kelch-like 6 (KLHL6) [12].

Investigation into the origin and development of this form of
leukemia has provided solid evidence in favor of the current view
that survival and proliferation of CLL cells depends on the microen-
vironment [13–15]. The malignant cells are dynamically compart-
mentalized into different districts, which determine their growth
potential and modulate their sensitivity to cytotoxic drugs. It is
plausible to assume that when CLL cells are located in the lym-
phoid organs, they come into contact with the antigen and a cock-
tail of stimulatory and accessory signals presented by a vast array
of cells [16]. The resulting bidirectional interactions would lead to
establishment of a progressively abnormal microenvironment that
promotes proliferation and survival [17]. These signals may also
create intracellular conditions promoting accumulation of novel
genetic mutations or expansion of previously existing mutated
subclones, both events favoring disease progression. Another
important point is that the lymphoid niche provides a shield from
the effects of chemotherapy, thus serving as a reservoir from which
relapse may occur [18]. In contrast, because they are located far-
ther from the antigen source and accessory signals, circulating
CLL cells become increasingly fragile and prone to apoptosis.

The creation of growth-favorable niches thus appears to be crit-
ical to the survival of CLL cells [19]. By identifying the molecular
links between leukemic cells and the microenvironment, as well
as the processes that regulate homing to the lymphoid niche, it
may be possible to disrupt the survival advantage conferred to
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Table 1
Novel agents currently in clinical development for CLL targeting key microenvironmental components and signaling pathways.

Agent Target/mechanism of action Clinical trial phase

Daratumumab Anti-CD38 Phase I/II
Natalizumab Anti-CD49d Phase I
HCD122 Anti-CD40 Phase I
Bevacizumab Anti-VEGF Phase II
Milatuzumab Anti-CD74 Phase I
BAY61-3606 R406 Syk inhibitors In vitro
PP2 SU6656 Lyn inhibitors In vitro
LY294002 CAL101 PI3K inhibitors Phase I/II
A-443654 AKT inhibitor In vitro
PCI-32765 BTK inhibitor Phase II
PF-956980 JAK3 inhibitor In vitro
LC-1 NF-kB inhibitor In vitro
Plerixafor T140 SDF-1/CXCR4 inhibitors Phase I/II
Lenalidomide Immunomodulator Phase I/II
CD40L-encoding oncolytic adenovirus CD40 ligand gene therapy In vitro
Chimeric antigen receptor (CAR) modified T-cells Genetic manipulation of autologous T cells In vitro
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the malignant cells, thereby improving the effects of conventional
chemotherapy [2,13,20]. The weaponry of targeted therapies avail-
able for CLL patients has grown exponentially in recent years and
now includes several novel drugs that interfere with different pro-
liferation/survival circuits. Some have reached clinical trials, with
documented benefits in terms of reduced toxicities and duration
of responses. They include monoclonal antibodies (mAbs), gluco-
corticoids, immunomodulatory agents, drugs with specific intra-
cellular molecular targets, vaccines and cellular immunotherapies
[2,21]. Even if highly diverse in terms of mechanisms of action,
these agents share the ability to disrupt the interactions between
malignant, bystander stromal cells and defense systems [13]. This
leads to radical changes in the cytokine/chemokine network and
cell surface receptors, ultimately reducing external support to the
tumor cells [20,22].

This review summarizes what is currently known about the
proliferative compartment of CLL, and discusses the various molec-
ular signals involved, in terms of their suitability for therapeutic
targeting (see Table 1).
2. Targeting the proliferative compartment of CLL

The CLL microenvironment in lymphoid organs is created and
maintained through a dynamic, interactive co-evolution between
leukemic and normal bystander cells. The hallmark of this transfor-
mation is exemplified by the proliferation center, a focal aggregate
of pro-lymphocytes and para-immunoblasts that cluster in
pseudofollicular structures [23–25]. These roughly nodular areas
without mantles are observed in LN and BM and represent the his-
topathological hallmark of CLL. Pseudofollicles contain aggregates
of Ki67+ proliferating tumor cells which express CD5, but differ
from reactive germinal center B cells by being CD10�, Bcl-6�, and
Bcl-2+ [26]. These Ki67+ cells are surrounded by new vessels [27],
sprouting in response to the production of vascular endothelial
growth factor (VEGF) by actively proliferating malignant B cells
[28,29]. However, pseudofollicles are not simply a collection of
proliferating monoclonal B lymphocytes, but rather a sort of melt-
ing pot for bilateral interactions with different populations of stro-
mal, dendritic and endothelial cells and T lymphocytes, which are
all potential players in the pathogenesis and progression of CLL
[30,31].
2.1. Antigen-mediated signals

Several independent pieces of evidence indicate that activation
of the BCR signaling pathway plays a central role in sustaining CLL
survival and in driving proliferation. First, CLL cells display a genet-
ic profile compatible with that of antigen-activated mature B cells
[32]. Second, microarray studies have shown that CLL cells located
in lymphoid organs display an up-regulation of genes belonging to
the BCR signaling pathway [33]. Third, biochemical studies have
demonstrated that CLL cells are characterized by enhanced expres-
sion and constitutively active phosphorylation of lyn and syk, two
tyrosine kinases belonging to the BCR signaling apparatus [34,35].
Consistently, the effector pathways downstream of the BCR,
including PI3K/Akt [36], MAPK [37] and NF-kB [38] appear to be
activated in selected subsets of CLL patients. Considered together,
all these indications seem to imply chronic antigen exposure
in vivo, at least in selected districts and in selected patient subsets.

The confirmation of a differential role of the BCR in distinct dis-
ease subsets comes from the finding that the clinical course of CLL
can be divided depending on the presence or absence of somatic
hypermutation in the immunoglobulin variable heavy chain region
(IGHV) genes [3,39]. More recent studies have been dedicated to
the analysis of specific stereotyped third heavy chain complemen-
tary determining regions (HCDR3s), showing a striking association
between stereotyped BCRs and clinical behavior. These observa-
tions suggest that an antigen-driven process is critical in modulat-
ing disease outcome, irrespective of the mutational status in CLL
[20,40]. Underscoring the relevance of the BCR pathway in disease
development and progression is the evidence of promising clinical
activity of several drugs specifically targeting distinct players of
the pathway. Inhibitors of the key kinases in this pathway, includ-
ing SYK/LYN, PI3K-ATK, and BTK, have been found in pre-clinical
models to decrease CLL cell viability both directly and indirectly
through modulation of the microenvironment [41,42].

2.2. Nurse like cells (NLCs)

NLCs are named after their resemblance to thymic nurse cells,
which nurture developing thymocytes by driving their maturation
and differentiation in a contact-dependent fashion [43]. When
mononuclear cells from the blood of CLL patients are cultured
without stromal cells, a constant finding is the outgrowth of an
adherent cell population to which CLL lymphocytes are attached.
This population actively protects leukemic cells from spontaneous
apoptosis in vitro [44]. It produces high levels of CXCL12 and ex-
presses distinct molecules, including the lineage marker CD68,
BAFF (B cell-activating factor of the tumor necrosis factor family)
[45], CD31 and plexin-B1 [46]. Proliferation centers in spleen and
lymphoid tissues of CLL patients contain CD68+ myeloid cells that
are believed to represent the tissue counterparts of NLCs
[13,47,48]. Recruitment of NLC precursors can be actively pursued



Fig. 1. Receptor-ligand axes operative in the CLL microenvironment. (A) NLCs that can promote CLL cell survival through the production of CXCL12 and through cognate
interactions between CD31 and CD38, which are expressed on NLC and CLL cells, respectively. CLL-EC contact via VCAM-1-CD49d interactions may contribute to CLL cell
survival. The inhibition of these interactions could be useful as a therapeutic strategy. (B) Interaction of MSC/FDC with CLL cells increases PDGF and VEGF production.
Contacts between CLL and stromal cells lead to the activation of NF-jB and PI3K signaling pathways, increasing leukemic cell survival. Several molecules block these
pathways, and are being tested in different clinical trials. (C) T lymphocytes from CLL patients are dysfunctional, as they are unable to form an immune synapse. Lenalidomide
restores and potentiates functional T cell activity. Moreover, genetic manipulation of autologous T cells to target specific tumor antigens is an area of intense investigation.
Creating over-expression of CD40L on CLL cells could lead to efficient antigen presentation, activating apoptotic programs.
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by CLL cells through the secretion of CCL3 and CCL4, in turn trig-
gered in response to signals mediated by the B cell receptor [49]
and by CD38 [50]. The latter represents the starting point of a con-
secutive chain of events, with activation of CD68+ macrophages,
which secrete tumor necrosis factor-a (TNF-a), in turn up-regulat-
ing the expression of vascular cell adhesion protein 1 (VCAM-1) by
endothelial cells. The final effect is increased adhesion of CD49d+

CLL cells on endothelial cells, with extended survival of the neo-
plastic clone [50].

It has been proposed that this circuit may be targeted using
anti-CD49d monoclonal antibodies (mAbs) to prevent triggering
of the cascade signals. The advantage of this approach would be
that Natalizumab (Tysabri™), a humanized antibody specific for
the molecule, is already approved for the treatment of multiple
sclerosis [51] and Crohn’s disease [52] (Fig. 1).
2.3. Mesenchimal stem cells (MSCs)

MSC strongly affect the development and progression of various
cancers [53]. Interaction of MSC with CLL cells increases the pro-
duction of VEGF and platelet-derived growth factor (PDGF), con-
comitantly decreasing thrombospondin-1 [54]. PDGF binding to
its receptor leads to activation of MSC via Akt and the subsequent
secretion of VEGF [55]. Taken together, these steps are indicative of
an angiogenic switch, associated with disease progression [56]
(Fig. 1), providing the molecular rationale for clinical testing of
inhibitors of VEGF receptor tyrosine kinase [57].
2.4. Follicular dendritic cells (FDCs)

FDC are closely associated with CLL cells in the early phase of
bone marrow (BM) involvement as well as in the lymph nodes
(LNs). In vitro culture with FDC rescues leukemic cells from spon-
taneous apoptosis by direct cell contact, dependent on ligation of
CD44 and on up-regulation of Mcl-1, a member of the Bcl2 family
[58]. The CD100/plexinB1 crosstalk also appears to be operative in
this context [59].

The signals specific for stromal cells are still ill defined. Inde-
pendent groups have demonstrated that the phosphatidylinositol
3-kinase (PI3K) pathway is induced by contacts between CLL and
stromal cells and provides a significant survival advantage to leu-
kemic cells in culture on a variety of stromal cell types [60,61].
Indirect evidence in line with these data suggests that CLL cells dis-
play increased PI3K activity and reduced activity of the degradative
enzyme phosphatase and tensin homologue (PTEN) [62]. PI3K is a
target for therapy in cancer and inhibitors are now available for the
different isoforms of PI3K. The PI3Kd isoform is of high interest be-
cause its expression is restricted to hematopoietic cells, where it
plays a critical role in B cell homeostasis and functions [63].
CAL101 is a potent and highly selective inhibitor that promotes
apoptosis of CLL cells through inhibition of PI3K signaling and
Akt activation in response to a number of extracellular signals
[64]. Clinical trials are actively recruiting patients to be treated
with CAL101, either as a single agent or in combination with con-
ventional chemotherapy and rituximab [65] (Fig. 1).

The mechanisms for survival are only partially understood:
PI3K may contribute to nuclear factor-jB (NF-jB)-mediated tran-
scriptional induction of the pro-survival factor BCL-XL [19]. Other
effects include the inhibition of migration caused by CXCL12
[66]. The relevance of the NF-jB pathway for CLL progression is
further confirmed by data on the expression of the NF-jB subunit
Rel A as a biomarker of disease progression in CLL [38]. Further-
more, the pathway is actively modulated as a consequence of inter-
actions with endothelial cells [67]. Several drugs effective for CLL
patients, including lenalidomide, operate by blocking NF-jB acti-
vation. LC-1 is one of these and has reached clinical trials, in view
of the results obtained in vitro, which show dramatic induction of
apoptosis [68].
2.5. T lymphocytes

Most malignancies are associated with decreased numbers of
circulating T cells. In contrast, T lymphocytes are significantly ele-
vated in CLL, even if their TCR repertoire is contracted with oligocl-
onal and monoclonal subsets [69–72]. One study suggested that
higher T lymphocyte numbers are associated with a poor clinical
outcome [73], while others have shown a relative increase in cen-
tral and effector memory T cells in cases that lack somatic muta-
tions in IgHV genes [74]. It is still unclear whether increased
numbers of T lymphocytes in the periphery are paralleled by a sim-
ilar increase in LN. Proliferation centers contain activated CD4+ T
cells adjacent to leukemic cells, likely indicating adhesion and bi-
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directional signals [75]. CLL cells secrete CCL22, CCL3 and CCL4,
which are involved in T cell recruitment to the LN. This may sug-
gest that leukemic cells themselves play an active role in the accu-
mulation of T lymphocytes. On the other hand, migration in
response to CXCL12, CCL21 and CCL19 of T cells from CLL patients
is partially defective, as compared to T cells from healthy adults
despite similar CXCR4 and CCR7 expression. This is particularly
evident when considering T cells from ZAP-70�/CD38� CLL pa-
tients. Since T cells in proliferation centers may help CLL cells to
survive and proliferate, the low migratory response towards
CXCL12 in T cells from ZAP-70� CLL patients is believed to favor
the indolent clinical course of the disease in these patients [76].

A significant number of T cells in proliferation centers express
CD40L (CD154), a member of the TNF superfamily that mediates
interactions with CD40+ CLL cells, rescuing them from apoptosis
[77]. This effect is mediated by up-regulation of the pro-survival
protein survivin [78], repression of BCL2 and induction of BCL-XL
and BCL2A1 [79]. This anti-apoptotic mechanism can be therapeu-
tically modulated using lucatumumab (HCD122), an anti-CD40
humanized monoclonal antibody that blocks interaction of CD40L
with CD40 and also mediates antibody-dependent cell-mediated
cytotoxicity (ADCC) [80]. Moreover HCD122, inhibits CD40L-in-
duced activation of signaling pathways, proliferation, survival,
and secretion of cytokines [81]. This antibody is currently in phase
I clinical trials [80].

T lymphocytes from CLL patients are dysfunctional in that they
are unable to form a fully effective immune synapse [82]. This yet
uncharacterized molecular defect is driven, at least in part, by
interactions with the malignant cells and is reversed by lenalido-
mide [83,84]. This agent has a wide range of immunomodulatory
activities, including stimulation of T cells through CD28, enhance-
ment of the expression of cytokines (including IL-2 and IFN-c),
repression of regulatory T cells with concomitant induction of
Th17, and increase of NK- and of antibody-dependent cytotoxici-
ties [85]. In addition, lenalidomide also shows growth inhibitory
and pro-apoptotic properties [86]. It is highly effective when used
as a single agent [87] and clinical trials are under way to determine
whether combining the drug with more established agents might
be effective (Fig. 1).

A plausible explanation for the hypo-responsiveness of the T
cell compartment of CLL patients lies in the inefficient antigen pre-
sentation effected by neoplastic cells. This is partly due to the low
expression of CD40L, resulting in diminished co-stimulation via
CD40. Ligation of CD40 on CLL cells induces phenotypic and bio-
chemical changes that facilitate CLL cell-T cell interactions and en-
hance the sensitivity of CLL cells to clearance by adaptive and
innate immune-effector mechanisms. Some groups have tried to
prime T cells by over-expressing CD40L on CLL cells, to increase
antigen presentation by leukemic cells. Surface expression of
CD40L on CLL cells after gene therapy treatment promotes expres-
sion of costimulatory molecules including CD40, CD80, and CD86
on neighboring bystander CLL cells, thereby making them better
costimulants for T-cell activation [88]. Gene therapy with CD40L
may be effective if administered in combination with rituximab,
which sensitizes CLL cells to mAb-induced cell death (Fig. 1). Lena-
lidomide appears promising also in this context as it promotes
expression of functional CD40L on CLL cells [89].

Reprogramming of autologous T cells to target specific tumor
antigens is a second an area of intense investigation and promising
results. The most successful strategy so far involves the use of an
antibody-derived antigen-binding moiety fused with an internal
signaling domain such as CD3f to form a chimeric antigen receptor
(CAR) [90]. CARs have theoretical advantages over other T-cell-
based therapies. They use the patient’s own cells, which avoids
the risk of graft-versus-host disease. They can be created quickly,
and the same chimeric antigen receptor can be used for multiple
patients. Preliminary results from an ongoing trial suggest that
low doses of autologous T cells infected with a CD19-targeted
CAR infused into a patient induce tumor lysis syndrome followed
by persistent clinical response, highlighting the potency of this
therapy [91] (Fig. 1).
2.6. Nucleotide-mediated signals

Considerable evidence indicates that an immune response is not
solely determined by antigenic stimulation, but rather that com-
plex interactions among the endocrine, nervous and immune sys-
tems are at the basis of immune homeostasis [92]. As a first
example, extracellular nucleotides [such as adenosine triphosphate
(ATP)] and nucleosides (such as adenosine), together with the en-
zymes involved in their metabolism and purinergic receptors, con-
stitute a network of signals that may shift the balance from
survival to apoptosis. Our lab has shown that CLL cells nestled in
the LN proliferation centers activate an adenosinergic axis, which
involves the ectoenzymes CD39 and CD73, causing the accumula-
tion of the end product adenosine. An adenosine-rich environment
creates local conditions that protect CLL cells from spontaneous or
drug-induced apoptosis and that inhibit chemotaxis [93] (Fig. 2). It
is plausible to assume that targeting the adenosinergic axis might
have a considerable therapeutic impact on the control of CLL pro-
gression and/or on potentiating the effects of chemotherapy. One
way to achieve this could be via blocking of CD73, an approach
proposed for solid tumors [94]. Alternatively, the use of antago-
nists of the A2A receptor, which could limit the increase in cyto-
plasmic cAMP levels associated with anti-apoptosis and
chemoresistance, may be envisioned. There are several specific
antagonists of the A2A receptor, one of which is in clinical trials
for Parkinson’s disease [95] (Fig. 2).

Another example illustrating the importance of the connections
between metabolism and the immune system is nicotinamide, the
main precursor of NAD+. We reported that treatment of CLL cells
with nicotinamide triggers a rapid and robust activation of the
apoptotic program and blocks proliferative responses. These effects
are mediated by a functional loop that involves SIRT1 as the key
player. SIRT1 is the main member of the sirtuin family and inacti-
vates p53 by deacetylating a critical lysine residue. According to
this model, nicotinamide blocks SIRT1, resulting in a net increase
of active p53. These effects are even more apparent when CLL cells
are treated with chemotherapeutic agents, known to activate the
p53 pathway (Fig. 2).

For these reasons, the combination of DNA-damaging chemo-
therapeutics and nicotinamide should yield optimal apoptotic re-
sponses [96]. An alternative possibility would be to combine
nicotinamide with traditional histone deacetylase inhibitors,
resulting in a synergistic antileukemic activity [97] (Fig. 2).
3. Targeting the homing process

A growing body of evidence indicates that malignant B cells ex-
ploit physiological mechanisms of tissue-specific lymphocyte
migration to access supportive microenvironmental niches [98].
Not merely a passive event, re-circulation to and from lymphoid
organs is tightly controlled by expression of a number of molecular
sensors that guide leukemic cells out of the vessels and into the LN
[15]. This complex process, known as homing, can be broken down
into three basic steps. The first involves the initiation of motility
programs, usually driven by the binding of chemokines to their
specific receptors. Within minutes after binding, lymphocytes
polarize with extensive modifications in the organization of the
cytoskeleton. During the second phase, lymphocytes adhere to
the endothelial barrier and negotiate crossing, an event lasting



Fig. 2. Pathways regulated by extracellular nucleotides favor accumulation of leukemic cells in specific environments. Increased levels of extracellular NAD result in
accumulation of the end product nicotinamide (Nam), a powerful inhibitor of the SIRT1 enzyme. Nicotinamide inhibiting SIRT1, leads to the activation of the p53 network,
which results in inhibition of proliferation and induction of apoptosis. Instead, increased levels of ATP activate an adenosinergic axis modulated by the CD39 and CD73
ectoenzymes. Extracellular adenosine binds to specific A2A receptors, driving an intracellular pathway dependent on cAMP, which results in inhibition of chemotaxis and
apoptosis.
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minutes to hours and mediated mainly by integrins and their li-
gands. The last phase is characterized by the production and secre-
tion of matrix metalloproteases (MMPs) that allow lymphocytes to
move within tissues and to reach their final destination [99]. The
molecular players driving this process also appear to be compart-
mentalized within the same membrane domains, termed invado-
somes, which suggests a sequential and inter-regulated
phenomenon [100].
3.1. Chemokine signals

The extremely fine homing of CLL cells to and within the BM is
mediated by the chemokine receptor CXCR4 [101]. Functional re-
sponses to CXCL12 are marked by the activation of a signaling cas-
cade that converges on ERK1/2. Rapid and transient Ca2+ fluxes
lead to actin polymerization within minutes after chemokine
administration [44]. Patients with an aggressive form of CLL have
been found to display heightened responses to CXCL12, both in
terms of short term signaling and of the ability to migrate
in vitro [102]. Our group has found that CD38 acts as a facilitator
of CXCR4 signaling by enhancing and prolonging activation of the
ERK1/2 kinase in vitro [103]. Experiments performed in immuno-
compromised mice have shown that CD38+ CLL clones home more
efficiently to the BM and the LN than their counterpart and that
antibodies against CD38 significantly block these phenomena,
trapping CLL cells in the blood [104].

CXCR4 antagonists, such as Plerixafor (AMD3100) and T140
analogs, can disrupt adhesive tumor/stroma interactions and
mobilize leukemic cells from their protective stromal microenvi-
ronment, making them more accessible to conventional drugs.
Therefore, targeting the CXCR4/CXCL12 axis is an attractive thera-
peutic approach that is being explored in ongoing clinical trials in
leukemia patients [13,105].

Chemokine receptors such as CXCR4, CXCR5 and CX3CR1 regu-
late more complex phenomena, by activating signals related to cell
growth and relying on the activation of MAP kinases and STAT3.
These pathways may be pharmacologically targeted using specific
inhibitors, including the Jak3 inhibitor PF-956980 [106].
3.2. Adhesion molecules

CLL cells express several integrins, members of the Ig superfam-
ily that play important roles in the regulation of cell behavior
either through direct activation of signaling pathways important
for cell growth survival or by modulating responses to growth
factors.

Besides controlling homing and residence in the lymphoid or-
gans, as well as adhesion and activation of B lymphocytes [107],
integrins also promote survival of CLL cells [67]. The expression
of a4 integrin (or CD49d) was reported as an independent marker
for patients with a more aggressive, bulky form of the disease
[108]. Engagement of CD49d/CD29 (a4b1 integrin) is followed by
activation of the PI3K pathway with production of MMP-9 [109].
The result is increased migration, an acquired feature potentially
favorable to clinical outcome. Our group has shown that the pres-
ence of CD38 on the CLL cell membrane significantly enhances
CD49d-mediated adhesion by inducing a more complex distribu-
tion of F-actin filaments and a marked phosphorylation of the ki-
nase Vav-1 [110]. CD38+/CD49d+ CLL clones adherent to
recombinant V-CAM-1 are also more resistant to apoptosis than
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CD38�/CD49d+ clones. As observed with CXCR4, the functional link
between CD38 and CD49d relies on their physical association, as
inferred by co-localization and co-immunoprecipitation experi-
ments, pointing to the existence of a large supra-molecular com-
plex. The complex is dynamic and the association appears to be
strengthened when CLL cells are left to adhere on recombinant
VCAM-1 [110]. These data provide further support of the proposal
to use anti-CD49d antibodies in the therapy of CLL (Fig. 1).

Another adhesion molecule that might be involved in CLL sur-
vival is CD44. CD44 isoforms, encoded by a single highly conserved
gene, are a family of transmembrane receptors for hyaluronic acid,
a major component of the extracellular matrix, and are also in-
volved in selected adhesion functions and in delivering bidirec-
tional (outside to inside and vice versa) signals [111].

CD44 is also an integral component of the CD74 receptor com-
plex, which binds migration inhibiting factor (MIF) [112,113].
While CD74 is sufficient for binding soluble MIF, CD44 is necessary
for transmitting the subsequent signals [114]. Initially thought to
function mainly as an invariant HLA Class II chaperone, CD74
was later shown to be directly involved in the maturation of B cells
through a pathway leading to the activation of transcription med-
iated by the NF-jB p65/RelA homodimer and its coactivator TAFII
[51]. This circuit is also operative in CLL cells [52].

Milatuzumab (Immunomedics) is a novel humanized mAb that
targets CD74. This mAb induces rapid internalization into CD74+

cancer cells and elicits significant anti-tumor effects in xenograft
models of various lymphoid malignancies in mice. It can be used
as a single agent or in combination with chemotherapy or other
mAbs, such as rituximab [115]. So far, treatment with mila-
tuzumab appears to be free of severe adverse effects in humans,
and initial data indicate that it may be safely administered with
other agents. Incorporation of milatuzumab into liposomes further
enhances its therapeutic potential in CLL [116]. Preliminary expe-
rience indicates that milatuzumab may be used as a single agent
in CLL patients, whose functional status makes them ineligible
for other more aggressive forms of treatment. Milatuzumab might
also be useful in combination with low doses of fludarabine: block-
ing the CD74 pathway may overcome the protective effect exerted
by fibronectin via VLA-4 [117].

3.3. Matrix metalloproteases (MMPs)

MMPs are proteolytic proenzymes involved in degradation of
the extracellular matrix during the early steps of tumorigenesis
[118], and also plays a role in the late stages of tumor progression,
invasion, and metastasis [119]. MMP-9 is the dominant MMP pro-
duced by B-CLL cells and contributes to their tissue infiltration
[109]. MMP-9 expression correlates with advanced clinical stages
of the disease [120]. Its engagement induces an intracellular sig-
naling pathway, which includes Lyn activation, STAT3 phosphory-
lation, and Mcl-1 up-regulation and prevents B-CLL apoptosis
[121]. CD38, CD49d, MMP9 and CD44 were recently reported as
components of a supramolecular surface complex of physically
associated molecules [122]. A wide body of evidence indicates that
CD38 is the link between the discrete steps of the homing process.
Expanding on this view, it is tempting to speculate that it might be
more effective to target CD38 than to target individual steps. Dar-
atumumab (GenMab), a human anti-human CD38 mAb, entered a
phase I/II clinical trial for patients with multiple myeloma and
CLL. The mAb induces potent Ab-dependent cellular and comple-
ment-dependent cytotoxicities. These properties are apparently
unaffected by the presence of BM stromal cells, suggesting that
the mAb will be effective in the LN or BM niche. Daratumumab
has also been shown to induce potent cytotoxic effects in vitro
and in vivo, while functional effects triggered by the binding por-
tion of the antibody molecule still need to be identified. Recent
data also indicate a clear synergy between lenalidomide and dar-
atumumab-dependent cell-mediated cytotoxicity, opening the
way to the design of combination therapies [123]. What remains
to be analyzed is whether daratumumab influences the adhesive
properties of CD38, hence reducing homing of leukemic cells to
the lymphoid organs [124].
4. Conclusions

Purine analog-based combination chemotherapy or chemo-
immunotherapy is considered to be a highly effective first-line
therapeutic option. However, a major problem in the treatment
of CLL is that the promising response rates observed in recent years
are flanked by a number of patients with high-risk disease that re-
lapse and become chemoresistant. Another major limit is that, for
some patients, conventional chemotherapy is unlikely to work or is
contraindicated due to comorbidity. The host microenvironment
and the resulting interplay between the genetic background and
environmental influences thus play a crucial role in disease pro-
gression, as well as in resistance to treatment. By targeting selected
microenvironmental interactions and/or events mediated by the
immune system in CLL, it may be possible to disrupt the shielding
of malignant cells derived from those interactions, and also to cre-
ate strong synergies with conventional therapeutics and overcome
resistance mechanisms. New technologies and approaches, such as
the animal models recently developed and tested, may soon prove
essential for studying the integrated effects of the microenviron-
ment. The development of these or related strategies, together or
in combination, is expected to improve the outcome and quality
of life of CLL patients.
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