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General Abstract 

             Recent evidence implicates adaptive immunity as a key player in the mechanisms 

supporting hepatic inflammation during the progression of nonalcoholic steatohepatitis (NASH). 

In these settings, oxidative stress-derived epitopes (OSE) have been documented as the antigens 

triggering NASH-associated immune responses.  My doctoral project has investigated different 

aspects of the involvement of immune mechanisms in NASH.  From the observation that B-

lymphocytes were evident in liver biopsies from NASH patients and localized in cell aggregates 

resembling lymphoid structures we investigated the role of B cell in NASH showing that in mice 

the onset of steatohepatitis was characterized by hepatic B2-lymphocytes maturation to plasma 

cells. B-cell responses preceded T-cell activation and were accompanied by the up-regulation in 

the hepatic expression of B-cell Activating Factor (BAFF). Selective B2-cell depletion in mice over-

expressing a soluble form of the BAFF/APRIL receptor Transmembrane Activator and Cyclophilin 

Ligand Interactor (TACI-Ig) or BAFF neutralization with anti-BAFF monoclonal antibodies 

prevented Th-1 activation of liver CD4+ T-lymphocytes and ameliorate liver damage and NASH 

progression to fibrosis. These data indicate that B2-lymphocyte activation is an early event in 

NAFLD evolution and contributes to the disease progression through the interaction with T-cells.  

               A still poorly explored aspect in the development of adaptive immune response in NASH 

concerns the mechanism by which lymphocyte interacts with other myeloid cell within the liver. 

By investigating the co-stimulatory molecules Inducible T-cell Co-Stimulator (ICOS; CD278) and 

its ligand ICOSL (CD275) we observed that the serum content of the soluble forms of both ICOS 

and ICOSL were significantly higher in NAFLD/NASH patients than in healthy individuals. In mice 

NASH was characterized by an enhanced expression of ICOS by liver CD8+ T-cells and a 

concomitant up-regulation of ICOSL in monocyte/macrophages (MoMFs). Steatohepatitis as well 

as well as hepatic fibrosis were significantly lower in ICOSL deficient (ICOSL-/-) than in wild type 

mice. Flow cytometry analysis of liver MoMFs revealed that the lack of ICOSL selectively reduced 

the fraction of pro-inflammatory Ly6Chigh MoMFs and this paralleled with a lowering in the 

expression of the Triggering Receptor Expressed on Myeloid cells 1 (TREM-1), a surface receptor 

involved in maintaining MOMF M1 activation.  Similar effects were also observed in ICOS 
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deficient mice, suggesting that CD8+ T cells can sustain TREM-1 mediated macrophage M1 

through signals involving ICOS/ICOSL dyad. 

               The activation of immune responses in NASH requires antigen presentation to 

lymphocytes by specialized cells among which the most important are dendritic cells (DCs).  

Although previous studies have documented an early expansion of hepatic myeloid DCs in NASH 

and their involvement in sustaining lobular inflammation, the feature of these cells were not 

investigated.  Here we show that hepatic inflammation in experimental NASH associates with a 

massive expansion of myeloid DCs expressing monocyte markers along with CX3CR1, allowing 

their tentative identification as monocyte-derived DCs (moDCs). The lack of CX3CR1 affected the 

maturation of monocytes into moDCs both in vitro and in a model of acute liver injury induced 

by CCl4 poisoning. Moreover, the treatment with the CX3CR1 antagonist, CX3-AT before CCl4 

administration reduced liver moDCS and significantly ameliorated hepatic injury and 

inflammation, highlighting a novel role of CX3CR1-mediated signals in driving the differentiation 

of hepatic moDCs in response to tissue injury. 

In conclusion the data obtained during my doctoral training further highlight the 

complexity of the mechanisms involved in the progression of NASH pointing to the importance 

of specific interactions between adaptive and innate immunity cells.  Targeting these interactions 

might offer the possibility for developing novel therapeutic approaches to NASH. 
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Introduction 

Epidemiology and Clinical Features of NAFLD. 

Nonalcoholic fatty liver disease (NAFLD) is presently considered as the most common liver 

diseases worldwide with an overall prevalence of about 25% and is emerging as one of the leading 

causes of end-stage liver disease in western world involving both the adolescent and the adult 

populations (Younossi, et al. 2018). NAFLD is characterized by excessive fat, mainly triglycerides, 

accumulation within the liver, a process known as “steatosis”, in the absence of considerable 

alcohol ingestion (Chalasani, et al. 2012). NAFLD/NASH is considered the hepatic manifestation 

of the so called Metabolic Syndrome (MS) (Yki-Jarvinen, et al. 2014), a complex of clinical 

condition associated to obesity and over-weight that includes diabetes, hypertension, 

hypertriglyceridemia, and low high-density lipoprotein (HDL) cholesterol. It is estimated that 

about 47 million U.S. individuals suffer of metabolic syndrome and more than 80% of such 

subjects develop NAFLD (Younossi, et al. 2012). On the other hand, more than 90% of NAFLD 

patients have obesity associated with some features of metabolic syndrome.  As mentioned 

above, the prevalence of NAFLD in the general population is estimated to about 25% worldwide. 

The highest rate of NAFLD is evident in the middle east (32%), south America (31%), with lowest 

rate found in Africa (13%). It is estimated that by 2030 NAFLD population will be increase by 18% 

in USA and 15% in Germany (Younossi, et al. 2016; Estes, et al. 2018). NAFLD occurs in all age 

groups, including children and is equally frequent in both genders (Sheth and others 1997). The 

prevalence of NAFLD is directly related to Body Mass Index (BMI) and waist circumference, in fact 

subjects having BMI more than ˃30 as well as waist circumference more than ˃94 cm of men or 

˃80 cm for women have greater chance to develop NAFLD (Chaney, et al. 2015). In addition, 

multiple factors influence the prevalence of NAFLD/NASH, among the different ethnic groups, as 

African-American have lower (24%) prevalence whereas the highest (45%) is observed among 

Hispanics, indicating that NAFLD also reflect complex interactions between environmental, 

lifestyle related factors and genetic predisposition (Younossi, et al. 2016).  
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The histopathologic features of adult NAFLD are characterized by macrovesicular 

steatosis, mainly involving centrilobular areas, (Brunt, et al. 2011; Brunt, et al.2003).  

Nonalcoholic steatohepatitis (NASH) is an inflammatory subtype of NAFLD characterized by 

presence of steatosis along with evidence of hepatocyte injury, lobular inflammation and 

eventually fibrosis. The inflammation associated with steatohepatitis is generally modest and has 

mainly lobular distribution. However, portal inflammation can be detected in specific individuals, 

particularly in pediatric subjects and in those who are morbidly obese (Gramlich, et al. 2004).  In 

the majority of NAFLD patients, steatosis is the main feature and these subjects generally do not 

face a significant risk of liver-related adverse outcomes (Rinella, et al. 2015). Conversely in about 

20–30% of NAFLD subjects, the development of NASH represents the key feature in the evolution 

of the disease as it is frequently associated with the progression to liver cirrhosis and eventually 

to hepatocellular carcinoma (HCC) (Caligiuri, et al. 2016; Brunt, et al. 2011).  

 

Natural progression of NASH/NAFLD 

Hepatic fibrosis is by now the strongest predictor for disease-specific mortality in 

NAFLD/NASH and the death rate ascribed to NASH-related cirrhosis accounts for 12-25% and end-

stage NASH is becoming an increasingly common indication for liver transplantation 

(Lindenmeyer, et al. 2018).    A further aspect related to NAFLD evolution concerns its association 

with hepatocellular carcinoma (HCC) (Baffy, et al. 2012; Younes, et al. 2018]. NAFLD-related 

cirrhosis is a rising cause of HCC in Western countries accounting for 10-34% of the known 

aethiologies. Nonetheless, growing evidence points out that roughly 13-49% of all HCCs develop 

in non-cirrhotic NASH patients (Younes, et al. 2018).  All together, these data indicate that 
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NAFLD/NASH substantially contributes to the prevalence of cirrhosis and HCC worldwide. Such a 

scenario is forecasted to worsen in the near future as a result of the expected rise in NAFLD 

prevalence (Estes, et al. 2018) and the diffusion of effective treatments for viral hepatitis.   

The majority of the patients with diagnosis of NAFLD are asymptomatic (Johannes, et al. 

2014; Bhriony, et al. 2011) and clinical symptoms of NAFLD are nonspecific. NAFLD subjects often 

have hepatomegaly variably associated with general malaise, abdominal discomfort, vague right 

upper quadrant abdominal pain, nausea. Jaundice and features of portal hypertension, such as 

ascites and variceal hemorrhage, are the initial findings in a small minority of subjects with 

advanced liver disease. (Ahmed, et al. 2015).  From the laboratory point of view there is no single 

biochemical marker that can confirm the diagnosis of NAFLD or distinguish between steatosis, 

steatohepatitis and cirrhosis. It has been reported that mildly elevated level of liver enzymes 

serum aminotransferases is the primary abnormality seen in NAFLD patients. An elevation of 

alanine aminotransferase (ALT) and aspartate aminotransferase (AST) greater than four times the 

upper limit of AST/ALT ratio (Pratt, et al. 2000; Torres, et al. 2008) indicates abnormalities in liver 

function, however most of NAFLD subjects shows normal levels of liver enzymes. (Johannes, et 

al. 2014; Mofrad, et al. 2003). Therefore, liver enzyme levels are not sensitive for the diagnosis 

of NAFLD.   Serum gamma-glutamyl transferase (GGT) is frequently elevated in patients with 

NAFLD and elevated levels of GGT has shown been to be associated with fibrosis (Tahan, et al. 

2008). Furthermore, an elevated ferritin level has been reported in up to 50% of NASH patients, 

(Angulo, et al. 1999). However, these findings do not appear to correlate with an elevated iron 

concentration in the liver, and the role of hepatic iron in the pathogenesis of NASH is unclear. 

Several clinical investigators have proposed other different biomarkers, but their use has been 

limited due to the reproducibility or inability to accurately distinguish advanced form of steatosis 

(Sumida, et al. 2009). Therefore, liver biopsy remains the gold standard for diagnosing 

steatohepatitis and for staging the liver disease, unless clinically evident cirrhosis is present. 
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Pathogenesis of NAFLD/NASH  

 

The molecular mechanism underlying the development and progression of NAFLD is 

complex and multifactorial. Different theories have been formulated, leading initially to the ‘two 

hits hypothesis’. According to this theory, the first hit is caused by the hepatic accumulation of 

lipids as consequence of obesity and insulin resistance.  Steatosis sensitizes the liver to further 

insults acting as a ‘second hit’ activating inflammatory cascades and fibrogenesis (Day and James, 

1998). However, soon it become evident that this view is too simplistic to recapitulate the 

complexity of the human NAFLD where multiple environmental and genetic factors can 

contribute to the disease evolution. Consequently, a multiple-hit hypothesis has now substituted 

the outdated two-hit hypothesis for the progression of NAFLD.  

 

i) Mechanism of steatosis: 

As mentioned above, steatosis is a key feature of NAFLD and the mechanisms responsible 

for the impairment of lipid metabolism within the liver play a key role in the disease 

pathogenesis. Liver plays a major role in lipid metabolism, as hepatocyte utilize Free Fatty Acids 

(FFAs) as energy source, but a large amount of FFA is re-esterified to triglycerides and exported 

as very low-density lipoproteins (VLDL).  Nonetheless, FFAs are also produced by liver cells from 

glucose and fructose through de novo lipogenesis (DNL). Thus, any derangement in this process 

can lead to development of NAFLD (Musso, et al. 2009). Under physiological conditions non 

esterified FFAs can derive from dietary short chain fatty acids or are released from the adipose 

tissue and within the liver may follows three different pathways such as beta-oxidation in 

mitochondria or the synthesis of triglycerides that are then exported as VLDL into the blood with 

help of apolipoprotein B (APOB) (Lonardo, et al. 2002). The liver responds to elevated circulating 

FFAs as well as to increased lipogenesis by promoting triglyceride synthesis and by favoring 

intrahepatic triglyceride accumulation thus leading to steatosis. Hence hepatic fat accumulation 

can result from increased fat synthesis, increased fat delivery, decreased fat export, and/or 

decreased fat oxidation (Postic and Girard, et al. 2008).  Lipid metabolism in the liver and adipose 

tissue is controlled by insulin-mediated signals. Insulin binding to insulin receptors leads to 
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phosphorylation of insulin receptor substrates IRS 1,2,3 and to the activation of intracellular 

phosphoinositide 3-kinase (PI3K) and AKT/PKB (protein kinase B) pathways, which are intimately 

involved in mediating the metabolic effects of insulin including glucose uptake, the expression of 

key lipogenic genes and decrease in gluconeogenic genes.  Insulin has also a potent action in 

suppressing adipose tissue lipolysis  (Bugianesi and others, et al. 2010).  Obesity and metabolic 

syndrome are characterized by an impairment of the insulin signal pathway, a condition known 

as insulin resistance (IR).  NAFLD contribute both hepatic and systemic IR.  As a result, insulin-

mediated suppression of lipolysis is impaired resulting in an increased efflux of FFA from the 

adipose tissue. Hyper-insulineamia associated with IR leads also to an up-regulation of the 

transcription factor sterol regulatory element binding protein-1c (SREBP-1c), which is a key 

transcriptional regulator of genes involved in DNL as well as to the inhibition of β-oxidation of 

FFA thus further promoting hepatic lipid accumulation (Hooper et al., 2011). The expression 

FAT/CD 36 (Fatty acid translocase) is also upregulated via transcription factor forkhead box 

protein (Fox01) thus enhancing the FFAs uptake by the hepatocytes (Mastrodonato, et al. 2011). 

A further aspect in the mechanisms leading to hepatic steatosis directly involves the changes in 

adipokine production by the adipose tissue. In obesity adipocytes that accumulate triglycerides 

modify their pattern of adipokine secretion leading to higher secretion mediators promoting IR 

such as pro inflammatory cytokines, visfavin and resistin and lowering the synthesis of 

adiponectin, a adipokine that favour liver insulin response (Marra, et al. 2005).  In fact, the 

circulating levels of adiponectin are inversely proportional to body fat content and are reduced 

in patients with NAFLD. The importance of adiponectin in NAFLD is supported by studies showing 

that serum adiponectin levels can help to distinguish NASH from simple steatosis.  

 

ii) Mechanism of Hepatocyte Injury 

NASH is characterized by parenchymal injury involving hepatocyte ballooning, the 

presence of Mallory-Denk bodies and extensive liver cell apoptosis (Duwaerts and Maher, et al. 

2014). In line with these findings, recent studies have proposed the measure of serum levels of 

caspase-cleaved cytokeratins (CK) 8 and 18 as specific marker of NASH (Eguchi, et al. 2014). 

Several mechanisms have been invoked to explain the proapoptotic state in NASH. Triglyceride 
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accumulation itself can increase hepatocyte apoptosis by facilitating the synthesis of ceramide 

that triggers cell death via an inducible nitric oxide synthetase (iNOS)-mediated pathway 

(Harbrecht and others, et al. 2012). It has also been shown that hepatocyte incapability to esterify 

the excess of FFAs consequent to increased peripheral lipolysis promotes apoptosis through a 

process known as lipotoxicity. In this setting endoplasmic reticulum (ER) stress and the activation 

of signal pathways associated to the unfolded protein response (UPR), stress kinases, which 

eventually results in the activation of homologous protein (CHOP), a potent apoptosis-inducing 

factor, and in the up-regulation of the proapoptotic proteins Bim and PUMA (Cazanave, et al. 

2009; Masukoa, et al. 2009; Akazawa, et al. 2013). Recent studies have reported that patients 

with NAFLD have a variable degree of UPR and c-jun N-terminal kinase (JNK) activation (Malhi 

and others, et al. 2008). Accordingly, JNK activation and pharmacological or genetic JNK inhibition 

prevents lipotoxicity “in vitro” and ameliorates steatohepatitis in rodent models of NASH 

(Cazanave and Gores, et al. 2010; Czaja, et al. 2010). Thus, it has been proposed that the 

development of progressive NAFLD in some patients but not in others may be the result of 

increased susceptibility of steatotic hepatocytes to apoptosis arising from JNK activation (Li, et 

al. 2014; Malhi, et al.2008).  Additional mechanisms of hepatocyte injury in NAFLD/NASH involve 

the cytotoxic effects of pro-inflammatory cytokine TNF-α and oxidative stress (Marra, et al. 2008).  

Oxidative stress is defined as the imbalance between the production of reactive oxygen 

species (ROS) and the scavenging capacity of the antioxidant (Takaki, et al. 2013). ROS, including 

superoxide anion radicals (O2•-) and hydrogen peroxide (H2O2), are continuously produced 

intracellularly as byproducts of energetic metabolism in mitochondria, peroxisomes, 

endoplasmic reticulum (Masarone, et al. 2018).  In liver cells mitochondria are considered the 

most relevant ROS generators and they are especially important when considering ROS derived 

from energetic metabolism (Mansouri, et al. 2018; Figueira, et al. 2013). In NAFLD/NASH the 

disturbances in mitochondrial electron transport chain represent an important source for ROS 

production within hepatocytes, nonetheless the upregulation of microsomal cytochromes 

CYP2E1 and CYP4A by excess of FFA could also contribute to ROS generation (Vernon et al. 

2011; Williams, et al. 2010). By interacting with lipids, DNA and proteins ROS causes cellular and 

tissue injury. In particular,  ROS reaction with lipids produces hydroperoxides and endoperoxides, 
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which undergoes fragmentation to generate reactive intermediates, such as malondialdehyde 

(MDA) and 4-hydroxynonenal (4-HNE), resulting in cell death and activation of inflammatory 

mechanisms (Ray, et al. 2012).   The contribution of oxidative stress to the pathogenesis of NASH 

is supported by studies showing that ROS contribute to the death of fat-laden hepatocytes (Marr, 

et al. 2008; Gambino, et al. 2011), while the supplementation with antioxidant reduces liver 

injury in experimental rodent models of NASH (Laurent, et al. 2004).   In the same vein, an 

increase in oxidative stress markers, is evident in the liver and in the serum of both adult and 

paediatric NAFLD/NASH patients (Seki, et al. 2002; Chalasani, et al. 2004; Ikura, et al. 2006; Nobili, 

et al. 2010).   

 

iii) Mechanisms of fibrosis. 

Hepatic cirrhosis represents the final outcome of NAFLD/NASH and end-stage NASH is 

becoming an increasingly important cause of liver cirrhosis word wide.  NASH-related fibrosis 

develops primarily in the pericentral areas, where thin bundles of fibrotic tissue surround groups 

of hepatocytes and thicken the space of Disse, with a pattern called “chicken wire” (Brunt, et al. 

2010). As in other type of chronic liver diseases hepatic stellate cells (HSCs) are the main 

responsible for extracellular matrix deposition. These cells respond to tissue damage and to the 

macrophage production of transforming growth factor 1 (TGF-1), platelet-derived growth 

factor (PDGF) and fibroblast-derived growth factors by trans-differentiating into myofibroblast-

like cells (HSC/MSs) that secrete large amount of collagen and extracellular matrix components 

(Friedman, et al. 2008).  Collagen accumulation is further favored by a decrease in hepatic matrix 

degradation due to a reduced production of matrix metalloproteases (MMPs) and/or an 

increased synthesis of matrix metalloprotease inhibitors (Friedman, et al. 2008). Several factors 

such as oxidative stress and lymphocyte-derived cytokines influence HSC proliferation and 

transformation to collagen-producing myofibroblasts (Novo, et al. 2008). In this latter respect the 

production of OPN by NKT cells might be particularly relevant in NASH evolution as OPN has been 

shown to directly stimulate collagen synthesis by hepatic stellate cells (HSCs) through a TGF-β1-

indipendent pathway (Urtasum, et al. 2012). Although the development of fibrosis in NASH does 

not appears to be appreciably different from those in other liver diseases, alterations in adipokine 
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secretion consequent to obesity might have a specific role for the induction of fibrogenesis in this 

condition. Activated HSCs selectively express leptin receptors and leptin stimulates HSC survival, 

the expression of pro-inflammatory and angiogenic cytokines (Wang, et al. 2008).  The pro-

fibrogenic action of leptin might be enhanced by the combined lowering of adiponectin as 

adiponectin reduces proliferation and increases apoptosis of cultured HSC (Wang, et al. 2008).   

 

iv)  Mechanisms of Inflammation 

Inflammation, along with hepatocyte damage and fibrosis is the main feature of the 

progression from simple steatosis to NASH. Both the innate and adaptive immunity have a role 

in the initiation and maintenance of lobular inflammation and understanding the interplay 

between these two systems represents the challenge in unravelling the disease pathogenesis.  In 

fact, current view sees inflammation as the driving force in NASH progression and a key 

therapeutic target since the factors promoting inflammation crosstalk with those responsible for 

hepatocellular damage and fibrosis.   

Several mechanisms contribute to the recruitment and activation of inflammatory cells in the 

liver during the evolution of NAFLD.  As mentioned above, hepatocyte FFA overload causes 

cellular stress and cell death causes the release of damaged associated molecular patterns 

(DAMPs) in the hepatic circulation (Feldstein, et al. 2003). Several molecules have been 

recognized as DAMPs including nuclear factors such as the high-mobility group box 1 (HMGB1), 

nuclear and mitochondrial DNA, purine nucleotides (i.e., ATP, UTP), lipid peroxidation products 

and uric acid. In addition to DAMPs, gut dysbiosis associated with obesity promotes an increased 

enteral adsorption of bacterial products such as lipopolysaccharide (LPS) and peptidoglycans and 

their increase in the portal circulation also contributes to inflammatory response in NAFLD/NASH 

(Ganz, et al. 2013; Brandl  and  Schnabl, et al. 2017; Huebener, et al. 2015).    DAMPs and pathogen 

associated molecular patterns (PAMPs) bind to a variety of cell receptors known as pattern 

recognition receptors (PRRs), that are responsible for triggering a local inflammatory including 

the production of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-a) and 

interleukin-6 (IL-6). (Feldstein, et al. 2010; Seki, et al. 2008]. Among PRRs, Toll-like receptors 

(TLRs) are highly conserved receptors expressed on hepatocytes, Kupffer cells, hepatic stellate 
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cells, biliary epithelial cells (Kesar, et al. 2014; Petrasek, et al. 2013; Strowig, et al. 2012). The 

most studied TLRs in the liver, and particularly in NASH, are TLR2, TLR4 and TLR9 (Kesar, et al. 

2014; Strowing, et al.2012). These receptors recognize specific variant motifs present in pathogen 

molecules. While TLR2 recognizes peptidoglycans, TLR4 and TLR9 recognize bacterial LPS and 

DNA, respectively (Bieghs, et al. 2014].   The nucleotide oligomerization domain (NOD)-like 

receptors (NLRs) also belong to the PRR family and can recognize DAMPs and PAMPs. NLR 

activation in response to DAMPs or PAMPs leads to the assembly of inflammasome, a 

multiprotein complex required for caspase-1 activity and initiation of inflammatory signals. Full 

activation of inflammasome, results in secretion of mature IL-1 and IL-18 (Martinon, et al. 2002; 

Szabo, et al. 2012). Both these cytokines elicit inflammatory signals in liver as well as in the 

adipose tissue and intestine, triggering steatosis, insulin resistance, inflammation and cell death 

(Dixon, et al. 2013).  

 

The role of innate immunity cells in NAFLD 

In recent years, the role of the innate immune response in NAFLD has been the focus of 

intense research.  Lobular inflammation in NASH involves hepatic infiltration of innate immune 

cells such as macrophages, granulocytes and natural killer (NK) and natural killer T cells (NKT) 

which have a key role in sustaining the disease progression.  

Neutrophils:  Neutrophil accumulation is frequently seen in NASH as a results of CXCL1 production 

in hepatocytes (Tacke, et al. 2017).  Neutrophils critically contribute to hepatocellular damage by 

releasing ROS, myeloperoxidase (MPO), and proteases, such as neutrophil elastase (NE), 

proteinase 3, cathepsins, and matrix metalloprotease (MMP)-9 into the extracellular 

environment. MPO also enhances inflammation by recruiting macrophages and promotes the 

pro-fibrogenic activation of hepatic stellate cells (HSCs) (Xu, et al. 2014). Accordingly, neutrophil 

depletion with the antibody, 1A8 or impairment of MPO, NE, or proteinase-3 expression improve 

liver damage in experimental model of NASH (Cai, et al. 2019) 
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Macrophages:  Liver macrophages are a heterogeneous population consisting of yolk sac-derived 

tissue-resident macrophages or Kupffer cells (KCs) and bone marrow monocyte-derived 

macrophages. In healthy liver, KCs resides in the hepatic sinusoids (Duarte, et al. 2015), their 

major functions include phagocytosis of pathogen or bacterial-derived products coming from the 

portal vein circulation, and present antigens to cytotoxic and regulatory T cells (Lanthier, et al. 

2015). The phenotype of macrophages depends upon the stimuli of local environment (Duarte, 

et al. 2015), and they have been classified as M1 classical activated macrophages and alternative 

M2 macrophages. While M1 phenotype is regarded as “proinflammatory”, M2 is considered as 

‘‘anti-inflammatory’’. Nonetheless, such a distinction is now considered over simplified and the 

phenotype of hepatic macrophages is still a matter of research (Tacke, et al. 2014).  During the 

evolution of NAFLD quiescent KCs are activated during by the release of damage associated 

molecular patterns (DAMPs), including mitochondrial DNA (mtDNA) from steatotic hepatocytes 

or cells dying because of lipotoxicity and oxidative stress. The release of DAMPs triggers Toll-like 

receptor (TLR) activation (TLR9, TLR 4) in KCs stimulating the secretion of proinflammatory 

cytokines (IL-6, tumor necrosis factor (TNF) a, IL-1b, and chemokine such as CCL2, CCL5, ROS and 

NO generated by inducible NO synthase-iNOS (Tacke et al. 2017; Garcia, et al. 2016; Mridha, et 

al. 2017). On their turn, CCL2 and CCL5 recruit the circulating monocytes promoting the 

expansion of hepatic macrophages. Other chemokine receptors, namely C-X-C motif receptor 

(CXCR) such as CXCR2 and CXCR3 leads instead to reduced recruitment of infiltration of 

macrophages, improved hepatic inflammation and fibrosis (Ye, at. 2016; Zhang, et al. 2016). 

Monocyte-derived macrophages (MoMFs) represent le majority of mononucleated cells 

infiltrating the liver and are key players in modulating lobular inflammation as well as NASH 

evolution to fibrosis (Tacke, et al. 2017).  Liver macrophages are very plastic and adapt their 

phenotype according to signals derived from the hepatic microenvironment, thus explaining their 

apparent opposing functions during the disease evolution.  In fact, beside promoting 

inflammation, the expansion of liver macrophage pool has also a key role in stimulating HSC 

activation to myofibroblast and fibrogenetic responses (Tacke, et al. 2017). Accordingly, the 

infiltration of Ly-6C+ monocytes has been identified as a crucial factor in the progression toward 

NASH and fibrosis in mice (Baeck, et al. 2012; Lefebvre, et al. 2016).  In line with these findings 
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blocking CCL2 and CCL5 receptors ameliorates experimental NASH (Tacke, et al. 2017) and 

reduces fibrosis evolution in a phase 2 clinical trial (Friedman, et al. 2018). Conversely the 

interference with anti-inflammatory mediators that control macrophage responses such annexin 

A1 or adenosine worsen NASH evolution (Locatelli, et al. 2014; Cai, et al. 2018).    

Natural Killer Cells:  NK cells are enriched in the liver, they account 10 to 20% of total liver 

lymphocytes in mouse and almost 40 to 50% in humans (Peng, et al. 2016; Tiang, et al. 2013). NK 

cells are an important component of the innate immune response since they can kill virus-

infected cells and by secreting some a variety of cytokines such TNF-α, INF-γ and IL-4 that inhibit 

viral replication and recruit/activate cells involved in adaptive immune response, thus playing a 

critical role in bridging the innate and adaptive arms of the immune response (Yoon, et al. 2009). 

In experimental models of NAFLD NK cells have been shown to contribute in maintaining M1 

polarization of hepatic macrophages by releasing IFN-γ (Tosellom and Trampont, et al. 2016).  

Nonetheless, a recent study in mice suggests that NK cells have also an anti-fibrotic effect by 

favoring the killing of activated hepatic stellates cells (HSC) through the secretion of tumor 

necrosis factor – related apoptosis inducing ligand (TRAIL) and NKG2D (Radaeva, et al. 2006; Oh 

et al. 2016).   

Natural Killer T cells (NKT): NKT cells comprise a unique immune cell subtype that expresses 

specific NK cell surface receptors (NK1.1 in mice or CD161/CD56 humans) as well as conventional 

T cells antigen receptor (TCR) (Marrero, et al. 2018).  NKT cells mainly reside in the sinusoids and 

can be differentiated in two sub-sets. The large majority (95%) of liver NKT cells is represented 

by type I or invariant NKT (iNKT), that use an invariant TCR encoded by Vα gene. The remaining 

5% consists of type II NKT cells, which relay instead an oligoclonal TCR repertoire (Marrero, et al. 

2018). NKT cells recognize as antigens glycolipids presented by antigen presenting cells (APCs) 

expressing CD1d cell surface molecules.  Upon activation NKT cells secrete a variety of cytokines 

(IL-4, IL-10, IFN-γ, and TNF-α) that can promote Th-1, Th-2 and T-regulatory (Treg) activities 

(Marrero, et al. 2018). Thus, NKT cells can both stimulate or suppress immune/inflammatory 

responses.  During NAFLD evolution the prevalence of liver NKT cells varies a lot since in steatosis 

and during the early phases of steatohepatitis (Kremer, et al. 2010), while NKT cell expansion is 

evident in advanced NASH (Tajiri, et al. 2009; Wolf, et al. 2014). The involvement of NKT cells in 
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the pathogenesis of NASH is demonstrated by several paper showing that interfering with NKT 

cells effectively improves hepatic parenchymal injury, inflammation and prevent NASH 

progression to fibrosis and hepatocellular carcinoma in different experimental models (Wolf, et 

al. 2014; Bhattacharjee, et al. 2017; Syn, et al. 2012; Maricic, et al. 2018). On this respect it has 

been proposed that NKT cells production of the lymphotoxin Lymphotoxin-like Inducible protein 

that competes with Glycoprotein D for Herpesvirus entry on T cells (LIGHT or TNFSF14) 

contributes to cause liver steatosis by increasing hepatocyte lipid uptake (Wolf, et al. 2014), while 

their production of production of osteopontin (OPN) and Heedhogh ligand (Syn, et al. 2012) are 

implicated in the promotion of NASH-associated liver fibrosis. Furthermore, the lack of iNKT cells 

in Jα18-/- mice or NKT cells inhibition by mice treatment with retinoic acid receptor-γ agonist 

tazarotene reduces CD8+ T-cell infiltration in NASH livers (Maricic, et al. 2018), suggesting a strict 

interplay between cytotoxic T-cells and iNKT cells in the mechanisms supporting steatohepatitis.   

 

The role of adaptive immune system in NAFLD 

Adaptive immune response involves the activation and the functional activities of B- and 

T-lymphocytes that are involved in the production of lymphocyte-derived cytokines regulating 

inflammatory responses, antibody production and cytotoxicity in response to specific antigens as 

well as the regulatory functions mediated by regulatory T cells (Treg).    These adaptive immune 

responses require lymphocytic cell trafficking between the bone marrow, lymphoid organs and 

peripheral tissues using blood and lymphatic vessels as a vehicle (Cyster, et al. 2003). 

Histology in human liver biopsies has first suggested the involvement of adaptive immunity in 

NAFLD/NASH by showing the presence of lymphocytes NASH lobular infiltrates (Yeh, et al. 2014) 

as well as in periportal infiltrates associated with NASH ductular reactions (Gadd, et al. 2014).  

The hepatic infiltration by B- and CD4+ and CD8+ T-lymphocytes is also evident in different 

experimental models of NASH where it parallels the worsening of parenchymal injury and lobular 

inflammation (Sutti, et al. 2014; Wolf MJ, et al. 2014; Weston, et al.2015; Grohmann, et al.2018). 

These T-lymphocytes express the memory/effector markers CD25, CD44 and CD69, along with an 

enhanced production the cytokine LIGHT, indicating their functional activation (Sutti, et al. 2014; 

Wolf, et al. 2014; Grohmann, et al.2018).  In line with these findings Wolf and co-workers (2017) 
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have observed that Rag1-/- mice which lack mature B, T and NKT cells and are unable to mount 

adaptive immune responses develop less steatosis, parenchymal injury and lobular inflammation 

when feed with a choline deficient high fat diet (CD-HFD).  Liver lymphocyte infiltration is also 

evident in association with severe steatohepatitis and fibrosis following the administration of a 

high fat diet to mice carrying the hepatocyte specific deficiency for T Cell Protein Tyrosine 

Phosphatase (TCPTP) (AlbCre;Ptpn2fl/fl), which is responsible for the de-phosphorylation of the 

transcription factors STAT-1, STAT-3 and STAT-5 in the nucleus (Grohmann, et al.2018).  In these 

mice, hepatocyte STAT-1 activity favors the liver lymphocyte recruitment through an increased 

production chemokine CXCL9 (Grohmann, et al.2018). In this setting, reducing STAT-1 activation 

lowers CXCL9 expression and reduces the hepatic recruitment of activated CD4+ and CD8+ T-cells 

ameliorating fibrosis (Grohmann et al.2018).   

 

i) T-lymphocytes 

As mentioned above, the liver infiltration by helper CD4+ T-lymphocytes is commonly seen in 

several experimental models of steatohepatitis as well as in NASH patients (Sutti, et al. 2014; 

Wolf, et al.2014; Weston, et al. 2015; Grohmann, et al.2018; Li, et al. 2005; Luo, et al. 2013; 

Inzaugarat, et al. 2011; Ferreyra, et al.2012). From the functional point of view, CD4+ T 

lymphocytes show features of interferon-γ (IFN-γ)-producing T-helper 1 (Th-1) cells (Sutti, et al. 

2014; Li, et al. 2005) and IFN-γ deficient mice develop less steatohepatitis and fibrosis than wild-

type littermates when fed with a methionine/choline deficient (MCD) diet (Luo, et al. 2013). The 

importance of CD4+ Th-1 cells in NASH is supported by the clinical observations showing that both 

pediatric and adult NASH are characterized by an increase in liver and circulating IFN-γ-producing 

CD4+ T-lymphocytes (Inzaugarat, et al. 2011; Ferreyra, et al. 2012).  In response to inflammatory 

stimuli CD4+ T-lymphocytes can also differentiate to T-helper 17 (Th-17) cells which are 

characterized by the expression of the nuclear receptor retinoid-related orphan receptor 𝛾t 

(ROR𝛾t) and by the production of interleukin-17 (IL-17) and, to a lesser extent, IL-21, IL-22, IFN-γ 

and TNF-α [Tang, et al.2011].  The IL-17-family (IL-17A-F) is a group of structurally related 

cytokines that have been implicated in the pathogenesis of both acute and chronic liver injury 

(Molina, et al.2018). The possible involvement of Th-17 responses in NASH has been suggested 
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by the observation that liver and circulating Th-17 CD4+ T-cells increase in NAFLD/NASH patients 

in parallel with Th-1 lymphocytes (Rau, et al. 2016).  Interestingly, the progression from NAFLD 

to NASH associates with a more pronounced liver accumulation of Th-17 cells, while all these 

changes normalize in the patients undergoing bariatric surgery (Rau, et al. 2016).  In a similar 

manner, Th-17 cells and IL-17A are required for the development of fat inflammation, insulin 

resistance and steatohepatitis in mice over-expressing the hepatic unconventional prefoldin 

RPB5 interactor (URI), which is postulated to couple nutrient surplus to inflammation (Gomes, et 

al.2016).  In these animals, the genetic ablation of the myeloid cell IL-17A receptor prevents NASH 

development (Gomes, et al.2016).  Time-course experiments using mice fed with the MCD diet 

have also revealed that the number of liver Th-17 cells fluctuates during the disease evolution, 

peaking at the onset of steatohepatitis and then in the late phase of the disease [Rolla, et al. 

2016]. Opposite variations are instead evident in intrahepatic IL-22 producing CD4+ T-

lymphocytes (Th-22) that are prevalent between the first and the second expansion of Th-17 cells  

[Rolla, et al. 2016].  An extensive hepatic infiltration of Th-22 cells is also evident in MCD-fed IL-

17-deficient (IL-17−/−) mice, which display milder steatohepatitis [Rolla, et al. 2016], suggesting a 

possible antagonist action between the Th-17 and Th-22 lymphocyte in modulating NASH. 

Altogether, these data indicate a complex role of Th-17 cells in NASH that is also likely influenced 

by the concomitant differentiation of Th-22+ CD4+ T-lymphocytes as well as the possible 

contribution of type 3 innate lymphoid cells (ILC3) producing both IL-17A and IL-22 (Li, et al. 

2017).   

 

In addition to the changes in CD4+ T-cells NAFLD/NASH evolution in either humans or 

rodents is accompanied by an increase in the liver prevalence of activated cytotoxic CD8+ T-

lymphocytes (Sutti, et al.2014; Wolf, et al. 2014; Grohmann, et al. 2018; Ghazarian, et al.2017). 

These cells appear to be mainly recruited in response to signals mediated by IFN-α (Ghazarian, et 

al. 2017), but their role in the disease evolution is less well characterized as compared to that of 

CD4+ T-cells. On this respect,  Ghazarian and co-workers have observed that lowering CD8+ T-cells 

ameliorates insulin resistance and liver glucose metabolism in mice receiving a high-fat diet 

(Ghazarian, et al. 2017), while  β2m-/- mice lacking CD8+ T- and NKT cells are protected from both 
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steatosis and NASH when fed with CD-HFD diet in relation to the capacity of CD8+ T- and NKT cells 

to produce LIGHT (wolf, et al.2014). The selective ablation of CD8+ T-cells is also effective in 

ameliorating steatohepatitis in wild-type mice receiving a high fat/high carbohydrate (HF/HC) 

diet (Bhattacharjee, et al. 2017), suggesting an effective role in the pathogenesis of NASH. 

Nonetheless, additional studies are required to better characterize CD8+ T-cell functions in 

relation to the disease progression. 

ii) B-lymphocytes 

Beside T-cells, B-lymphocytes are detectable within inflammatory infiltrates in liver biopsies 

from NASH patients (Bruzzì, et al.2018; Grohmann, et al.2018).   In mice models of NASH, we 

have observed that B-cells activate in parallel with the onset of steatohepatitis and maturate to 

plasma blasts and plasma cells. Mice liver B-lymphocytes mainly consist of bone marrow-derived 

mature B220+/IgM+/CD23+/CD43- B2-cells resembling spleen follicular B-cells. However, a small 

fraction of B220+/IgM+/CD23-/CD43+ B1-cells is also detectable (Novobrantseva, et al.2005).  The 

functions of the two B-cell sub-sets are not overlapping, as upon antigen stimulation B1-cells 

mature in a T-cell independent manner to plasma cells producing IgM natural antibodies 

(Tsiantoulas, et al.2015). Natural antibodies are pre-existing germline-encoded antibodies with a 

broad specificity to pathogens, but also able to cross-react with endogenous antigens, such as 

oxidized phospholipids and protein adducted by end-products of lipid peroxidation (Tsiantoulas, 

et al.2015).  Conversely, the B-2 sub-set requires helper-T cells to proliferate and to undergo 

antibody isotype class switching which leads to plasma cells producing highly specific IgA, IgG or 

IgE (Tsiantoulas, et al.2015).  Previous studies have shown that B-cell can contribute to 

autoimmune hepatitis (Béland, et al.2015) and liver fibrogenesis (Novobrantseva, et al.2005; 

Thapa, et al.2015).  According to Thapa and co-workers the pro-fibrogenic role of B-cells involves 

the production of pro-inflammatory mediators which stimulate hepatic stellate cell (HCS) and 

liver macrophage, while, in turn, activated HSCs support liver B-cell survival and maturation to 

plasma cells by secreting retinoic acid (Thapa, et al.2015).  However, so far, the relevance of the 

above findings to the pathogenesis of NASH has not been investigated in detail.  

It is noteworthy that the involvement of adaptive immunity in NASH outlined above has many 

analogies with the data concerning the role of lymphocytes in supporting insulin resistance and 
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visceral adipose tissue (VAT) inflammation in obesity (McLaughlin, et al.2017).  In fact, obesity in 

either rodent and humans associates with an expansion and activation of VAT CD4+ and CD8+ T-

cells, while T-cell blockage or IFN-γ neutralization improve fat inflammation and insulin resistance 

(McLaughlin, et al.2017). These data can explain why in several experimental model of NASH the 

interference with adaptive immunity ameliorate liver lipid metabolism and steatosis by 

improving insulin resistance. Furthermore, they suggest the possibility that in patients with 

metabolic syndrome lymphocytes may support VAT and liver inflammation through similar 

mechanisms.  

 

iii) Mechanisms possibly involved in promoting adaptive immune response in NASH. 

It is known that under physiological conditions the liver has important 

immunosuppressive functions inducing tolerance to autoantigens and antigens from ingested 

food or commensal bacteria (Rahman, et al.2013; Eckert, et al.2016).  These actions are mediated 

by a complex network of signals involving professional antigen presenting cells (APC) such as 

Kupffer cells and dendritic cells as well as non-professional APC including hepatocytes, hepatic 

sinusoidal endothelial cells, hepatic stellate cells (HSCs) (Eckert, et al.2016). These cells present 

antigens to T-cells in combination with signals that lead to T-cell apoptosis, anergy or 

differentiation into CD4+/CD25+/Foxp3+ regulatory T-cells (Tregs) (Eckert, et al.2016).  Additional 

immuno-suppressive signals can also derive from NKT and NK cells and myeloid suppressor cells 

(MSCs) (Eckert, et al.2016).  At present, the mechanisms responsible for triggering adaptive 

immunity in NASH are still poorly characterized. The issue still open regard the antigens 

responsible for triggering lymphocyte responses as well as how the liver immunosuppressive 

environment is modified to allow such responses.   Regarding the first issue it is known that 

oxidative stress derived epitopes (OSEs) are presently implicated in the stimulation of immune 

reactions responsible for plaque evolution in atherosclerosis (Papac-Milicevic, et al.2016) as well 

as in the breaking of self-tolerance is several autoimmune diseases (Smallwood, et al.2018). OSEs 

include oxidized lipids and protein adduct with reactive aldehydes generated during lipid 

peroxidation, such as malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE) and condensation 

products generated by the interaction between malonyl dialdehyde and acetaldehyde, known as 
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malonyl dialdehyde-acetaldehyde adducts (MAA) (Papac-Milicevic, et al.2016; Rolla, et al. 2000).  

The involvement of OSEs in driving NAFLD/NASH associated immune responses has emerged 

from the observations that elevated titers of anti-OSE IgG are detectable in about either adult 

and paediatric NAFLD/NASH patients (Nobili et al.2008; Albano, et al.2005) and that anti-OSE IgG 

in adult NAFLD/NASH patients target the cyclic MAA adduct methyl-1,4-dihydroxypyridine-3,5-

dicarbaldehyde (Albano, et al.2005). Experiment in rodents have confirmed the association of 

humoral and cellular responses against OSEs with hepatic inflammation and parenchymal injury 

(Sutti, et al. 2014; Baumgardner, et al. 2008), while reducing lipid peroxidation by 

supplementation with N-acetylcysteine prevent antibody responses (Baumgardner, et al. 2008).  

Conversely, mice pre-immunized with MDA-protein adducts before receiving the MCD diet show 

enhanced liver lymphocyte infiltration and more severe parenchymal injury, lobular 

inflammation and fibrosis (Sutti, et al.2014).  Such an effect involves Th-1 activation of liver CD4+ 

T-lymphocytes which, in turn promote the M1 activation of hepatic macrophage by releasing 

CD40 ligand (CD154) and IFN-γ (Sutti, et al.2014).  These observations are consistent with data 

obtained by feeding a high-fat/cholesterol diet to Ldlr-/- mice, an established rodent model of 

atherosclerosis, in which OSE formation leads to NASH in combination with the development of 

atherosclerotic plaques. (Hendrikx, et al. 2016; Ketelhuth, et al.2016).   

For an effective development of immune reactions antigens need to be presented to 

lymphocytes together with suitable co-stimulatory signals by the, so called, antigen presenting 

cells (APCs).  Within the livers mayor APCs are represented by activated macrophages and hepatic 

dendritic cells (HDCs). HDCs account for less than 1% of total liver myeloid cells (Heier, et al. 2017) 

and are distributed within the portal areas and under liver capsule (Segura, et al.2013). Based on 

specific membrane markers and functional features HDCs can be distinguished into plasmacytoid 

and myeloid or classical subsets.  Myeloid HDCs are further sub-grouped in type 1 

(CD103+/CD11b- in mice; CD141+/CD14- in humans) and type 2 (CD103-/CD11b+ in mice; 

CD1c+/CD14- in humans) cells (Heier, et al.2017; Sutti, et al. 2019). In healthy livers, HDCs have a 

predominant immature phenotype with low capacity to endocytose antigens and to stimulate T-

lymphocytes. In these conditions HDCs produce interleukin-10 (IL-10), interleukin-27 (IL-27) and 

kinurenin which contribute to the tolerogenic environment of healthy livers (Tsung , et al.2007; 
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Tosello-Trampont, et al.2016).  In response to hepatic injury HDCs expand and activate becoming 

efficient APCs and a source of pro-inflammatory cytokines (Ley, et al.2013). The pro-

inflammatory and immune-stimulating functions of HDCs involve sub-set of cells with high lipid 

content, while low-lipid HDC have immuno-suppressive functions (Seijkens, et al.2014). At 

present, the contribution of HDCs to immune responses in NASH is still controversial.  Henning 

and co-workers have reported that myeloid HDCs expand and activate already in the early phases 

of MCD-induced NASH acquiring the capacity to specifically stimulate CD4+ T-cells (Henning, et 

al. 2013).  However, mice lacking type 1 myeloid HDC have an increased susceptibility to 

steatohepatitis (Liu, et al.2017), suggesting that different HDC sub-sets might have opposite roles 

in the disease evolution. Recently, Sutti and coworkers have proposed that monocyte derived 

dendritic cells (moDCs) expressing the fractalkine receptor CX3CR1 infiltrated the liver of mice 

with advanced NASH and contribute to hepatocyte injury (Sutti et al. 2017).  Nonetheless, 

unspecific HDC depletion induced by the administration of diphtheria toxin in transgenic mice 

expressing the toxin receptor under the control of the dendritic cell marker CD11c (CD11c-DTR) 

does not prevent NASH-associated hepatic inflammation and liver injury (Henning, et al. 2013).  

Altogether, available evidence indicates the possibility that NAFLD livers might lose their 

tolerogenic environment in relation to a variety of intra- and extra-hepatic stimuli. In these 

circumstances antigen presentation by activated HDCs, liver macrophages and other non-

professional APCs within an inflammatory milieu can trigger lymphocyte stimulation. However, a 

better characterization of these mechanisms is needed to define the factors that influence the 

inter-individual variability in adaptive immune reactions among NAFLD/NASH patients.  
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Aim of Project 

 

So far, several studies have investigated the involvement of adaptive immune mechanisms in the 

pathogenesis of NASH/NAFLD in the attempt of characterizing their contribution in mechanism 

supporting the hepatic inflammation and in driving the disease evolution to fibrosis/cirrhosis 

and/or HCC. Nonetheless, several issues remain poorly understood as regard to the specific role 

of different lymphocyte subsets and the characterization of the network of cellular interactions 

that allow the stimulation of specific immune responses.  

In my doctoral project, I have investigated some of these aspects focalizing my work on: 

a) the role of B-lymphocytes in the pathogenesis of NASH; 

b) the characterization of dendritic cells associating to NASH evolution;   

c) the role of the lymphocyte co-stimulatory signals involving ICOS/ICOSL dyad in sustaining 

hepatic inflammation in NASH. 

 

These issues were addressed using experimental models of NASH based on mice feeding with 

methionine/choline deficient (MCD) and choline-deficient and amino acid defined (CDAA) diets 

which allows to reproduce liver lymphocyte responses associated to human NAFLD/NASH and as 

well as NASH-associated fibrosis (Pitzalis, et al.2014) and in using liver section from biopsies 

obtained from NAFLD/NASH patients at various stage of the disease evolution.  
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Materials & Methods 

Human specimen analysis. Liver biopsies and sera from 41 consecutive patients with 

NAFLD/NASH, referring to the Liver Unit of the University Hospital of Novara from 2011 to 2016, 

were analyzed. All samples were collected at the time of first diagnosis. Patients were 

characterized by anthropometric, clinical and biochemical data and liver biopsies were evaluated 

for the severity of steatohepatitis and fibrosis according to Kleiner et al. [24]. All subjects gave 

informed consent to the analysis and the study was planned according to the guidelines of the 

local ethical committee. The clinical and biochemical features of patients are reported in Table 

1.   

Table 1. 

Clinical and biochemical characterization of NAFLD patients investigated. 
 

 Patients 

Patients (Male/Female) 41 (17/24) 

Age (Years) 51 (47-55) 

BMI 30 (28-32) 

HOMA-IR (n.v. <2.5) 5.8 (1.04-14.6) 

AST (U/L n.v. 5–40) 43 (36-51) 

ALT (U/L n.v. 5–40) 64 (51-77) 

-GT  (U/L n.v. 5–45) 117 (58-177) 

Albumin (g/L n.v. 36-49) 39.9 (28.2-44-5) 

Total -globulins (g/L n.v. 9-14) 10.4 (6.7-14.1) 

Fasting Glucose (mg/dL n.v. <100) 123 (112-134) 

Cholesterol (mg/dL  n.v. <200)  175 (160-189) 

Triglycerides (mg/dL  n.v. <160) 131 (113-148) 

Steatosis score 2 (1-3) 

Inflammation score 1 (0-2) 

Balloning score 1 (0-3) 

Fibrosis score 2 (0-4) 

NAS score 4 (1-7) 

 

The values are expressed as median and inter-quartile range (IQR). For histological scores the range of variability is 
included.    
BMI, body mass index; AST, alanine aminotransferase; ALT, aspartate aminotransferase; γ-GT, gamma-glutamyl 
transpeptidase; HOMA-IR, homeostatic model assessment-insulin resistance; ISI, insulin sensitivity index; n.v., 
normal values; NAS, NAFLD activity score. 
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Serum samples from NAFLD/NASH patients together with those of 32 age/gender matched 

healthy subjects recruited among blood donors were investigated for the presence of IgG 

reactivity toward OSE by an in house enzyme-linked immunosorbent assay (ELISA) using as 

antigen malonyl-dialdehyde adducts with human serum albumin (MDA-HSA). Circulating 

interferon-γ (IFN-γ) was also measured in 34 sera of these patients by commercial kits supplied 

by Peprotech (Milano, Italy). 

Rodent model of NASH. Transgenic TACI-Ig mice on C57BL/6 background were a kind gift of Dr. 

A. Villunger (Division of Developmental Immunology, Biocenter, Medical University Innsbruck, 

Innsbruck, Austria). These mice overexpress a soluble form of the BAFF/APRIL receptor 

Transmembrane Activator and Cyclophilin Ligand Interactor (TACI; TNFRSF13B) fused with the Fc 

portion of human IgG1 and are characterized by an impaired B-cell maturation in the periphery, 

leading to a severe depletion of marginal zone and follicular B2-lymphocytes, but not of 

peritoneal B1-cells (Kleiner et al. 2005).   ICOSL deficient mice (ICOSL-/-) on C57BL/6 background 

(B6.129P2-Icosl<tm1Mak>/J, stock number 004657) were obtained from Jackson Laboratories. 

Eight-week-old male wild type and TACI-Ig mice were fed ad libitum with either 

methionine/choline deficient (MCD) diet for 1 or 4 weeks or with a choline deficient and amino 

acid defined (CDAA) diet for 12 or 24 weeks (Laboratorio Dottori Piccioni, Gessate, Italy). Control 

animals received the same diets supplemented by either choline/methionine or choline alone.  

In the experiments using ICOSL-/- mice eight-week-old male wild type and ICOSL-/- mice were fed 

ad libitum with either the MCD for 6 weeks or a high fat/high carbohydrate diet enriched with 

1,25% of cholesterol (Western Diet) for 24 weeks (Laboratorio Dottori Piccioni, Gessate, Italy). 

Control animals received the same diets supplemented by either choline/methionine or normal 

chow pellets. 

In some experiments, mice receiving the MCD diet were injected intra-peritoneally with the BAFF 

neutralizing monoclonal mouse IgG1 Sandy-2 (Kowalczyk-Quintas et. 2016) (2 µg/g body weight; 

Adipogen, Liestal, Switzerland) at the start and after two weeks of MCD diet. Control animals 

received isotype-matched IgG. The animals were housed at 22°C with alternating 12 hours 

light/dark cycles. The mice were not fasted before sample collections. In all the experiments 

euthanasia was performed under isofluorane anesthesia between 9 a.m. and 12 a.m. The 
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experimental procedures complied with the EU guidelines for animal experimentation and were 

approved by the Italian Ministry of Health. 

Mice model of acute liver injury. C57BL/6 wild type and CX3CR1-deficient homozygous mice 

having the green fluorescent protein (gfp) inserted in the CX3CR1 gene (CX3CR1gfp/gfp) were 

housed in pathogen-free conditions and fed ad libitum with standard chow diet and water.  Liver 

injury was induced by injecting intra-peritoneally eight-week-old male mice with CCl4 (0.6 ml/kg 

in olive oil). Control animals received an injection with olive oil alone.  The CX3CR1 antagonist 

CX3-AT (European Patent EP2913060A1) (Mionnet et al. 2010; Staumont-Sallé et al 2014) was 

kindly supplied by Dr V. Julia (University of Nice, France).  In some experiments wild type mice 

received an intraperitoneal injection of CX3-AT solution in sterile saline (150 µg/mice) 24 hours 

after the administration of CCl4. Control animals received a similar amount of saline alone. All 

animals were euthanized 36 hours after CCl4 administration.  

Biochemical analysis. Plasma alanine aminotransferase (ALT) and liver triglycerides were 

determined by spectrometric kits supplied by Gesan Production S.r.l. (Campobello di Mazara, 

Italy) and Sigma Diagnostics (Milan, Italy), respectively. Circulating TNF-α was evaluated by 

commercial ELISA kits supplied by Peprotech (Milano, Italy).  Anti-OSE IgG reactivity in mice sera 

was evaluated as previously reported (Sutti et al. 2014). 

Histology and immunohistochemistry. Serial sections from paraffin-embedded human liver 

biopsies were immune-stained with anti-CD20 and anti-CD3 antibodies (Roche/Ventana, Tucson, 

AZ, USA) using Bond Polymer Refined Detection kit on the Bond Max auto-stainer (Leika 

Biosystems, Wetzlar, Germany). The presence of B-/T-cell aggregates was evaluated semi-

quantitatively according to the size and number. Hematoxylin/eosin stained mouse liver sections 

were scored blindly for steatosis, lobular inflammation and fibrosis (Sutti et al. 2014). Collagen 

deposition was detected by Picro-Sirius Red staining. Liver activated hepatic stellate cells were 

evidenced in formalin-fixed sections using an α-smooth muscle actin (α-SMA) polyclonal antibody 

(Labvision, Bio-Optica, Milan, Italy) in combination with a horseradish peroxidase polymer kit 

(Biocare Medical, Concord, CA, USA). The extension of Sirius Red and α-SMA-positive areas was 

quantified by histo-morphometric analysis using the ImageJ software (https: 

//imagej.nih.gov/ij/). 
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Intrahepatic mononucleated cell isolation and flow cytometry analysis. Liver mononucleated cells 

were isolated from the livers of naive and MCD-fed mice and purified on a density gradient 

(Lympholyte®-M, Cedarlane Laboratoires Ltd. Burlington, Canada) as described by Crispe (1996). 

Cells were washed with Hank’s medium and incubated 30 min with de-complemented mouse 

serum to block nonspecific immunoglobulin binding. The cells were then stained with 

fluorochrome-conjugated antibodies for CD45, CD3, CD4, CD8, B220, IgM, CD69, CD23, CD43, 

MHCII CD11c, CD80 (eBiosciences, San Diego CA, USA), CD138 (BD Biosciences, Franklin Lakes, 

NJ, USA) and analyzed with a FACScalibur (Becton Dikinson, Franklin Lakes, NJ, USA) or AttuneTM 

NxT (Thermo Fischer Scientific, Waltham, MS, USA) flow cytometers. Intracellular staining for 

TNF-α, IFN-γ and IL-10 was performed using specific fluorochrome-conjugated antibodies 

(eBiosciences, San Diego CA, USA) after cell permeabilization with saponin (Permeabilization Kit, 

eBiosciences, San Diego CA, USA). Single cells were pre-gated on CD45+. 

Cell sorting of liver leukocytes. Livers were digested by type IV collagenase (Worthington, USA) 

and intrahepatic leukocytes were isolated by multiple differential centrifugation steps according 

to Heymann et al. (2012). The cell preparations were then subjected to red cell lysis by Pharmlyse 

(BD Bioscience) and stained using combinations of the following monoclonal antibodies: CD25, I-

Ab, Ly6G (BD Bioscience), CD3, CD4, CD19, CD11b, CD11c, CD45, CD80, CD40, CD88, CD26, CD35, 

CD105, F4-80, NK1.1, MHCII (eBioscience), CD8, CX3CR1, Ly6C, Ly6G (Biolegend). After surface 

staining, cells were fixed using 2% formalin and permeabilized using 0.5% saponin (Sigma). Total 

cell numbers were determined by adding fixed numbers of Calibrite APC beads (BD Bioscience) 

before measurement as internal reference (Heymann et al. 2012). Sample cell sorting FACS Aria-

II cytometer (BD Bioscience). Sorted cells (20,000) were analysed using the Nanostring 

Immunology gene array kit covering 561 genes (NanoString Technologies, Inc), according to the 

manufacturer instructions. Differential gene expression was calculated using the R package 

DESeq2. A log2 fold change threshold greater than 2 and an adjusted P value of <0.01 was used 

for comparison. 
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mRNA extraction and Real time PCR. Liver RNA was retro-transcribed with the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems Italia, Monza, Italy) in a Techne TC-312 

thermocycler (TecneInc, Burlington NJ, USA). Real Time PCR was performed in a CFX96™ Real-

time PCR System (Bio-Rad, Hercules, California, USA) using TaqMan Gene Expression Master Mix 

and TaqMan Gene Expression probes for mouse TNF-α, IL-12p40, CCL2, CXCL10, IFN-γ, CD154, T-

bet, BAFF, TREM1, α1-procollagen, TGF-β1, α-SMA and beta-actin (Applied Biosystems Italia, 

Monza, Italy). All samples were run in duplicate and the relative gene expression was calculated 

as 2-ΔCt over that of β-actin gene. The values were expressed as fold increase over control 

samples.  

In vitro moDC differentiation from bone marrow myeloid cells.  Myeloid cells were isolated from 

the tibia and femur bone marrow of CX3CR1gfp/+ and CX3CR1gfp/gfp mice according to [27]. Red 

blood cells were removed with BD FACSTM lysing solution (BD Bioscience) and the myeloid cells 

were cultured for seven days in RPMI-1640 medium supplemented with 10% fetal bovine serum 

(FBS) with or without the addition of granulocyte-macrophage colony stimulating factor (GM-

CSF; 20 ng/mL) and IL-4 (10 ng/mL).  In some experiments, myeloid cells isolated from wild-type 

mice were cultured for seven days in 10% FBS RPMI-1640 medium in the presence of fractalkine 

(40 ng/mL). 

Data analysis and statistical calculations. Statistical analyses were performed by SPSS statistical 

software (SPSS Inc. Chicago IL, USA) using one-way ANOVA test with Tukey’s correction for 

multiple comparisons or Kruskal-Wallis test for non-parametric values. Significance was taken at 

the 5% level. Normality distribution was preliminarily assessed by the Kolmogorov-Smirnov 

algorithm. 
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Results  

Section 1 

Characterization of the role of B-lymphocytes in NASH progression. 

Data published on Free Radic Biol Med. 2018;124:249-259. doi: 

10.1016/j.freeradbiomed.2018.06.015. 

 

 

Foreword 

An emerging body of evidence indicates that, besides the role of innate immune responses, NASH 

is also characterized by the involvement of adaptive immunity. Indeed, lobular and portal 

lymphocyte infiltration is a histological feature of human NASH (Wolf, et al.2014), while 

experimental NASH models show that CD4+ and CD8+ T-lymphocytes, B-lymphocytes and natural 

killer T-cells (NKT) are recruited within the liver in parallel with the worsening of steatohepatitis 

(Sutti, et al.2014; Giles, et al. 2016). T-cell subsets in NASH livers express activation markers 

(CD44, CD69) and show an enhanced production of interferon-γ (IFN-γ), interleukin (IL)-17A, IL-

17F and LIGHT, indicating that lymphocytes infiltrating the liver are functionally activated (Wolf 

et al.2014; Sutti, et al.2014; Giles, et al. 2016). These findings are supported by clinical 

observations showing that human NASH is characterized by an increase in circulating IFN-γ-

producing CD4+ T-cells as well as enhanced IFN-γ production within the liver (Inzaugarat, et al. 

2011; Ferreyra Solari, et al. 2012) in relation to CD8+ T- and NKT-cell infiltration (Wolf, et al.2014; 

Tajiri, et al. 2009). Conversely, the severity of experimental NASH is greatly lowered in Rag1-/- 

mice, which are unable to mount adaptive immune responses (Wolf, et al.2014).  Nonetheless, 

in either human or experimental animals NASH is also characterized by humoral immune 

responses involving the production of IgG against epitopes derived from oxidative stress (OSE) 

(Sutti, et al. 2014; Baumgardner, et al.2008). Elevated titers of the same antibodies are 

detectable NAFLD/NASH patients in whom are associated with increased hepatic inflammation 
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(Albano, et al. 2005; Nobili, et al. 2010) and are an independent predictor of advanced fibrosis 

(Albano, et al. 2005). These data suggest the possibility that beside a role of T-cell in supporting 

steatohepatitis, B cells and humoral immunity might also play a role in the pathogenesis of NASH 

associated immune responses.   Such a hypothesis is supported by the observation that B-

lymphocytes infiltrating the adipose tissue as important players in causing insulin resistance and 

systemic inflammation in obesity (Sell, et al. 2012; McLaughlin, et al.2017).  In more detail, B-cells 

isolated from visceral fat of obese mice show an increased production of pro-inflammatory 

cytokines, while their accumulation in the adipose tissue associates with T-cell and macrophage 

activation (DeFuria, et al. 2013; Winner, et al.2011, Zhang, et al. 2016). Moreover, fat 

inflammation and insulin resistance are lowered in mice lacking B-cells or following B-cell 

depletion using anti-CD20 antibodies (Zhang, et al. 2016).   

 

From this background this work aims to investigate the role of B-lymphocytes in the pathogenesis 

of NASH.   
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Results 

Changes in liver B-lymphocytes during the evolution of experimental NASH 

Based on the notion that obesity promotes B-cell activation that, on its turn, influences insulin 

resistance and systemic inflammation (Sell, et al. 2012; McLaughlin, et al.2017), for studying the 

role of B cells in NASH talked the problem by using an obesity-independent models of 

steatohepatitis based on the administration of a methionine/choline deficient (MCD) (Mackay, 

et al. 2009). Such a model was also chosen because, according to previous studies, it reproduces 

liver lymphocyte responses associated to human NAFLD/NASH (Wolf et al.2014; Sutti, et al. 2014) 

and is characterized by an early development of liver inflammation which is already appreciable 

after one week of treatment and further progresses in the following weeks (Fig. 1).  

Flow cytometry analysis of liver myeloid cells revealed that the onset of steatohepatitis in mice 

receiving the MCD diet for one week was associated with a significant decline in the number of 

IgM+/B220+ hepatic B-lymphocytes (Fig. 2A). Such an effect specifically involved the fraction of 

B220+/CD43-/CD23+ B2-lymphocytes, while the pool of B220+/CD43+/CD23- B1-cells was 

unmodified (Fig. 2B). Liver B-cell lowering was accompanied by a concomitant up-regulation in 

the expression of the early lymphocyte activation marker CD69 among B220+ cells (Fig. 2C). 

In the same animals, we also detected the expansion of B220+/CD138+ plasma blasts and B220-

/CD138+ plasma cells (Fig. 3A) and an increase in the titers of circulating anti-OSE IgG (Fig. 3C), 

without changes in IgM reactivity against the same antigens (Fig. 3D), indicating B2-cell 

maturation toward IgG-producing plasma cells.  B-cell responses in NASH were associated to the 

up-regulation in the liver expression of B-cell Activating Factor (BAFF; TNFSF13b), one of the 

cytokines regulating B-cell survival and maturation (Mackay, et al. 2009) (Fig. 3D). No changes 

were instead observed for the other B-cell regulating cytokine A Proliferation Inducing Ligand 

(APRIL; TNFSF13) (Fig. 3E). 
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Figure 1: Time dependent variations of hepatic injury and inflammation during the evolution 
of NASH induced by mice feeding with a methionine/choline deficient (MCD) diet.  
  
Wild type C57BL/6 mice received MCD or control diets for up to 4 weeks. (A) Hematoxylin/eosin staining of liver 
sections (magnification 200x). (B-C) Alanine aminotransferase (ALT) release and hepatic triglyceride content. 
(Panel D) Immuno-enzymatic determination of circulating TNF-α. (E-G) The hepatic mRNA levels of pro-
inflammatory mediators TNF-α, IL-1β and CCL2. RT-PCR values are expressed 2 as fold increase over control 
values after normalization to the β-actin gene. The values refer to 8-9 animals per group and the boxes include 
the values within 25th and 75th percentile, while the horizontal bars represent the medians. The extremities of 
the vertical bars (10th-90th percentile) comprise 80% percent of the values. 
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Figure 2: Changes in liver B-cells during the evolution of experimental NASH. 

Wild type mice were fed with the MCD diet for either 1 or 4 weeks. The intrahepatic distribution of B-lymphocytes 

was evaluated by flow cytometry. (A) Changes in the liver distribution of total IgM+/B220+ B-lymphocytes at different 

stages of NASH evolution. (B) Changes in the liver distribution of B220+/CD43+/CD23- B1- and B220+/CD43-/CD23+ 

B2-lymphocytes at different stages of NASH evolution.  (C) Increase of activated intrahepatic B-cells expressing CD69 

at the onset of steatohepatitis.  The values are means ± SD of cell preparation from 3 animals per group.   
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Figure 3:  B cell responses associated with the evolution of NASH.  

Wild type mice were fed with the MCD diet for either 1 or 4 weeks. The intrahepatic distribution of plasma 
blasts and plasma cells were evaluated by flow cytometry in parallel with the production of IgG targeting 
OSE and the liver expression of BAFF. (A) Changes in the liver distribution of total IgM+/B220+ B-
lymphocytes at different stages of NASH evolution. (B) The changes in anti-OSE antibody titres, were 
measured by IgG and IgM targeting malonyl-dialdehyde (MDA) adducts in the sera of mice with NASH. (D-
E) Real Time PCR analysis of hepatic BAFF and APRIL expression, as measured by RT-PCR analysis, during 
the evolution of steatohepatitis.   The values in are means ± SD of 8-10 animals per group and the boxes 
include the values within 25th and 75th percentile, while the horizontal bars represent the median. The 
extremities of the vertical bars (10th-90th percentile) include 80% of the values. 
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It is well known that B-lymphocytes can act as antigen presenting cells for CD4+ T-cells through 

the expression of class II Major Histocompatibility Complex (MHCII) and costimulatory molecules 

(Zhang, et al. 2016). Time-course experiments revealed that an early up-regulation of MHCII 

among CD138+ plasma blasts and plasma cells (Supplementary Fig. 4 A). Furthermore, B-cell 

activation preceded the liver recruitment/activation of both CD4+ and CD8+ T-lymphocytes as 

well as the up-regulation of liver mRNAs for the Th-1 activation markers IFN-γ, T-bet and CD40 

ligand (CD154) (Fig. 4B & C). 

 

 

Figure 4: The development of the antigen presentation capability of B cells precedes T cell 
responses in NASH. 

Wild type mice were fed MCD or control diets for either 1 or 4 weeks. B cell expression of class II Mayor 
Histocompatibility Complex (MHCII) by liver B-cells was evaluated by flow cytometry in parallel with the prevalence 
of CD3+ T-lymphocytes, the lymphocyte activation marker CD69 and the hepatic expression of Th-1 activation 
markers. (A) Changes in the expression of MHCII by liver IgM+/B220+ B-cells and CD138+ plasma blasts and plasma 
cells during NASH evolution.  The values are means ± SD of cell preparation from 3 animals per group.  (B) Changes 
in the liver distribution of CD4+ and CD8+ T-lymphocytes and their expression of CD69 during NASH evolution. The 
values are means ± SD of cells preparation from 3-4 animals per group.  (C) Hepatic mRNA levels of interferon-γ (IFN-
γ), T-bet, and CD40 ligand (DC154). RT-PCR values are expressed as fold increase over control values after 
normalization to the β-actin gene. The values refer to 5-6 animals per group and the boxes include the values within 
25th and 75th percentile, while the horizontal bars represent the medians. The extremities of the vertical bars (10th-
90th percentile) comprise 80% of the values. 
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B2-lymphocyte deficiency interferes with the onset of immune response in NASH 

To investigate the possible role of B2-lymphocytes in modulating NASH-associated T-cell 

responses, we took advantage of transgenic TACI-Ig mice that overexpress a soluble form of the 

BAFF/APRIL receptor TACI and are characterized by the selective depletion of B2-lymphocytes 

(Schneider, et al. 2001). In our hands, TACI-Ig mice showed a marked lowering of hepatic B-cells 

specifically involving the B220+/CD43-/CD23+ B2-subset (Fig. 5A). Conversely, no significant 

changes were appreciable in the fraction of B220+/CD43+/CD23- B1-cells (Fig. 5B).  

 

 
 
 
Figure 5:  Characterization of hepatic B-cells and dendritic cells in TACI-Ig mice. 
 
Untreated wild-type (WT) and TACI-Ig mice were investigated by flow cytometry. (A) Liver distribution of total 
IgM+/B220+ B-lymphocytes. (B-C) and the relative prevalence of B220+/CD43+ B1- and B220+/CD23+ B2-subsets.  
(D) Evaluation of the fraction of CD11c+/MHCII+ hepatic dendritic cells and their expression of the activation 
marker CD80 in WT and TACI-Fc mice receiving the MCD diet for 4 weeks mice.  
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In subsequent experiments NASH was induced in TACI-Ig mice by feeding the MCD diet for 4 

weeks.   We observed that liver plasma cell maturation, as well as the production of anti-OSE IgG, 

were impaired in TACI-Ig mice as compared to wild-type littermates (Fig. 6A-B). In line with a role 

of B2-cells in promoting T-cell responses, the liver recruitment of CD4+ and CD8+ T-lymphocytes, 

as well as their CD69 expression, were significantly reduced in TACI-Ig mice receiving the MCD 

diet (Fig. 6C-D), in spite the expansion and activation of hepatic dendritic cells were not affected 

(Fig. 5C). Moreover, the hepatic expression of Th-1 activation markers IFN-γ, CD154 and T-bet 

was also decreased in TACI-Ig mice (Fig. 6E). These effects were specific for liver immune 

responses associated with NASH, as no difference in the development of anti-OSE immunity were 

evident between wild-type and TACI-Ig mice following immunization with bovine serum albumin 

complexed with malonyl-dialdehyde (Fig. 7).  

Effects of BAFF neutralization ameliorates the evolution of NASH 

The evaluation of the severity of NASH in TACI-Ig mice showed that the lack of B2-cells 

appreciably ameliorated lobular inflammation score (2.3±0.5 vs 1.6±0.5; p<0.05) and the 

prevalence of necrotic foci (7.3±3.31 vs 4.0±1.3; p<0.05) without affecting the extension of 

steatosis (2.8±0.4 vs 2.5±0.5; p=0.39). These observations suggested the possibility that B-cell 

activation in the early phase of NASH might be critical for the further evolution of the disease.  In 

line with that previous studies have shown that circulating levels of BAFF are higher in patients 

with NASH than in those with simple steatosis, and correlate with the severity of steatohepatitis 

and fibrosis (Mackay, et al. 2009).  Thus, in further experiments we investigated the effects of 

interfering with BAFF on the evolution of steatohepatitis taking advantage of a BAFF neutralizing 

monoclonal antibody Sandy-2 (Kowalczyk-Quintas, et al. 2016). Preliminary tests demonstrated 

that the treatment for one week with Sandy-2 (2 µg/g body weight) reduced by about 40% 

circulating and liver B-cells, specifically affecting the B2-subset (Fig. 8A-B). Accordingly, the 

administration of Sandy-2 prevented liver plasma cell maturation in mice fed with the MCD diet 

for 1 week (Fig. 8C).    Form these data we went on testing the effect of Sandy-2 on the severity 

to NASH by injecting  Sandy-2 mAb (2 µg/g body weight) or isotype-matched IgG at the start of 

MCD diet administration and then after 2 weeks.  In the animals receiving the MCD diet for 4 
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weeks, BAFF neutralization ameliorated histological scores for steatosis (2.8±0.4 vs 1.7±0.8; 

p<0.05) and lobular inflammation (2.7±0.5 vs 1.8±0.4; p<0.05) as well as ALT release and liver 

triglycerides (Fig. 9 A-C). Differently from what observed in TACI-Ig mice, Sandy-2 treatment did 

not appreciably affect the prevalence of liver infiltrating CD4+ and CD8+ T-cells (not shown). 

Nonetheless, Th-1 activation of liver CD4+ T-lymphocytes, as evaluated by IFN-γ production, was 

significantly lowered by Sandy-2 treatment (Fig. 9D). BAFF blockage also decreased the hepatic 

expression of pro-inflammatory mediators such as TNF-α, IL-12 and CXCL10 (Fig. 9E). 
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Figure 6: B2-lymphocyte deficiency interferes with the onset of immune responses in NASH. 

B2-cell deficient TACI-Ig and wild type mice were fed with control or MCD diet for 4 weeks. The intrahepatic 
distribution of T-lymphocytes and plasma cells was evaluated by flow cytometry in parallel with the production of 
IgG targeting OSE and the liver expression of Th-1 activation markers. (A) Effect of B2-cell depletion on the liver 
expansion of B220-/CD138+ plasma cells and (B) the increase of circulating anti-OSE antibody titres, as measured by 
IgG targeting malonyl-dialdehyde (MDA) adducts. (C) The liver distribution of CD4+ and CD8+ T-lymphocytes and (D) 
their expression of the activation marker CD69 in TACI-Ig and wild-type mice with NASH. The values in panels A-C 
are means ± SD of three different experiments with 3-4 animals for each group. (E) Down-modulation in the 
expression of Th-1 activation markers interferon-γ (IFN-γ), T-bet and CD40 ligand (CD154) in the liver of TACI-Ig mice. 
The values of RT-PCR analysis are expressed as fold increase over their relative controls and are means ± SD of 8-10 
animals per group. The boxes in panels B and E include the values within 25th and 75th percentile, while the horizontal 
bars represent the median. The extremities of the vertical bars (10th-90th percentile) include 80% of the values. 
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Figure 7:  B2-cell deficiency in TACI-Ig mice does not affect the development of anti-OSE 
immunity. 

Wild-type and TACI-Ig mice were immunized with bovine serum albumin adducted with malonyldialdehyde (MDA) 
and incomplete Freund’s adjuvant as previously reported [10]. (A) Lymphocytes were isolated from spleens of naïve 
and immunized animals and the production of IFN-γ and IL-2 by CD4+ T-lymphocytes was evaluated by flow 
cytometry. One experiment representative of two. (B) Circulating IgG targeting MDA adducts were measured by 
ELISA assay in the sera of the same animals. The bars represent medians ± S.D.  
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Figure 8: Effects of BAFF-neutralizing monoclonal antibody Sandy-2 on circulating and hepatic B 
cells. 

Wild type mice received one injection of Sandy-2 mAb or isotype-matched IgG and B-cell distribution was evaluated 
by flow cytometry one week after the treatment.  (A) Total circulating and liver IgM+/B220+ B-lymphocytes. (B) The 
relative prevalence of liver B220+/CD43+ B1- and B220+/CD23+ B2-subsets.  (C) Effect of Sandy-2 administration on 
plasma cell expansions in mice fed with either control or MCD diets for one week.  The values refer to 4-5 animals 
per group.  
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Figure 9: Mice treatment with the BAFF-neutralizing antibody Sandy-2 ameliorates 
steatohepatitis. 

Wild type mice were injected with Sandy-2 mAb (2 µg/g body weight) or isotype-matched IgG at the start and after 
2 weeks of MCD diet. (A) Haematoxylin/eosin staining of liver sections (Magnification 200x). (B) Alanine 
aminotransferase (ALT) release and (C) liver triglyceride content. (D) Flow cytometry evaluation of interferon-γ (IFN-
γ) production by CD3+/CD4+ helper T-lymphocytes. The values are means ±SD of three different experiments with 4 
animals per group. The hepatic mRNA levels of (E) pro-inflammatory mediators TNF-α, IL-12p40 and CXCL10. RT-PCR 
values are expressed as fold increase over control values after normalization to the β-actin gene. The values in the 
panels B, C and E refer to 6-7 animals per group and the boxes include the values within 25th and 75th percentile, 
while the horizontal bars represent the median. The extremities of the vertical bars (10th-90th percentile) include 
80% of the values. 
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Role of B-lymphocyte in NASH progression to fibrosis 

Besides the improvement of hepatic inflammation, MCD-fed mice receiving Sandy-2 showed a 

descending trend in the expression of pro-fibrotic markers α1-procollagen and α-smooth muscle 

actin (α-SMA), although the differences did not reach statistical significance (not shown).  Thus, 

in additional experiments we investigated whether lack of B2 cell might also improve NASH 

evolution to fibrosis.   Since keeping mice under the MCD diet to the time required for the 

development of hepatic fibrosis leads to severe weight loss, we switched to a different 

experimental model of NASH based on mice feeding with a choline-deficient and amino acid 

defined (CDAA) diet that allows development of NASH associated fibrosis without causing severe 

malnutrition (Winer, et al. 2011). For the experiments wild-type and TACI-Ig mice were fed with 

CDAA diet.   Preliminary experiments using WT mice receiving the CDAA diet for 12 weeks showed 

that the development of steatohepatitis was associated with the lowering of liver B-cell and an 

expansion of the plasma cell as observe with MCD-induced NASH (Fig. 10).  For evaluating 

whether the lack of B2-lymphocytes would affect the fibrogenic evolution of NASH in subsequent 

experiments WT and TACI-Ig mice were fed the CDAA for 24 weeks. We observed that CDAA-fed 

TACI-Ig mice had hepatic expression of α1-procollagen, α-SMA and Transforming Growth Factor-

β1 (TGF-β1) significantly lower than wild-type littermates (Fig. 11A). Consistently, Sirius Red 

staining for collagen and the prevalence of α-SMA-positive activated hepatic stellate cells were 

also significantly reduced in TACI-Ig mice (Fig. 11 B-D). The improvement of fibrosis observed in 

CDAA-fed TACI-Ig mice was accompanied by an improvement in the severity of steatohepatitis 

as indicated by the lowering of transaminases release and in the markers of lobular inflammation 

(Fig. 12), supporting the importance of B-cells in the mechanisms leading to steatohepatitis 

progression. 
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Figure 10:  B-cell responses in experimental NASH induced by choline-deficient amino acid 

defined (CDAA) diet. 

Wild type mice were fed with CDAA or control diets for 12 weeks. The intrahepatic distribution of B-
lymphocytes, plasma blasts and plasma cells were evaluated by flow cytometry along with the 
development of liver injury and inflammation. (A) Liver distribution of total IgM+/B220+ B-lymphocytes, 
B220+/CD23+ B2-cells and B220-/CD138+ plasma cells. (B-C) Alanine aminotransferase (ALT) release and 
hepatic triglyceride content as determined by enzymatic methods. (D-F) Hepatic mRNA levels of pro-
inflammatory mediator TNF-α, IL-12p40 and CCL2. RT-PCR values are expressed as fold increase over 
control values after normalization to the β-actin gene. The values refer to 6-7 animals per group and 
the boxes include the values within 25th and 75th percentile, while the horizontal bars represent the 
medians. The extremities of the vertical bars (10th-90th percentile) comprise 80% of the values. 
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Figure 11: B2-lymphocyte deficiency reduces NASH evolution to fibrosis. 

TACI-Ig and wild type (WT) mice were fed with either control or CDAA diets for 24 weeks. (A) Hepatic 

expression of fibrogenesis markers α1-procollagen, α-smooth muscle actin (α-SMA) and Transforming 

Growth Factor-β1 (TGF-β1). RT-PCR values are expressed as fold increase over control values after 

normalization to the β-actin gene. (B) Collagen deposition as detected by Sirius Red staining in 

representative liver sections from 24-week CDAA diet in WT and TACI-Ig mice (Magnification 200x). (C) 

Immuno-histochemical staining for α-SMA-positive hepatic stellate cells (HSCs) liver sections from 24-

week CDAA diet in WT and TACI-Ig mice (Magnification 200x). (D) Histo-morphometric analysis of Sirius 

Red and α-SMA positive areas. The values refer to 5-7 animals per group and the boxes include the values 

within 25th and 75th percentile, while the horizontal bars represent the median. The extremities of the 

vertical bars (10th-90th percentile) include 80% of the values. 



47 
 

 

Figure 12:  B2-cell deficiency in TACI-Ig mice ameliorates experimental NASH induced by choline-
deficient amino acid defined (CDAA) diet. 

Wild-type (WT) and TACI-Ig mice were fed with CDAA or control diets for 24 weeks. (A) Hematoxylin/eosin 
staining of liver sections (magnification 200x). (B) Alanine aminotransferase (ALT) release. (C-E) Hepatic 
mRNA levels of TNF-α, IL-12p40 and CCL2. RT-PCR values are expressed as fold increase over control values 
after normalization to the β-actin gene. The values refer to 6-7 animals per group and the boxes include 
the values within 25th and 75th percentile, while the horizontal bars represent the medians. The 
extremities of the vertical bars (10th-90th percentile) comprise 80% of the values. 

 

B- and T-lymphocyte responses in human NASH. 

From the data obtained with the animal models, we sought to evaluate the role of liver B-cells 

and humoral immunity in human NASH. We previously reported that NAFLD/NASH patients have 

humoral immunity against epitopes generated as a result of oxidative stress (oxidative stress 

derived epitopes; OSE) (Nobili, et al. 2010; Sell, et al. 2012). These findings were confirmed in the 

present study by measuring circulating IgG targeting MDA-derived adducts in a new cohort of 41 

patients (17 male/24 female) with histological diagnosis of NAFLD/NASH. Among these patients, 

10 (24%) had steatosis only, 7 (17%) steatosis with mild lobular inflammation, while the 

remaining 24 (59%) had NASH with variable degrees of fibrosis. As shown in Figure 13A, 18 (43%) 
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of NAFLD/NASH patients had titers of anti-OSE IgG above the control threshold. Furthermore, in 

agreement with previous observations (Albano, et al. 2005), the prevalence of advanced fibrosis 

or cirrhosis (staging ≥2) was higher among the subjects with elevated anti-OSE IgG as compared 

to those with anti-OSE reactivity within the control range (OR=3.25; 95% CI 1.03-15; p=0.05).    

The involvement of immune response in these patients was supported by the measurement of 

serum interferon-γ (IFN-γ) which show values significantly higher that healthy subjects (Fig. 13B).  

Interestingly, among NAFLD/NASH patients those showing high anti-OSE IgG reactivity also 

displayed higher levels of circulating IFN-γ (Fig. 13C) and serum IFN-γ positively correlated with 

the severity of fibrosis (Spearman r=0.59; 95% CI 0.07-0.86; p=0.03). 

Immunostaining of serial sections from liver biopsies of the same patients using, respectively, the 

B-cell marker CD20 and the T-cell marker CD3 showed that in 26 (63%) liver specimens CD20+ B-

cells were evident within mononucleated cell aggregates rich of CD3+ T-lymphocytes (Fig 13D). 

The prevalence of B/T-lymphocyte infiltration was independent from age, BMI, HOMA-IR, 

transaminase release and the degree of steatosis. However, NAFLD/NASH patients with 

marked/high B-/T-cell infiltration had elevated anti-OSE IgG titers (Fig. 13E) as well as higher 

scores of lobular inflammation and fibrosis than the subjects with low/mild infiltration (Fig. 13F-

G). The number and size of lymphocyte aggregates also positively correlated with circulating IFN-

γ levels (Spearman r=0.45; 95% CI 0.005-0.048; p=0.02), lobular inflammation score (Spearman 

r=0.45; 95% CI 0.17-0.67; p=0.003 and r=0.39; 95% CI 0.10-0.62; p=0.01) and fibrosis staging 

(Spearman r=0.44; 95% CI 0.15-0.66; p=0.004 and r=0.41; 95% CI 0.11-0.63; p=0.008), further 

supporting a functional interplay between humoral and cellular immunity in the processes 

leading to human NASH progression. 
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Figure 13:  B- and T-lymphocyte responses associates with the evolution of human NAFLD/NASH.  

(A-C) IgG reactivity toward OSE was measured in 41 NAFLD/NASH patients by in house ELISA assay using 

as antigen malonyl-dialdehyde (MDA) adducts with human serum albumin. For comparison 32 and 18 

age/gender matched healthy subjects were used as controls.  Circulating interferon-γ (IFN-γ) was 

measured in 34 of the patients and 18 age/gender matched healthy subjects. (D) Immuno-histochemical 

detection of cell aggregates containing CD20+ B-lymphocytes and CD3+ T-lymphocytes in serial sections 

from liver biopsies of two different representative NAFLD/NASH patients (Magnification 400x). (D-F) The 

prevalence of B/T-cells aggregates was associated with anti-OSE IgG titers as well as with the severity of 

lobular inflammation and hepatic fibrosis as estimated according to Kleiner et al. (24). Lymphocyte 

infiltration was evaluated semi-quantitatively taking into account the number and size of lymphocyte 

aggregates.  



50 
 

Discussion 

The possible implication of B cells in the pathogenesis of NASH has been suggested by Zhang and 

co-workers who have recently reported that feeding a high fat diet to mice leads to the liver 

recruitment of cells from B lineage (B220+) producing pro-inflammatory cytokines (Miyake, et al. 

2013). However, this work did not investigate the actual role of B-cells in the pathogenesis of 

steatohepatitis.  Our present data address this aspect by showing that B-cell activation is an early 

event in the evolution of experimental NASH and, even in the absence of obesity, contributes in 

supporting immune responses associated with the progression of steatohepatitis.  

 

B-cells represent about 50% of intrahepatic lymphocytes. However, so far conflicting results have 

been obtained in studies investigating their role in liver diseases (Novobrantseva, et al. 2005; 

Dhirapong, et al. 2011; Beland, et al.2015).  In mice, the pool of liver B-lymphocytes mainly 

consists of bone marrow-derived mature B220+/IgM+/CD23+/CD43- B2-cells resembling spleen 

follicular B-cells (Novobrantseva, et al. 2005). We have observed that B-cell changes in NASH 

specifically involve the B2 compartment and are characterized by their maturation to plasma 

cells. The circulating levels of IgG targeting OSE also increase at the onset of experimental NASH, 

suggesting that oxidative damage associated with the development of steatohepatitis leads to 

the generation of antigens recognized by B-cells that then undergo maturation to IgG-producing 

plasma cells.    The actual relevance of B-cell responses in the pathogenesis of NASH is supported 

by experiments using B2-cell-deficient TACI-Ig mice or by using the BAFF neutralizing antibody 

Sandy-2.  In these settings, B2-cell depletion or the interference with BAFF-mediated survival and 

maturation of B2- cells ameliorates both parenchymal damage and lobular inflammation and 

reduces the development of fibrosis. Interestingly B-cell maturation to plasma cells has been 

recently shown to foster HCC development in mice with steatohepatitis (Shalapour, et al. 2017).  

The beneficial effects connected with the interference with B-cell survival/maturation likely 

depend upon the reduction in the production of pro-inflammatory mediator by B-lymphocytes 

(Lund, et al. 2008) as well as the impairment of their antigen presenting capabilities (Di Lillo, et 

al.2011). On this latter respect, we have observed that B-cell activation in NASH associates with 

the up-regulation in MHCII molecules in plasma blasts and precedes the liver recruitment of CD4+ 
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and CD8+ T-lymphocytes, while interfering with B2-cells reduces Th-1 activation of CD4+ T cells 

without affecting the maturation of dendritic cell. Altogether these results suggest that B2-

lymphocytes can have a role in promoting OSE presentation to T-cells that, in turn, support NASH 

progression (Wolf, et al. 2014; Sutti, et al. 2014). Indeed, B-cells express a variety of receptors 

that can recognize OSE (Echeverri Tirado, et al. 2017), while Béland and co-workers have reported 

that B-cell depletion with anti-CD20 antibodies ameliorates experimental autoimmune hepatitis 

by preventing autoantigen presentation to CD4+ and CD8+ T-cells. It is noteworthy that the above 

mechanisms have several analogies with that observed in atherosclerosis, where B2-lymphocytes 

activation by OSE represents a key mechanism in plaque evolution. In fact, elevated circulating 

titers of anti-OSE IgG associate with an enhanced risk of atherosclerosis complications in humans 

(Tsiantoulas,et al. 2015), whereas the interference with B2-cells or BAFF-mediated signals 

reduces experimental atherosclerosis (Tsiantoulas,et al. 2015; Ketelhuth,et al. 2016). Although 

NAFLD/NASH is increasingly recognized as an independent risk factor for cardiovascular diseases 

[3], it is still unclear whether such association might be related to the common involvement of 

OSE-mediated immune responses.  

Although the interference with cytotoxic and inflammatory mechanisms might account for the 

improvement in liver fibrosis observed in B2-cell-deficient TACI-Ig mice with NASH, we cannot 

exclude that additional mechanisms might also be involved. In fact, previous studies indicate that 

B-cells can directly contribute to liver fibrogenesis (Novobrantseva, et al.2005; Thapa, et al.2015) 

through the production of pro-inflammatory mediators that stimulate hepatic stellate cell (HCS) 

and liver macrophage activation (Thapa, et al.2015).  On the other hand, Thapa and co-workers 

have reported that during chronic liver injury activated HSCs can support liver B-cell survival and 

maturation to plasma cells by secreting retinoic acid (Thapa, et al.2015), thus suggesting a 

complex interplay between B-cells and other non-parenchymal cells in the evolution of chronic 

liver diseases.  The capacity of B-cells to stimulate inflammation and fibrogenesis through 

multiple interactions with T-lymphocytes and HSCs accounts for our clinical observations, 

showing that the prevalence of B-/T-lymphocyte aggregates in liver biopsies of NAFLD/NASH 

patients correlates with more severe lobular inflammation and enhanced fibrosis. In these 

subjects, intra-hepatic B/T-cell aggregates are also associated with elevated titers of anti-OSE IgG 
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and high IFN-γ circulating levels, further supporting the clinical relevance of the interplay 

between B- and T-cells in the processes leading to NAFLD/NASH progression. 

 

Conclusions 

Altogether these data indicate that B2-lymphocyte activation in response to OSE is an early event 

in NASH evolution and contributes to sustain hepatic inflammation through the interaction with 

T-cells.  These observations, along with previous data indicating anti-OSE IgG as an independent 

risk factor for NASH progression to advanced fibrosis (Albano, et al. 2005), suggest that the 

measure of circulating anti-OSE IgG can identify a sub-set of NAFLD/NASH patients in whom 

adaptive immunity triggered by oxidative stress might have a relevant role in promoting 

steatohepatitis and the disease evolution toward fibrosis. 
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Section 2 

Role of the fractalkine receptor CX3CR1 in the development of monocyte-

derived dendritic cells during hepatic inflammation. 

Data published on Cells. 2019;8:1099. doi: 10.3390/cells8091099. 

 

Foreword 

A mentioned in the introduction, the actual role of HDCs in the pathogenesis of liver diseases, 

including NASH, is still a matter of debate due to contradictory data obtained in experiments in 

which HDCs were either artificially expanded or depleted (Bamboat, et al. 2010; Connolly, et al. 

2011; Zhang, et al.2013; Heier, et al.2017; Sutti, et al. 2017). These conflicting results can be 

explained by the low specificity of the methods used to modulate HDCs as well as by the fact that 

several factors including the intracellular lipid content and the interaction with other cells within 

the liver modify HDC functions (Ibrahim, et al. 2012; Sumpter,et al. 2012).   Current view indicates 

that HDC expansion following liver injury mainly involves the myeloid group (Henning, et al. 2013; 

Connolly, et al. 2011) and that myeloid HDCs are also actively engaged in liver immune responses 

to infections (Krueger, et al. 2015).  Nonetheless, a specific identification of the myeloid HDCs 

involved is uncertain, since CD141+ type-1 myeloid HDCs are lowered in patients with advanced 

chronic liver diseases (Kelly, et al. 2014).  Furthermore, in mice CD103+ type-1 myeloid HDCs 

display a hepatoprotective action and their depletion in Batf3-deficient mice favours the onset 

of steatohepatitis (Heier, et al. 2017).  A further element of complexity is given by the fact that 

in response to inflammatory stimuli monocytes can differentiate to a distinct dendritic cell subset 

called monocyte-derived dendritic cells (moDCs) or inflammatory dendritic cells. MoDCs have 

several surface markers and functional properties in common with type-2 myeloid dendritic cells, 

although they develop independently from the transcription factors driving myeloid dendritic cell 

differentiation (Segura, et al. 2013; Chow. et al, 2017; Hochheiser, et al. 2015).  Furthermore, 

beside acting as antigen presenting cells to lymphocytes, moDCs actively produce pro-

inflammatory mediators (Segura, et al. 2013; Chow. Et al, 2017; Hochheiser, et al. 2015). We have 
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previously reported that experimental NASH was associated with the expansion of a pool of cell 

co-expressing dendritic cell and macrophage markers along with the fractalkine receptor CX3CR1 

and producing TNF-α that contribute to sustain liver injury and hepatic inflammation. These 

observations suggest the possibility that moDCs might be involved in the expansion of HDC pool 

in NASH.   

In view of the importance of HDC in regulating liver immunotolerance as well as their capacity to 

act as APC in promoting liver immune responses, in this study we have further investigated the 

features of CX3CR1 expressing HDC in NASH and characterized the role of CX3CR1 in directing 

moDC differentiation within the liver. 
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Results 

Characterization of myeloid dendritic cells associated to NASH.  

Previous studies by Henning and co-workers (Henning et al. 2013) have shown that the expansion 

of myeloid HDCs is an early event in the evolution of NASH, being appreciable already after 1 

week of mice feeding with the MCD diet, and precedes liver lymphocyte recruitment.  Flow 

cytometry analysis of myeloid cells obtained from the liver of mice receiving the MCD diet for 1 

week revealed an expansion of CD11c+/MHCIIhigh/CD11b+ myeloid HDCs, that occurred in parallel 

with the increase in the hepatic transcripts for both fractalkine (CX3CL1) and his receptor CX3CR1 

(Fig. 14A).  According to previous observations, CD11b+ HDCs expanding in NASH were 

characterized by a high expression of CX3CR1 together with the monocyte/macrophage markers 

Ly6C (Fig. 14B), suggesting that these cells might be different from type 2 myeloid HDCs. Recently 

Nakano and co-workers [Nakano, et al. 2015] have reported that the presence of the complement 

C5a receptor (C5aR1 or CD88) is useful marker for discriminating lung infiltrating CD11b+/Ly6C+ 

monocyte-derived dendritic cells (moDCs) that are CD88+ from type-2 myeloid dendritic cells that 

are CD88-. In our hands, CD11b+/Ly6C+/CX3CR1+ HDCs detectable in the liver of mice with NASH 

were largely CD88+ (Fig 14B), supporting the identification of myeloid HDCs expanding at the 

onset of NASH as CD11b+/Ly6C+/CD88+/CX3CR1+ moDCs. 

 

Monocyte-derived dendritic cells in acute liver inflammation.  

From the observation that fractalkine (CX3CL1) was up-regulated during hepatic inflammation in 

parallel with the expansion of CX3CR1+ moDCs (Figs. 14), we addressed the possible role of 

CX3CR1-mediated signals in modulating monocyte differentiation to moDC within the liver.  

Unfortunately, it is not possible to use CX3CR1 deficient mice for studying the role of this receptor 

in the differentiation of NASH-associated liver moDCs since Schneider and co-workers have 

recently reported that this strain has an increased susceptibility to steatohepatitis in relation to 

increased PAMP absorbtion in the gut secondary to altered intestinal microbiota composition 

and impaired intestinal barrier (Schneider, et al. 2015).  
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Figure 14. Monocyte-derived dendritic cells (moDCs) account for HDC expansion associated with 

the onset of nonalcoholic steatohepatitis (NASH). 

Steatohepatitis was induced by feeding wild-type mice with a choline/methionine deficient (MCD) diet for 

one week.  (Panel A) RT-PCR analysis of the hepatic expression of fractalkine (CX3CL1) and his receptor 

CX3CR1. The values are expressed as means ±SD of 5-6 animals in each experimental group. (Panel B) Flow 

cytometry analysis of the changes in the hepatic distribution CD11c+/MHCIIhigh/CD11bhigh/CD88+/Ly6c+ 

moDCs were analysed by in mice either untreated (Cont) or receiving the MCD diet. The values are 

expressed as means ±SD of three different cell preparations.  
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Thus, for further experiments we relied on a model of acute liver injury that did not involve 

intestinal microbiota such as the use of the hepatotoxic agent carbon tetrachloride (CCl4) 

poisoning.   As shown in Figure 15, 36h after mice poisoning with CCl4 acute liver injury was 

associated with massive hepatic inflammatory reactions.  This injury-driven inflammation also 

involved an expansion of CD11c+/MHCIIhigh/CD103-/CD11b+ myeloid HDCs (Fig. 15D). Compared 

to healthy livers, these HDCs also underwent maturation as indicated by an increased expression 

of the co-stimulatory molecule CD80 (Fig. 15D). As observed in NASH, CD11b+ HDCs expanding in 

the liver of CCl4-treated mice were characterized by a high expression of CX3CR1 (Fig. 16A) and 

featured the monocyte/macrophage markers Ly6C, F4-80 and CCR2, the receptor of the 

monocyte-recruiting chemokines CCL2/CCL7 (Fig. 16A). Furthermore, CD11b+/Ly6C+/CX3CR1+ 

HDCs detectable in the liver of CCl4-treated mice were largely CD88+ while did not express 

dipeptidyl peptidase-4 (CD26), a marker of Type 1 and type 2 myeloid cells (Fig 16B) and were 

also negative for the C3b complement receptor (CD35) (Fig. 16B), which is instead common on 

hepatic macrophages.  In line with the pro-inflammatory features of moDCs (Segura, et al. 2013; 

Chow. Et al, 2017; Hochheiser, et al. 2015). Nanostring gene array comparing CX3CR1low/- and 

CX3CR1high/CD11b+ myeloid HDCs obtained from CCl4-treated mice revealed that among the 75 

genes up-regulated in the CX3CR1high sub-set there were those for interleukin-1β (IL-1β), Toll-like 

receptors (Tlr-1,2,4,8), chemokines (CCL-2,3,4,6,7,9,12), immunoglobulin Fc receptors (CD16-2, 

CD32, CD64), CD14, macrophage scavenger receptor 1, urokinase and urokinase receptor 

(Supplementary Table 1).  Interestingly, these cells also showed an enhanced gene expression of 

anti-inflammatory mediators such as interleukin-1 receptor antagonist (IL-1a) and transforming 

growth factor β-1 (TGFβ-1) (Supplementary Table 1). Altogether these data confirmed that the 

features of moDCs associated to acute liver injury by CCl4 are similar to those identified in NASH 

allowing the use of this experimental model to further characterise the signals the promote their 

differentiation from monocytes.  
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Figure 15. Hepatic inflammation induced by the acute administration of CCl4 associates with the 
expansion and maturation of hepatic dendritic cells (HDCs).  

Parenchymal damage and lobular inflammation were analyzed in wild-type mice either naïve (Cont) or 36 
hours after receiving an acute dose of CCl4 (CCl4). (Panel A) Hematoxylin/eosin staining of formalin-fixed 
liver sections (magnification 10x). (Panel B) Circulating levels of alanine aminotransferase (ALT) and 
aspartate aminotransferase (AST). (Panel C) RT-PCR analysis of hepatic expression of pro-inflammatory 
cyto/chemokines TNF-α, CCL2, CXCL1, CX3CL1. The values are expressed as fold increase over control 
levels and are means ±SD of 6-8 animals in each experimental group. (Panel D) The changes in the liver 
distribution of CD11c+/MHCIIhigh/CD11b+/CD103- HDCs were analysed by flow cytometry in mice either 
untreated or receiving CCl4. (Panel E) The plasma membrane expression of maturation marker CD80 was 
evaluated in HDCs gated for CD11b. The values are expressed as means ±SD of three different cell 
preparations.  
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Figure 16. Characterization of hepatic dendritic cells (HDCs) expanding in response to acute liver 
injury. 

(Panel A) CD11c+/MHCIIhigh/CD11b+ HDCs from either naive (Cont) or CCl4-treated mice (CCl4) were 

analyzed by flow cytometry for the expression of CX3CR1 and the monocyte markers Ly6C, F4-80 and 

CCR2. The values are expressed as means ±SD of three different cell preparations. (Panel B) Relative 

distribution of the dendritic cell and macrophages markers CD26, CD35 and CD88 among 

CD11c+/MHCIIhigh/CD11b+/Ly6C+/CX3CR1+ HDCs. 
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The interference with CX3CR1 affects monocyte maturation to dendritic cells in injured livers     

 To better characterize the possible role of CX3CR1-mediated signals in modulating hepatic moDC 

responses further experiments using CX3CR1-deficient homozygous mice having the green 

fluorescent protein (gfp) inserted in the CX3CR1 gene (CX3CR1gfp/gfp).   Using these animals, we 

observed that the expansion of myeloid dendritic cells associated with CCl4 poisoning was 

strongly reduced in CX3CR1gfp/gfp mice as compared to CX3CR1 proficient (CX3CR1+/gfp) animals. 

Such an effect specifically involved the fraction of liver CD11c+/MHCIIhigh/CX3CR1+/CD11b+/CD88+ 

moDCs (Fig. 17A & B).  Conversely, no significant differences were appreciable between CCl4-

treated CX3CR1gfp/gfp and CX3CR1+/gfp mice in the hepatic distribution of CX3CR1+/F4-80+/CD11bhigh 

monocytes/macrophages (Fig. 17 C).    In a similar manner, the lack of CX3CR1 did not affect the 

liver recruitment of Ly6G-/CD11bhigh/Ly6Chigh monocytes that were instead more prevalent in 

CX3CR1gfp/gfp mice (Fig. 18A).  However, we observed that in the absence of CX3CR1 the cells that 

were CD11b+/Ly6C+ and positive for the common dendritic cell marker CD11c+ failed to fully 

express MHCII (Fig. 18B), suggesting a possible role of CX3CR1 signalling in the differentiation of 

monocytes to moDCs.    
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Figure 17. The lack of CX3CR1 reduced the expansion of monocyte-derived dendritic cells (moDCs) 
in response to liver inflammation without affecting that of CX3CR1+ monocytes/macrophages. 

The liver distribution of CD11b+ myeloid dendritic cells, moDCs and monocytes were analyzed by flow 
cytometry in the livers of CX3CR1gfp/+ and CX3CR1gfp/gfp mice 36 hours after receiving an acute dose of CCl4. 
(Panel A) Flow cytometry plot showing the cluster of moDCs identified as co-expressing CD11c, MHCII, 
CX3CR1, CD11b and CD88 in the livers of CX3CR1gfp/+ and CX3CR1gfp/gfp mice 36 hours after receiving an 
acute dose of CCl4.  (Panel B) Prevalence of CD11c+/MHCIIhigh/CD11b+ myeloid dendritic cells and 
CD11c+/MHCIIhigh/CD11b+/CD88+ moDCs in CX3CR1gfp/+ and CX3CR1gfp/gfp mice receiving CCl4. (Panel C) 
Distribution of F4-80+/CD11bhigh/CX3CR1+ monocytes/macrophages in the livers of CX3CR1gfp/+ and 
CX3CR1gfp/gfp mice 36 hours after receiving an acute dose of CCl4. The values are expressed as means ±SD 
of three different cell preparations or 5-6 animals. 
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Figure 18. The lack of CX3CR1 reduced the differentiation of monocyte-derived dendritic cells 
(moDCs) in response to liver inflammation. 

The liver distribution of CD11b+ myeloid dendritic cells, moDCs and monocytes were analyzed by flow 
cytometry in the livers of CX3CR1gfp/+ and CX3CR1gfp/gfp mice 36 hours after receiving an acute dose of CCl4. 
(Panel A) Hepatic distribution of Ly6G-/CD11bhigh/Ly6Chigh monocytes in control and CCl4-treated 
CX3CR1gfp/+ and CX3CR1gfp/gfp mice. (Panel B) Impaired expression of MHCII by CD11c+/CD11b+ myeloid cells 
in CCl4-treated CX3CR1gfp/+ and CX3CR1gfp/gfp mice. The values are expressed as means ±SD of three different 
cell preparations or 5-6 animals. 
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CX3CR1 drives monocyte maturation to dendritic cells in vitro 

To better characterize the role of CX3CR1 in directing monocyte differentiation to moDCs  in 

further experiments moDCs were generated in vitro by culturing bone marrow myeloid cells with 

granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) (Lutz, et al. 

2017).  In these experiments we observed that Ly6G-/CD11b+/CD88+/CD11c+/MHCIIhigh moDC 

originating from GM-CSF/IL-4-treated bone marrow myeloid cells expressed CX3CR1 (Fig. 19A). 

Thus, we used these cells to further investigate the role of CX3CR1 in moDC differentiation.  As 

shown in Figure 19B the fraction of moDCs maturating from the bone marrow of CX3CR1gfp/gfp 

mice was 35% lower as compared to that from CX3CR1+/gfp animals.  The absence of CX3CR1 also 

influenced the spontaneous differentiation of moDCs when bone marrow myeloid cells were 

cultured seven days in calf serum-supplemented medium without GM-CSF/IL-4 (24±2.1% vs 

13±2.1% p<0.01). In this setting, the lack of CX3CR1 specifically hampered MHCII expression by 

CD11b+/CD11c+ pre-dendritic cells (Fig. 19C). Conversely, the addition of fractalkine (40 ng/mL) 

to the medium promoted moDC differentiation (28±0.6% vs 32±1.2% p<0.05), indicating a 

CX3CR1 action in the processes leading to full moDC development.  To further evaluate such a 

possibility, we investigated CX3CR1 effects on the mRNA levels of the transcription factors 

Zbtb46, interferon responsive factor-4 (IRF-4) and interferon responsive factor-8 (IRF-8) that 

have been implicated in moDC maturation induced by GM-CSF/IL-4 (Lutz, et al. 2017; Satpathy, 

et al. 2019; Tamura, et al. 2005; Bajaña, et al, 2016). All the three transcription factors were 

significantly up-regulated in the cells exposed to GM-CSF/IL-4 (Fig. 20). The lack of CX3CR1 

significantly reduced Zbtb46 and IRF-8 mRNAs, while IRF-4 mRNA was unaffected (Fig. 20), 

further pointing to a role of CX3CR1 in the implicated in the monocyte differentiation to moDCs. 
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Figure 19. The lack of CX3CR1 affects the in vitro differentiation of monocyte-derived dendritic 
cells (moDCs). 

MoDCs were obtained “in vitro” by 7 days culture of bone marrow myeloid cells from either CX3CR1gfp/+ 
and CX3CR1gfp/gfp mice with granulocyte-macrophage colony stimulating factor (GM-CF) and interleukin-4 
(IL-4). (Panel A) CX3CR1 expression in Ly6G-/CD11b+/CD88+/CD11c+/MHCIIhigh moDC originating from GM-
CF/IL-4-treated bone marrow myeloid cells. (Panel B) Effect of CX3CR1 on the “in vitro” differentiation of 
CD11b+/CD88+/CD11c+/MHCIIhigh moDCs. (Panel C) Effect of CX3CR1 deficiency on the expression of MHCII 
by CD11b+/CD88+/CD11c+ pre-dendritic cells. 
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Figure 20. The lack of CX3CR1 affects the in vitro expression of transcription factors involved in 
the differentiation of monocyte-derived dendritic cells (moDCs). 

MoDCs were obtained “in vitro” by 7 days culture of bone marrow myeloid cells from either CX3CR1gfp/+ 
and CX3CR1gfp/gfp mice with granulocyte-macrophage colony stimulating factor (GM-CF) and interleukin-4 
(IL-4) and the expression of the transcription factors Zbtb46, IRF-4 and IRF-8 implicated in moDC 
differentiation was evaluated by RT-PCR. The values are expressed as means ±SD of 3-5 different cell 
preparations. 

 

Interference with CX3CR1-mediated moDCs differentiation ameliorates acute liver injury and 
inflammation. 

 

Several studies have implicated moDCs in sustaining tissue injury and inflammation in different 

tissues (Segura,et al. 2013; Chow, et al. 2017). On this latter respect, we have previously reported 

that the H2S donor NaHS lowers hepatic TNFα levels and ameliorates parenchymal injury in NASH 

by selectively affecting the development of CX3CR1-expressing HDCs (Sutti, et al. 2015). Since 

NaHS might have also anti-inflammatory actions here we took advantage of a more specific 

CX3CR1 antagonist using CX3-AT, a NH2-terminal CX3CL1-derived peptide that has been 

previously reported to block CX3CR1 in lymphocytes (Mionnet, et al. 2010; Staumont-Sallé, et al. 

2014). For these experiments, mice were treated with a single dose of CX3-AT (150 µg in saline 

i.p.) 24 hours after the administration of CCl4 and the effects on hepatic inflammation were 
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monitored in the following 12 hours. At this dosage CX3-AT was not hepatotoxic and did not 

affect the liver distribution of monocyte/macrophages and CX3CR1+ type-2 myeloid HDCs (not 

shown).   

 

In line with the data obtained using CX3CR1-deficient mice, CX3-AT treatment affected moDC 

expansion in response to CCl4-induced liver injury (Fig. 22A), specifically reducing the fraction of 

CX3CR1+ moDCs (Fig. 22B).   We also observed that CX3-AT addition lowered moDC expression of 

the maturation marker CD80 (Fig. 22C) without interfering with the hepatic expression of CX3CL1 

and CX3CR1 (Fig. 22D). Similarly, no appreciable changes were observed in the liver distribution 

of T-lymphocytes, NK and NKT cells that also rely on CX3CR1 signaling (Fig. 23).  In the animals 

receiving CX3-AT liver histology showed a significant reduction of parenchymal necrosis and 

inflammatory infiltrates (Fig. 24A).  Consistently, CX3-AT treatment ameliorated transaminase 

release (Fig. 24B) and reduced the hepatic expression of the pro-inflammatory cyto/chemokines 

TNF-α, CCL2 and CXCL1 (Fig. 24C).  Altogether, these data indicated that CX3CR1-dependent 

moDCs effectively contributed to hepatic inflammation in response to liver injury.       
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Figure 22. The CX3CL1 antagonist CX3-AT reduces the expansion of monocyte-derived dendritic 
cells (moDCs) in response to hepatic injury. 

Liver dendritic cells were analyzed by flow cytometry in mice receiving CCl4 alone or in combination with 
CX3-AT. (Panels A-B) Liver distribution of CD11b+/Ly6C+ moDCs and CX3CR1-expressing moDCs. (Panel C) 
Plasma membrane expression of the maturation marker CD80 in moDCs for CCl4-treated mice receiving 
or not CX3-AT. The values are expressed as means ±SD of 3 different cell preparations. (Panel D) RT-PCR 
analysis of the hepatic transcripts for CX3CL1 and CX3CR1. The values are expressed as fold increase over 
control levels and are means ±SD of 6-8 animals in each experimental group.  
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Figure 23: CX3-AT does not affect the liver distribution of different lymphocyte sub-sets during 
hepatic inflammation. 

Liver lymphocytes were analyzed by flow cytometry in naïve mice, in animals receiving CCl4 alone and in 
combination with CX3-AT. (Panel A) Liver distribution of TCR-β+/CD19- T- and TCR-β-/CD19+ B-
lymphocytes. (Panel B) Liver distribution of CD4+/CD8- helper and CD4-/CD8+ cytotoxic T-lymphocytes. 
(Panel C) Liver distribution of TCR-β-/NK1.1+ NK and TCR-β+/NK1.1+ NKT cells.  The values are expressed as 
means ±SD of 5 different cell preparations.   

  



69 
 

 

Figure 24. The CX3CL1 antagonist CX3-AT improves liver injury and inflammation in mice receiving 
CCl4. 

Parenchymal damage and lobular inflammation were analyzed in mice receiving CCl4 alone and in 
combination with CX3-AT.  (Panel A) Hematoxilin/eosin staining of formalin-fixed liver sections 
(magnification 10x and 40x). (Panel B) Circulating levels of alanine aminotransferase (ALT) aspartate 
aminotransferase (AST). (Panel C and D) RT-PCR analysis of the hepatic expression of pro-inflammatory 
cyto/chemokines TNF-α, CCL2, CXCL1 and of IL-10. The values are expressed as fold increase over control 
levels and are means ±SD of 6-8 animals in each experimental group.  
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Discussion 

Growing evidence indicates that HDCs play an important role in modulating hepatic immune and 

inflammatory responses both at homeostasis and in liver diseases (Rahman,et al. 2013; Eckert, 

et al. 2016). Along with that, experiments using different models of acute and chronic liver injury 

have evidenced that myeloid HDCs expand and mature in response to inflammatory stimuli 

sustaining the evolution of hepatic damage (Connolly,et al.2009; Henning, et al. 2013; Connolly, 

et al. 2011). However, the specific features of these HDCs have not been investigated in detail. 

Our present data add on the role of HDCs in liver pathology by showing that HDCs expansion in 

response to inflammatory stimuli involves cells featuring CD11b as type-2 classical HDCs along 

with the fractalkine receptor CX3CR1. The presence of CX3CR1 in HDCs has been previously 

documented in the liver at homeostasis (Rahman, et al.2013; Sutti, et al. 2017). However, 

CX3CR1high HDCs in inflamed livers differ from CX3CR1low HDCs in naïve mice because they express 

the monocyte markers F4-80 and CCR2 and are Ly6Chigh. Furthermore, the formers are also 

characterized by the presence of the complement C5a receptor (C5aR1 or CD88), while are 

negative for the dipeptidyl peptidase-4 (CD26), two surface markers that, discriminate CD11b+ 

monocyte-derived DCs (moDCs) (CD88+/CD26-) from type-1 and type-2 classical DCs (CD88-

/CD26+) (Nakano, et al. 2015). On these bases, we propose that the differentiation of dendritic 

cells from liver infiltrating monocytes might represent a mechanism to rapidly expand the pool 

of HDCs in response to pro-inflammatory stimuli. In line with this, Ly6C+/CX3CR1+/CD88+ moDCs 

also account for HDC expansion occurring at the onset of experimental NASH, confirming a 

previous implication of moDC in sustaining liver injury and inflammation in experimental model 

of chronic steatohepatitis (Sutti, et al. 2015). Furthermore, Huang and co-workers (Huang, et al. 

2013) have reported that CD11b+ moDCs contribute to the formation of intrahepatic myeloid-cell 

aggregates for T-cell expansion (iMATEs) responsible for CD8+ T-lymphocyte stimulation during 

viral infection.  Nonetheless, we are well aware that the above surface markers do not allow a 

definitive differentiation of moDCs from liver infiltrating inflammatory monocyte-derived 

macrophages that are also Ly6Chigh/CX3CR1+ and can express to variable extend CD11c, MHCII and 

CD88 (Krenker, et al. 2017; Weston, et al. 2019). 
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The experiment using CX3CR1-deficient mice have shown that the expansion of moDCs in 

response to liver injury requires CX3CR1. It is noteworthy that in line with a previous report 

(Karlmark, et al. 2010), the lack of CX3CR1 in CCl4-treated mice does not affect the pool of liver 

infiltrating monocyte-derived macrophages, further indicating that CX3CR1+ moDCs might 

represent a different cell subset.  At present, CX3CR1 functions in moDCs are still poorly 

characterized. David and co-workers have shown that CX3CR1 contributes to liver dendritic cell 

replenishment after selective depletion by directing bone marrow-derived precursors (Rahman, 

et al. 2013). A recent report has also shown that CX3CR1/CX3CL1 interaction is critical for 

monocyte adhesion to endothelial cells and their migration into atherosclerotic plaques (Riopel, 

et al. 2019). However, the effects observed in CX3CR1-deficient mice receiving CCl4 do not involve 

the hepatic recruitment of monocytes, but rather imply a reduced capacity of dendritic cells 

precursors to fully express MHCII. Moreover, the lack of CX3CR1 reduces in vitro moDC 

maturation from bone marrow myeloid cells incubated with MG-CSF/IL-4. Altogether these data 

suggest that CX3CR1-mediated signals are required for moDCs differentiation.  Supporting this 

view, we have observed that in MG-CSF/IL-4-treated myeloid cells CX3CR1 influences the 

expression of Zbtb46 and IRF-8, two transcription factors implicated in driving monocyte 

differentiation to moDC (Satpathy, et al. 2019; Tamura, et al. 2005).  However, we can’t exclude 

that CX3CR1 might have additional effects on moDCs, as this receptor is required for the survival 

of liver infiltrating monocyte-derived macrophages (Karlmark, et al. 2010).   

 
It is well established that moDCs not only are effective in antigen presentation to lymphocytes, 

but also produce pro-inflammatory mediators contributing to sustain inflammatory processes 

(Segura, et al. 2013; Chow. et al, 2017; Hochheiser, et al. 2015). On this later respect we have 

observed that interfering with liver CX3CR1+ moDCs differentiation using the CX3CR1 blocker CX3-

AT ameliorates lobular inflammation and parenchymal damage following acute CCl4 poisoning. 

These findings are consistent with previous data showing that the H2S donor NaHS lowers hepatic 

TNFα levels and ameliorates parenchymal injury in an experimental model of chronic 

steatohepatitis by selectively affecting the development of CX3CR1-expressing HDCs (Sutti, et al. 

2015). Taken together these observations indicate that CX3CR1+ moDCs can contribute to hepatic 

injury and inflammation through the production of pro-inflammatory mediators. Such an 
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interpretation is in line with the data of Connolly and co-workers (Connolly, et al. 2009) showing 

that TNFα-producing HDCs drive hepatic inflammation in mice with thioacetamide-induced 

fibrosis.  

 

Conclusions 

The present results add functional data on the complex role of dendritic cells in the mechanisms 

of liver injury indicating that the rapid expansion of HCDs in response to hepatic injury involves 

monocyte differentiation to inflammatory moDCs.  Moreover, our data point to the involvement 

of CX3CR1/CX3CL1 dyad in modulating moDC differentiation within the liver.   These results, along 

with previous observations by our laboratory on the involvement of CX3CR1 expressing moDC in 

the pathogenesis of NASH, open the possibility of using antagonists of CX3CR1 as a therapeutic 

opinion to prevent the evolution of steatohepatitis. 
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Section 3 

Role of ICOS/ICOSL dyad in the interaction between T-cell and macrophages 

during NASH evolution. 

 

Foreword 

A large body of evidence indicates that hepatic macrophages play a key role in directing the 

evolution of NASH (Tacke, et al. 2017). During chronic liver diseases liver macrophage consist of 

ontogenically distinct populations that include liver resident Kupffer cells and monocyte-derived 

macrophages (MoMFs) (Tacke, et al. 2017).  These latter are the main responsible for the 

production of pro-inflammatory mediators responsible for the perpetuation for hepatocyte 

injury and liver inflammation, but also support the activation of hepatic stellate cells and 

extracellular matrix deposition during NASH progression to fibrosis and cirrhosis (Tacke, et al. 

2017). Consistently, reducing MoMF liver ameliorates experimental NASH and reduces fibrosis 

evolution in a phase 2 clinical trial (Friedman, et al. 2018).  What is less clear is how MoMFs 

interacts with other inflammatory cells within the liver and particularly with lymphocytes. In this 

respect several studies have demonstrated that lymphocyte derived cytokines such as IFN-γ, IL-

17 and LIGHT can stimulate pro-inflammatory responses MoMFs (Tang et al .2011; Luo et al. 

2013; Wolf et al. 2014). However, the presence of more specific interactions between liver 

lymphocytes, particularly T-cells and MoMFs has so far received little attention.  Among the 

signals involved in the interaction of T-cells with other myeloid cells a special role is played by 

the co-stimulatory molecules Inducible T-cell Co-Stimulator (ICOS; CD278 ) and its ligand ICOSL 

(CD275, also named B7h, B7-H2, B7RP-1, LICOS) (Wikenheiser and Stumhofer 2016). ICOS belongs 

to the CD28 family of co-stimulatory molecules and is selectively expressed by activated T cells, 

while its ligand ICOSL/ICOSL is constitutively present on the surface of a variety of myeloid cells 

including dendritic cells, macrophages, B-cells, but also on endothelial cells, lung epithelium cells 

and fibroblasts (Wikenheiser and Stumhofer 2016). The triggering of ICOS on T-cells by 
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ICOSL/ICOSL has been shown to modulate their cytokine secretion pattern (Wikenheiser and 

Stumhofer 2016) and favour regulatory T cell (Treg) differentiation (Li and Xiong 2020). In 

addition, ICOS/ICOSL interaction plays an important role in the development and differentiation 

of Follicular T-helper cells (Tfh) in the germinal centres of lymphatic nodes (Wikenheiser and 

Stumhofer 2016). This action is critical in the selection and survival of B cells expressing high-

affinity B cell receptors, as well as in facilitating their differentiation into memory B cell and 

plasma cells (Wikenheiser and Stumhofer 2016).   However, recent reports have shown that 

ICOS/ICOSL interaction can also trigger reverse signals able to modulate the functions of ICOSL-

expressing cells. For instance, in dendritic cells ICOSL-mediated signals favor maturation and 

stimulate cytokine secretion and antigen presentation (Tang et al 2009; Occhipinti et al. 2013), 

while in monocytes they prevent the differentiation to osteoclast stimulated by RANK ligand 

(Gigliotti et al.2016).  A recent study has also shown that by binding to αvβ3 integrin on podocytes 

ICOSL ameliorates kidney injury and the development of proteinuria (Koh et al. 2019).   From 

these observations the present study investigated the possible involvement of ICOS/ICOSL dyad 

in the evolution of liver inflammation and fibrosis in NASH. 
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Results 

Preliminary analysis of ICOS and ICOSL expression within the livers of mice with NASH induced by 

feeding the MCD diet for different times showed a decline in the ICOS transcript with the 

development of steatohepatitis, while ICOSL mRNA showed a progressive increase paralleling the 

evolution of liver damage (Fig. 25). Further analysis using flow cytometry of liver myeloid cells 

demonstrated that the fraction of ICOS-positive liver lymphocytes was not significatively 

modified in mice receiving the MCD diet for 6 weeks (Fig. 26A). Nonetheless, while in control 

mice most of ICOS-expressing lymphocytes were CD4+ T cells, we observed that NASH was 

characterized by a lowering of, respectively 41% and 30% for CD4+/ICOS+ and CD4-/CD8-/ICOS+ T 

cells and by a parallel 4 folds expansion of the pool of ICOS+/CD8+ T-lymphocytes (Fig. 26).   These 

changes only partially reflected the modifications in liver T cell distributions as the fraction of 

CD4+ T cells was unchanged (4.1±1.4% vs 4.3±1.9%), whereas  CD8+ T-cell prevalence increased 

by about 5 folds (1.7±1.2% vs 10.2±2.4%; p<0.03) in mice with NASH.    On the other hand, we 

observed that both the intensity of ICOSL signal and the prevalence of ICOSL-positive leucocytes 

were increased in mice with NASH (Figure 27A). In both control and NASH mice ICOSL-expressing 

cells largely segregated with the fraction of CD11b+/F4-80+ monocytes macrophages (MoMFs), 

while CD11b-/F4-80+ Kupffer cells were largely negative.  Furthermore, the increased prevalence 

of ICOSL-positive cells paralleled with the expansion of MoMF pool that characterizes the 

evolution of NASH (Fig. 27B). In line with these findings the comparison of mice with 

NAFLD/NASH induced by the feeding with high fat diet or CDAA diet for 24 weeks we observed a 

positive correlation between the expression of ICOSL and that of inflammatory markers such as 

TNF-α (r=0.66, p=0.04) and DC11b (r=0.77, p=0.01).  Interestingly, the serum content of the 

soluble forms of both ICOS and ICOSL were significantly higher in 24 patients with NAFLD/NASH 

at various stage of the disease evolution than in a group of healthy individuals (Fig. 28), 

suggesting that an up-regulation of co-stimulatory ICOS /ICOSL system is a feature of NASH and 

can be related to the disease evolution.   
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Figure 25: Time dependent changes in the transcripts of ICOS and ICOSL during the evolution 
of NASH induced by mice feeding with a methionine/choline deficient (MCD) diet.  
  
Wild type C57BL/6 mice received MCD or control diets for up to 8 weeks and the animals were 
investigated for (Panel A) the hepatic mRNA levels of ICOS and ICOSL and the extent of liver injury as 
monitored by:  (Panel B) Hematoxylin/eosin staining of liver sections (magnification 200x); (Panel C) 
Alanine aminotransferase (ALT) release; (Panel D) Immuno-enzymatic determination of circulating 
TNF-α. (Panel E) the mRNA expression of pro-collagen-1α.    RT-PCR values are expressed as 2ΔCT over 
the β-actin gene. The values refer to 5-6 animals per group and the boxes include the values within 
25th and 75th percentile, while the horizontal bars represent the medians. The extremities of the 
vertical bars (10th-90th percentile) comprise 80% percent of the values. 
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Figure 26: Changes in the T lymphocyte expression of ICOS in liver of mice with NASH induced 
by feeding with a methionine/choline deficient (MCD) diet.  
  
Wild type C57BL/6 mice received MCD or control diets for 6 weeks and hepatic lymphocytes were 
analyzed by flow cytometry. (Panel A) ICOS expression by the whole pool of CD3+ T lymphocytes. (Panel 
B) localization of ICOS-positive T cell in relation to the distribution of CD4+ helper and CD8+ cytotoxic 
and double negative T cells.  The values refer to 3-4 animals per group and the boxes include the values 
within 25th and 75th percentile, while the horizontal bars represent the medians. The extremities of the 
vertical bars (10th-90th percentile) comprise 80% percent of the values. 
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Figure 27: Changes in expression of ICOSL among myeloid cells in liver of mice with NASH 
induced by feeding with a methionine/choline deficient (MCD) diet.  
  
Wild type C57BL/6 mice received MCD or control diets for 6 weeks and hepatic myeloid cells were 
analyzed by flow cytometry. (Panel A) ICOS expression by the whole pool of liver myeloid cells. (Panel 
B) localization of ICOSL-positive cell in relation to the distribution of CD11+/F4-80 hepatic 
monocyte/macrophages.  The values refer to 3-4 animals per group and the boxes include the values 
within 25th and 75th percentile, while the horizontal bars represent the medians. The extremities of the 
vertical bars (10th-90th percentile) comprise 80% percent of the values. 
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Figure 28: Changes in the circulating levels of soluble ICOS and ICOSL in patients with 

NAFLD/NASH. 

The levels of the soluble forms of ICOS (sICOS) and ICOSL (sICOSL) were measured by ELISA assay in the 
sera of 20 healthy controls and 22 patients with NAFLD/NASH.  The bars represent the median values. 

 

In subsequent experiments we investigated whether the lack of ICOSL might influence 

inflammatory and immune responses involved in NASH evolution. For these experiments we took 

advantage of ICOSL deficient mice (ICOSL-/-) that received the MCD diet for 6 weeks.    Figure 29 

show that liver histology of MCD-fed ICOSL-/- mice did not revealed appreciable differences in the 

extension of steatosis as compared to wild-type animals.  Conversely, transaminase release as 

well as the transcripts for inflammatory markers such as CD11b, TNF-α, CXCL10 were significantly 

lower in ICOSL-/- than wild type mice (Fig. 29).   On the same vein, we observed that Sirius Red 

staining for collagen as well as the levels mRNAs for fibrosis markers such as pro-collagen-1α and 

smooth muscle α-actin (α-SMA) were lowered in the absence of ICOSL (Fig. 30).   

Previous studies have shown that ICOSL-/- mice are characterized by a reduction in the number 

and size of the lymphatic germinal centres in the spleen and reduced production of IgG1 

(Wikenheiser and Stumhofer 2016). Furthermore, Watanabe and co-workers (Watanabe et al. 

2010) have observed that defects in ICOS-mediated co-stimulation results in a defect in the 

development of NKT cells in the thymus that reflects on a reduction in liver and spleen NKT cells 

in ICOS−/− mice. However, in our hand liver CD3+/CD4+, CD3+/CD8+ T-lymphocytes and 

CD3+/NK1.1+ NKT cells were not significantly different between MCD-fed ICOSL-/- and wild type 

mice (not shown).   As expected, the lack of ICOS-mediated signals affected IgG production and 
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NASH associated titers of IgG against oxidative stress derived epitopes (anti-OSE IgG) were 

appreciably lower in ICOS−/− mice (0.30±0.17 optical units in wild type vs 0.05±0.03 in ICOSL−/− 

mice; p<0.02).  Such an impairment of B-cell maturation did not influence the distribution of liver 

B220+/IgM+ B lymphocytes that were similar in the two strains (not shown).   Although 

ICOS/ICOSL dyad has been shown to contribute in regulating Th-1 responses in different 

experimental settings, the liver transcripts for lymphocyte Th-1 transcription factor T-bet and for 

interferon-γ (INF-γ) were significantly higher in ICOSL−/− mice with NASH than in wild type 

littermates (T-bet = 0.10±0.03-2ΔCT vs 15.5±0.50-2ΔCT; p<0.05;  INF-γ = 0.16±0.04-2ΔCT vs 

0.23±0.04-2ΔCT; p<0.02).  This indicated that the costimulatory functions of ICOS/ICOSL dyad in 

T-cells were not responsible for the improvement of liver damage and inflammation observed in 

ICOSL−/− mice.    

From these data we went on to investigate whether reverse signals mediated by ICOSL in MoMFs 

might influence their functions during the progression of NASH.  Flow cytometry analysis of liver 

CD11b+/F4-80+ MoMFs revealed that the lack of ICOSL did not affected the prevalence of 

CD11bhigh/F4-80+ MoMFs (Fig. 31).  The fraction of CD11bhigh/F4-80+ MoMFs includes 

inflammatory M1 macrophages that express high level of the lymphocyte antigen 6 (Ly6C) also 

known as tissue plasminogen activator receptor (When et al 2020). The analysis of the fraction 

of CD11bhigh/Ly6Chigh MoMFs in the livers of wild type and ICOSL−/− mice receiving the MCD diet 

demonstrated an appreciable a reduction of these cells in ICOSL−/− mice (Fig. 31A). We previously 

shown that the Ly6C expression characterizes monocyte derived dendritic cells (moDCs) that are 

expanded in the liver of mice with NASH and support inflammation (Sutti et al. 2015; Sutti et al. 

2019).  Since ICOS/ICOSL action can contribute to moDC maturation (Tang et al 2009; Occhipinti 

et al. 2013), we also explored whether defect of ICOSL might affect liver MoDC pool in NASH.   

However, as shown in Figure 31B no significant changes were observed between wild type and 

ICOSL−/− mice neither in the fraction of whole liver CD11c+/MHCII+ dendritic cells not in the subset 

of CD11c+/MHCII+/CD11b+/Ly6C+ MoDC.  Altogether these data suggested that the improvement 

of steatohepatitis in these animals might be related to an effect of ICOSL-mediated reverse 

signals on the activity of pro-inflammatory M1 macrophages.  
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Recent reports have shown that pro-inflammatory activation of liver MoMFs involves the 

expression of the Triggering Receptor Expressed on Myeloid cells 1 (TREM-1) (Arts et al. 2013; 

Nguyen-Lefebvre et al. 2018). TREM-1 in a cell-surface–activating receptor belonging to Ig 

superfamily that is involved in amplifying inflammatory responses in granulocytes and 

macrophages (Arts et al. 2013).  TREM-1 transduce its signals by associating with the adaptor 

molecule DAP12 which recruits the protein kinase SYK to activate downstream signals involving 

phosphoinositide-3 kinase (PI3K), phospholipase C extracellular regulated kinase (ERK) (Arts et 

al. 2013). TREM-1 ligands involve DAMPs such as HMGB1 and HSP70, but also bacterial products 

and TREM-1-mediated stimulation greatly increases cell production of pro-inflammatory 

mediators including cytokines and chemokines (Arts et al. 2013).  Within the liver TREM-1 is 

almost exclusively expressed by MoMFs and its activity promotes hepatic inflammation and the 

progression of chronic damage to fibrosis (Nguyen-Lefebvre et al. 2018). Furthermore, a recent 

study has also shown that TREM-1 was overexpressed in the liver of mice with experimental 

NASH and blocking TREM-1 attenuates liver injury and inflammation in these animals (Rao et al. 

2019).  By evaluating the TREM-1 transcripts in mice receiving the MCD diet we confirmed that 

NASH was associated to a 12 folds up-regulation of TREM-1 (Fig. 29).  Moreover, in the absence 

of ICOSL TREM-1 expression was lowered by about 25% (Fig. 29). Interestingly, TREM-1 

expression was also down regulated by about 30% also in ICOS-deficient mice (ICOS-/-) receiving 

the MCD diet for 6 weeks (0.31±0.12 -2ΔCT in ICOS-/- vs 0.49±0.15 -2ΔCT in wild type mice; p<0.05) 

in parallel with the lowering with inflammatory markers (TNF-α = 0.85±0.28-2ΔCT vs 1.77±0.30-

2ΔCT; p<0.001; CXCL10 = 8.02±3.02-2ΔCT vs 16.3±4.50-2ΔCT; p<0.01;  CD11b = 3.14±0.63-2ΔCT vs 

6.14±1.94-2ΔCT; p<0.02), suggesting that the signals involving ICOS/ICOSL dyad were responsible 

for sustaining TREM-1 mediated macrophage M1 responses.  Supporting such an interpretation 

we observed that TREM-1 transcripts were significantly lower (3.2±0.8 2ΔCT vs  0.8±0.3 2ΔCT; 

p<0.02) in peritoneal macrophages obtained from ICOSL-/- mice receiving intraperitoneal 

injection of thioglycolate as compared to macrophages form wild type animals. 
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Figure 29: ICOSL deficiency reduces the severity of liver injury and inflammation in mice with 
NASH. 

ICOSL deficient (ICOS ko) and wild type (WT) mice were fed with either control or MCD diets for 6 weeks 
and the animals were investigated for the severity of steatohepatitis. (Panel A) Haematoxylin/eosin 
staining of liver sections (Magnification 200x); (Panel B) Alanine aminotransferase (ALT) release; (Panel C) 
The hepatic mRNA levels of pro-inflammatory markers TNF-α, CXCL10, CD11b and TREM-1. RT-PCR values 
are expressed as fold increase over control values after normalization to the β-actin gene. The values in 
the panels B, C and E refer to 5-7 animals per group and the boxes include the values within 25th and 75th 
percentile, while the horizontal bars represent the median. The extremities of the vertical bars (10th-90th 
percentile) include 80% of the values. 
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Figure 30: ICOSL deficiency improves NASH evolution to fibrosis. 

ICOSL deficient (ICOS ko) and wild type (WT) mice were fed with either control or MCD diets for 6 weeks 

and the animals were investigated for the extension of liver fibrosis. (Panel A) Collagen deposition as 

detected by Sirius Red staining in representative liver sections from wild type (WT) and ICOSL deficient 

(ICOS ko) mice receiving the MCD diet for 6-weeks (Magnification 200x). (Panel B) Hepatic expression of 

fibrogenesis markers α1-procollagen, α-smooth muscle actin (α-SMA) and Transforming Growth Factor-

β1 (TGF-β1). RT-PCR values are expressed as fold increase over control values after normalization to the 

β-actin gene. (B)The values refer to 5-7 animals per group and the boxes include the values within 25th 

and 75th percentile, while the horizontal bars represent the median. The extremities of the vertical bars 

(10th-90th percentile) include 80% of the values.  
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Figure 31: ICOSL deficiency reduces the liver infiltration of pro-inflammatory monocyte/ 

macrophages. 

ICOSL deficient (ICOS ko) and wild type (WT) mice were fed with either control or MCD diets for 6 
weeks and the animals were investigated by flow cytometry for the prevalence of pro-inflammatory 
monocyte/macrophages (MoMFs) and monocyte-derived dendritic cells (MoDCs).  (Panel A) 
Prevalence of liver CD11bhigh/F4-80+ MoMF and Ly6Chigh MoMFs. (Panel B) Prevalence of liver 
CD11c+/MHCII+ dendritic cells (DCs) and of CD11c+/MHCII+/CD1b+/Ly6C+ monocyte-derived DCs 
(moDCs).  The values refer to 3-4 animals per group ± SD. 
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Discussion 

So far, the mechanisms by which adaptive immunity can support hepatic inflammation in NASH 

have not been investigated in detail. In principle, the network of cytokines generated by Th-1, 

Th-17 and CD8+ lymphocytes is capable to provide a potent stimulus for the M1 activation of 

hepatic macrophage, which, in turn, supports lymphocyte functions through the release of a 

variety of mediators including interleukin-12, (IL-12), interleukin-23 (IL-23) and the lymphocyte 

chemokines CXCL9-10-11 (Tacke 2017).   In line with this view mice deficient for the lymphocyte 

cytokine LIGHT (Lymphotoxin-like Inducible protein that competes with Glycoprotein D for 

Herpesvirus entry on T cells; TNFSF14) are protected against steatohepatitis when receiving a 

high fat choline-deficient diet (Wolf et al. 2014) and IFN-γ deficient mice develop less 

steatohepatitis and fibrosis than wild-type littermates when fed with a methionine/choline 

deficient (MCD) diet (Luo et al. 2013).  However, it is well possible that the network of signals 

involved in supporting chronic inflammation might be far more complex.  

Here we show that direct interaction between macrophages and lymphocyte through the 

interaction with the co-stimulatory molecules ICOS and ICOSL could provide additional stimuli for 

sustaining pro-inflammatory responses during the progression of NASH.   So far most of the 

studies regarding ICOS/ICOSL functions have been focalized on the effects on T-cells, where ICOS 

is up-regulated upon activation (Wikenheiser and Stumhofer 2016). The triggering by ICOSL of 

ICOS on CD4+ T-cell has been shown to modulate their Th-1 or Th2 functions depending on the 

environment stimulation (Wikenheiser and Stumhofer 2016). In addition, ICOS/ICOSL interaction 

plays an important role in the development and differentiation of Follicular T-helper cells (Tfh) in 

the germinal centres of lymphatic nodules (Wikenheiser and Stumhofer 2016). However, recent 

reports have shown that ICOS/ICOSL interaction can also trigger reverse signals able to modulate 

the functions of ICOSL-expressing cells. For instance, in monocyte-derived dendritic cells ICOSL-

mediated signals favor maturation stimulating cytokine secretion and antigen presentation (Tang 

et al 2009; Occhipinti et al. 2013), while they prevent monocytes differentiation to osteoclasts 

stimulated by RANK ligand (Gigliotti et al. 2016).   These observations suggest the possibility that 
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ICOS expressing T-cells might modulate the function of monocytes/macrophages through the 

interaction with ICOSL.  On this respect we have observed that, while overall liver expression of 

ICOS does not change in NASH, the progression of steatohepatitis is characterized by a dept 

change in the distribution of ICOS among T cells with a reduction of CD4+/ICOS+ and CD4-/CD8-

/ICOS+ T cells and a parallel expansion of the CD8+/ICOS+ pool.   The expansion of activated 

cytotoxic T-cells is a feature of NASH in either rodents and humans (Sutti, et al.2014; Wolf, et al. 

2014; Grohmann, et al. 2018; Ghazarian, et al.2017; Breuer et al. 2020) and their ablation is 

effective in ameliorating steatohepatitis in wild-type mice receiving a high fat/high carbohydrate 

diet (Bhattacharjee, et al. 2017;  Breuer et al. 2020). Nonetheless, the mechanisms implicating 

CD8+ T cells in the pathogenesis of NASH are not well characterized. Wolf and coworkers have 

shown that β2m-/- mice lacking CD8+ T- and NKT cells are protected from steatohepatitis in 

relation to the capacity of CD8+ T- and NKT cells to produce LIGHT (Wolf, et al.2014). More 

recently Breuer et al. (2020) have reported that IL-10-expressing CD8+ T cells isolated from the 

liver of mice with obesity-associated NASH have the capability to stimulate macrophage and 

hepatic stellate cell (HSC) activation. However they did not investigate the mechanisms involved.   

Here we propose the possibility that ICOS expressing CD8+ T cell might promote macrophage 

activation through reverse signaling involving ICOSL.  Such a hypothesis is based on the 

observation that the pool of ICOS+/CD8+ T cells expand in NASH livers and that the lack of both 

ICOS and ICOSL reduces NASH associated inflammation and fibrosis. In particular, we have 

observed that the absence of ICOSL reduces the fraction of Ly6C pro-inflammatory macrophages 

and that this associated with the lowering in the expression of TREM-1, a membrane receptor 

implicated in maintaining M1 activation of liver macrophages (Arts et al. 2013). The implication 

of ICOSL ligand in sustaining pro-inflammatory MoMFs along with the selective upregulation of 

ICOS in CD8+ T lymphocytes might also explain how the expansion of these cells can support the 

evolution of steatohepatitis.     In a recent report Torres-Hernandez and co-workers (2019) have 

demonstrated that during the evolution of NASH ICOS is required for the differentiation of a 

specific subset of γδT cells producing IL-17A which are involved in modulating hepatic 

inflammation in NASH. γδT cells are a distinct subset of CD3+ T cells defined by expressing γδT 

cell receptor (TCR) instead of the conventional αβTCR and constitute about 15%~25% of all liver 
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T cells.  Through γδTCR, γδT cells can rapidly respond to a variety of protein and non-protein 

antigens promoting inflammatory responses (Hammerich and Tacke 2014). Although we cannot 

exclude that the absence of ICOSL might influence the differentiation of liver γδT cells in mice fed 

with the MCD-diet this possibility appears unlikely to explain the improvement of steatohepatitis 

in these animals since we have observed that ICOS-expressing CD4-/CD8- T cells which include 

γδT cells are lowered in the liver of NASH mice without further changes in ICOSL-/- animals.  

Nonetheless further analysis are required to better define whether modulation of γδT cells can 

contribute to improving NASH in ICOSL-deficient mice also considering that the mechanisms 

proposed by Torres-Hernandez and co-workers for explaining the amelioration of steatohepatitis 

in mice lacking γδT cells implicate a suppression of INF-γ production by CD4+ T cells that has not 

been verified in our experimental setting where INF-γ expression was instead increased in the 

liver of MCD-fed ICOSL-/- mice as compared to wild type littermates.   To our knowledge the only 

study that has so far addressed the role of ICOS and ICOSL in tissue healing responses is a work 

by Tanaka and coworkers who have reported that that ICOS deficiency prevents lung fibrosis 

induced in mice by bleomycin administration whereas ICOSL deficiency aggravates it (Tanaka et 

al 2010). Such a divergent behaviours associate with opposite effects on lung inflammatory cell 

recruitment and in the production of inflammatory cytokines (Tanaka et al 2010).  The partial 

inconsistency of these results with our data in the liver the difference in the experimental systems 

as well as by the fact in the lung the severity of fibrosis inversely correlates with ICOSL expression 

(Tanaka et al 2010) whereas the reverse occurs in the liver.    

In conclusion these results demonstrate the implication of ICOS/ICOSL dyad in modulating liver 

inflammatory reactions during the evolution of NASH and propose the contribution of reverse 

ICOSL signalling in the interaction between CD8+ T lymphocytes and macrophages.   The results 

might have possible implications in developing new approaches for the treatment of NASH since 

monoclonal antibodies targeting ICOS and ICOSL are already under trial for immune-modulatory 

therapies in cancer.   
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General Discussion 

 

In the recent years, the contribution of adaptive immunity to the pathogenesis of NASH 

has received increasing interest. On this respect, several studies have given clear evidence that 

the expansion and activation of CD4+ and CD8+ T lymphocytes are implicated in supporting 

hepatic inflammation during the evolution of NAFLD/NASH (Sutti, et al.2014; Wolf, et al. 2014; 

Grohmann, et al. 2018; Ghazarian, et al.2017; Breuer et al. 2020).   Recent data have also given 

some inside in how lymphocytes can interact with innate immunity cells favouring their pro-

inflammatory and pro-fibrogenic actions.   Nonetheless, many aspects concerning the implication 

of immune mechanisms in NASH remain elusive.   The work performed during my doctoral 

training tackle some of these aspects investigating the role of B and CD8+ T lymphocytes in the 

mechanisms of NASH associated hepatic inflammation. 

From the observation that circulating IgG targeting oxidative stress derived epitopes characterize 

either experimental and human NASH and are an independent predictor of the disease evolution 

to fibrosis it has been possible to demonstrate that B cell activation is an early event in the onset 

of NASH preceding T-cell responses.   On the same vein, interfering with B-cells maturation 

reduces Th-1 activation of liver CD4+ T-lymphocytes and ameliorates liver injury and the 

development of fibrosis.  The contribution of B cells to the evolution to fibrosis of chronic liver 

disease has been recently confirmed by a study performed in a model of cholestatic liver diseases 

using mice with deficiency of biliary transport proteins Mdr2 in which B cells depletion by anti-

CD20 mAb improves both hepatic inflammation and fibrosis (Thapa et al. 2020).   So far, the 

clinical relevance of the above findings has not been investigated in detail.  We have shown that 

in about 60% of NAFLD/NASH patients B- and T-lymphocytes form focal aggregates, resembling 

ectopic lymphoid structures and that the size and the prevalence of these aggregates positively 

correlate with the scores of lobular inflammation and fibrosis.   Furthermore, McPherson and co-

workers have observed that serum IgA are more frequently elevated among patients with NASH 

than in subjects with simple steatosis and are as well an independent predictor of advanced liver 

fibrosis (McPherson et al.2014).  This latter observation is relevant also for a better 
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understanding of the mechanisms implicated in the evolution of NASH to hepatocellular 

carcinoma. In fact, Shalapour and co-workers (Shalapour et al. 2017) have observed that both in 

humans and in mice advanced NASH is characterized by the accumulation of IgA-producing 

plasma cells that suppress anti-tumor cytotoxic CD8+ T-cells through the expression of PD-L1 and 

IL-10, thus favoring HCC emergence.  In these conditions, genetic or pharmacological interference 

with IgA-producing plasma cells restore the cytotoxic activity of CD8+ T-cells and attenuate 

hepatic carcinogenesis (Shalapour et al. 2017).  If further confirmed by human studies, the data 

concerning direct involvement of B cells in the mechanisms supporting chronic liver injury and 

might open the way for new therapeutic approaches to NASH by using already available 

treatments that interfere with B-cell functions.    

A key problem in understanding how immune mechanisms promote the evolution of NASH 

concern the interplay among the different lymphocyte subsets and between adaptive and innate 

immune cells.  The data so far available indicate the ablation of B-lymphocytes, CD8+ T and NKT 

cells reduces MoMF activation and ameliorates liver injury, lobular inflammation and fibrosis in 

different mice model of NASH (Wolf et al. 2014; Breuer et al. 2020).  This suggests the possibility 

that these cells might interact with MoMFs by a variety of mechanisms.  The experiments 

performed using ICOSL-deficient animals open a new approach in investigating the problem by 

showing that, beside cytokine and chemokine production, CD8+ T lymphocytes, can dialogue with 

MoMFs through membrane signals involving the co-stimulatory molecules ICOS and ICOSL.  The 

main function ICOSL is the triggering of ICOS on activated T cells that leads to functional 

modulation (Wikenheiser and Stumhofer 2016; Li and Xiong 2020). However, recent reports have 

shown that the ICOS/ICOSL interaction can trigger bidirectional signals able to influence the 

response of ICOSL-expressing cells such as dendritic cells and osteoclasts (Occhipinti et. al 2013; 

Gigliotti et al 2016).  As MoMFs, dendritic cells and osteoclasts are derived from monocytes and 

express ICOSL upon differentiation, suggesting that ICOSL signalling might be critical for the 

functions of monocyte-derived cells.     Our results in NASH suggest a novel role of ICOSL in the 

interaction between CD8+ lymphocytes and MoMFs that appear critical to support the combined 

pro-inflammatory capability and pro-fibrogenetic activities of Ly6Chigh MoMF without affecting 

the Ly6Clow population that has anti-fibrotic activity (Wen et al. 2020).  Interestingly a recent 
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report by Sun and co-workers has also implicated the co-stimulatory signals in the pathogenesis 

of NASH.  The authors reported in fact that the co-stimulatory molecule OX40 (CD134) and its 

ligand OX40L (CD252) are upregulated in the liver of mice with steatohepatitis.   Interestingly, 

soluble OX40 is also elevated in the plasma of NASH patients positively correlating with the 

severity of steatohepatitis (Sun et al. 2018). OX40 is largely expressed on activated T-cells in both 

mice and humans (Bashiardes, et al. 2016).  Upon ligation by OX40L, present on APCs, activated 

T-cells, endothelial cells and mast cells OX40 promotes T-cell survival, differentiation and 

activation (Bashiardes, et al. 2016).  Along this, OX40 deficiency in mice with experimental NASH 

selectively lowers Th-1 and Th-17 differentiation of hepatic CD4+ T-cells ameliorating steatosis, 

transaminase release and the prevalence of M1 macrophages (Sun et al. 2018).  Altogether these 

observations suggest the possibility that the involvement of adaptive immunity in the 

progression of NASH might implicate a complex network of signals involving co-stimulatory 

molecules and possible co-inhibitory molecules expressed by a variety of myeloid cells.    

Previous studies have demonstrated that reversed ICOSL signalling induces partial maturation of 

mouse dendritic cells (Tang et al 2009), while enhance cytokine secretion and the capacity to 

cross-present endocytosed antigens in human dendritic cells (Occhipinti et al 2013).  Our data 

show that hepatic dendritic cell expansion that characterize the onset of NASH involves 

CD11bhigh/Ly6Chigh monocyte-derived myeloid dendritic cells (MoDCs).   Preliminary data in ICOSL-

deficient mice with NASH do not evidence appreciable changes in these cells as compared to wild 

type animals, indicating that ICOSL is dispensable for MoDC maturation in inflamed liver.  On this 

later respect, we have observed that the presence of the fractalkine receptor CX3CR1 is important 

for MoDC expansion and maturation. Furthermore, interference with CX3CR1 acute liver damage 

supporting previous data (Sutti et al 2015) that implicate MoDCs in supporting lobular 

inflammation in NASH.  Nonetheless, due to the difficulty to specifically distinguish between 

MoMFs and MoDCs using surface markers and flow cytometry further studies are required to 

better characterize the involvement of MoDCs in stimulating the activation of adaptive immunity 

as well as in defining their contribution to inflammatory response.  

In conclusion the data obtained during my doctoral training have given further evidence of the 

complexity of the mechanisms involved in the progression of NASH pointing to the importance 
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of specific interactions between adaptive and innate immunity cells in supporting the disease 

evolution. Targeting these interactions might offer the possibility for developing novel 

therapeutic approaches to NASH.   
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