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Abstract

Recombinant human Glutaminyl Cyclase expressed in E. coli is produced as inclusion bodies. Lack of glycosylation is the
main origin of its accumulation in insoluble aggregates. Mutation of single isolated hydrophobic amino acids into negative
amino acids was not able to circumvent inclusion bodies formation. On the contrary, substitution with carboxyl-terminal
residues of two or three aromatic residues belonging to extended hydrophobic patches on the protein surface provided
soluble but still active forms of the protein. These mutants could be expressed in isotopically enriched forms for NMR
studies and the maximal attainable concentration was sufficient for the acquisition of 1H-15N HSQC spectra that represent
the starting point for future drug development projects targeting Alzheimer’s disease.
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Introduction

Glutaminyl-peptide Cyclotransferase (QPCT), also known as

Glutaminyl Cyclase (QC), catalyzes the conversion of N-terminal

L-glutaminyl peptide residues to pyroglutamyl groups, a process

required for the maturation of numerous bioactive peptides [1].

QPCTs are widespread and have been isolated from animals,

plants, and bacteria [2].

Mammalian QPCTs are zinc-dependent glycoproteins [3]. The

structure of the human enzyme (hQPCT) exhibits a typical a/b-

hydrolase fold whose characteristic features are a central six-

stranded b-sheet surrounded by a-helices [4] that is common to

other mammalian proteins [5] (Fig. 1). Recombinant forms

obtained in E. coli are non-glycosylated and therefore much less

soluble [6]. Murine and human proteins recombinantly expressed

in the yeast Pichia pastoris are instead glycosylated and their X-ray

structure has revealed some loop rearrangements in the neigh-

borhood of the active center [5], the extent of these rearrange-

ments being smaller for hQPCT.

Human QPCTs are considered potential candidates in the

formation of pGlu-modified amyloid peptides in Alzheimer’s

disease (AD) and their inhibition attenuates AD-like symptoms in

mice [7].

Given this role, QPCT is an important target for drug

development in AD. The possibility to use the well-established

solution NMR approaches to screen libraries of potential QPCT

inhibitors depends upon the ability to express soluble protein

forms with different isotope enrichment schemes. NMR approach-

es for drug screening are based on the chemical shift perturbation

mapping of the protein residues measured in 1H-15N HSQC

spectra of 15N-enriched protein upon addition of the ligand. The

mapping is possible whenever the following conditions are met: i) a

structure of the protein and ii) the assignment of the 1H-15N

HSQC spectrum are available [8], [9], [10], [11]. While the first

condition has been achieved by X-ray crystal structure determi-

nations (PDB id: 2ZED, 3SI1, 2AFM, 3PBB), [4], [5], [12], [13]

no NMR assignment exists yet for hQPCT, nor 1H-15N HSQC

spectra have been reported. Given the size of the protein, this

might be accomplished via triple resonance NMR experiments

that require 15N,13C and partial 2H enrichment on protein forms

with a solubility of hundreds of mM [14]. To this purpose, we have

designed mutations aimed at increasing protein solubility for its

expression in E. coli [15]. Mutations sites were identified from an

analysis of the hydrophobic solvent exposed surface areas. Single

point mutations of isolated hydrophobic residues, namely F260E,

L289E and I47E, were not sufficient for our purposes. These

residues are located in different areas far from the active site. The

observed behaviour suggested that the low solubility of hQPCT is

not due to a generic hydrophobic character of the protein surface

but rather to some specific interactions that may give rise to self-

aggregation. The best candidate surfaces for intermolecular self-

recognition were identified as two extended hydrophobic patches

located in relative proximity from the active site. A hypothesis-

driven modelling of the formation of aggregates involving these

hydrophobic regions suggested that there are three candidate

residues belonging to these hydrophobic areas but far enough from

the zinc centre to guarantee unaffected enzymatic activity upon

mutation. They are Y115, Y117 on one hydrophobic area and
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W149 on the other. The double mutant Y115E-Y117E (2xmut,

hereafter) indeed resulted in a large increase in protein solubility

that allowed expression of the protein in its soluble and active form

and recording of good signal/noise HSQC spectra that may be

useful for drug screening projects. A 6xmut, designed for purposes

outside the scope of our paper, but containing the three key

mutations Y115E-Y117E-W149D was found to be almost equally

soluble and active.

Results and Discussion

Expression and Purification of hQPCT
Different expression vectors and hosts have been used to

produce the recombinant human glutaminyl cyclase [2], [3], [16].

For example, Huang and collaborators [16] have tested two

different bacterial vectors (pET32 and pET43.1) containing

different tags (Thioredoxin-tag, Nus-tag, S-tag, His6-tag) with the

intention of improving protein solubility [5]. In order to simplify

the purification protocol and minimize the loss of protein due to

multiple purification steps, we have cloned the hQPCT cDNA in

an expression vector (pQE80L) containing a single His6-tag at the

N-terminus of the protein. Several expression trials have been

performed in order to test different E. coli strains (BL21DE3,

Origami B), growth media (richer SuperBroth or minimal M9

media), incubation temperatures (17uC, 21uC, 25uC and 37uC),

incubation times (24 and 48 h) and IPTG concentrations (0.2, 0.5

and 1 mM). Differently to what reported for the expression of

hQPCT in pET vectors [5], from our expression trials the best

condition turned out to be 17uC, 0.2 mM IPTG for 48 hours in

rich medium using BL21DE3 as E. coli strain (see Materials and

Methods).

After the first step of purification (Ni-affinity column), we

checked the purity by loading fractions on an acrylamide gel

(Fig. 2). Fractions obtained with an imidazole gradient correspond

to the His6-tagged hQPCT (Fig. 2A). However, almost 80% of

protein was found in inclusion bodies (lane 1) whereas only a 20%

of protein was recovered in the soluble fraction (lanes 8–14)

(Fig. 2B). These fractions were then pooled and the protein

concentration measured. The final yield of hQPCT after the first

step of purification was around 30 mg/l. However, most of the

protein aggregated as demonstrated by the analytical size

exclusion chromatography (Superdex 5/150 column) performed

on a small volume of sample (50 ml). No further size exclusion in

HiLoad 16/60 Superdex 75 column was applied.

An aliquot of purified hQPCT was demetalated for mass

analysis by MALDI. The mass of the apo-hQPCT was 38735 Da,

as expected on the basis of the protein sequence.

The circular dichroism spectroscopy (CD) analysis performed

on hQPCT indicated a dominant a-helix content in the overall

secondary structure of the protein, consistent with what has been

reported in literature, where the calculation of the secondary

structure elements revealed an a-helix and b-sheet content of 47%

and 16% respectively [6], and coherent with the X-ray structure of

hQPCT that reports 36% of a-helices and 16% of b-sheets [4].

The HSQC spectrum of hQPCT at its highest achievable

concentration (30 mM) was acquired (Fig. 3A). Unfortunately the

Figure 1. 3D structure of hQPCT. Ribbon representation of the X-ray structure of hQPCT (PDB id 2AFM). The zinc ion is shown by a yellow sphere,
the zinc ligands are shown as orange sticks and the two Cys residues responsible for the disulphide bridge formation as green sticks. The loop
connecting b1 with b2 is highlighted in red, while those forming the crown-like structure around the zinc are in orange.
doi:10.1371/journal.pone.0071657.g001
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protein was not stable in solution and prone to precipitation. By

addition of positive-charged amino acids in the protein solution

(50 mM L-arginine) [17], it was possible to achieve a higher

concentration of hQPCT (50 mM). Unfortunately, the effect was

only temporary and the protein started to precipitate after 2 hours.

Design of Active Multiple Mutants of hQPCT (2xmut
hQPCT and 6xmut hQPCT)

In order to increase hQPCT solubility, single point mutations

were designed. Usually, the introduction of negatively charged

residues in place of hydrophobic ones increases solubility and

reduces protein aggregation in the same way as glycosylation does

[18], [19], [20]. In hQPCT, hydrophobic solvent exposed

residues, situated on loops or at the end of a-helices to avoid

destabilization of the secondary structure, and far away from the

active site, to avoid effects on the catalytic efficiency, were selected

for directed-mutagenesis into hydrophilic residues: namely F260E,

L289E and I47E (Fig. 4A).

At variance with previous observations in other large enzymes

[21], [22], these single mutations were not sufficient to increase the

solubility of hQPCT that was still mainly expressed in inclusion

bodies. For this reason, it was necessary to design multiple

mutants. Our working hypothesis was that the low solubility was

due not to a generic hydrophobicity of the protein surface, but it’s

rather related to the possibility to establish intermolecular contacts

that can induce oligomerization. To simulate the formation of

protein dimers, a structural model of the hQPCT homodimer was

obtained with the program HADDOCK [23]. From the analysis

of the electrostatic surface generated by PyMOL (The PyMOL

Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC)

together with the evaluation of the atomic accessible surface

performed by Naccess [24] (see Materials and Methods), two main

hydrophobic solvent exposed patches close to the active site and

probably responsible for the hQPCT aggregation, were identified

(Fig. 4A and 4B ). The candidate residues for mutations must be

far enough from the active site in order to keep unchanged the

activity of the enzyme. Residues less than 11 Å apart from active

site (144, 146, 160, 201, 207, 248, 304, 305, 319, 325, and 329) are

reported to decrease or even block the enzymatic activity [4], [25],

therefore, they were not taken into account for possible mutations.

All the solvent exposed residues belonging to the hydrophobic

regions mentioned above, and located at more than 11 Å from the

zinc ion, were defined as active residues (namely, 115, 117, 145,

and 205 belonging to the hydrophobic region 1; 147, 148, 149 and

153 belonging to the hydrophobic region 2) and used as input for

the docking calculation, as described in Materials and Methods

(Fig. 4A).

The ensemble of structural models obtained for the homodimer

is a cluster of 173 conformers with a RMSD of 0.760.4 Å from the

overall lowest energy structure. Four residues with aromatic side

chains are the most involved in the intermolecular hydrophobic

contacts in 173 model structures (Table S1). They were Y115 and

Figure 2. Purification of wild type hQPCT. A, Imidazole gradient
(green line) (a) 50 mM, (b) 50–500 mM, (c) 500 mM in FPLC Akta (GE
Healthcare). Blue line: UV measure (mAU). B, SDS-PAGE of purified
protein fractions. Lane 1: insoluble fraction, lane 2: protein marker, lane
3: total fraction, lane 4: flow-through, lane 5: wash unbound, lanes 6–7:
fractions 50 mM imidazole, lanes 8–15: fractions 50–500 mM imidazole.
doi:10.1371/journal.pone.0071657.g002

Figure 3. NMR spectra of wild type, 2xmut and 6xmut. 2D 1H-15N-HSQC spectra of: A, 30 mM wild type hQPCT at 700 MHz; B, of 90 mM 2xmut
hQPCT at 950 MHz; C, 70 mM 6xmut hQPCT at 950 MHz. Spectra were recorded at 298 K, in 150 mM NaCl and 50 mM Tris pH 8 buffer.
doi:10.1371/journal.pone.0071657.g003
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Y117 in the hydrophobic region 1, H148 and W149 in the

hydrophobic region 2 (Fig. 5) and have been selected as the

candidate residues for mutation into Glu/Asp. In the hydrophobic

region 1 two mutations into Glu were introduced at positions 115

and 117 (Y115E and Y117E) to provide the variant called 2xmut

hQPCT. The spatial proximity of the two residues in the cDNA

sequence has the advantage of introducing both mutations in a

single mutagenesis round. Additionally, in hydrophobic region 2,

W149 was mutated into Asp in the variant called 6xmut (see

below). H148 was left unchanged to avoid destabilization of the

zinc binding site, as described in Materials and Methods.

Production of the 2xmut and 6xmut hQPCT
For the 2xmut hQPCT production, we used the same

conditions as for the wild-type hQPCT. We first performed a

mini-scale expression test in 100 ml SB to check protein expression

and solubility (data not shown). Once confirmed, the protein

expression was carried out in 1 l M9 medium enriched with 15N

Figure 4. Surface charge representation of hQPCT, single mutants and residues used as input for docking calculation. A, Surface
charge representation of hQPCT (PDB id 2AFM) where region of positive, negative and neutral electrostatic potential are indicated in blue, red and
white, respectively. The electrostatic surfaces were generated using the software PyMOL with the command ‘‘generate vacuum electrostatic’’. The
protein orientation is the same as in Fig. 1. The ribbon representation of the protein is visible in transparency. Amino acids belonging to the
hydrophobic regions 1 and 2 used as input for docking calculation are clustered into two groups and shown as cyan and green sticks, respectively.
Single point mutations I47, L289, F260 are highlighted as orange spheres. The zinc ion is represented as a yellow sphere. B, Different views of hQPCT
that allow visualizing the location of the hydrophobic regions 1 and 2 on the protein surface.
doi:10.1371/journal.pone.0071657.g004

Figure 5. Structural model of the hQPCT homodimer. Ribbon representation of the lowest energy structure selected among 173 conformers
calculated by HADDOCK. The three hQPCT residues (i.e., Y115, Y117, W149) more than 11 Å far apart from the metal ion involved in intermolecular
hydrophobic contacts are shown as sticks.
doi:10.1371/journal.pone.0071657.g005
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and 13C and induced with 0.2 mM IPTG. At this point, the

growth temperature was shifted to 17uC for 48 hours. After cell

collection and lysis, the sample was loaded on a Ni-affinity

HisTrap column and the protein was eluted as previously

described (Fig. 6A).

Opposite to what observed in wild-type hQPCT purification

(Fig. 2), little protein was found in inclusion bodies whereas the

greatest amount of hQPCT was detected in the soluble fraction

(Fig. 6B). In this case, the final yield was around 22 mg/l, similar

to what was obtained in wild-type expression in rich medium, thus

indicating that the mutations introduced in the sequence improved

protein solubility. A second step of protein purification using a

HiLoad 16/60 Superdex 75 column was performed and showed

almost no protein aggregation (Fig. 6C). 2xmut hQPCT was

eluted in 150 mM NaCl, 50 mM Tris buffer, pH 8 and purity was

checked by SDS-PAGE (Fig. 6D).

In order to check the zinc(II) content of the 2xmut hQPCT, an

atomic absorption spectroscopy analysis was performed. The

results revealed that the 2xmut hQPCT protein obtained from our

expression has a degree of metalation ,40%. To ensure full

charging with Zn, the enzyme was reconstituted with the metal

in vitro by dialysis as described in Materials and Methods. The

2xmut hQPCT partially metalated and fully metalated presented

the same secondary structure element content, as shown by CD

measurements, as well as tertiary structure, as demonstrated by the

HSQC spectra, both showing superimposable profiles (data not

shown). In addition, the CD spectrum acquired on the 2xmut

hQPCT showed the same profile of the wild type, thus indicating

that the introduced mutations do not affect the secondary structure

of the protein.

Afterwards, the formation of the intra-chain disulfide bond of

the double mutant was investigated. hQPCT contains two cysteine

residues at amino acid positions 139 and 164 (Fig. 1). Disulfide

bonds were reported to be present in almost 50% of the protein

expressed in E. coli [6]. The intra-chain disulfide bond status for

the 2xmut hQPCT was checked by the modification of the two

free thiol groups with 4-acetamido-49-maleimidylstilbene-2,29-

disulfonic acid (AMS) (see Materials and Methods). The SDS-

PAGE analysis performed on the protein obtained from our

expression showed a disulfide bond content ,50%. Attempts to

oxidize the 2xmut hQPCT by adding a 1000-fold excess of

ferricyanide to the protein solution or treating the enzyme with a

redox couple (2-Mercaptoethanol: 2-Hydroxyethyl disulfide at

molar ratios of 1:2 and 1:10) by a series of dialysis failed to yield an

appreciable increase in the amount of disulfide bonds. Despite the

low content of disulfide bonds of the 2xmut hQPCT, activity tests

performed on the fully metalated protein showed good enzymatic

activity. The enzymatic activity was tested with a fluorometric

assay based on the conversion of the H-Gln-AMC substrate [26]

and compared with that of a human wild type recombinant QPCT

obtained commercially. The 2xmut hQPCT showed a significant

activity already at 1 nM (Fig. S1) that was comparable with the

Figure 6. Purification of 2xmut hQPCT. A, Ni-NTA affinity purification-imidazole gradient (green line: a, 50 mM; b, 50–500 mM) in FPLC Akta (GE
Healthcare). Blue line: UV measure (mAU). B, SDS-PAGE gel of imidazole gradient fractions, lane 1: insoluble fraction, lane 2: protein marker, lane 3:
total fraction, lane 4: flow-through, lane 5: wash unbound, lanes 7–15: fractions 50–500 mM imidazole. C, Size Exclusion in HiLoad 16/60 Superdex 75
column in FPLC Akta (GE Healthcare). Blue line: UV measure (mAU). D, SDS-PAGE, lane 1: protein marker, lanes 6–12: monomeric 2xmut hQPCT.
doi:10.1371/journal.pone.0071657.g006
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activity of the same concentration of the commercially available

wild type recombinant human QPCT. To assess if the mutation

could affect the interaction with a known inhibitor in a functional

mode, experiments were repeated in the presence of the PBD150

QPCT inhibitor [27]. The concentration response curves obtained

for the two enzymes (Fig. S2) showed equal IC50 values, thus

indicating that the mutations introduced were not affecting the

inhibitor-enzyme affinity.

Maintained activity also for a protein with only partial

disulphide bond formation suggests that this structural element

has mainly a stabilizing role. The zinc active site of hQPCT is

hosted in a solvent exposed area formed by several loops

connecting different secondary structure elements, namely a3

with a4, b3 with a5, b4 with a7, b5 with a8, a8 with a9, b6 with

a10 (Fig. 1) [4]. The two Cys residues forming the bridge are

located at the N-term of a5-helix and at C-term of b3-strand, at

the basis of the large cavity hosting the zinc(II) ions. A catalytic site

formed only by loops is a quite peculiar feature in zinc-dependent

exopeptidases (http://scop.mrc-lmb.cam.ac.uk/scop/): lack of any

rigid structural elements makes it quite flexible and most probably

able to tolerate the small structural differences that may be caused

by differences in the oxidation state of the two cysteines. Although

the disulphide bridge may have a role for the overall structural

stability, the secondary structure of the protein, determined via

CD, is not influenced by the oxidation state of the disulphide

bridge. This observation is consistent with the fact that the two Cys

residues are located at the end of a-helix and of a b-strand.

Additionally, the pattern of resonances in our HSQC spectra (see

below) is consistent with a protein with defined tertiary structure.

On the other hand, our data don’t allow us to rule out that the

absence of the bond may influence the stability of the protein

towards unfolding.

Similar results were obtained with the 6xmut hQPCT: protein

expression was carried out in 1 l SB medium following the same

conditions as for the 2xmut or wild-type hQPCT. After the first

step of purification (Affinity column), the yield of protein was

around 150 mg/l and little protein was found in inclusion bodies

(Fig. S3A). Further purification steps through size exclusion

columns showed that most of the purified protein was found in

the monomeric form (Fig. S3B).

In order to check the zinc(II) content of the 6xmut hQPCT,

atomic absorption spectroscopy analysis was performed. The

results revealed that the protein was 95% metallated.

6xmut hQPCT resulting from purification process was used to

check enzymatic activity and was found to have significant activity,

comparable to the commercially available wild type recombinant

human protein (Fig. S4).

Finally, the 6xmut hQPCT presents the same secondary

structure elements of the wild type and of the 2xmut, as proved

from the comparison of the CD spectra (data not shown), as well as

a very similar HSQC spectrum (see below).

NMR Spectra
The maximum solubility accessible in stable solution of wild

type hQPCT was 30 mM. The 15N HSQC acquired at this

concentration is shown in Figure 3A. Despite the high number of

scans used, the signal intensity is very low, due to the extremely

low concentration of a non-deuterated sample of a protein of this

size. Nevertheless, the HSQC spectrum shows a good chemical

shift dispersion (6.0–10.5 ppm) indicating that the protein is

folded, as also confirmed by the well resolved proton resonances of

methyl groups in the upfield region of the 1H 1D NMR spectrum

(Fig. S5). Solubility tests performed on the 2xmut hQPCT sample

proved that the maximum achievable protein concentration was

200 mM. The 15N HSQC recorded on the 90 mM 15N,13C 2xmut

hQPCT (Fig. 3B) contains a larger number of peaks with respect

to wild type hQPCT, that span the 6–12 ppm range. The larger

number of detectable resonances is attributable to the higher

protein concentration and consequent better signal- to-noise ratio.

The peak line width is consistent with the large protein size and

signals are well dispersed over the observed chemical shift range,

as expected for a structured protein. A central region crowded of

overlapped peaks (7–9 ppm) is a consequence of the structure of

hQPCT, where the coil and loop regions represent 42% of the

overall secondary structure, and with the presence of a large (36%)

a-helical content [4]. The HSQC spectra of the partially and fully

metalated 2xmut hQPCT are superimposable, thus indicating that

the metal binding do not significantly affect the structure of the

zinc enzyme as expected on the basis of the X-ray structure that

shows an exposed metal binding site [4].

The 6xmut hQPCT sample designed for purposes outside of

this work is more soluble with respect to the wild type hQPCT but

slightly less soluble in comparison to the 2xmut hQPCT with a

maximum achievable concentration of 150 mM. Indeed, besides

the Y115E, Y117E and W149D mutations, expected to provide an

increase in protein solubility, the three additional mutations

S119A, S121A and N150P play an opposite role. Nevertheless, the

fact that a variant that contains three mutations that are in

principle counterproductive towards solubility is still much more

stable than our single-point mutants, indicates that the solubility of

hQPCT is largely governed by localized effects related to the

presence of aromatic residues in the large hydrophobic patches

rather than by a generic surface hydrophobicity. The 15N HSQC

performed on the 70 mM 15N,13C 6xmut hQPCT is reported in

Figure 3C. NMR was also used to demonstrate the binding of the

ligand PBD150, a known inhibitor of wild type hQPCT [13] that

we have found to inhibit also the activity of the 2xmut (see above).

A titration of the 2xmut 15N labeled protein with increasing

amounts of this inhibitor was performed. Fast and intermediate

exchange regimes on the NMR chemical shift time scale between

free and bound forms of the protein were observed for different

signals. Indeed, binding of PBD150 to hQPCT resulted in the

chemical shift variation as well as in the disappearance of a

number of resonances in the 1H–15N HSQC spectrum of the

2xmut enzyme.

Prospects
NMR characterization of proteins relies on isotopically enriched

samples: 15N,13C-labeling is generally used for protein assignment

via triple resonance experiments while at least partial 2H-

enrichment is required for proteins with molecular mass above

30 kDa. The requirement of isotopically-enriched and concen-

trated (tens of mM or above) samples implies that NMR studies

are generally conducted on recombinant proteins, most often

expressed in E. coli. Lack of post-translational modifications and

the presence of tags for cloning or purification purposes reflect on

protein solubility, inducing formation of intermolecular adducts

ranging from large insoluble aggregates to partially populated

small oligomers [28], [29]. Here we proposed the use of surface

analysis and docking programs to derive hypothesis-driven models

for the intermolecular interactions on the basis of the oligomer-

ization for the efficient and rational design of more soluble

mutants.

The attainment of relatively soluble variants of hQPCT opens

new routes for development of novel inhibitors of the Glutaminyl

Cyclase function. On one side, the ability to monitor binding of

PBD150 at the catalytic site via resolved resonances in 1H-15N

HSQC spectra anticipates the successful use of this technique for

Soluble Variants of hQPCT
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NMR screening studies on hQPCT. On the other, the ability to

maintain the protein in a soluble, monodispersed state facilitates

crystal growth for X-ray crystallography.

Materials and Methods

Cloning and Mutagenesis
The cDNA sequence encoding the human QPCT (Ala33-

Leu361) was amplified by PCR using sequence-specific oligos

flanked by BglII (forward AACAGATCTGCCTCAGCCTGGC-

CAGAG) and HindIII (reverse CGAAGCTTTTACAAATGAA-

GATATTCCAACAC) restriction sites. The resulting product was

cloned into the pQE80L vector (Qiagen) linearized with BamHI

and HindIII restriction enzymes (Fig. 7).

For the production of the double-mutated hQPCT (Y115E-

Y117E), called 2xmut hQPCT, a set of oligos containing both the

desired mutations were used: Y115E-Y117E forward 59

CTTGAGTCAGACACCCGAAGGGGAACGGTCTTTCT-

CAAATATC 39, Y115E-Y117E reverse 59 GATATTTGA-

GAAAGACCGTTCCCCTTCGGGTGTCTGACTCAAG 39.

For the production of the 6xmut hQPCT two different set of

oligos were used: first set Y115E-Y117E-S119A-S121A forward 59

CTTGAGTCAGACACCCGAAGGGGAACGGGCTTTCG-

CAAATATC 39, reverse 59 GATATTTGC-

GAAAGCCCGTTCCCCTTCGGGTGTCTGACTCAAG 39;

second set W149D-N150P forward 59 CCAAGTATTTTTCC-

CACGACCCCAACAGAGTGTTTGTAGG 39, W149D-N150P

reverse 59 CCTACAAACACTCTGTTGGGGTCGTGG-

GAAAAATACTTGG 39. The pQE80L-hQPCT (Ala33-

Leu361) vector was used as DNA template and reactions were

set up as indicated in the QuickChange Site-directed Mutagenesis

Kit (Agilent) manufacturer’s protocol.

Expression and Purification
For protein expression, BL21 (DE3) E. coli cells were

transformed with pQE80L vectors either encoding hQPCT or

6xmut hQPCT or 2xmut. Cells were grown at 37uC in rich (SB) or

minimal medium (M9) till OD600 reached 0.6–0.8 and then,

protein expression was induced with 0.2 mM IPTG. Cells were

then further incubated at 17uC for 48 hours. After two days, cells

were collected (4,000 g 15 minutes) and resuspended in an

appropriate volume of lysis buffer (150 mM NaCl, 50 mM Tris,

pH 8, 20 mM imidazole). Lysis was carried out by sonication. The

lysate was then clarified by centrifugation at 30,000 rpm for 30

minutes and the final supernatant was filtered through a 0.2 mm

filter. Pellet was stored for inclusion bodies analysis.

A two-step purification protocol was used. First, the supernatant

was loaded into a Ni-affinity HisTrap FF 5 ml column (GE

Healthcare) and bounded proteins were eluted with a gradient of

imidazole (50–500 mM). Next, fractions containing the his-tagged

hQPCT were pooled and loaded into a size exclusion chroma-

tography column (HiLoad 16/60 Superdex 75, Pharmacia).

Protein fractions were recovered in 150 mM NaCl, 50 mM Tris,

pH 8 buffer.

Metalation
The 2xmut hQPCT was loaded with zinc by overnight dialysis

at 4uC against a 150 mM NaCl, 50 mM Tris, pH 8 buffer in

presence of an equimolar amount of ZnCl2. Unbound metals were

subsequently removed by two steps of dialysis. Finally the content

of zinc was measured by ICP-MS showing a 200% of metal

content.

Circular Dichroism Spectroscopy Analysis
CD spectra to assess the protein secondary structure were

acquired with a Jasco J-810 spectropolarimeter at 25uC using a

0.1 cm path length quartz cuvette. Buffer exchange of hQPCT

with 50 mM potassium phosphate, 150 mM sodium fluoride,

pH 7 buffer was performed. The mean of 10 scans between 190

and 250 nm wavelength was calculated by subtraction of the

buffer spectrum.

Disulfide-bond Analysis
To verify the disulfide-bond status AMS test was performed.

The reaction of AMS with two free thiol groups increases hQPCT

molecular weight of 980 Da. AMS test was carried out in oxygen-

free conditions to avoid the oxidation of free thiol groups. 100 mM

hQPCT was precipitated with 10% trichloroacetic acid (TCA) and

washed with acetone. After centrifugation, pellet was resuspended

in 100 mM Tris, 2% SDS pH 7 buffer and incubated with and

without 0.1 M AMS at 37uC for 1 hour. Finally, samples were

subjected to SDS-PAGE analysis.

Sample Preparation for Mass Spectrometry and NMR
Analysis

For mass spectrometry, the sample was concentrated to 55–

75 mM using a 10 kDa cut-off centricon membrane (Millipore).

Buffer exchange to 100 mM NH4Cl pH 8 was carried out using a

PD-10 column. Protein demetalation (apo-hQPCT) was carried

out by a series of dialysis with 150 mM NaCl, 50 mM Tris, pH 8,

10 mM EDTA.

For NMR analysis, the protein was concentrated to 100–

150 mM in 150 mM NaCl, 50 mM Tris, pH 8.

ICP-MS Analysis
The atomic absorption spectroscopy analysis was performed

using a Spectro Ciros charge-coupled device inductively coupled

plasma optical emission spectrometer (Spectro Analytical Instru-

ments) in combination with a Lichte nebulizer and a peristaltic

pump for sample introduction. Concentrated stocks of proteins

were diluted to a concentration of 3–5 mM using 10% nitric acid

distilled water. The inductively coupled plasma was programmed

to detect three wavelengths for the Zn (202, 206, 213 nm) and

each measurement being repeated three times. The standardiza-

tion curve was made using standard solutions in the range 0–

10 mM Zn in milliQ water.

Activity Measurements
Glutaminyl cyclase activity was estimated fluorometrically by a

coupled assay using pyroglutamyl aminopeptidase (from Bacillus

Figure 7. pQE80 plasmid encoding hQPCT sequence. PT5, promotor T5; Lac O, lac operator element; RBS, ribosomal binding site; ATG,
Methionine codon; 6xHis, His6 tag coding sequence; hQPCT, human QPCT sequence from Ala33 to Leu361.
doi:10.1371/journal.pone.0071657.g007
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amyloliquefaciens, expressed in E. coli, purchased from QIAGEN) as

auxiliary enzyme and H-Gln-AMC as substrate (Bachem AG,

Switzerland), adapting an assay described previously [26].

The assay was adapted to 384 well plate format for minimal

reagent consumption and was conducted in 50 mM Tris HCl

pH 8.0 in 384 well black non binding surface plates (Corning

Costar) in a final 50 ml volume.

Reaction mixture contained 50 mM H-Gln-AMC (7-amino-4-

methylcoumaride), the mutated hQPCT enzyme at a final

concentration ranging between 1 and 100 nM and 0.2 U/ml

pyroglutamyl aminopeptidase. As a positive control a commercial

wild type human recombinant QPCT expressed in HEK293

(OriGene, MD, USA; protein purity .80%) was used at a

standard concentration of 1 nM.

For compound inhibition tests the assay was conducted in

presence of 1% DMSO and PBD150 [27] at a concentration

ranging from 50 mM to 0.02 mM.

The product development was followed at 25uC by repeated

kinetic fluorescence readings on a TECAN Safire2 plate reader

with excitation/emission wavelengths of 380/465 nm. Fluores-

cence was read every 2 minutes for 40 minutes and enzyme

activity was calculated as RFU/min from the linear part of the

product development curve.

NMR Experiments
Monodimensional 1H and 1H-15N HSQC NMR experiments

were acquired on the wild type 15N hQPCT and on the multiple

mutants of hQPCT at 298 K using Bruker Advance spectrometers

operating at proton frequencies of 700 MHz and 950 MHz; both

spectrometers were equipped with cryoprobes. The monodimen-

sional 1H spectra were acquired on the wild type 1H hQPCT with

16384 points corresponding to an acquisition time of 45.5 ms.

The 2D 1H-15N HSQC was acquired on the wild type 15N

hQPCT with 1024 points in the direct dimension and 128 in the

indirect dimension corresponding to acquisition times of 45.6 and

22.5 ms. 512 transients were acquired per t1 increment. The 2D
1H-15N HSQC on the 15N hQPCT 2xmut was recorded with

1024 points in the direct dimension and 128 in the indirect

dimension corresponding to acquisition times of 27.1 and 16.6 ms.

64 transients were acquired per t1 increment. The 2D 1H-15N

HSQC on the 15N hQPCT 6xmut was recorded with 1024 points

in the direct dimension and 200 in the indirect dimension

corresponding to acquisition times of 27.1 and 26.0 ms. 256

transients were acquired per t1 increment. For these experiments

the recycle delay was set to 1 s. Spectra were processed with the

program TopSpin 2.0 (Bruker).

Protein Surface Analysis
The software PyMOL (The PyMOL Molecular Graphics

System, Version 1.5.0.4 Schrödinger, LLC) was used to generate

the electrostatic representation of the protein surface using the

command ‘‘generate vacuum electrostatic’’ which uses the

Amber99 force field charge distribution. The evaluation of residue

accessibility to the solvent for each amino acid of hQPCT was

performed with the program Naccess [24]. The coordinates of the

crystal structure of human glutaminyl cyclase (PDB id 2AFM)

were used as input. The aromatic amino acids on three of the

loops forming the crown-like structure around the zinc and on the

loop connecting b1 and b2 (Fig. 1) and more than 11 Å far apart

from the metal ion and having an absolute residue accessibility

from Naccess .100 were defined as active residues in HAD-

DOCK calculation (i.e., 115, 117 on the hydrophobic region 1

and 148, 149 on the hydrophobic region 2). The set of active

residues was completed by hydrophobic nearby amino acids with

an absolute residue accessibility .50 (i.e. 145, 205 on the

hydrophobic region 1 and 147, 153 on the hydrophobic region 2).

Two-hundred structural models of the hQPCT homodimers

calculated with the program HADDOCK [30], [31] clustered in

only two clusters. The first one contains 173 structures and was

used as our reference model. The most frequent intermolecular

contacts came from the residues on the two hydrophobic regions,

as summarized in Table S1. In particular Trp149 and His148 on

the hydrophobic region 2 together with Tyr115 and Tyr117 on

the hydrophobic region 1 are involved in the highest number of

non-bonded contacts. Our mutation strategy was based on

substituting residues giving rise to the highest number of non-

bonded contacts. In the 2xmut hQPCT Tyr115 and Tyr117 on

the hydrophobic region 1 were changed into Glu. In the 6xmut

hQPCT, also Trp149 was mutated into Asp, while maintaining

unaltered His148, to avoid possible electrostatic destabilization of

its loop, which carries the Zn ligand Asp159. Indeed, the

simultaneous introduction of two negatively charged amino acids

in place of Trp149 and His148 may induce a conformational

change of the loop, thus altering the coordination sphere and

possibly affecting the enzymatic activity.

Supporting Information

Figure S1 Glutaminyl cyclase activity test for 2xmut
hQPCT. The graph shows the progress curves of AMC

fluorescence development with different amounts of metalated

2xmut hQPCT or commercially available wild type recombinant

human QPCT. The assay was conducted in 50 mM Tris HCl

pH 8.0 at 25uC with 50 mM H-Gln-AMC, 0.2 U/ml pyrogluta-

myl aminopeptidase with hQPCT at the indicated concentrations.

The final assay volume was 50 ml in 384 well plate.

(TIF)

Figure S2 Enzyme inhibition test for 2xmut hQPCT.
Concentration response curve for the PBD150 reference inhibitor

tested on the metalated 2xmut QPCT at a concentration of 2 nM

(left panel) and on the wild type recombinant human QPCT at

1 nM (right panel) with the described fluorometric assay. Data

were normalized to the relative negative control wells, set to 100%,

that contained 1% DMSO in place of the compound. The

calculated IC50 values indicate similar compound potency on the

two enzymes.

(TIF)

Figure S3 Purification of 6xmut hQPCT. A, left, SDS-

PAGE of fractions obtained after affinity purification (imidazole

gradient). Lane 1: insoluble fraction, lane 2: marker, lane 3: total

fraction, lane 4: flow-through fraction, lane 5: wash unbound

fraction, lanes 6–10:6xmut hQPCT fractions (50–500 mM

imidazole gradient); right, SDS-PAGE of diluted fractions. Lane

1: marker, lane 2:1/10 dilution of fraction of lane 8 in the left

panel, lane 3:1/10 dilution of fraction of lane 9 in the left panel; B,
SDS-PAGE of fractions after size exclusion chromatography in

HiLoad 16/60 Superdex 75 column, lane 1: marker, lanes 6–13:

monomeric 6xmut hQPCT.

(TIF)

Figure S4 Glutaminyl cyclase activity test for 6xmut
hQPCT. AMC fluorescence development with different amounts

of metalated 6xmut hQPCT or wild type recombinant human

QPCT commercially available. The assay was conducted in 384

well plate in 50 mM Tris HCl pH 8.0 at 25uC with 50 mM H-

Gln-AMC, 0.2 U/ml pyroglutamyl aminopeptidase and hQPCT

at the indicated concentrations.

(TIF)
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Figure S5 1H 1D NMR spectrum of 2xmut hQPCT.
Resolved signals in the upfield region of the spectrum are

indicative of a folded protein.

(TIF)

Table S1 Intermolecular contacts statistics over the 173
structures of cluster 1. Non-bonded contacts calculated over

all the 173 model structures of cluster 1 obtained by HADDOCK.

Only the intermolecular contacts involving residues located .11 Å

far apart from the metal ion and having a repetition frequency

.20 are listed. The repetition frequency is the number of times

that each contact appears in either of the two subunits of the

dimeric complex, divided by 2.

(DOCX)
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