1	The adenylate cyclase activator forskolin potentiates the positive inotropic effect of the
2	phosphodiesterase inhibitor milrinone but not of the calcium sensitizer levosimendan
3	nor of its hemodynamically active metabolites: an apparent conundrum.
4	
5	Jouko Levijoki, MSc, [*] Piero Pollesello, PhD, [*] Elena Grossini, PhD, [†] Zoltán Papp, MD, PhD ^{‡§}
6	
7	*Critical Care, Orion Pharma, Espoo, Finland; [†] Laboratory of Physiology, Department of
8	Translational Medicine, University East Piedmont, Novara, Italy; [‡] Division of Clinical
9	Physiology, Department of Cardiology, Faculty of Medicine, Hungary; [§] HAS-UD Vascular
10	Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences,
11	Budapest, Hungary
12	
13	CORRESPONDING AUTHOR: Piero Pollesello, PhD, Adj. Prof., FESC, FHFA, Orion
14	Pharma, P.O. Box 65, 02101 Espoo, Finland; tel. +358509664191; e-mail:

15 piero.pollesello@orionpharma.com

16 ABSTRACT

17	OR-1855 and OR-1896 are two hemodynamically active metabolites of the inodilator						
18	levosimendan, with calcium sensitizing activity, but their mechanism of action is still not fully						
19	understood.						
20	It has been previously reported that the positive inotropic effect of levosimendan is						
21	not potentiated by the adenylate cyclase activator forskolin whereas forskolin does potentiate the						
22	effects of the phosphodiesterase (PDE) inhibitor milrinone.						
23	To ascertain whether the active metabolites follow the same pattern of levosimendan,						
24	the positive inotropic effects of OR- 1855 and OR-1896, were studied in guinea-pig isolated						
25	papillary muscle in the presence and absence of forskolin. OR-1855 and OR-1896 were also						
26	tested as inhibitors of PDE-III and PDE-IV.						
27	Our result show that 0.1 μ M forskolin did not potentiate the positive inotropic effect						
28	of either OR-1855 or OR-1896, as in the case of the parent compound levosimendan. As in						
29	previous studies, the positive inotropic effect of milrinone was markedly potentiated in the						
30	presence of forskolin.						
31	From these data we propose an explanation for the divergent behaviour of the calcium						
32	sensitizing drugs and PDE inhibitors.						
33							
34	KEYWORDS: levosimendan, inotropy, phosphodiesterase inhibitor, mechanism of action,						
35	cAMP						

36 1. INTRODUCTION

Levosimendan is an i.v. inodilator used in acutely decompensated heart failure,¹ in 37 perioperative settings,² and in intensive care.³ Levosimendan has a triple mechanism of 38 action⁴ with clinical effects including an increase in output and cardiac index and in an 39 improvement of both systemic and pulmonary venous congestion.⁵ The inotropic effect of 40 levosimendan is driven by calcium sensitization of the contractile apparatus via a selective 41 binding of levosimendan on the N-terminal of the cardiac isoform of troponin C.⁶ 42 Levosimendan, however, is also a potent phosphodiesterase (PDE) inhibitor with a uniquely 43 high selectivity for PDE-III relative to PDE-IV.⁷ There has been lengthy debate about whether 44 the PDE inhibitory property of levosimendan plays a role in the inotropic effects and overall 45 in the clinical effects of the drug and two lines of thought have been developed: (1) the 46 presence of both PDE-III and PDE-IV in cardiomyocytes implies the existence of parallel 47 cyclic adenosine monophosphate (cAMP) decyclization pathways. This redundancy would 48 make a highly selective PDE-III inhibitor such as levosimendan unable to increase cAMP 49 since the PDE-IV path would still be operational;⁸ or (2) PDE inhibition by levosimendan 50 51 does increase cAMP levels sufficiently to create a synergy with the calcium sensitizing effect but not enough to affect the contractile apparatus per se.⁹ 52 In clinical settings, it has been shown that the hemodynamic effects of 53 levosimendan are prolonged due to the formation of two hemodynamically active plasma 54

metabolites, OR-1855 and OR-1896 (see their chemical structures in the supplementary
material).¹⁰ The pharmacokinetics and pharmacodynamics characteristics of those metabolites
has been described in details¹¹ and their role in the clinical effects of levosimendan treatment
has been discussed abundantly.¹²

OR-1896 exerts a positive inotropy effect in *ex vivo* models¹³ and inhibits PDE-III
 selectively in purified enzyme preparations.¹⁴ In our present research, we sought to shed

61	further light on the mechanism of action of both metabolites and understand which effect(s)
62	underpin their inotropic properties.

63	In a previous report ¹⁵ the positive inotropic effect of the parent compound
64	levosimendan, seen as increase of contraction force, was not potentiated by forskolin, a
65	labdane diterpene derived from geranylgeranyl pyrophosphate commonly used to increase the
66	levels of cAMP by stimulation of adenylate cyclase, ^{16,17} whereas forskolin did potentiate the
67	effects of the classic PDE inhibitor, milrinone, which has inhibitory effects on both PDE-III
68	and PDE-IV. ¹⁸
69	The aim of this study was to investigate whether the positive inotropic effects of
70	OR-1855 and OR-1896 follow the behaviour of the parent compound levosimendan and are
71	not potentiated by forskolin, or behave as the PDE inhibitor, milrinone.
72	
73	2. MATERIALS AND METHODS
74	2.1 Chemicals
75	The compound used were levosimendan, batch LS, Orion Pharma; OR-1855, batch LS, Orion
76	Pharma; OR-1896, batch L7, Orion Pharma; Milrinone, batch LS, Orion Pharma; Forskolin,
77	Lot B25975, Calbiochem-Novabiochem Corp, La Jolla, CA, USA. All the test compounds
78	were dissolved in dimethyl sulfoxide (DMSO). Stock solutions were diluted so that the final
79	DMSO concentration was 0.4% throughout the experiment.
80	
81	2.2. Phosphodiesterase inhibition
82	Highly purified PDE-III and PDE-IV isozymes were isolated from human platelets and a
83	promonocytic cell line of patients with myeloid leukaemia (U-937), respectively, according to
84	published methods. ¹⁹ In brief, the supernatant fraction of the tissue homogenate was added to
85	a diethylaminoethanol-sepharose column and then eluted with a linear sodium acetate gradient

86	buffer. Collected fractions with peak PDE activities were analyzed for cAMP PDE activity.
87	Purified PDE isozymes were incubated at 30°C for 30 min in a reaction mixture containing
88	[3H]-cAMP (0.1 μ M) and cAMP (0.1 μ M) in the presence or absence of the test compounds.
89	The amount of [3H]-5'-AMP regarded as a degradation product, was determined by using
90	liquid scintillation detection as described previously. ²⁰ Inhibitory assays were performed in
91	duplicates.
92	
93	2.3. Animals
94	The present study was performed in accordance with the guidelines of the Council of Europe
95	and the US National Research Council. Approval was granted by the Animal Ethics
96	Committees of Orion Pharma, Finland. Adult guinea-pigs of either sex (Dunkin Hartley,
97	purchased from Mollegaard Breeding Center LTD., Denmark, or Crl:(Charles River,
98	Germany), weighing 300- 400 g were used. Guinea-pigs were housed at 20 ± 1 °C with
99	relative humidity of $50 \pm 10\%$. Light-dark cycle was adjusted with lights on from 06.00 to
100	20.00h. The guinea-pigs were kept on a standard guinea-pig diet (Altromin 3120) and tap
101	water ad libitum.
102	
103	2.4. Papillary muscle preparations
104	Guinea-pigs were killed by a blow on the skull and the heart was excised. Right ventricular
105	papillary muscle was dissected and rinsed in ice-cold Tyrode solution. Thereafter the papillary
106	muscle was mounted for the measurement of isometric force in organ baths containing
107	modified Tyrode solution (37°C) bubbled with carbogen (95% 0_2 , 5% CO ₂). The composition
108	of the Tyrode solution was 135 mM NaCl, 1 mM MgCl ₂ ×6H ₂ O, 5 mM KCl, 2 mM
109	CaCl ₂ ×2H ₂ O, 15 mM NaHCO ₃ , 1 mM Na ₂ HPO ₄ ×2H ₂ O, 10 mM glucose, at pH 7.35±0.05.
110	The volume of the open horizontal chamber was 1 ml and the flow rate of the bathing solution

flowing through the chamber was 5 ml/min. The papillary muscle (<1 mm in diameter) was stretched horizontally between a force-displacement transducer (FT 0.3 C) and a needle fixed to the bottom of the chamber. The papillary muscle was electrically stimulated (Stimulator model S 48 F, Grass Instruments) at 1 Hz with rectangular pulses. The pulse duration was 4 ms. The stimulation strength was twice the threshold voltage.

116

117 2.5. Experimental procedure

After a stabilisation period of 60 min, 0.1 µM forskolin was added to the bathing solution (no 118 addition in control experiments). After a further period of 30 min, a test compound 119 120 (levosimendan, OR-1855, OR-1896, or milrinone) was added to the bathing solution at a starting concentration of 0.03 μ M. (see an example of trace in Figure 1). Thereafter, the 121 concentration of the test compounds was increased to 0.1, 0.3, 1, 3, 10, and 30 µM at 10 min 122 123 intervals. The highest two concentrations were not tested for levosimendan, for solubility reasons (see the dosing schedules in Figure 2). All the experiments were carried out at 37 °C. 124 125 The baselines values were measured at time "0" (as in Figure 2), i.e., immediately before the 126 first addition of the test compounds. The baseline in experiments with forskolin were thus measured 30 minutes after the addition of 0.1 µM forskolin, and immediately before the first 127 128 addition of the test compounds. We selected the concentration of forskolin based on a previous study on the positive inotropic action of the drug by Metzger H and Lindner E.,²¹ 129 assuming that the induced cAMP activation would be maintained from the beginning to the 130 end of the papillary muscle contraction experiments as described previously.²² The increase 131 of contraction force from the baseline during the up-titration of every test compound was 132 133 measured and analysed.

134

135 2.6. Statistics

136	Results obtained from five to nine experiments were combined and expressed as mean \pm						
137	SEM. Differences between and within test groups were analysed by using Two Way Repeated						
138	Measures ANOVA followed by the Šídák test (Prism 9.1.0, GraphPad, CA, USA). A p-value						
139	<0.05 was considered statistically significant.						
140							
141	3. RESULTS						
142	The baseline contraction force values of the guinea-pig papillary muscle preparates are shown						
143	in Table 1. No significative differences are seen between the experiments with forskolin and						
144	without forskolin.						
145	OR-1855 and OR-1896 increased the inotropy of guinea-pig papillary muscle from						
146	baseline by maximum values of 312 ± 118 mg (n=5) and 341 ± 82 mg (n=8), respectively						
147	(Figure 3). The presence of forskolin 0.1 μ M, did not potentiate significantly the positive						
148	inotropic effect of either compound: the maximum increases in contraction force in presence						
149	of the adenylate cyclase stimulant were 265 \pm 62 mg (n=5) for OR-1855 and 334 \pm 31 mg						
150	(n=6) for OR-1896.						
151	For levosimendan, the maximum increases in contraction were 331 ± 58 mg (n=5)						
152	and 393 ± 69 mg (n=6) in the absence and presence of forskolin, respectively (n.s.). The						
153	maximal force increase from baseline with milrinone in the absence of forskolin was 219 ± 42						
154	mg (n=5). That effect was significantly potentiated by forskolin (393 ± 69 mg; n=6)						
155	(p<0.005).						
156	The IC ₅₀ for PDE-III and PDE-IV were calculated from the relevant dose-						
157	dependent inhibition curves of the four compounds (see Table 2). The PDE-III to PDE-IV						
158	IC ₅₀ ratio was also calculated; those values, reflecting selectivity of inhibition of PDE-III are						
159	7619 for levosimendan, 3043 for OR-1986, 100 for OR-1855, and 39 for milrinone.						
160							

4. DISCUSSION

162 The adenylate cyclase activator forskolin increases intracellular cAMP level and thereby stimulates cAMP-dependent protein kinase A, which in turn increases calcium current²³ and 163 enhances contraction force. On the other hand, the positive inotropic effect of some PDE 164 inhibitor is potentiated by forskolin as previously demonstrated for instance with milrinone.¹⁵ 165 The two major plasma metabolites of levosimendan, OR-1855 and OR-1896 are thought to 166 exert a positive inotropic activity by calcium sensitization of troponin C in the cardiomyocyte 167 contractile apparatus. Nevertheless, these metabolites also inhibit the PDE-III isozyme in a 168 highly selective manner in purified enzyme preparations. 169

One can hypothesize that the combination of the three aforementioned mechanisms (activation of adenylate cyclase, inhibition of phosphodiesterase, and calcium sensitization) would lead to an increased positive inotropy. Moreover, if these pathways are independent than their effects will be strictly additive. If there were to be any overlap (and hence nonadditive effect on inotropy) between these mechanisms it might most likely arise between the two (activation of adenylate cyclase and inhibition of phosphodiesterase) sharing a common factor, *i.e.*, cAMP.

Our findings that the positive inotropic effects of OR-1855 and OR-1896 were not additive to the effects of forskolin (as was also the similarly as in the case or of their parent compound levosimendan) while whereas the effect of milrinone was, would appear to diverge from the above hypothesis.

One possible reason for the lack of contribution of adenylate cyclase stimulus to the inotropic effects of levosimendan and its metabolites is their high selectivity in PDE-III inhibition over the PDE-IV isoenzyme. It has been suggested that both PDE-III and PDE-IV should be inhibited to high levels in order to increase the amplitude of the intracellular calcium transient,²⁴ because an uninhibited PDE isozyme (i.e., PDE-IV in this case) can

186	potentially offset any effect from the inhibition of the other isoform (i.e., PDE-III). In keeping						
187	with this proposition, milrinone, which inhibits both isoenzymes, was potentiated by forskolin						
188	in our experiments. Accordingly, the effect of milrinone on intracellular cAMP and calcium						
189	concentrations is more prevalent than that for levosimendan. ¹⁵						
190	It is to also to note that in previous studies, that levosimendan induced NO						
191	production but that co-stimulation with cilostazol (another PDE-III inhibitor) failed to						
192	potentiate the effects of levosimendan on NO release in coronary endothelial cells. ²⁵ This also						
193	speaks to a selective inhibition of PDE-III by levosimendan.						
194							
195	5. CONCLUSION						
196	Like their parent compound levosimendan, the metabolites OR-1855 and OR-1896 have a						
197	positive inotropy effect which is not potentiated by forskolin. Conversely, the inotropic effect						
198	of the PDE-III/PDE-IV inhibitor milrinone is potentiated by adenylate cyclase activation. This						
199	different behaviour could be explained by the fact that positive inotropic effects evoked by						
200	milrinone or by levosimendan and its active metabolites are exerted via different mechanisms						
201	of action with different roles for cAMP.						
202	The oral formulation of levosimendan is currently under scrutiny as treatment of						
203	pulmonary hypertension associated with heart failure ²⁶ and the role of the active metabolites						
204	is paramount in this new pharmacokinetic/pharmacodynamics situation. Hence, the full						
205	characterization of OR-1855 and OR-1896 mode of action and pharmacology is of the						
206	outmost importance.						
207							
208	6. LIMITATIONS						
209	In the study we used papillary muscles with diameter ≤ 1 mm. Diameters of individual						
210	preparates varied, however, as did the contraction force of induvial samples. This is why we						

211	used the increase of force from baseline for our analysis. These preparations have intrinsic
212	problems, such as a radius-dependent performance and the possibility that the core of the
213	muscle bundle is hypoxic or even anoxic, However, radius-dependent decline of performance
214	in isolated cardiac muscle does not reflect inadequacy of diffusive oxygen supply. ²⁷
215	
216	ACKNOWLEDGMENTS
217	We thank Peter Hughes (Hughes associates, Oxford, UK) for editing the language of the
218	manuscript, and Shrestha Roy (Orion Pharma, Mumbai, India) for editing the figures.
219	
220	CONTRIBUTION
221	JL and PP designed the research study. JL performed the research. PP contributed essential
222	reagents or tools. JL, PP, ZP and EG analyzed the data. PP and ZP wrote the paper.
223	
224	DISCLOSURES
225	PP and JL are full time employee of Orion Pharma where the inotrope levosimendan was
226	discovered and developed. Both EG and ZP have received, in the latest 5 years, either
227	research grants and/or speaker honoraria and/or support for conference attendance from Orion
228	Pharma.
229	

230 Table 1: Baseline contraction force values of	guinea-pig papillary muscle preparate
--	---------------------------------------

Study	without Forskolin				with Fors	kolin	
compound							
	Mean, mg	SEM	n	Mean, mg	SEM	n	difference
	_			_			
Levosimendan	260	47	5	238	32	6	ns
OR-1896	315	51	8	297	34	6	ns
OR-1855	327	38	5	354	58	5	ns
Milrinone	200	12	5	299	30	6	ns

PDE-IV vs PDE-III	PDE-IV,	PDE-III,	Compound
IC50 ratio	μM	μΜ	
7619	16	0.0021	Levosimendan
3043	286	0.094	OR-1896
100	500	5	OR-1855
39	17.5	0.45	Milrinone

Table 2: PDE-III/PDE -IV IC₅₀ for OR-1896, OR1855, and levosimendan and for milrinone

LEGENDS TO THE FIGURES

238	Figure 1
239	Example of tracing of papillary muscle contraction. The papillary muscle was electrically
240	stimulated at 1 Hz with rectangular pulses of 4 ms. The stimulation strength was twice the
241	threshold voltage. After a stabilisation period of 60 min, 0.1 μ M forskolin was added to the
242	bathing solution After a further period of 30 min, milrinone was added to the bathing solution
243	at increasing concentrations.
244	
245	Figure 2
246	Dosing schedule. The same color coding is used also in Figure 3.
247	
248	Figure 3
249	Positive inotropic effect of levosimendan (upper left panel, yellow hexagons), OR-1896
250	(upper right panel, green dots), OR-1855 (lower left panel, blue triangles) and milrinone
251	(lower right panel, red squares) in the presence and the absence of forskolin (0.1 μ M) in
252	guinea-pig isolated papillary muscle. Shown are mean changes of twitch tension \pm SEM from
253	the baseline levels. An asterisk (*) indicates a statistical significant difference (p< 0.05) from
254	the baseline level. A dagger (\dagger) indicates a statistical significant difference (p<0.05) between
255	the groups with and without forskolin. Data were analysed for statistical differences using
256	two-way ANOVA followed by the Šídák test (Prism 9.1.0, GraphPad, CA, USA).

279

REFERENCES

- 258 1. Altenberger J, Gustafsson F, Harjola VP, Karason K, Kindgen-Milles D, Kivikko M, Malfatto G, Papp Z, Parissis J, Pollesello P, Pölzl G, Tschöpe C. Levosimendan in Acute 259 and Advanced Heart Failure: An Appraisal of the Clinical Database and Evaluation of Its 260 Therapeutic Applications. J Cardiovasc Pharmacol. 2018;71(3):129-136. doi: 261 10.1097/FJC.000000000000533. PMID: 28817484. 262 2. Guarracino F, Heringlake M, Cholley B, Bettex D, Bouchez S, Lomivorotov VV, Rajek A, 263 Kivikko M, Pollesello P. Use of Levosimendan in Cardiac Surgery: An Update After the 264 LEVO-CTS, CHEETAH, and LICORN Trials in the Light of Clinical Practice. J 265 266 Cardiovasc Pharmacol. 2018;71(1):1-9. doi: 10.1097/FJC.00000000000551. PMID: 29076887. 267 3. Herpain A, Bouchez S, Girardis M, Guarracino F, Knotzer J, Levy B, Liebregts T, 268 269 Pollesello P, Ricksten SE, Riha H, Rudiger A, Sangalli F. Use of Levosimendan in Intensive Care Unit Settings: An Opinion Paper. J Cardiovasc Pharmacol. 2019;73(1):3-14. 270 271 doi: 10.1097/FJC.000000000000636. PMID: 30489437. 4. Papp Z, Édes I, Fruhwald S, De Hert SG, Salmenperä M, Leppikangas H, Mebazaa A, 272 Landoni G, Grossini E, Caimmi P, Morelli A, Guarracino F, Schwinger RH, Meyer S, 273 Algotsson L, Wikström BG, Jörgensen K, Filippatos G, Parissis JT, González MJ, 274 Parkhomenko A, Yilmaz MB, Kivikko M, Pollesello P, Follath F. Levosimendan: 275 molecular mechanisms and clinical implications: consensus of experts on the mechanisms 276 of action of levosimendan. Int J Cardiol. 2012;159(2):82-7. doi: 277 10.1016/j.ijcard.2011.07.022. PMID: 21784540. 278
- 280 Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C,

5. Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J,

281 Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks

282		LM, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J,
283		Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko
284		A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T,
285		Schwinger RH, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec
286		B, Pollesello P. Levosimendan Efficacy and Safety: 20 years of SIMDAX in Clinical Use.
287		J Cardiovasc Pharmacol. 2020;76(1):4-22. doi: 10.1097/FJC.00000000000859. PMID:
288		32639325.
289	6.	Sorsa T, Pollesello P, Solaro RJ. The contractile apparatus as a target for drugs against
290		heart failure: interaction of levosimendan, a calcium sensitiser, with cardiac troponin c.
291		Mol Cell Biochem. 2004;266(1-2):87-107. doi: 10.1023/b:mcbi.0000049141.37823.19.
292		PMID: 15646030.
293	7.	Szilágyi S, Pollesello P, Levijoki J, Haikala H, Bak I, Tósaki A, Borbély A, Edes I, Papp
294		Z. Two inotropes with different mechanisms of action: contractile, PDE-inhibitory and
295		direct myofibrillar effects of levosimendan and enoximone. J Cardiovasc Pharmacol.
296		2005;46(3):369-76. doi: 10.1097/01.fjc.0000175454.69116.9. PMID: 16116344.
297	8.	Papp Z, Csapó K, Pollesello P, Haikala H, Edes I. Pharmacological mechanisms
298		contributing to the clinical efficacy of levosimendan. Cardiovasc Drug Rev.
299		2005;23(1):71-98. doi: 10.1111/j.1527-3466.2005.tb00158.x. PMID: 15867949.
300	9.	Maack C, Eschenhagen T, Hamdani N, Heinzel FR, Lyon AR, Manstein DJ, Metzger J,
301		Papp Z, Tocchetti CG, Yilmaz MB, Anker SD, Balligand JL, Bauersachs J, Brutsaert D,
302		Carrier L, Chlopicki S, Cleland JG, de Boer RA, Dietl A, Fischmeister R, Harjola VP,
303		Heymans S, Hilfiker-Kleiner D, Holzmeister J, de Keulenaer G, Limongelli G, Linke WA,
304		Lund LH, Masip J, Metra M, Mueller C, Pieske B, Ponikowski P, Ristić A, Ruschitzka F,
305		Seferović PM, Skouri H, Zimmermann WH, Mebazaa A. Treatments targeting inotropy.
306		Eur Heart J. 2019;40(44):3626-3644. doi: 10.1093/eurheartj/ehy600. PMID: 30295807.

307	10. Kivikko M, Lehtonen L, Colucci WS. Sustained hemodynamic effects of intravenous
308	levosimendan. Circulation. 2003;107(1):81-6. doi: 10.1161/01.cir.0000043245.00859.11.
309	PMID: 12515747.
310	11. Kivikko M, Anttila S, Eha J, Lehtonen L, Pentikäinen PJ. Pharmacodynamics and safety
311	of a new calcium sensitizer, levosimendan, and its metabolites during an extended infusion
312	in patients with severe heart failure. J Clin Pharmacol. 2002;42(1):43-51. doi:
313	10.1177/0091270002042001005. PMID: 11808823
314	12. Kivikko M, Antila S, Eha J, Lehtonen L, Pentikäinen PJ. Pharmacokinetics of
315	levosimendan and its metabolites during and after a 24-hour continuous infusion in patients
316	with severe heart failure. Int J Clin Pharmacol Ther. 2002;40(10):465-71. doi:
317	10.5414/cpp40465. PMID: 12395979.
318	13. Takahashi R, Talukder MA, Endoh M. Effects of OR-1896, an active metabolite of
319	levosimendan, on contractile force and aequorin light transients in intact rabbit ventricular
320	myocardium. J Cardiovasc Pharmacol. 2000;36(1):118-25. doi: 10.1097/00005344-
321	200007000-00016. PMID: 10892669.
322	14. Szilágyi S, Pollesello P, Levijoki J, Kaheinen P, Haikala H, Edes I, Papp Z. The effects of
323	levosimendan and OR-1896 on isolated hearts, myocyte-sized preparations and
324	phosphodiesterase enzymes of the guinea pig. Eur J Pharmacol. 2004;486(1):67-74. doi:
325	10.1016/j.ejphar.2003.12.005. PMID: 14751410.
326	15. Haikala H, Kaheinen P, Levijoki J, Linden IB. The role of cAMP- and cGMP- dependent
327	protein kinases in the cardiac actions of the new calcium sensitizer, levosimendan.
328	Cardiovasc Res 1997;34(3):536-46. doi: 10.1016/s0008-6363(97)00057-6. PMID:
329	9231037.
330	16. Evans DB. Modulation of cAMP: mechanism for positive inotropic action. Journal Of
331	Cardiovascular Pharmacology 1986;8 Suppl 9:S22-9. PMID: 2433539.

332	17	. Laurenza A, Khandelwal Y, De Souza NJ, Rupp RH, Metzger H, Seamon KB. Stimulation
333		of adenylate cyclase by water-soluble analogues of forskolin. Mol Pharmacol
334		1987;32(1):133-9. PMID: 3600614.
335	18	. Shakur Y, Fong M, Hensley J, Cone J, Movsesian MA, Kambayashi J, Yoshitake M, Liu
336		Y. Comparison of the effects of cilostazol and milrinone on cAMP-PDE activity,
337		intracellular cAMP and calcium in the heart. Cardiovasc Drugs Ther. 2002;16(5):417-27.
338		doi: 10.1023/a:1022186402442. PMID: 12652111.
339	19	Weishaar RE, Burrows SD, Kobylarz DC, Quade MM, Evans DB. Multiple molecular
340		forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in
341		platelets. Isolation, characterization, and effects of various reference phosphodiesterase
342		inhibitors and cardiotonic agents. Biochem Pharmacol. 1986;35(5):787-800. doi:
343		10.1016/0006-2952(86)90247-9. PMID: 3006691.
344	20	. Nagy L, Pollesello P, Haikala H, Végh Á, Sorsa T, Levijoki J, Szilágyi S, Édes I, Tóth A,
345		Papp Z, Papp JG. ORM-3819 promotes cardiac contractility through Ca(2+) sensitization
346		in combination with selective PDE III inhibition, a novel approach to inotropy. Eur J
347		Pharmacol. 2016;775:120-9. doi: 10.1016/j.ejphar.2016.02.028. PMID: 26872993.
348	21	Metzger H & Lindner E. The positive inotropic-acting forskolin, a potent adenylate cyclase
349		activator. Arzneimittelforschung. 1981;31(8):1248-50. PMID: 7197529.
350	22	Roger IW and Shahid M. Forskolin, cyclic nucleotides and positive inotropism in isolated
351		papillary muscles of the rabbit. Br J Pharmacol 1984;81(1):151-159. PMID: 6322892.
352	23	Mubagwa K, Shirayama T, Moreau M, Pappano AJ. Effects of PDE inhibitors and
353		carbachol on the L-type Ca current in guinea pig ventricular myocytes. Am J Physiol.
354		1993;265(4 Pt 2):H1353-63. doi: 10.1152/ajpheart.1993.265.4.H1353. PMID: 7694486.
355	24	Verde I, Vandecasteele G, Lezoualc'h F, Fishmeister R. Characterization of the cyclic
356		nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+

357 current in rat ventricular myocytes. Br J Pharmacol 1999;127:65-74. dc	loi:
--	------

358 10.1038/sj.bjp.0702506. PMID: 10369457.

359 25. Grossini E, Molinari C, Caimmi PP, Uberti F, Vacca G. Levosimendan induces NO 360 production through p38 MAPK, ERK and Akt in porcine coronary endothelial cells: role

- 361for mitochondrial K(ATP) channel. Br J Pharmacol. 2009;156(2):250-61. doi:
- 362 10.1111/j.1476-5381.2008.00024.x. PMID: 19154424.
- 26. Burkhoff D, Borlaug BA, Shah SJ, Zolty R, Tedford RJ, Thenappan T, Zamanian RT,
- 364 Mazurek JA, Rich JD, Simon MA, Chung ES, Raza F, Majure DT, Lewis GD, Preston IR,
- 365 Rich S. Levosimendan Improves Hemodynamics and Exercise Tolerance in PH-HFpEF:
- 366 Results of the Randomized Placebo-Controlled HELP Trial. JACC Heart Fail.
- 367 2021;9(5):360-370. doi: 10.1016/j.jchf.2021.01.015. Epub 2021 Apr 7. PMID: 33839076.
- 368 27. Han JC, Taberner AJ, Kirton RS, Nielsen PM, Archer R, Kim N, Loiselle DS. Radius-
- 369 dependent decline of performance in isolated cardiac muscle does not reflect inadequacy of
- diffusive oxygen supply. Am J Physiol Heart Circ Physiol. 2011;300(4):H1222-36. doi:
- 371 10.1152/ajpheart.01157.2010. PMID: 21217065.

FIGURE 2

385 CHEMICAL STRUCTURES

