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Hemophilia A (HA) is a rare bleeding disorder caused by defi-
ciency/dysfunction of the FVIII protein. As current therapies
based on frequent FVIII infusions are not a definitive cure,
long-term expression of FVIII in endothelial cells through
lentiviral vector (LV)-mediated gene transfer holds the prom-
ise of a one-time treatment. Thus, here we sought to deter-
mine whether LV-corrected blood outgrowth endothelial cells
(BOECs) implanted through a prevascularized medical device
(Cell Pouch) would rescue the bleeding phenotype of HA
mice. To this end, BOECs from HA patients and healthy do-
nors were isolated, expanded, and transduced with an LV car-
rying FVIII driven by an endothelial-specific promoter em-
ploying GMP-like procedures. FVIII-corrected HA BOECs
were either directly transplanted into the peritoneal cavity
or injected into a Cell Pouch implanted subcutaneously in
NSG-HA mice. In both cases, FVIII secretion was sufficient
to improve the mouse bleeding phenotype. Indeed, FVIII-cor-
rected HA BOECs reached a relatively short-term clinically
relevant engraftment being detected up to 16 weeks after
transplantation, and their genomic integration profile did
not show enrichment for oncogenes, confirming the process
safety. Overall, this is the first preclinical study showing the
safety and feasibility of transplantation of GMP-like produced
LV-corrected BOECs within an implantable device for the
long-term treatment of HA.
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INTRODUCTION
Hemophilia A (HA) is an X-linked disorder caused by mutations in
the F8 gene.1,2 These mutations result in deficiency or reduced ac-
tivity of the coagulation factor VIII (FVIII), leading to a life-long
bleeding tendency, whose clinical severity is proportional to FVIII
reduction.1 Although the current standard of care is to intrave-
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nously infuse HA patients with clotting factor concentrates, the
short half-life of FVIII requires frequent and multiple infusions,
with a negative impact on the patient’s quality of life (QoL). A
new generation of standard rFVIII was obtained by refinements of
the recombinant protein through the optimization of relevant
post-translational modifications, such as glycosylation, that improve
the stability of the mature FVIII protein,3 or the introduction of a
covalent link between the FVIII heavy and light chains, preserving
FVIII from premature degradation and conferring a higher binding
affinity to von Willebrand factor (vWF) with a reduction of the
needed injection dose.4–6

Other new bioengineered molecules were developed with higher
extended plasma half-life7 and improved pharmacokinetics by the
fusion of rFVIII with the Fc portion of immunoglobulin8 or by conju-
gation with polyethylene glycol (PEGylation).9

However, several issues are still to be solved as the recurrent intra-
venous (i.v.) route of administration and the inhibitor develop-
ment, common in 20%–40% of patients with the severe form,10

worsen the clinical outcome, making the treatment ineffective.11,12

Therefore, a new clinical approach emerged more recently, i.e.,
emicizumab, to overcome the difficulties of i.v. delivery and to
improve and prolong the effectiveness of the therapy in all pa-
tients, regardless of the presence or absence of the inhibitor.13,14
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However, bleeding events can still occur after trauma, requiring
the use of additional hemostatic agents according to the patients’
inhibitor status.15,16

This has led researchers to explore innovative cell and gene therapy
strategies that may ensure continuous endogenous FVIII expression
with only a one-time treatment. Another good reason for choosing
gene therapy over traditional approaches is that HA is a monogenic
disease, i.e., entirely ascribable to the lack of one protein, FVIII, and
that a small increase in FVIII plasma levels is enough to ameliorate
the bleeding phenotype of HA patients.

Given the growing number of cell and gene therapy approaches being
developed, it is becoming increasingly important to identify the most
suitable cell target. Even though F8 mRNA is expressed in different
human and mouse organs, such as liver, spleen, lymph nodes, kid-
ney,17–20 and in hematopoietic cells,21,22 transplantation studies in
hemophilic animal models have shown FVIII expression to be mainly
localized in liver sinusoidal endothelial cells (LSECs),23–25 making
these cells attractive targets for HA gene therapy. This is also sup-
ported by the fact that endothelial cells (ECs) secrete FVIII and can
act as tolerogenic cells.24,26

Over the years, several gene therapy approaches for HA have been
attempted using adeno-associated virus (AAV) vectors to induce
FVIII expression in the desired cell type. Despite the encouraging
preliminary results obtained in few ongoing clinical trials testing
the efficacy of AAV-mediated hepatocyte-targeted FVIII expression
in HA patients,27–29 some medical issues still need to be addressed,
such as the use of these vectors in patients with pre-existing immu-
nity to AAV or with FVIII inhibitors. As AAV vectors do not
actively integrate into the host cell genome, they are lost upon cell
division during liver growth or in case of liver disease, thus poten-
tially limiting their use in pediatric patients and questioning their
life-long maintenance. Therefore, lentiviral vectors (LVs) could
represent a viable approach able to overcome some AAV limita-
tions. Moreover, several studies have demonstrated, by the use of
endothelial-specific promoters, specific expression of human FVIII
in LSECs.23–25,30 Recently, we have shown that induced pluripotent
stem cells (iPSCs) derived from CD34+ HA cells can be differenti-
ated into ECs and genetically corrected by LV to express the FVIII
transgene, deleted of the B domain (BDD), driven by the endothe-
lial-specific vascular endothelial cadherin (VEC) promoter. After
transplanting these cells into the liver of monocrotaline-conditioned
NOD-scid IL2Rgnull HA (NSG-HA) mice, we were able to correct
the bleeding phenotype of these mice and maintain a stable FVIII
activity over time.31 Moreover, BDD-FVIII-transduced ECs encap-
sulated in microcarrier beads have been shown to survive for a pro-
longed time in the peritoneal cavity of NSG-HAmice secreting ther-
apeutic levels of FVIII.31

Several studies have focused on defining different cell sources and
matrices to transplant FVIII-expressing ECs.32–34 A readily available
EC source is represented by patient-derived blood outgrowth endo-
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thelial cells (BOECs).35 BOECs are isolated from adult peripheral
blood36 and can be fully differentiated into mature ECs. They pro-
mote neovascularization in vivo when transplanted into immunode-
ficient mice37 or when cultured on three-dimensional biodegradable
vascular scaffolds.38–40 In addition, they can be considered a valuable
source of cells to understand EC biology and model disease, and can
be used in regenerative medicine due to their ability to promote neo-
vascularization, thus representing an optimal candidate for HA cell
and gene therapy. Indeed, BOECs transplanted in NSG-HAmice after
gene modification for FVIII expression were able to partially rescue
the hemorrhagic phenotype of these mice.35,41 Moreover, autologous
transplantation of FVIII-expressing BOEC cell sheet allowed long-
term phenotypic correction and survival of transplanted cells.34 Note-
worthy, BOECs can promote neovascularization in vivo in combina-
tion with synthetic or natural materials.37

A combination of LV-corrected BOECs with a medical device is clas-
sified by the European Union as a combined gene therapy medicinal
product (GTMP).42 The mandatory non-clinical study scheme before
the first administration of a cell-based GTMP to human subjects in-
cludes the comprehensive characterization of the transduced cells and
the evaluation of the medical device contribution.43 Moreover, the
proof-of-concept pharmacodynamics along with the molecular
mechanism of action must be identified in preclinical models in vivo
and/or in vitro. These studies are deemed essential to determine the
GMP cell dose to be used in clinical trials.44

Here, we show extensive characterization of LV-transduced BOECs
isolated from healthy donors or HA patients for FVIII production
in vivo. These cells were transplanted in a small scalable, implantable,
and prevascularized medical device, namely Cell Pouch (Sernova),
previously developed for diabetes treatment.45

Our findings, showing that Cell Pouch-transplanted LV-corrected
HA BOECs are capable of correcting the bleeding phenotype of HA
mice, open new avenues for the treatment of HA in humans.

RESULTS
Characterization of BOECs isolated from HA patients or healthy

subjects and LV-mediated FVIII gene transfer

Upon isolation and expansion in culture medium, both BOECs from
healthy donors and HA patients showed the classical endothelial
cobblestone-like morphology (Figure 1A). Of note, despite being all
isolated from severe HA patients, HA BOECs gave rise to many col-
onies (Figure S1A) and there was not a significant difference in the
number of isolated colonies between healthy donors and HA patients
(Figure S1B). For transgene expression, isolated cells were transduced
with a LV carrying the BDD form of FVIII driven by the vascular
endothelial cadherin promoter (LV-VEC.hBDD-FVIII) or with an
LV carrying the green fluorescent protein under the control of the
same promoter (LV-VEC.GFP), both at an multiplicity of infection
(MOI) of 20. FACS analysis showed 98% ± 1% GFP+ cells after trans-
duction (Figure S1C), indicating excellent transduction efficiency.
The number of integrated LV copies/cell was �6 and �3 for
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LV-VEC.GFP- and LV-VEC.hBDD-FVIII-transduced cells, respec-
tively (Figure S2A). Thus, this protocol ensures a very high transduc-
tion efficiency while maintaining a safe number of integrated LV
copies/cell.46,47

We next assessed the endothelial phenotype and functionality of
transduced versus non-transduced healthy or HA BOECs. As shown
in Figure 1B, all cells expressed classical endothelial markers (e.g., PE-
CAM1,KDR, TEK, CDH5, and VWF) as well as other genes specific to
blood endothelial cells (BECs)48,49 (Figure 1C). The endothelial
phenotype of healthy and HA BOECs was further verified at the pro-
tein level (Figures 1D and 1E, respectively), while the hematopoietic
phenotype was ruled out upon CD34 and CD45 staining, which re-
sulted negative (Figures 1D and 1E).

The endothelial functionality of the transduced cells was confirmed
by their ability to form tubule networks upon Matrigel cell culture
(Figure 1F). F8 mRNA expression was measured in transduced
BOECs by RT-PCR (Figure 1G), while FVIII protein expression levels
were detected by flow cytometry (see Figures 1H and IJ for healthy
and HA BOECs, respectively) and immunofluorescence (IF) (Fig-
ure 1J). Interestingly in healthy BOECs we detected low levels of FVIII
(Figures 1H and 1J). This is in accordance with previous works where
FVIII in healthy BOECs was barely observed.41,50,51 When cell super-
natants were subjected to activated partial thromboplastin time
(aPTT) assay, we noticed a consistent shortening in LV-
VEC.hBDD-FVIII-transduced BOECs (69 ± 3.5 s for transduced
healthy BOECs, 66 ± 4 s for transduced HA BOECs) compared
with non-transduced cells (80 ± 2.8 s for healthy BOECs, 84 ± 2.8 s
for HA BOECs) (Figure S2B), in good agreement with the amount
of secreted FVIII (35.9 ± 2.3 ng/mL for LV-VEC.hBDD-FVIII healthy
BOECs, 4.5 ± 1.3 ng/mL for non-transduced healthy BOECs; 54 ±

7.5 ng/mL for LV-VEC.hBDD-FVIII HA BOECs, 0.15 ± 2.5 ng/mL
for non-transduced HA BOECs) (Figure S2C).

To further evaluate the safety of LV transduction, healthy BOECs
were transduced with different MOIs (MOI = 10, 20, 50, or 100),
and HIV-1 p24 expression on cell supernatant was assessed. As
shown in Figure S2C, all LV-transduced BOEC supernatants were
negative for HIV-1 p24 at any of the MOIs tested 10 days after trans-
duction, suggesting the reliability of our protocol. HIV-1 p24 on su-
pernatant of HA BOECs transduced with an MOI of 20 showed com-
parable results (Figure S2D).
Figure 1. Healthy and HA BOEC isolation, LV transduction, and in vitro FVIII de
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BOECs. (I) FVIII intracytoplasmic staining on non-transduced (black line) or transduced

detection by immunofluorescence: blue, DAPI; red, anti-FVIII. Data are expressed as m
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Secretion of the FVIII gene product by LV-transduced HA or

healthy BOECs in NSG-HA mice

Since healthy and HA BOECs were both able to secrete FVIII in vitro,
we evaluated their ability to survive and secrete FVIII in NSG-HA
mice after intraperitoneal injection in association with Cytodex 3 mi-
crocarrier beads. Following injection, FVIII-transduced GFP+ healthy
BOECs were able to partially restore FVIII activity, which reached a
peak of approximately 10% at 4 weeks post injection (pi) and per-
sisted above 5% for up to 10 weeks pi (Figure 2A). As expected,
LV-VEC.GFP BOEC controls showed only basal FVIII secretion,
which only lasted for 4 weeks. Importantly, mice receiving FVIII-
transduced HA BOECs revealed sustained therapeutic FVIII activity
(up to 10%) for up to 13 weeks pi, which persisted at a level <5%
throughout the following 18 weeks (Figure 2A). Blood loss assays,
run between 7 and 10 weeks pi of FVIII-transduced GFP+HABOECs,
demonstrated partial restoration of hemostasis (Figure 2B) accompa-
nied by detectable amounts of plasmatic FVIII antigen (12.4 ± 3.9 ng/
mL) (Figure 2C). At week 13 pi, three mice in each experimental
group were killed, and beads were recovered from the abdominal cav-
ity. IF staining was performed on the recovered beads using an anti-
GFP antibody that would detect the transplanted cells that were pre-
viously transduced with both LV-VEC.GFP and LV-VEC.FVIII.
Therefore, the presence of GFP+ cells confirm that they are still asso-
ciated with the beads and that they maintained an endothelial pheno-
type, as shown by the co-staining with CD31 (Figure 2D).

Large-scale expansion of FVIII-transduced cells

With the aim to translate this approach into the clinic, we developed a
protocol that would allow us to obtain a large amount of transduced
HA BOECs for our in vivo experiments. LV-VEC.hBDD-FVIII-trans-
duced HA BOECs from four patients were large-scale expanded to
reach 108 cells, frozen, and sent to the partners in accordance with
GMP-like procedures. Upon arrival, cells were re-cultured by simu-
lating a centralized cell production process with long-term cryopres-
ervation. After large-scale expansion and cryopreservation, upon
thawing and reseeding, all cells showed normal cobblestone-like
morphology (Figure 3A). Even though they were slightly enlarged,
no significant changes in their doubling time, cell density, and length
of time required for expansion were noticed (Figure 3B). In addition
to maintaining expression of the classical endothelial markers (CD31,
KDR, Tie-2, and VEC), expanded BOECs became CD34+, a trans-
membrane phosphoglycoprotein involved in cell adhesion,52 while
they retained the classical CD45� phenotype (Figure 3C).
tection

esentative RT-PCR analysis for the expression of endothelial markers. HUVECs and

dothelial markers specific for blood endothelial cells (BECs). iPSC-derived ECs and

histograms of healthy non-transduced (black line) and LV-VEC.hBDD-FVIII-trans-

f hematopoietic markers. The filled-up histograms represent unstained BOECs. (E)

ansduced HA BOECs (red line) showing endothelial marker expression and absence

trigel assay confirming tubule formation of transduced BOECs. (G) RT-PCR, using

ECs. Unrelated transduced cells and fibroblast were used as positive and negative

r transduced healthy BOECs (red line). The filled-up histogram represents unstained

HA BOECs (red line). The filled-up histogram represents unstained BOECs. (J) FVIII

ean ± SD and are representative of four independent experiments.

ber 2021



Figure 2. Intraperitoneal implantation of BOECs with

Cytodex microcarrier beads

(A) Kinetics of the percentage of FVIII activity measured by

aPTT assay in the plasma of transplanted NSG-HA mice.

BOECs used were transduced only with LV-VEC.GFP or

with both LV-VEC.hBDD-FVIII and LV-VEC.GFP. Data are

expressed as mean ± SD and are representative of two in-

dependent experiments using BOECs from two healthy

donors (n = 7 mice), and four independent experiments

using HA BOECs from four patients (n = 23 mice). (B) Blood

loss evaluation on NSG-HA mice between weeks 7 and 10

(n = 4) after cell transplantation. (C) FVIII concentration in

plasma of mice transplanted with transduced or non-trans-

duced BOECs at week 16. Data are expressed as mean ±

SD (***p < 0.0001, **p < 0.001). (D) Representative immu-

nofluorescence on beads showing cells co-expressing GFP

and CD31.
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Functionally, FVIII-transduced cells preserved their tubulogenesis ac-
tivity (Figure 3D) and led to partial restoration of FVIII activity once
transferred into NSG-HA mice (Figure 3E), similar to the kinetics of
non-expanded BOECs. Thus, LV-VEC.hBDD-FVIII HA BOECs
maintain their ability to secrete FVIII at therapeutic levels even after
large-scale expansion.
Molecular Therapy: Methods & Cl
Tissue matrix development and safety of LV-

VEC.hBDD-FVIII-transduced BOECs within a

Cell Pouch implanted in NSG-HA mice

The Cell Pouch is a medical implantation device
specifically designed to enable the development
of a vascularized tissue matrix environment that
ensures long-term survival and function of trans-
planted therapeutic cells. Thus, we first evaluated
the safety and survival of transduced HA BOECs
within the Cell Pouch implanted in NSG-HA
mice. For this purpose, 4-week implanted Cell
Pouches were transplanted with one of three doses
(2�, 5�, or 10 � 106) of LV-VEC.hBDD-FVIII
HA BOECs isolated from two separate HA do-
nors. The Cell Pouches transplanted with BOECs
were explanted at 4, 8, or 12 weeks, and a gross
pathological assessment was performed. HA
BOECs were safe across doses and time points
with no visible tumors observed (n = 60 total;
HA1 n = 37; HA2, n = 23) (data not shown).

Overall, the tissue matrix developed within the
Cell Pouch internal chamber and transplant
area was viable among all groups according to
time, dose, and cell lot, with no apparent signs
of inflammation, hemorrhage, fibrosis, or necro-
sis (Figure 4A; Table S1). The center of the trans-
planted chamber area showed mild to moderate
collagen deposition without any difference due
to donor lot, time, or dose. Within the area of
pre-vascularization, there was a comparative increase in established
collagen, indicating that the Cell Pouch promoted, over time, the
development of a natural scaffold to provide strength and structure
to the environment, irrespective of the transplant. Regarding tissue
vascularization, there was moderate neovascularization of the cen-
tral, transplanted tissue of the Cell Pouch that was present in
inical Development Vol. 23 December 2021 555
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Figure 3. Large-scale expansion of HA patient-

derived BOECs

(A) Light microscope pictures of transduced HA BOECs

pre- and post-expansion. (B) Cell size, cell density, culture

time, and population doubling level during pre- and post-

large-scale expansion. (C) Endothelial marker expression

pre- and post-large-scale expansion expressed as stained

cells versus cells with secondary isotype controls. (D) Tu-

bulogenic assay to assess the functionality of transduced

HA BOECs after pre- and post-large-scale expansion. (E)

Kinetics of the percentage of FVIII activity measured by

aPTT assay in plasma of transplanted NSG-HA mice. Data

are expressed as mean ± SD and are representative of two

independent experiments (n = 7).
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both donor lots, as well as the controls, along with evidence of es-
tablished vessel growth, indicating that the tissue development
within this area included new blood vessel formation (Figure 4B).
Established vessels within the central, transplanted zone appeared
to be more prominent and donor dependent at the latest time points
(Figure 4A).

TransducedHABOECs improve the bleeding phenotype and cell

survival in mice after transplantation into the vascularized Cell

Pouch

The therapeutic efficacy of LV-VEC.hBDD-FVIII HA BOECs trans-
planted into the Cell Pouch was evaluated by performing a tail
bleeding assay on NSG-HA mice 4 months after cell transfer.
Remarkably, we noticed a significantly improved presence of clotting
as judged by a reduction in blood volume recovered in animals trans-
planted with 20 � 106 LV-VEC.hBDD-FVIII HA BOECs compared
with non-transplanted mice (Figure 5A). Notably, this was not signif-
556 Molecular Therapy: Methods & Clinical Development Vol. 23 December 2021
icantly different when compared with NSG mice,
confirming that correction of the missing coagu-
lation factor had been achieved in the trans-
planted HA mice. Relatively long-term cell sur-
vival (4 months post-transplant) was confirmed
by co-staining with anti-HLA-ABC and anti-
vWF antibodies as well as by the formation of
blood vessels within the transplanted area (Fig-
ures 5B and 5C; Table S2).

Overall, these data indicate that corrected HA
BOECs are able to engraft and persist for pro-
longed periods of time within the tissue matrix
supported by the Cell Pouch and secrete enough
FVIII to correct the hemophilia phenotype of the
implanted NSG-HA mice.

Complex composition of BOEC clonal

populations

Sonication linker-mediated PCR was performed
on 53 samples of genomic DNA extracted from
LV-transduced BOECs derived from 3 healthy
donors (D45, D2, and D3) and 3 HA patients (pHA1, pA, and pC),
collected at different expansion passages or procedure time points.
By grouping the samples according to the BOEC source (i.e., healthy
donors or HA patients) and the type of vector used (i.e., LV-
VEC.hBDD-FVIII or LV-VEC.GFP), we obtained 4 main groups:
HA.FVIII, HA.GFP, Healthy.FVIII, and Healthy.GFP. Overall, we
retrieved 142,349 integration sites (ISs) (HA.FVIII, 28,069; HA.GFP,
106,554; Healthy.FVIII, 5,864; Healthy.GFP, 1,862) (Table S3). We
compared the distribution of ISs of the four groups along the whole
human genome and with respect to gene transcription start site.
The profile of LV integrations was similar for all the groups and
confirmed the marked tendency of the LV to integrate within gene
bodies, without bias for promoter regions (Figures 6A and 6B), in
line with previously published results.53–56 Following enrichment
analysis of genomic position and gene annotations, none of the onto-
logical gene classes showed cancer or tumor suppressor gene enrich-
ment (Table S4).



Figure 4. Pathological assessment after transplantation of LV-VEC.hBDD-

FVIII HA BOECs into the Cell Pouch device

(A) Sernova Cell Pouches were removed at 4, 8, or 12 weeks and stained by H&E

and Masson’s trichrome for blinded histopathological analysis. Histology scores

and representative images at 12 weeks post-transplant with 10 � 106 LV-

VEC.hBDD-FVIII BOECs (animal groups n = 2–3). (B) Quantification of H&E and

Masson’s trichrome for blinded histopathological analysis.
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Common insertion site (CIS) analysis showed few highly targeted
genes in all datasets (e.g., NPLOC4, PACS1, and MROH1) (Table
S5). The quantification of IS abundance showed only a few clones
with abundance >10% in LV-VEC.hBDD-FVIII-transduced BOECs
from pA and pHA1 (Figure 7). Only two ISs were retrieved from
Molecular The
D45 cells transduced at an MOI of 30, thus resulting in both to
be 50% abundant. One clone with an IS in the GNL3 gene, which
may interact with p53 and may be involved in tumorigenesis, and
with abundance >25%, was also observed in pHA1 BOEC, but
only at a single time point (P11-UK). To address the clonality of
transduced BOECs, we analyzed the diversity of the clonal popula-
tion through Shannon diversity index. The highest Shannon diver-
sity index, between 9 and 11, was observed in BOECs from pHA1
and pA, transduced with the VEC.GFP vector. All the other BOECs
showed a Shannon diversity index between 4 and 8, which remained
constant throughout the various cell passages. A lower diversity in-
dex directly correlated with a lower number of ISs, in particular for
the HA Beads and Cell Pouch samples at different time points (Fig-
ure 8A). To better understand if, especially in the Cell Pouch sam-
ples, the clonal diversity was reduced, we compared the H index be-
tween samples grouped by type (expansion, HA beads, Cell Pouch
and LV used [VEC-FVIII, VEC-GFP]) (Figure 8B). IS analysis re-
vealed a high level polyclonality of LV-transduced BOECs, with
no significant difference between the FVIII- and GFP-transduced
samples. The clonal composition heterogeneity of FVIII-transduced
samples remained constant over time in vitro and in vivo. Finally,
Cell Pouch samples had a significant lower H index when compared
with BOECs in expansion.

DISCUSSION
Although the current therapy for HA involves the administration of
plasma-derived or recombinant FVIII, there is to date no definitive
cure for this inherited bleeding disorder. While several ongoing phase
I–III clinical trials assessing the feasibility and safety of AAV-medi-
ated hepatocyte-directed HA gene therapy have been able to achieve
therapeutic FVIII plasma levels,57–59 further experiments are in prog-
ress to assess the long-term stability of transgene expression. In this
regard, the fact that AAV vectors do not actively integrate into the
host cell genome and, thus, can be lost upon cell division during liver
growth or liver disease questions their life-long maintenance besides
limiting their potential use in pediatric patients.

A promising alternative approach is represented by a combination of
cell and gene therapy, which would, however, require the identifica-
tion of a suitable cell type able to effectively secrete FVIII while
meeting all the necessary conditions for successful cell transplanta-
tion. In this regard, it is widely acknowledged that the liver is the
main organ producing FVIII, where LSECs appear to be the main
source of FVIII60–62 and can play a tolerogenic role. In addition,
because of the important role of the interaction between FVIII and
vWF in the stability and activity of FVIII, LSECs may represent the
most suitable target for cell- and gene therapy-based strategies aimed
to correct the HA phenotype.63 Unfortunately, LSEC are not easy to
obtain and maintain in vitro; therefore, in this study we explored the
feasibility of using gene-corrected autologous BOECs more manage-
able and previously shown to be able to secrete FVIII in vivo.64 Here,
we show that BOECs isolated from both healthy and HA donors can
be efficiently cultured, transduced, expanded, and used to correct the
bleeding phenotype of HA mice. In this regard, it is important to
rapy: Methods & Clinical Development Vol. 23 December 2021 557
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Figure 5. Bleeding phenotype and cell survival of LV-

VEC.hBDD-FVIII HA BOECs after implantation in the

Cell Pouch device

(A) Bleeding assay on mice transplanted with 10 � 106 or

20 � 106 HA and LV-VEC.hBDD-FVIII BOECs, or left un-

treated (n = 3–6, mean ± SEM, **p < 0.05; ns, not signifi-

cant). NSG mice were used as control for bleeding assay.

(B) The transplanted Cell Pouch devices were removed

from the recipient NSG-HAmice, and immunofluorescence

was performed to detect cell survival within the mouse

tissue by human cell staining (HLA-ABC) and blood vessel

formation through staining with cross-reacting human/

mouse von Willebrand factor (vWF) antibody. The images

shown are representative of two transplant groups (10 �
106 n = 5; 20 � 106 n = 12). (C) Quantification of HLA-ABC

and blood vessel formation from blinded histopathological

assessment.
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point out that the large number of corrected cells we obtained allowed
us to reach FVIII therapeutic concentrations more quickly, thus
reducing the risk of cell senescence.

The current protocols for BOEC isolation are based on the culture of
mononuclear cells (MNCs) from peripheral or umbilical cord blood
on collagen-coated cell culture vessels in endothelial-specific me-
dium.65 The fact that MNCs can be isolated directly through density
gradient centrifugation of bloodmakes these cells a safe cell source for
hemophilic patients. Normally, BOEC colonies arise after 2–4 weeks
558 Molecular Therapy: Methods & Clinical Development Vol. 23 December 2021
of culture, and the colonies are very rare since
their number in the normal peripheral blood is
quite low.65 However, here we show that, under
GMP-compliant conditions and using a chemi-
cally defined medium, it is possible to isolate
BOECs from both healthy donors and HA pa-
tients with high efficiency and rapidly grow
them to the desired amount to prevent the risk
of cellular senescence once transplanted in mice.

In addition to being more easily obtainable,
BOECs are fully differentiated ECs with a mature
endothelial phenotype. Indeed, these cells origi-
nate from bone marrow-derived progenitors
circulating in the blood or residing in the endo-
thelium, which can be differentiated into BOECs
in vitro.66 Thus, the observation that the
expanded pools of BOECs from healthy donors
or HA patients retained the expression of endo-
thelial markers and were able to form vessels in-
dicates that our GMP-compliant conditions did
not alter the endothelial phenotype and function
of these cells, as shown previously.66 Moreover,
the healthy BOECs showed low FVIII expression,
as demonstrated by IF staining and FACS anal-
ysis, in agreement with the low FVIII secretion
found in the cell supernatant. This is similar to what has been shown
by previous studies in which healthy BOECs isolated from both
canine and human donors displayed low FVIII expression.41,50,51

Indeed, FVIII expression heterogeneity among different endothelial
subpopulations has been reported, with the sinusoidal ECs shown
as the main FVIII-secreting cells.67Another important aspect of this
study is that we efficiently transduced BOECs with an LV carrying
a functional BDD form of FVIII driven by the endothelial-specific
promoter VEC. The efficiency and tissue specificity of FVIII tran-
scription under the control of this promoter has been previously



Figure 6. Genome wide distribution of lentiviral vector ISs

(A) The pink track represents the density distribution of genes (RefSeq annotation, hg19 genome). The green tracks are the density distributions of all the ISs retrieved in the

HA transduced with LV-VEC.GFP andHealthy transduced with LV-VEC.GFP groups. The blue tracks are the density distributions of all the ISs retrieved in the LV-VEC.hBDD-

FVIII HA BOECs and LV-VEC.hBDD-FVIII Healthy BOECs groups. (B) Distribution of ISs of the four groups along the whole human genome and with respect to gene

transcription start site (TSS).

www.moleculartherapy.org
demonstrated in gene therapy approaches showing the restriction of
FVIII expression in the desired cell type68 and in cell therapy by secre-
tion of FVIII after genetic correction in target cells.31 Here, we show
that LV-corrected HA BOECs transplanted in association with Cyto-
dex 3 microcarrier beads into the peritoneum of NSG-HA mice res-
cues the hemophilic phenotype of these animals for up to 18 weeks,
achieving 9% FVIII activity.

Importantly, we reached therapeutic levels of secreted FVIII through
LV-VEC.hBDD-FVIII HA BOEC injection into a prevascularized
Cell Pouch device transplanted into a preclinical murine model of se-
vere HA. Notably, the correction of the bleeding phenotype by using
LV-VEC.hBDD-FVIII HA BOECs injected into the peritoneum
lasted up to 13 weeks and then slowly decreased. After 18 weeks, FVIII
activity was almost absent, probably due to the death of BOECs.

Despite the encouraging results presented in this proof-of-concept
study in a preclinical setting, there still remain several important is-
sues that need to be addressed before our approach can be brought
into the clinic. For instance, it will be imperative to characterize the
cells within the Cell Pouch in terms of cell markers, longevity, and
Molecular The
proliferation/senescence status. It will also be important to assess if
we can increase the expression levels of FVIII using different EC-spe-
cific promoters, and if that would translate into augmented FVIII
secretion and functionality ex vivo.

Overall, our findings indicate that cell transfer into a medical device is
a suitable solution for cell therapy as it confers a more physiological
and protected environment where cells can proliferate at an excellent
rate and escape from the immune response of the transplanted organ-
ism, all the while allowing nutrient exchange and therapeutic protein
secretion. Congruently, the safety and efficacy of the Cell Pouch for
the transplantation of mouse pancreatic islets has been previously
shown to provide insulin independence in diabetic animals in preclin-
ical studies of type 1 diabetes mellitus.45,69 Furthermore, a phase I/II
clinical trial is ongoing for the treatment of T1DM patients, the result
of which may support the potential application of this device to other
diseases for cell therapy approaches, such as HA.70

The Cell Pouch is a biocompatible, safe, implantable device that
forms an internal vascularized tissue matrix supporting the trans-
planted cells. When we analyzed the Cell Pouch injected with
rapy: Methods & Clinical Development Vol. 23 December 2021 559
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Figure 7. Boxplot representation of clonal abundance

For each sample, the abundance values for each clone are represented as dots. Clones over 10% are presented as dots labeled with the closest gene symbol (RefSeq hg19).
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Figure 8. Clonal diversity comparison

(A) Shannon diversity index for each transduced cell pop-

ulation according to cell passage and time point. (B) H index

comparison between different groups.
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LV-VEC.hBDD-FVIII HA BOECs after 4 weeks from cell transfer, we
observed the presence of a viable vascularized tissue matrix support-
ing the cells, with no evidence of fibrosis-associated consequences,
including inflammation and necrosis, or hemophilia-related hemor-
rhage episodes. Moreover, the bleeding assay demonstrated that
LV-VEC.FVIII HA BOECs transplanted into the vascularized subcu-
taneous Cell Pouch were able to correct the clotting function of HA
mice. FVIII secretion and activity measurement would support the
data on hemophilic correction and strengthen our observations.
These tests are planned for future studies. As previously shown in a
canine model of HA, BOECs transduced with an LV carrying the
canine FVIII and implanted subcutaneously allowed secretion of
therapeutic levels of FVIII up to 15 weeks in Matrigel scaffolds and
up to a year after omental implantation.64 Moreover, BOECs were
shown to form tubule networks in vitro when plated on Matrigel71

or on the surface of synthetic vascular scaffolds72 and to promote neo-
vascularization in vivo when transplanted into immunodeficient
mice,37 suggesting that they can be directly involved in vessel
formation.

In this context, our data attest the feasibility of a method to correct
autologous cells based on a combined cell and gene therapy
approach together with the use of a scaffold (i.e., Cell Pouch) able
to guarantee long-term cell survival and, in case of need, a re-injec-
tion of new therapeutic cells. In addition to the phenotypical and
functional characterization of the transduced HA BOECs, our re-
sults demonstrate the pharmacodynamics proof-of-concept in
non-clinical models, which is mandatory before any GTMP can
be used in human clinical trial.43,44 Thus, our next step will be to
evaluate the safety and toxicity of the GTMP in vivo based on these
results so as to ensure patient safety and promote product transla-
tion. Examples of required non-clinical studies are the evaluation of
Molecular Therapy: Methods & Cli
the potential tumorigenicity and biodistribution
of the transduced BOECs with or without the
medical device.73 Our molecular analysis of the
integration sites in BOECs shows that no enrich-
ment for oncogenes or expansion of clones with
ISs in CISs or biases toward gene classes related
to cancer genes occurred. IS analysis suggests a
high level of polyclonality of LV-transduced
BOECs, with no statistical difference between
the FVIII- and GFP-transduced samples. The
heterogeneity of the clonal composition of the
FVIII-transduced samples remained constant
over time (between different cell passages) also
when cells were coupled to the microcarrier
beads. Furthermore, Cell Pouch samples had a
statistically significant lower H index when compared with BOECs
in expansion.

The process of BOEC engraftment within the subcutaneous space is
novel and complex and further studies will provide additional insight
into the interactions between the developing tissue and the trans-
planted cells, elucidating the role played in the kinetics of blood vessel
formation and FVIII secretion within the surrounding tissue.

In this study, we could not evaluate the immune response to the
secreted factor because we used implanted cells in immunodeficient
hemophilic mice. Thus, in future studies it will be interesting to eval-
uate antibody formation after transplantation of transduced BOECs
encapsulated in the Cell Pouch into immunocompetent mice. Finally,
while several gene therapy clinical trials for HA are ongoing, to our
knowledge this is the first therapeutic approach that combines the
GMP production of autologous human BOECs with the use of a
safe ex vivo approach based on an implantable prevascularized device.

In conclusion, our findings suggest that long-term encapsulation and
survival of LV-corrected BOECs by means of an implantable device
may prove effective in ameliorating the QoL of HA patients. The ther-
apeutic dose of FVIII released by these autologous genetically modi-
fied cells would in fact prevent the need of frequent infusions of FVIII
and significantly reduce the morbidity and the frequency of the
bleeding episodes in hemophiliacs.

MATERIALS AND METHODS
BOEC isolation form HA patients and healthy donors

Blood sampling from four adult severe HA patients, named pHA1,
pA, pC, and pD, was performed at the hospital A.O.U. Città della
Salute e della Scienza, Turin, Italy. The blood was shipped at
nical Development Vol. 23 December 2021 561
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room temperature to Università del Piemonte Orientale (UPO), No-
vara, Italy. Blood sampling from adult severe HA patients was
approved by the Ethics Committee “Comitato Etico Interaziendale
A.O.U. Maggiore della Carità” (Protocol 810/CE, study no. CE
125/17). Human BOECs were isolated as described previously,65

with the introduction of an earlier cell passaging step 7 days after
initial isolation of the peripheral blood MNCs to reduce expansion
time and increase the final cell yield.74 Isolated cells were cultured
on CELLCOAT Collagen Type 1-coated tissue culture flasks
(Greiner Bio-One) using MCDB 131 medium (Gibco, Life Technol-
ogies) containing proprietary supplements. Primary cells from adult
healthy donors (named D45, D2, and D3) were isolated at Tissue
Engineering and Regenerative Medicine, Würzburg, Germany, un-
der informed consent according to ethical approval granted by the
Institutional Ethics Committee of the University Hospital Würzburg
(approval no. 182/10). Cell viability and count were assessed using
the Countess II FL Automated Cell Counter (Thermo Fisher
Scientific).
Healthy and HA BOEC transduction

Healthy and HA BOECs were plated at a 104 cells/cm2 density and
after 6–8 h transduced with a lentiviral vector carrying the BDD
form of FVIII under the control of the VE-cadherin promoter (LV-
VEC.hBDD-FVIII) or with a lentiviral vector carrying the green fluo-
rescent protein under the control of the same VE-cadherin promoter
(LV-VEC.GFP), using an MOI of 20. After 14–16 h incubation, fresh
medium was added to the cells and, 72 h later, half of the cells were
harvested for subsequent analysis, while the other half was further
cultured.
GMP-compliant (GMP-like) preclinical development of LV-

VEC.hBDD-FVIII-transduced BOECs

BOECs were isolated and expanded using a GMP-compliant stan-
dardized approach between all partners, including a quality control
strategy. The standardized expansion scheme defined within the proj-
ect is based on the generation of Master Cell Banks and a Working
Cell Bank, which ensures not only a controllable defined expansion
for each patient’s BOECs but also an in-process quality control at
defined crucial steps. After isolation and expansion, cells were trans-
duced with LV lots produced with a GMP-compliant method (TFF,
see supplemental information). All freezing steps were performed us-
ing a cryopreservation solution based on compounds that are GMP-
compliant free of toxic compounds (e.g., DMSO). The Cell Pouch was
manufactured under GMP-compliant conditions. All steps were de-
signed and conducted according to European GMP regulations to
ensure that the product would fully comply with the quality require-
ments of the European authorities. The main objectives were to pro-
vide sets of design and manufacturing protocols based on current Eu-
ropean GMP regulations and to prepare an Investigational Medicinal
Product Dossier for an Investigational Medicinal Product, composed
of therapeutic cells and an implantable medical device (Cell Pouch), a
so-called combined Advanced Therapeutic Medicinal Product (com-
bined ATMP).
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IS analysis

ISs were retrieved from genomic DNA of LV-transduced BOEC
cells by sonication linker-mediated PCR, an adaptation of a previ-
ously described method.75,76 Genomic DNA (300 ng) was sheared
using a Covaris E220 Ultrasonicator (Covaris, Woburn, MA),
generating fragments with a target size of 1,000 bp. The fragmented
DNA was split into three parts to generate technical replicates and,
by using the NEBNext Ultra DNA Library Prep Kit for Illumina
(New England Biolabs, Ipswich, MA), subjected to end repair, 30 ad-
enylation, and ligation to linker cassettes (Integrated DNA Technol-
ogies, Skokie, IL) containing an 8-nucleotide sequence barcode used
for sample identification and a 12-random nucleotide sequence
necessary for clonal abundance quantification. Ligation products
were then subjected to 35 cycles of exponential PCR using primers
specific for the lentiviral vector LTR and the linker cassette. The
amplification product was then re-amplified with an additional 10
PCR cycles using primers specific for the linker cassette and the
LTR, with the latter containing a second barcode to adopt a double
barcode strategy for sample identification. The final PCR products
were quantified using a KAPA Library Quantification Kit (Roche,
Basil, Switzerland) and pooled in sequencing libraries with equi-
molar composition, avoiding repeated barcode pairs. Primers incor-
porate the adapter sequences required for the Illumina paired end
sequencing technology (Illumina, San Diego, CA). Sequencing was
performed on the Illumina MiSeq and HiSeq. Sample processing
and metadata were tracked within our laboratory information man-
agement system.77,78 Sequencing reads were processed using a dedi-
cated bioinformatics pipeline (VISPA2).78 In brief, paired sequence
reads were filtered for raw read quality, then cleaned by vector
genome, and the resulting cellular genomic sequence mapped on
the human genome (version hg19), and the nearest RefSeq gene as-
signed to each unambiguously mapped ISs. Clonal abundance for
each IS was estimated using the R package sonicLength,79 where
the number of genomes with the same integration site is calculated
by counting the number of fragments with different sizes generated
by sonication belonging to each individual IS. Within each group,
ISs shared between different time points of the same transduction
were counted once. The relative abundance of each clone was
then calculated as the percentage of genomes with a specific integra-
tion site over the total genomes. CISs were identified through the
Grubbs test for outliers.80 Enrichment analysis for ontological classes
among the targeted genes by vector ISs was performed using the
Genomic Regions Enrichment of Annotations Tool.81

Animal procedures

Animal studies were approved by the Animal Care and Use Commit-
tee at UPO (Italian Health Ministry Authorization nos. 492/2016-PR
and DBO64.5). NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (Jackson, stock no.
005557) mice with hemophilic phenotype (NSG-HA) were previously
generated and maintained in our laboratory.22 Eight- to 10-week-old
animals were used for cell transplantation studies. Cell Pouch implan-
tations were conducted under additional ethical guidelines and
approval from the Animal Care Committee at the University of
British Columbia (Vancouver, BC, Canada) in accordance with the
ber 2021
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Canadian Council on Animal Care Guide to the Care and Use of
Experimental Animals.

BOEC transplantation

For cell transplantation with beads, 5� 106 FVIII-transduced healthy
or HA BOECs were mixed with Cytodex 3 microcarrier beads (GE
Healthcare Life Sciences) and intraperitoneally delivered in NSG-
HA mice as described previously.23 For Cell Pouch implantation, fe-
male NSG and NSG-HA animals were anesthetized and surgically im-
planted with a Cell Pouch in the subcutaneous space of the lower
abdomen 4 weeks before cell transplantation, allowing incorporation
with vascularized tissue and forming fully developed tissue chambers
suitable for cell transplantation upon removal of a space holding plug.
LV-VEC.hBDD-FVIII BOECs were cultured for 3 days post-thawing
and finally transplanted into the Cell Pouch. Mice received either a
dose of viable BOECs (2–20 � 106) or remained untreated. All ani-
mals received a prophylactic dose (2–4 IU) of recombinant human
FVIII by tail vein injection before surgical procedures.

FVIII activity

aPTT assay was performed on plasma samples of transplantedmice to
assess FVIII activity. Standard curves were generated by serial dilu-
tion of recombinant human BDD-FVIII (ReFacto) in hemophilic
mouse plasma. Analyses were performed using a Coatron M4 coagul-
ometer (TECO Medical Instruments) and TEClot APTT-S kit re-
agents (TECO Medical Instruments).

Bleeding assay

A bleeding assay was performed on anesthetized mice. The distal
portion of the tail was cut at a diameter of 2–2.5 mm. Tails were
placed in a conical tube containing 14 mL of 37�C pre-warmed saline.
Blood was collected for 10 min and, following centrifugation, resus-
pended in red blood lysis buffer (155 mM NH4Cl, 10 mM KHCO3,
and 0.1 mM EDTA). The absorbance of the samples was measured
at 575 nm. For cell transplantation experiments with Cell Pouch,
the tail bleeding assay was performed using Sernova, as described pre-
viously,82,83 at the end of the experimental period, 4 months post-
transplantation. In brief, mice were anesthetized, and tail tips were
placed in a guide, ensuring the same diameter of 1 mm, and severed
(�a distal 10-mm segment) for each animal. The tail was immediately
immersed in pre-warmed saline at 37�C. Bleeding was carried out for
a maximum of 20 min, after which animals were euthanized as per
approved animal use protocols. Blood loss was evaluated by deter-
mining hemoglobin concentration by lysing collected red blood cells
(ACK Lysing Buffer, Gibco), and the absorbance measured at 550 nm
on a Synergy Mx (BioTeck) spectrophotometer. Results were
analyzed by comparing the amount of blood loss obtained from
treated NSG-HA mice with control mice (untreated NSG-HA and
NSG mice).

Statistical analysis

Data were expressed as means ± standard deviation (SD) or means ±
standard error of the mean (SEM). Statistical significance was
analyzed using Student’s t test with two-tailed distribution, assuming
Molecular The
equal SD distribution, two-way analysis of variance with Bonferroni
post hoc test, or Tukey’s multiple comparison post hoc tests in Graph-
Pad Prism 6 (GraphPad software). Statistical analyses involving ISs
were performed with the R software (r-project.org). Differences
were considered statistically significant when p values were <0.05.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omtm.2021.10.015.
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