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Abstract

In this work we propose an analysis of the correction term appearing in a Small-Ball Prob-
ability factorization for random elements taking values in a separable Hilbert space. Its local
nature, its meaning and behavior are discussed also through the derivation of some bounds.
Nonparametric kernel-type estimators of the considered statistics are introduced and some
asymptotic properties are provided. Finally, in the context of reconstructing a sample of
curves by truncated Karhunen—Loéve expansion, a local approach to select the dimensionality
is illustrated through numerical and real data examples.
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1 Introduction

In the last two decades, functional statistic has consolidated, reaching increasingly deeper levels
of maturity along different directions. As evidence of this, there are several monographs Ramsay
and Silverman [2005], Ferraty and Vieu [2006], Horvdth and Kokoszka [2012], Hsing and Eubank
[2015], Kokoszka and Reimherr [2017], many specialized conference proceedings Bongiorno et al.
[2014], Aneiros et al. [2017, 2020] and special issues Goia and Vieu [2016], Ferraty et al. [2019],
Aneiros et al. [2019b,a] that especially in recent years have enriched the literature on this topic.
Nevertheless, in the frenzied rush to explore the enormous potential of functional statistics in the
applications, different aspects has been left underdeveloped. Among these, an overlooked tool is
the small-ball probability (SmBP) that, for a random element X of a metric space H, is ¢(z,h) =
P(X € B(z,h)) as h — 0 where B(x,h) is the ball centered at x € H with radius h. The main
difficulty, which has limited the exploitation of SmBP in applications, consists in transforming a
purely theoretical concept into a useful operative instrument. In fact, until recently, the use of the
SmBP has been limited to the evaluation of the convergence rates of the estimators emerging from
functional regression problems (see Ferraty and Vieu [2006] and references therein) and, only in the
last decade, few works have given to the SmBP an active role in applications as well. The efforts



made so far are closely related to the possibility of factorizing the SmBP, for example assuming
that, for any x € H and as h — 0,

p(z, h) ~ P(x)p(h), (1)

with the identifiability constraint E[)(X)] = 1. The convenience of the above factorization resides
in the fact that it isolates the way the SmBP depends upon x and h (the space and volumetric
variables respectively) and allows to interpret ¢ and ¢ as a surrogate of the probability density of
X (that can not be straightforwardly defined in a infinite dimensional space) and a volumetric term
respectively. This interpretation of the factorization (1) strongly resembles the multivariate case
and has led to define a concept of mode (see Gasser et al. [1998]), to introduce a surrogate-density
(see Ferraty et al. [2012]) and to evaluate the intrinsic complexity or dimension of the underlying
process X (see Bongiorno et al. [2017, 2019, 2020]).

Although the factorization (1) appears very attractive from both a theoretical and a practical
point of view, it is known that it holds true only for some processes (see Li and Shao [2001], Lifshits
[2012] and references therein) and there is no global theory that assesses its validity for a general
process X. To compensate for this lack, some alternatives have been proposed (see Delaigle and
Hall [2010], Bongiorno and Goia [2017]).

In this paper, a three terms factorization proposed in Bongiorno and Goia [2017] is considered:
given ¢ € H, a separable Hilbert space, as h — 0,

p(x,h) ~ fa(llaz)Va(h)Ca (2, h) , (2)

where f;(II4z) is the pdf of the first d principal components, Vj is the volume of the d-dimensional
ball of radius h and Cy (z, h) € (0, 1], depending on z, h and d denotes a suitable correction factor.
While f; and V; maintain the same meaning of ¢ and ¢ respectively in (1), making possible the
use of fy in density based techniques (e.g. Bongiorno and Goia [2016], Jacques and Preda [2014]
and references therein), the factor Cy has never been analyzed or used for statistical purposes.

The aim of this work is to fill this gap deepening the knowledge of Cy(x,h) to understand
what role it plays in factorizing the SmBP, how it can modify the assessments made on the process
and/or on its SmBP and, finally, how it can be exploited in the applications in identifying a local
dimension to parsimoniously represent z. At the first glance, looking at the factorization (2), Cy
provides a compensation for the use of the finite dimensional factorization f;Vjy; in particular, the
closer the correction factor and zero are, the worse the factorization f;V; is in approximating the
SmBP. This implies that, instead of using the sole f; in the density based statistical applications,
one should employ its adjusted version ¥g = f43Cy. Going deeper, this work studies the behaviour
of Cy(z,h) varying = by means of some bounds. For some processes, it is proven that Cy (z, h)
reaches its maximum over all the points in the space Hy generated by the first d eigenfunctions of the
covariance operator of X. These latter results allow to interpret Cy (z, h) as a local measure of the
quality of the representation of x as an element of Hy. As a consequence, in this paper the correction
factor is used to customize the dimension used in the truncated Karhunen—Loeve representation
of each curve of a given sample defining a novel local reduction dimensionality principle that can
be seen as an alternative to the well known fraction of explained variance which leads to a unique
dimension for all the curves. Further, the average behaviour of Cy is also studied, leading in a
natural way to charaterize finite dimensional processes.

To make Cy usable in practice, a kernel-type nonparametric estimate is provided exploiting
the fact that, by its own definition, Cy is a conditioned mean. For this estimator, it has been
proved that the rate of convergence in quadratic mean is the optimal one. As a by—product,



similar results are derived for the surrogate density f; and its adjusted version 4. By using the
proposed nonparametric estimate of the correction factor, a local reduction dimensionality algorithm
is proposed, implemented and its performances are analysed by means of a Monte Carlo simulation
study. Finally, the new technique is applied to two real datasets.

The outline of the paper goes as follows. Section 2 formally introduces factorization (2). Sec-
tion 3 discusses various aspects of the correction factor proposing some interpretations, properties
and potential uses. Section 4 studies nonparametric estimators for fyz, Cyq and 4. Section 5 in-
troduces the local reduction dimensionality algorithm which is tested by means of simulations.
Applications to two real cases are illustrated in Section 6. Finally, proof of theoretical results are
collected in Appendix.

2 Preliminaries: a factorization result

Let (2, F,P) be a probability space and H = L'[QOJ] be the Hilbert space of square integrable real

functions on [0, 1], endowed with the standard inner product (g, h) = fol g () h (t) dt and the induced
norm ||g||* = (g,g). Consider a measurable map X defined on (£, F) taking values in (H, B), where
B denotes the Borel sigma-algebra induced by || -||. Assume that the mean function and covariance
operator of X, defined by px = {E[X (t)],t € [0,1]} and X [] = E[{X — pux, ) (X — ux)] respec-
tively, are well posed. Consider the Karhunen—Loéve expansion associated to X (see e.g. Bosq
[2000]): denoting by {)‘jvfj};; the decreasing to zero sequence of positive eigenvalues and the
associated orthonormal eigenfunctions of the covariance operator Y, the random curve X admits
the representation X (t) = px (1) + 32,5, 0;§; (), 0 < t < 1, where 0; = (X — ux,§;) are the
so—called principal components (PCs in the sequel) of X satisfying E[6,] = 0, Var (6;) = ); and
E[6;0;/] =0, j # j'. From now on and without loss of generality, assume that px = 0.

Consider the following assumptions:

A1 ¢(z,h) >0, for any x € H, and h > 0.

A.2 The center x € H of the ball B(z,h) = {||X — z|| < h} satisfies x? < ¢ Aj for any j > 1,
where z; = (, ;) for some strictly positive constant ci; that means that projections z; of
decay to zero at most with the same rate of \/E and in some sense z is sufficiently close to
the process along all directions §;.

A.3 Denote by II; the projector onto Hy the d-dimensional space spanned by {¢; ?:1, and by Hj
its orthogonal projector.

(a) The first d PCs, Iz X = (61,...,04)", admit a joint strictly positive probability density,
¥ € R f4(9). Moreover, fy is twice differentiable at ¥ = (¢1,...,94) € R%, and
there exists a strictly positive constant co (not depending on d) for which

‘ a2fd C2o fd(de)

9)| <
819161%( )‘ o \/W

for any d € N, 4, j < d and ¢ such that >, ,(J; — z;)? < p? for some p > h.

(b) The r.v. |II7(X — z)||*/h? admits a strictly positive density whose support includes
(0,1).



It is worth noting that the last assumption includes, for instance, the case of Gaussian Hilbert—
valued processes.

The following result, proved in [Bongiorno and Goia, 2017, Theorem 1], provides a three terms
factorization of the SmBP introducing the correction term that plays a main role along all the

paper.

Proposition 1 If A.1-A.8 hold, then, for a finite strictly positive integer d and a given point
€ Ly,
e(@,h) ~ fa(llaz)Va(h)Cq (x,h)  for h =0 (2)

where Vy(h) = h@w¥/2 /T (d/2 + 1) is the volume of the d—dimensional ball with radius h,

Calrh) =8 [<<1 B W) ]I{HH(J{(X—m)PS}ﬂ})d/z

and H(Jf denotes the orthogonal projector of 11,.

Maz| €(0,1] (3)

In other words, for a fixed d and as h — 0, the SmBP (z, h) behaves as fq(I142)Va(h)Cy (x, h),
the usual first order approximation of the SmBP in a d-dimensional space f;(Ilzz)Vy(h) up to the
scale factor Cy (x,h). Changing d affects all the terms in the factorization but asymptotic in (2)
still remains true. A sketch of the proof of Proposition 1 is proposed in Appendix, more details can
be found in Bongiorno and Goia [2017] and Bongiorno and Goia [2018].

3 The correction factor C,

This section focuses on the scale factor Cy (x, h), defined by (3), showing how it provides a local
index of dimensionality and a characterization for finite dimensional processes.

In order to understand the role of Cy (z,h) in the infinite dimensional setting, it is useful to
preliminarily consider what happens in the finite dimensional case. In fact, if H = RP, D > 1, and
the probability law of X is dominated by the Lebesgue measure on R”, then, as 0 < d < D,

o(x,h) ~ fp(x)Vp(h)
Vp(h)

= fd(deU)Vd(h)me—d(HiﬂﬂdJC)

Cy(z,h)

where fp(z) and fp_q(Il;z|l14z) denote the joint distribution of X and the conditional one of
HjX given I; X = Il x respectively. In other words, Cy (z, h) combines the information about the
conditional probability law of the last components given the first ones with a suitable volumetric
ratio and compensates for the information lost when one tries to approximate a D-dimensional
distribution with a d-dimensional one. Clearly if the probability law of X can be represented in a
lower dimension (say d < D), then correction factor can be dropped.

Moving back to the infinite dimensional setting, since the densities cannot be defined in general,
the conditional mean Cy(x, h) surrogates the conditional law of IT+ X given I1;X = Iz multiplied
by a volumetric part, acting as a correction factor which shrinks the overestimate of the SmBP
at « provided by fq (IIgx) Vg (h). In fact, fq (Ilgz) reflects the probability behavior of X only on



the subspace H, neglecting the probability effects of the process on the orthogonal subspace H j‘
which are then captured by Cqy(x,h). To fix the idea, consider x € H for which x; # 0 for some
j > d, that, in the following, is named as d-high frequency curve. The larger |;| //A; are for some
j > d, the smaller is the probability of {||II; (X —z)||?> < h?} and the closer to zero is Cy (,h).
This pushes SmBP to zero even if the corresponding surrogate density fy (Ilgz) is large. As a
consequence, the use of f; as the pseudo-density in the statistical applications (such as clustering
density based approaches, discriminant methods, or mode computation) could lead to biased results
and interpretations because the pseudo—density f; could associate too much importance to the d—
high frequency curves. So, whenever one needs the evaluation of the pseudo-density, a good practice
in applications would be to use the adjusted pseudo-density q(x, h) = fq(Ilgz)Cq(z, h) instead of
fa(Mazx) even if C4(x,h) implicitly includes a volumetric part of the SmBP. In fact, since this
volumetric part is common to all the x € H its effects on 14 may be assumed to be homogeneous
over all x. In this perspective, the correction factor may be seen as a local measure at x of the
goodness of the SmBP approximation via fy (Ilgz) Vg (h).

3.1 Some bounds

At this point, it is clear the importance of exploring what is the range of Cy as a function of x, h
and d and, to do this, some bounds are provided in the following proposition whose proof can be
found in the Appendix A.2.

Proposition 2 Given A.1-A.3 and denoting Aqp, = {||1l7 (X — z)[|* < h?}, then for any x and
h >0,

1 1/2
0<Cq(z,h) < <1h2]E[||Hj(Xx)||2|}IAM1,de]> d=1 (4)

_d+2

1
2h?

1
E [ (X —2)|?|La,, = 1,14z] < Cq(z,h) < l—ﬁE (|7 (X —2) ||°|La,, = 1,1142]
(5)

Such a bounds confirm what said above on the values of Cy (z, h) when z is a d-high frequency
curve. On the other hand, given that

E [I0g (X =) |*|La,,, = 1,Taz] < |0ga|? +E [||IT3 X]*| La,, = 1,Tgz],

whenever x € Hy (a d-low frequency curve), then x; = 0 for any j > d and the inferior bound (5)
increases leading greater values than if x is a d—high frequency curve. Anyway, thanks to A.3.b,
the expectations in Proposition 2 are strictly positive and, consequently, all the upper bounds are
strictly smaller than 1.

In some cases, it is possible to prove that Cq(x,h) admits a maximum as shown in the next
proposition whose proof is in Appendix A.2.

Proposition 3 Given A.1-A.3. Fiz h > 0 and a strictly positive integer d. Assume that ((1 —
[T (X — ) ||2/h2)]1{\|Hj(X7:1:)H2<h2})d/2 is uncorrelated with {IyX = Uyx}. Then, Cy(z,h) ad-
mits a mazimum Mg (h) over H and it is achieved for any x € Hy.

Roughly speaking, the maximum of Cq (z, h) is reached at any point € Hy such that z; = 0 for

any j > d. Note that the uncorrelation hypothesis holds true for all the processes with independent
PCs as, for example, the Gaussian processes.

d>1.



As a consequence the results illustrated in this section, Cy (x, k) can be of help in identifying
the d—low frequency curves leading to a parsimonious representation of them. In fact, the closer
Cy (z,h) and My (h) are, the more accurate the representation of x over the subspace Hy is: addi-
tional dimensions do not substantially improve the quality of the approximation. In this view, the
correction factor provides a local index of dimensionality that could replace the use of the Fraction
of Explained Variance (FEV) which instead furnishes a global measure of dimensionality. This
idea is the starting point for a new local reduction dimensionality approach that is presented in
Section 5.

3.2 A finite dimensionality characterization result

Results above are stated in the case of a infinite dimensional process for which the factorization (2)
holds true. For a finite dimensional process, there exists a positive integer dy such that for every
d > dy assumption A.3.b fall since ||II} (X — Z)HZ /h? = 0 a.s.. In this situation, the factorization
still holds true for each d < dy, while for d = dy the factorization simplifies to fq, (Il4,z) Va, (h).
This means that Cy(z,h) (whose definition is well posed regardless of the factorization) allows to
characterize the finite dimensionality of a process as shown in the next result.

Proposition 4 Let X' be an independent copy of X, d a strictly positive integer and h > 0. Then
the following statements are equivalent:

i) E[Cq (X', h)] =1;
ii) Cq (X' h) =1 a.s.;
iii) Agy1 = 0;
iv) the process admits the following finite dimensional representation X = 2?21 0;&; a.s..

The smallest d for which one of the above statements holds true is dy, that is the dimension of
the process X. If such a minimum does not exists then X is a infinite dimensional process.

Suppose that one wants to test the null hypothesis that X has dimension dy. Then one could
test that E [Cy, (X', h)] equals one against less than one, but this is equivalent to test that Agy+1 = 0
for which some statistical procedures have been already explored (see Bathia et al. [2010] and Hall
and Vial [2006]).

4 Nonparametric Estimate

Consider a sample X1,...,X,, drawn from X, nonparametric estimates of f; (z) and Cy (z,h) are
provided: combining them, one gets also a nonparametric estimate of the adjusted pseudo—density
Q/Jd (m, h)

For what concerns the first, consider the Parzen—Rosenblatt estimator

fan (x) = nlb‘f ZKl <|Hd()l(;1x)|> -

where by is a bandwidth (in general depending on n) and K is a suitable kernel.



For the second term, consider X’ an independent copy of X and define the real r.v.

Y= <(1 - W) H{||H;<Xx'>|2<h2}>d/2’ @)

then Cy (x, h) can be seen as the regression function of Y, given the d-dimensional random vector
7 = 114X’ at X’ = x. This interpretation suggests a way to estimate nonparametrically Cy by
means of the classical Nadaraya—Watson approach:

/2
[T (X — )|
Can (z,h) Zwl x,bs) (( d s H{Hnj(xi—x)\l?ShZ} (8)

where
Ko([[Ha(Xi — 2)[|/b2)

>, Ko(Ma(X; = )] /b2)

with by being a bandwidth (in general depending on n) and K» a suitable kernel.
Combining (6), (8) and (9) one also gets the following

VYan(x,h) = fan (x) Can (v, h) (10)
that, whenever K1 = Ky = K and b; = by = b, simplifies to

Yan(x, h) bd Z (( w> ]I{”Hj(xi—x)|2§h2}>d/2K (”Hd(Xg_x)”> . (11)

Note that the latter is nothing but the f;, whose series arguments are adjusted by a factor depend-
ing on || (X; — ). This means that ¢, depends on ||II7(X; — z)| and [[4(X; — z) (whose
sum gives || X; — z||), differently from f4, that depends only on ||II4(X; — x)]|.

Now, to derive some consistency results for the introduced estimators, consider the following
additional assumptions:

w; (x,by) = (9)

A4 fy(z) is a bounded function, p times differentiable at € R?, with p > 2;
A5 the sequences {b; =b;,}, j = 1,2, satisfy: b; — 0 and nb;i/logn — 00 as M — 00;

A.6 the kernels K, K5 are Lipschitz, bounded, integrable density functions with compact support
[07 1};

A7 ast — oo, P(||X —z|| > t) = o(exp{—rt}) for any strictly positive integer r.

Assumptions A.4—A.6 are standard hypothesis in the nonparametric framework, while A.7 im-
plies that all the moments of | X — z|| are bounded and holds for a wide family of processes,
including the Gaussian ones.

Theorem 5 Under assumptions A.1-A.7, choosing
Clnfl/@zﬁd) <bh < Canl/@Per), (12)
can~ Y/ @Fd) < b < oY/ 2pd) (13)

for some strictly positive constants c1,cz,cs,ca, and for a given h > 0, then fq,, Can(x,h) and
Yan(x,h) are L?-consistent estimator of fq(x), Cy(x,h) and 1g(x, h) with the optimal rates



(Z) E |:(fd,n (1') - fd ($))2] =0 (nfzp/(2P+d))!
(i) E [(Cd,n (z,h) = Cq (x, h))ﬂ = O (n~2/(r+a))

(iti) E |(tan(eh) = Yalz, 0)’] = O (n~20/Gr+D).

It is worth noticing that the proposed estimators involve the projectors II; and Hfl- that, in
practice, are not available and must be estimated from data. This leads to define new estimators
plugging the empirical versions of the projectors in (6), (8) and (10). Hence, the resulting estimators
are

Yan(t,h) = fan (@) Can (2, h) (14)
Fin (@ dZK M
nb{ =

R /2
HJ' Xl — X 2
Cdn (x,h) sz 7, bo) ((1 - ”d(hz)”> ]I{Iﬁ;(x,;_x)”zghz}) (15)

with ~
Ko (|[Ha (X5 — 2)|[/b2)

> FKa([Ta(X; — )] /b2)

In the special case K1 = Ko = K and by = by = b, (14) is estimated by

~ /2
(X, — 2 i _
V() = w§:<< ”d(mzw”>ﬁmﬁ&ﬁw@mﬂ K<”Az>x”>'

The following results hold for the introduced estimators fd,n, éd,n and @d,n.

W, (x,bz) =

Theorem 6 Under assumptions A.1-A.7 fdm (2), é\d,n (x,h) and @d,n(x, h) are L?-consistent es-
timators of fq(x), Cq(x,h) and pg(z,h) for any d > 2 and h > 0. Moreover, if one chooses the
optimal bandwidths as in equations (12) and (13) the optimal rates are achieved:

(i) E (fdn (2) — fa (a:))z] — O (2w 2rr),

(i) E _(éd,n (z,h) — Cy (z, h))T — O (n2w/ e,

(iti) E _(zzdm(x, h) — qa(z, h))z} -0 (n—QP/(Qp-‘rd))_



5 Local dimension selection criterion

Given a sample of curves a typical criterion to approximate them is to use a truncated version of
the Karhunen—Loeéve decomposition. The selection of the dimension of the subspace on which the
curves are projected is often based on the well-known fraction of explained variance (FEV), that is
d
DV
FEV (d) = %100%
Zj:l Aj

where A; are the eigenvalues of the covariance operator of the process that, since unknown in
practice, are usually estimated by their empirical versions. The chosen dimension is heuristically
selected in order to obtain a large enough ammount of the FEV (for instance, a reasonable threshold,
could be about 90%). This criterium is global in the sense that it selects the same dimension
for all the curves of the sample which could be too large (or too small, resp.) for some curves
producing inefficient (or inadequate, resp.) representations. Moreover, if the sample size is small,
the estimation of eigenfunctions associated to the lowest eigenvalues suffers of problems that worsens
the representation quality.

Intuitively, the quality of reconstructions can be improved customizing the choice of dimension
for each curve through a local-based methodology. To do this, one can exploit the nature of the
correction factor Cy and, in particular, its ability in distinguishing d-low and d-high frequency
curves (see Section 3). What follows illustrates an algorithm that, based on estimates of Cyg,
provides a local-based reconstruction of a set of curves.

Consider a sample of curves {X;,i =1,...,n} and a set of centers {x;,7 =1,..., N} (that may

coincide with the sample). The idea is to reconstruct x; over the subspace Hd; = span {51, . ,Ed;

where d is chosen as the smallest d for which Cy(x;, h) is close enough to the upper bound Mg(h)
given in Section 3. Such proximity is heuristically quantified by considering if (My(h) — Ca(x;, 1)) /Ma(h)
is larger or smaller than «, with o € (0, 1) being a given threshold. In practice, for all j =1,..., N,

the chosen dimension for x; is

d* = min {d €{1,...,dmas} : Can (x5, h) > (1 — ) z\?d,n(h)} , (16)

where d,,q, is a suitable strictly positive integer, (?d,n is defined by (15) and the empirical maximum
over the sample ]\/Zd,n (h) = max; (?*d,n (X, h) provides an estimate of My(h). If, for a given curve,
an optimal dimension is not found, the procedure assignes to it the dimension d,q, + 1.

If djnas can be easily selected by using the FEV, the choice of the parameter « is instead a more
delicate matter. Indeed, if o were too small, there would be a risk of systematically chose too large
dimensions, producing conservative results and less parsimonious reconstructions. Conversely, if «
were too large, the dimensions d} would be too small, providing imprecise reconstructions. Therefore
the choice of a must balance the trade-off between the variability of d} (over the sample) and the
estimation error of the reconstructions. The impact of the choice of « is illustrated in the numerical
examples in the following.

5.1 An introductory example

To understand how the algorithm works in practice and what kind of results produces, an illustrative
example is here detailed.
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Figure 1: Left: sample of curves. Right: distributions of é\dm varying d and their maxima.

Consider a sample of n = 200 curves generated according to

Q
Xi(t)=> VAgZgitg(t)  te0,1],i=1,...,n (17)

where @ = 20, Z,; are i.i.d. standard Gaussian r.v.s, ¢4 is the g-th term of the Fourier basis

9q (1) = V2 cos (2mmt — 7) qg=2m

and A\, = 2(2¢=1)7/2 Fach trajectory is discretized over a grid of 100 equispaced points. The left
panel in Figure 1 visualizes that curves.

The first step is to estimate the bounds My(h) over this sample used as a training—set. To do
this Cy is estimated for d = 1,...,19 by using the nonparametric estimator introduced in Section 4
and then the maxima My, (h) are calculated. In this preliminary study, the radius h is chosen as
the 10%—quantile of the estimated norms Hﬁd (Xi — Xj)

a percentage (not smaller than 30%) of the range of the same quantitites, following a data—driven
approach in order to guarantee that the weights w; (x;,b2) are well defined. In the right panel of
Figure 1 the distributions of éd,n (X, h) for any d and their maxima are depicted.

The second step is to evaluate the algorithm performance in reconstructing curves. Therefore,
consider a test—set of N = 300 curves x; (¢) generated according to (17) with:

, whereas the bandwidth by is selected as

e @=2forj=1,...,100,

e Q=4 for j =101,...,200,

e Q=7 for j =201,...,300.

Using (16) with 1 — a = 0.99, the local dimension dj is estimated for each of these curves,

obtaining the frequency distribution plotted in the left panel of Figure 2 with average 3.52 and

10



Square Error x 100

80
L

25

15

40
L

20

05

}

=l =

O,Di DDD T T
1 2 3 5 6 7 3 3.52 4 5 6

d Dimension

Figure 2: Left: distribution of estimated dimensions dj. Right: distribution of ISEs varying the
dimensions (x denotes the mean).

I Q-] 2 4 71
1 60
P 82 21 1
3 2 34 11
4 45 15
5 19
6 23
7 31
100 100 100

Table 1: Joint frequency distribution of the selected d against the true dimensions Q.

standard deviation 1.76. To appreciate the ability of the algorithm in detecting parsimoniously the
dimension of a curve, the joint frequency distribution of the selected d} and the true dimensions Q
of the curves x; is reported in Table 1. Naturally, it is reasonable that a curve x; generated with
a given ) could be well represented in lower dimension than @), whereas it is desirable that the
algorithm does not pick an higher dimension than Q.

To conclude the experiment, the quality of the approximation have to be evaluated. Then, the
classical approximations by the Karhunen—Loeve expansion X? = Ilgx; are computed for d = dj
and with a fixed common d for all the curves (d = 1,...,19). The goodness of the approximations
is measured by the classical quadratic L?-norm, namely the Integrated Square Error:

w&wzé(ﬁw—ﬁmfﬁ (18)

where the integral is approximated by summation. Table 2 collects the means and standard devia-
tions of errors (18) obtained when one uses d or a global d (only results with d <9 are reported);
the values have been multiplied by 100 to improve the readability. For the sake of completeness,
the FEV (d), estimated on the data, are provided. It arises that the approximations based on
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d dr 1 2 3 4 ) 6 7 8 9
FEV (d) | 3.52 | 80.4% 90.1% 93.7% 95.6% 96.9% 97.7% 98.2% 98.5% 98.8%
Mean 0.148 | 7.055 2.169 1.038 0477 0.259 0.117 0.027 0.022 0.021
St. dev. | 0.152 | 7.512 2.899 1.461 0.862 0.493 0.266 0.026 0.021  0.020

Table 2: Means and standard deviations of ISE(d) (results are multiplied by 100) obtained when
one uses the proposed algorithm or global dimensions.

local dimensions provides a mean error of a comparable order as that corresponding to a global
dimension 6, for which the FEV is greater than 97%. To better understand the behaviour of these
errors varying the selected dimension, the right panel in Figure 2 visualizes their distributions for
d = 3,4,5,6 and when d7 are used (in the plot, the average dimension is reported on the horizontal
axis). The box—plots highlight the good performances resulting from the employ of the local-based
algorithm for dimension selection. Note that if one takes as global dimension d = 3 or d = 4, that
are the closest dimensions to the mean of d; that is 3.52, the mean error would be much bigger.

5.2 Simulation study

In the following simulation study, an experiment similar to the one conducted in the previous section
is replicated many times under different experimental conditions, in order to assess the stability
of the introduced procedure and to show what happens when one modifies the parameter «, the
radious h of the ball, the size n of the training—set sample and the nature of the process.

More in detail, let consider training—sets of curves generated according to (17) with ¢, the
g-th term of the Fourier basis, A\; = 22¢=1)7/2 and Q = 20. The random coefficients Zg;i in the
expansion are choosen i.i.d. standard Gaussian r.v.s and i.i.d. standardized Student ¢ with 5 degree
of freedom: in the first case the PCs are independent, while in the second are only uncorrelated.
Samples of small (n = 50), medium (n = 100) and relatively large sizes (n = 200) are used. For
what concerns the parameters in the algorithm, 1 — a = 0.9,0.95,0.97,0.99, d;,q. = 15, whereas h
should be small enough to guarantee that the SmBP factorization makes sense but avoiding that
the balls {||X; — X,|| < h} are sistematically empty; a reasonable choice is to consider the quantile

of the estimated norms Hﬁd (X; — Xj)H of order 5% and 10%. The test—set consists of 10 blocks of

100 curves, generated according to (17), each one with fixed dimension @ =1, ..., 10, for a total of
N = 1000 curves.

For each experimental setting, 1000 Monte Carlo replications are conducted and, for each of
them, the mean of the selected dimensions (denoted by d.,, m = 1,...,1000) and the ISEs (18)
are computed.

The box-plots in Figure 3 show the empirical distributions of the means of the errors (values
are multiplied by 100) calculated in the Gaussian and Student ¢ case with n = 200, when both
the global dimensions d = 3,...,7 and the local ones provided by the algorithm are exploited
(h is set as the 10%—quantile of the estimated norms and 1 — a = 0.99). In the graphics, the
values on the horizontal axis associated to the box-plots obtained from the proposed algorithm
(highlighted by a grey box) are the averages of the means a;. Both plots show the good quality of
the approximations gotten in reconstructing the curves with customized dimensions. For instance,
in the Gaussian case, with a mean dimension of 4.26, results comparable to those obtained using
d = 6 are obtained (FEV (6) is about the 98%): the reconstruction appears choerent with the

m?
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n =200, 1-a =0.99, Gaussian n =200, 1-a =0.99, Student t
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Figure 3: Empirical distributions from 1000 Monte Carlo replications of the means of the ISEs
(multiplied by 100) for the Gaussian (left) and the Student ¢ (right) cases. In each panel, the third
box—plot from the left refers to the introduced algorithm; on the horizontal axis it is printed the
mean of the dimension averages obtained by each Monte Carlo replication.

chosen mixture of the test—set curves and globally parsimonious.

To allow a general overview on the whole experiment, tables 3 and 4 collect a summary of results
under the different experimental conditions; the first table belongs to the Gaussian case, whereas
the second to the Student ¢ one. The first 8 lines of each table contain the results obtained by
applying the new algorithm varying 1 — «, and the remaining 8 the ones with global dimensions
d = 3,4,5,6. Since, when one uses the algorithm for the different sample sizes n and choices
of h, each Monte Carlo replication generates a mean dimension and a mean of the I.SFESs, in the
higher part of the tables a synthesis is provided by the means and the standard deviations of these
quantities: the first columns refer to the dimension, the second ones to the error; the standard
deviations are in brackets. In the lower part of the table, since the dimensions are fixed, only the
means and the standard deviations of the mean of I.SEs from each repetition are reported. To
allow a more effective reading, errors are multiplied by 100.

As a general comment, the algorithm produces parsimonious and precise reconstructions of
the curves in a more efficient way than the FEV selector can do, for almost all the proposed
parameter constellations, also for rather small sample sizes. More in detail, one observes that the
best performances on the errors are achieved when h is the 10%—quantile of estimated norms and
1 —a =0.99: in such cases, the mean errors are comparables with those obtained by globally using
d = 6. Clearly, the employ of the 5%—quantile for h can be reasonable only for large sample sizes.
The expected trade-off between a and the selected dimensions appears evident: trying to stay as
close as possible to the maximum My leads to a more effective representation in terms of error, but
less efficient in terms of parsimony (E:n decreases when 1 — « increases). Note that, since in this
controlled experiment the mean dimension of the test-set is 5.5, the choice 1 — a = 0.99 could be
seen as a good compromise for n = 100 and n = 200, whereas 1 — a = 0.95 can be used for n = 50.

13



6 Applications

In this section, the methodology proposed and illustrated in Section 5 is applied to two real datasets.
For both examples, after a brief description of the dataset, the approximation by means of local
and global dimensions is performed and its quality is evaluated by using the ISEs, following a
cross-validation approach.

6.1 Tecator dataset

The first example illustrated involves the well-known Tecator dataset. It consists of 215 spectra
in the near infra-red (NIR) wavelength range from 852 to 1050 nm, discretized on a grid of 100
equispaced points, corresponding to the same number of finely chopped pork samples. The sample
of spectrometric curves is visualized in the top panel of Figure 4. The curves appear rather smooth
and it is well known that a shift is present: in fact, the empirical FFEV (d) reaches 99.58% and
99.9% for d = 2 and d = 3 respectively, and a good representation of the curves can be obtained
by using d = 3.

One might wonder if the proposed algorithm provides more parsimonious representations man-
taining a comparable precision. To do this, the dataset is split randomly in two parts: the first
one, containing 200 curves, is used to estimate the bounds My(h) for d = 1,...,5, whereas the
remaining part {x;,j =1,...,15} is used to evaluate the local dimensions d; and the correspon-
dent ISEs. For what concerns the algorithm parameters, h is the 10%-quantile of the estimated
norms coherently with the link between this parameter and the sample size (see simulations),
1—«a =0.85,0.86,...,0.99, and d;o; = 5. Given the small size of the test-set, the procedure is
repeated 100 times: in each replication, the means of I.SEs obtained using both a global dimension
d and the local one are computed, as well as the mean dimension E:n.

To select a reasonable threshold 1 — «, which is able to balance parsimony and accuracy, it
could be useful to observe the behaviour of the mean errors with respect to the means of selected
dimensions and to relate it to the mean errors obtained when a global dimension d is used (see the
bottom left panel of Figure 4, where the latter errors are visualized by horizontal lines). From the
graphic it emerges that it is better to select 1 — a rather small, corresponding to a mean dimension
smaller than 2. In fact, choosing for instance 1 — a = 0.87, the mean of the mean dimensions E,*n is
1.91 to which corresponds a mean error 0.068: the customization of dimensions produces an efficient
representation of the curves, when compared with that which would occur when global dimensions
are adopted. This is made evident by looking at the distributions of the mean ISEs (whose values
multiplied by 100) plotted in the bottom right panel of Figure 4.

6.2 Neuronal dataset

The second example proposed deals with a dataset coming from a behavioural experiment performed
at the Andrew Schwartz motorlab at University of Pittsburgh. In that experiment, a macaque
monkey performed a centre-out and out-centre target reaching task with 26 targets in a virtual
3D environment while its neural activity was recorded (see Todorova et al. [2014] for details). The
dataset collects 1000 curves representing the voltage of neurons versus the time, discretized over a
grid of 32 equispaced points normalized between 0 and 1. A sample of 30 of such a curves selected
randomly, together with the empirical mean, is shown in the left panel of Figure 5. In the right
panel of the same figure, the first three estimated eigenfunctions are shown; note that the process
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n— 50 100
h — 5% 10% 5% 10% 5% 10%
1-—«a a ISE dr ISE dr ISE a ISE dr ISE dr ISE
0.9 4.032 0.812 3.539 0.868 3.476 0.691 3.166 0.770 3.387 0.590 3.090 0.694
(0.618) (0.243)  (0.507) (0.209) | (0.294) (0.165)  (0.261) (0.148) (0 183) (0.107)  (0.166) (0.102)
0.95 4.823  0.646 4.426  0.621 3.973  0.518 3.762 0.519 3.810 0.415 3.638 0.436
(o 768) (0.214)  (0.677) (0.171) | (0.359) (0.138)  (0.321) (0.114) | (0.217) (0.088)  (0.199) (0.077)
0.97 5.267 0.584 4.984 0.530 4.262  0.455 4.110  0.429 4.014  0.352 3.910 0.346
(0.846) (0.204)  (0.773) (0.156) | (0.423) (0.129)  (0.375) (0.102) | (0.237) (0.080)  (0.220) (0.068)
0.99 5.808 0.525 5.749  0.443 4.667 0.394 4.628 0.344 4.275  0.294 4.256  0.265
(0.937) (0.194)  (0.897) (0.142) | (0.522) (0.119)  (0.495) (0.089) | (0.282) (0.073)  (0.266) (0.058)
#DPC ISE ISE ISE
3 1.538 1.387 1.317
(0.137) (0.070) (0.045)
4 0.912 0.781 0.718
(0.090) (0.047) (0.028)
5 0.587 0.470 0.414
(0.068) (0.037) (0.023)
6 0.391 0.285 0.236
(0.054) (0.026) (0.014)

Table 3: Gaussian case — Means and standard deviations (in brackets) of mean dimensions and
mean I.SEs obtained by each Monte Carlo replication varying the sample size, the choice of i and
1 — o, compared with the means and standard deviations of mean ISEs when a global dimension d

is used.
n— 50 100 200
h — 5% 10% 5% 10% 5% 10%
1— o d ISE d ISE d ISE d ISE d ISE d ISE
0.9 4.508 0.598 3.951  0.667 3.758  0.502 3.402 0.588 3.571  0.428 3.255 0.523
(0.727) (0.196)  (0.638) (0.188) | (0.609) (0.127)  (0.505) (0.137) | (0.490) (0.096)  (0.415) (0.109)
0.95 5.377 0.469 4.957 0.470 4.380 0.369 4.126 0.390 4.086 0.296 3.885 0.324
(0.893) (0.172)  (0.830) (0.152) | (0.797) (0.106)  (0.771) (0.104) | (0.671) (0.076)  (0.641) (0.077)
0.97 5.847  0.421 5.571  0.397 4.742°  0.320 4.565 0.317 4.362  0.249 4.233° 0.254
(0.976) (0.163)  (0.938) (0.137) | (0.884) (0.097) (o 871) (0.090) | (0.743) (0.068)  (0.726) (0.066)
0.99 6.416  0.375 6.392 0.328 5.239°  0.273 5.216  0.249 4.737  0.204 4.721  0.190
(1.075) (0.154)  (1.079) (0.124) | (1.011) (0.088) (1.025) (0.077) | (0.829) (0.060)  (0.837) (0.054)
#DPC ISE ISE ISE
3 1.591 1.412 1.327
(0.217) (0.148) (0.118)
4 0.958 0.794 0.727
(0.143) (0.082) (0.059)
5 0.620 0.484 0.419
(0.104) (0.062) (0.038)
6 0.416 0.299 0.242
(0.078) (0.045) (0.029)

Table 4: Student t case — Means and standard deviations (in brackets) of mean dimensions and
mean [SEs obtained by each Monte Carlo replication varying the sample size, the choice of h and
1 — a, compared with the means and standard deviations of mean ISEs when a global dimension d
is used.
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Figure 4: Top: Tecator dataset. Bottom Left: behaviour of mean dimension and mean error.
Horizontal lines refer to mean errors for global dimensions. Bottom Right: empirical distributions
of the means of the ISEs.

underlying the data appears rather concentrated: the first 3 estimated PCs explain the 97.3% of
the total variance, whereas using 6 PCs allows to achieve a FEV equal to 99%.

A two-fold cross-validation is performed: the dataset is randomly split in half, obtaining a
training—set of 500 curves used to estimate My and a test—set of as many of curves on which the
local dimensions and the corresponding approximation errors are computed, as well as the errors
got when a global dimension is used. The parameter 1 — « is set as in the first example whereas,
because of the large size of the training—set, h has been selected as the 5%—quantile of the estimated
norms. Finally, d,,.. is fixed to 15.

Observing the behaviour of the mean errors varying the means of selected dimensions and
comparing it with the mean of I.SEs computed when a global dimension is assigned (see the left
panel in Figure 6), one can note that with a mean dimension 10.03 (obtained when 1 — a = 0.91)
one has the same mean error as with a fixed dimension 11, whereas with a mean dimension 11.02
(corresponding to 1 —a = 0.94) one reaches performances equivalent to those with global dimension
12.

From a parsimonious perspective, it is reasonable to choose 1 — a = 0.91; Figure 6 shows the
distributions of selected dimensions d; (middle panel) and of ISEs for global and local dimensions
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Figure 5: Neuronal experiment. Left: a random sample of 30 curves (in grey) and the empirical
mean (in black). Right: the first three estimated eigenfuntions with the corresponding explained
variance.

(right panel with the grey boxplot corresponding to the proposed algorithm). Thanks to the curve
dimension customization procedure, it is then possible to achieve a better quality of the approxi-
mation (both in terms of mean and variability) than that which would be obtained by assigning
a global dimension. In particular, the method suggests that few curves could be well represented
in low dimension, and to obtain a good approximation quality, one needs from 9 to 12 PCs to
approximate the most part of the test—set.

A Appendix
A.1 Sketch of the proof of Proposition 1

Fix d € N, x € H and define

Si=Si(dx) =) (0, — (x,§))*, S=S(dhax)= 22 — (2, &),

Jj<d j>d+1

then applying the Parseval’s identity,
o(z, h) :]P(||X—x||2 < h2) =P (S +h2S<h?) =P({Si<h2(1-8)}n{o<S<1})
1
:/ P (S < (1—5)h? S =s)fs(s)ds
0

where fg is the pdf of S that is strictly positive on (0,1) thanks to A.3.b. Now, the first order
approximation gives, for h — 0,

P(S) < (1-8)h%| S =s) ~ fas (Wazls) Va (I —s ),
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Figure 6: Neuronal experiment. Left: behaviour of mean dimension and mean error. Middle: the
distribution of selected dimensions. Right: distributions of ISEs in the test—sample.

where fy s is the pdf of (8]S) that is fifsja/fs and Vg(h) is the volume of Bq(0,h) C R?. Note
that both fg s fsja are well defined and strictly positive thanks to A.1 and A.3. Finally, Bayes’s
theorem applied to fys provides the considered factorization, as h — 0,

1
(b, ) ~fa (Tgz) Va(h) / Fsja (s|Taz) (1 — )2 ds

=fa (Waa) Va(W)E [ (1 = $) Lyozsny) | Taz].

A.2 Proofs of propositions of Section 3

Proof of Proposition 2. Consider Equation (4). The lower bound is a consequence of the
definition of C;. For what concerns the upper bound, by Jensen inequality one gets

(6 ) )

I (X — 2)|? 12
< (=] (- )
where

HJ_ X — 2
E [(1 — M) Ia,, I, , = 1,331} P (Ayp)1)

C1 (z,h) =E

h2
I (X =) |2
h2

1 . 2
‘ ] - [1- ML 2]

<[t

]IAl,h = 1,.1'1:| .

Consider now Equation (5). In order to prove the lower bound, consider the Bernoulli inequality
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(1—3s)">1—rsforany s €[0,1] and r > 1 to get

Cq(z,h)=E _ ((1 _ W) ]IAth)dm

Hda:

[ d
> (1 gt (X - ) ) L, | s

=E

I (X — ) |

d
1-— W‘ ]IAd,h = I,Hd$:| P(Ad)h\ﬂdw)

d
= P(Ad7h|Hd.Z‘) — WE [Hl_[dl (X — Z‘) HQ‘ HAd,h = 1,Hdl‘] P (Ad)h‘Hd.’L‘)
d
> P (Aqp|TMaz) = 515 [Ty (X — ) [|*|1a,, = 1,Haz] .
Applying Markov inequality it holds

1 d
Ca (l’,h) >1- ﬁE [HH(J{ (X - ‘T) ”2’ ]IAd,h, = laHdI} — 55K [”H(Ji_ (X - JC) ||2| I[Ad,h = 17de]

2h?
_dt2

=1 242 E [”H(Ji_ (X - SC) ||2| I[Ad,h - 17Hd$] .

For what concerns the upper bound, noting that (1 — s)r/2 <1—sforany s €[0,1] and r > 2, one

has
[ M4 (X — ) |2 vz
Cq(z,h) =E <(1 - ”d(hQI)) HAd,h)

[ I+ (X — ) ||
cu[(1- O RY,

T (X — ) ||?
h2

HdCC

HdiL':|

=E|1-

1
<1 - SE[IG (X =) |*[1a,, = 1,Taz] .

HA(“L = 1,Hd.r:| P(Ad,h)

]
Proof of Proposition 3. In this proof, the following notations are used

v =gz,  w@ey =Tgz, | flqr =g |

|X — a3, i
Cq(x,h) = Cq (x(a) + x(qr),h) =E 1- o H{\IX*J/’IILS}I?} )| - (19)
Clearly, x(q) € Hq = span{&1,...,&a}, 2(qr) € Hy, @ = x@y+ sy, | (X — )0y 150 = X —z]|30
and

My (h) = sup Cyq(x,h) = sup sup  Cq (z(a) + vy, h) .
z€H x(d)EHdm(dL)eHd*
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/2
. X —a| ; ;
Given the fact that <(1 -0 dL> ]I{HX71‘H3L <h2}> is uncorrelated with {X(d) = x(d)}, the

conditioning in (19) can be dropped leading to

((1 - ||X;;”i) Wiz, W})d/?] (20)
= /H; ((1 — W) H{|yw|ZL<h2})d/2 dPx . (v) (21)

Cd (x,h) Cd( di),h) =K

where PX(dL) is the probability law of X41). Hence, My (h) = SUDy, . cH} Cy ( (dL)s h) and to
get the thesis, it is enough to prove that Mgy (h) = C4 (0, h) where 0 here denotes the null element
in H dl

Note that My (h) is strictly positive thanks to A.3.b and since the expectation argument in (20) is
strictly positive over {||X — z||2. < h?} and null otherwise. Moreover, by definition of supremum,
consider a sequence {z(n)}, oy C Hz such that Cq(x(n),h) — Mg(h) as n — oo. Such a
sequence must be bounded (i.e. ||z (n)|qr < ¢) otherwise there will be a subsequence {z (nj)}
for which ||z (ng)| ;. — oo as k — oo and, by reverse triangular inequality [| X — a (ng) [|3. >

(IX |42 = [l (n&)]l 42)?, it holds Lfjx- and

(n)%, <h2} = { 114 =l ()l 1 )*<h2}

Cy(x(ng),h) <E H{( —0< My (h), k — o0,

2
X0 g2 =l (re) 42 )* <h2 }

that contradicts the fact that My (h) > 0. Thus, since {z (n)} is bounded, there exists a subsequence
that, without loss of generality is still denoted by {z (n)} and, weakly converges to an element
m € Hy (ie. (x(n),y) — (m,y) for any y € Hf as n — o).

The element m is a maximizer of Cy (w41, h) over Hz if {x (n)} strongly converges to it.
Indeed in this case, by the dominate convergence theorem, it is possible to exchange the limit and
the integral obtaining the following chain of equalities

/2
oy o ly — 2 (n) ||
Mg (h) = lim Ca(z(n),h) = Tim ” (<1 ) Mee, <n2) Px 1y W)
dj2
_ . ly — 2 (n) 152
- /H; i ((1 - h2 Wiy-atmiz, <n2} ) TPXary W)

= Cy(m,h).

In what follows it is shown that {z (n)} strongly converges to m in Hz. To do this, consider
6 >0, n € N and the subset of

= {y € Hy :liminf |y —x (n) |7 > |y —mll3. + 6},
§={yveHi:ly—z®) i >lly—mli +6,k>n}
for which IPX(dL)

strongly converge to m, then it is known that lim inf |ly—x (n) |2, > |ly—ml[3. and lims_,o+ Px (a1) (4s) =

(A7) — ]P)X(dL) (As) as n — co. By contradiction assume that {x (n)} does not
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1. Fix 6y < h? such that IF’X(dl) (A5) > 0. By limit definition for any & > 0, there exists

0 < &g such that P(As) > 1 — ¢ or equivalently Px A§) < e. Thus, denoting by f (X —z) =

a2
(=1 =23 ) Ty e ) i bolds

@ (

lim (Co (& (1) ) — Ca (m, 1)) = lim [ (F(y—a(n) ~ f(y—m))dPx,,., (&)

n— oo n—oo HJ‘
d

=1m1<A (f (y = (n) = f (y = m)) dPx ) (4) +

n—oo n
%0

‘&%yﬁ%qwxm»f@m»w&#¢m+

[ e U-s@) - f-m)dEx ., W) @2
(43,) ncan© "
By definition of A} , one has

| G-s ) - - m) s, )
A

50

dj/2 d/2
_ Ly 3N oy = mlE N Py (&)
= Jan h2 {ly=z ()12, <h2} h2 {ly=mi2, <n2} | © X1y W

%0
/2
ly —mll3.
— (]_ — 7}7/2 H{Hy*mHZL+50§h2}d]P>X(dL) (y)

<[ [(- e
= Jay h2 h2

and, because (1 — [ly —m|[3. /h? — 50/h2)d/2 < (1-y- m||(2#/hQ)d/27 there exists dg > 0 such
that

| =2 ) = F = m) ) ) < <P, (X =l <2 =0} 0143,) = —m.

n
50

d/2

Because A§ D As, (Ago)c N As = @ and the second addend in (22) is null. Moreover, since
(Ago)c N (45)° C (A5)° one has

/(Agb)cn(Anc (fly—2z(n) = fly—m))dPx ., (v) < /(AS)C (f ty =z () = f (y—m)) dPx,,., ()

c
<Px(, ((Aa) ) <e
and, thanks to the arbitrariness of &, the third addend in (22) is not positive. Thus,
Md (h) = lim Cd (LL’ (’I’L) ’ h) < Cd (m7 h) — 7o
n—oo

that is in contrast with the supremum definition of My (k) and thus {z (n)} must strongly converges
to m.
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It remains to prove that m = 0 (the zero element in H7) or equivalently that |m| s = 0. The
proof procedes by contradiction using similar arguments as above and for this reason some details
are skipped. In particular, given a sequence {x (n)} strongly convergent to m, the following sets
are considered

Bs ={y € Hy :liminf |y — 2 (n) |32 > [ly3. + 6},
By ={yeHy :|ly—a (k)5 > llyl5. +6,Vk >n}

for which PX(dL) (BY) — ]PX(dL) (Bs) as n — oo. By contradiction assume that ||m| 4o > 0, then
liminf |y —a (n) |2, > |ly[|%. and lims_,q+ Px 41y (Bs) = 1. Fix 8y < h? such that Px o) (Bs) > 0.

By limit definition, for any € > 0 there exists § < dg such that P(Bs) > 1 — € or equivalently
PX(dL) (Béc) < e. Thus, using similar arguments as above,

and, then
Md (h) = lim Cd (QZ (TL) , h) S Cd (O, h) — Mo

that, once again, contrasts with the supremum definition of My (h) and implies that m =0 € H, dl.
[
Proof of Proposition 4. Note that

E[Cy(X',h)] =E |E ((1— I (X — X 1, X’

/2
2 ) H{|n§<X—X/)|2§h2})

((1 B W) H{|n;(qu|2<hz})d/2] :

Because Cy (X', h) < 1, then E[Cy (X', h)] = 1 is equivalent to Cq (X',h) = 1 a.s. to |7 (X —
X')||> =0 as. and to E [||II7 (X — X')||?] = 0 (see e.g. [Shiryayev, 1996, p.185]) that proves i) <
i1). Now, using the explicit expression of HjX , thanks to the orthonormality of the eigenfunctions
and the independence of X and X’ (and consequently of their PCs), then

=E

E [T (X = X)[] = B [|[TTg X|*] + B [|[T17 X'||*] - 2B [ X, I X")]

=2 Z \j— 2R <Z 0;&;, Z 9;§j>

§>d+1 j>d+1 §>d+1
=2 ) N-2 > E[g0]=2 > ).
jzd+1 jzd+1 jzd+1

Hence, ii) < i) if and only if A\; = 0 for any j > d + 1. Finally, iii) < iv) is a consequence
of the fact that, for a zero mean process, the Karhunen—Loeve expansion is X (t) = Zj>1 0;&; (1),
0<t<1, withE[f;] =0and Var(f;) =\, withj > 1. = B
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A.3 Proofs of theorems in Section 4
Proof of Theorem 5. The statement (i) is a consequence of classical results on kernel density
estimation (see Stone [1980]) which guarantees that, for a fixed z, d and h, if one chooses the
optimal bandwidth (12), the optimal rate is n—2r/(2p+d) - On the other hand, because 0 <Y < 1
(see definition (7)), classical results on kernel regression estimators applies (see Stone [1982]) and
then, choosing the bandwidth (13), the optimal rate (ii) is achieved. For what concerns (iii), it
holds
E [ (W (2, h) = ba(w, )] < 2 [(fan (@) Can (2.h) = fa (&) Can (2. 1))?]
+ 2B [(fu (2) Can (2,h) = fa (@) Ca (2, 1))?] .
Since Cy n, Cq <1 and fy < m (a strictly positive constant),
E [(an(,h) = balz, 1))?] < 2B [(fun (@) = fa (2))’]
+2mE [(cd,n (z,h) — Cy (z, h))2]
and finally thanks to (i) and (ii) the thesis is completed. m

Next proof invokes some technical Lemmas that are stated and proved in the next section.
Proof of Theorem 6. For what concerns (i), note that

| (Fan @)~ fa (@) | < 28| (Fan @) = fin @) | 4 28 (a0 (0) ~ 1o @)
where, thanks to Lemma 7,
R [(fdn (@) — fun (x)ﬂ = o (n-w/Crt)
while Theorem 5 guarantees that

E[(fan (2) = fu(2)?] = O (n-20/Crt ).

For the second statement (ii), consider

R 2 ~ 2 2
E (cd,n (z,h) — Cy (:c,h)) } < 9E {(cdvn (2,h) — Can (x,h)) } +2E [(cdm (z,h) — Cy (z, h)) ] .
The second addend is O (n_2p/ (2p+d)) (see Theorem 5), while for the first one it holds

E

(édn (z,h) — Can (z, h))2] <9E [(édn (z,h) — Can (z, h))Q] +9E {(@,n (z,h) — Can (2, h))g]

where

Ay N ([ Mg =) P K(|Ta(Xs — 2)|l/b2)
Caon (@ h) = ; ((l h2 > H{Iﬂi(xri—z)|2§h2}> Zj Kz(Hﬁd(Xj _ x)||/b2)
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Note that, differently from ai’n, in 5d,n the projector ITF is not estimated as if Y (see Equation (7))
was fully observed without errors. Lemma 8 provides that, for d > 2,

- .
E (C’d,n (x,h) = Cyn (z, h)) =0 (n_zp/(2p+d)) ,
whereas Lemma 9 gives

E

_(dlm (z,h) — 5‘(17” (, h))Q- _ (n_gp/(2p+d)) '
Finally, to prove (iii), consider
~ ) - ,
o[-t ] 222
+ 28 (W ) — e, )]

Properties of the second addend are explored in Theorem 5, while for the first addend, because
0<Cqn <1and fq, <m,it holds

E | (Fan(e1) = an(e)) | < 28 | (Fan 0 Catn (2:1) = fin () (1) | +

2R [( Fan () Cap (@,h) = fan (@) Can (x, h))Q]

< 2R {(fdn @) = fan (:E))Q] +2mE {(édn (,h) = Can (a, h)ﬂ :
Using (i) and (ii) in the latter the thesis is achieved. m

A.4 Technical Lemmas

In this section, the following notations are considered

suwy= 3o (M5 ) S (Hﬁdu;—m)\\) -

i=1

Z (z) = iYiK (W) . Zy(2) =) VK (M) (24)

i=1
so that
Sn = §n
fan@) =20 f () = Bl
Cd,n (l’, h) = gﬂ Ei; ) Cd,n (.’E, h) = gﬂ Ei;
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and the following events
Ai = {Vi < ba} B ={Vi<bu}

where Y; is defined in (7), V; = ||II4 (X; — )], Vi = Hﬁd (X; — :E)H and, to unburden notations, by,

denotes by ,, or by, according to the setting.

Lemma 7 Assume A.1-A.7, then for d > 2, if one chooses the optimal bandwidth like in (12),

then
E {( Fim (2) = fan (x)ﬂ _, (n72p/(2p+d)> .

Proof. The proof follows similar arguments of those in Biau and Mas [2012] where the same thesis
is achieved under the assumption that X is bounded and only giving some hints for a more general
setting. In that paper, it is shown that

B | (Fan ()~ fan (@) ]

M, — 10 n

c H d dHoo

< E||lL Moo X; — || 1,
(b b ;:1 | X — ]

2
nb) i=1

where ¢ denotes a general strictly positive constant.
FIRST STEP. Counsider the first addend of the right hand side of (25); for i = 1,...,n, let
U, = ||X; —z||Ia, —E[||X; — z||14,] and write

E (HHd—ﬁde (g”Xi—a:HHAi))Z < 9E (HHd—ﬁde <§;U>>2

2
# 20 (B 13—l L E |- ] o
Results in Biau and Mas [2012] guarantee that

[l -o(2)

while the fact that Cov (|| X1 — || ,14,) <0, Assumption A.7 and E [I4,] ~ b2 give
{E1X — 2| La,]}” < E[I1X1 - 2[])* (E[La,])* = O (527) - (28)

Hence, (27) and (28) provide

n

on? (E[| X; — || 14,]}°E U(Hd - ﬁdeJ =0 (nb2?) . (29)
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For what concerns the first addend in the right hand side of (26), applying Chauchy—Schwarz

inequality one gets
4 n :
< |E [HndﬁdH ]]E [(Z Uz-) ] (30)
° i=1

e (oo (5))

Results in Biau and Mas [2012] guarantee

o[- ]-o () o

while, denoting by W; = || X; — z|| 14, and by W,, the mean of {W;},

: [(g) _ [(z o, —E[wm>4] & [ - nE W)

i=1
The latter fourth moment can be bounded by using the second centered moment of W = || X — z||I4
(see, as instance, Dodge and Rousson [1999]) as follows

= n'E [(Wn ~E [Wﬂ)“} .

E[W-EWD] 30-1

E (iU) = nt - + = (IE [(W—E[W])QD

—0 <n2 (]E (W2 — (B [W])2>2) ) (n2 (E [WQ])2> +0 (n2 (E [W])4> :

that, using similar arguments to get (28), gives

E (zn: Ui> =0 (n?%). (32)

Combining (31) and (32) in (30) one gets

E (HHd - ﬁde (z: Ui>>2 =0 (bY). (33)

Hence, using (33), (29) in (26) one gets that the first addend of the right hand side of (25) can be
bounded as follows

(b)E (H“d—ﬁde (i_ilxi—wllh,i))z =W(o<bz)+o(nbzd>>=o(;b2)_

n

Finally, choosing the optimal bandwidth like in (12), it holds that 1/ (nb2) = o (n=2P/(2p+d)),
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SECOND STEP. For what concerns the second addend of the right hand side of (25) note that

E (Z (]IAiOEi + HA'LmBi)) <2E <Z HAiﬂBi> +2E <Z HAiﬂBi>
i=1 i=1

i=1

2

and, because the two addend can be treated similarly, it is sufficient to focus on the first addend.
To do this, define the sequence k,, with x, — 0 as n — oo, and using the same argument as in
[Biau and Mas, 2012, Lemma 5.5] it holds

E (ZHAmBi> <2E (Zﬂ{bn(l—nn><w3bn}> +2E (ZﬂﬂﬁdHd||||Xiw|>n,,Lb,,L}H{wgbn}>
i=1 1=1

i=1

2

(34)
and

n 2
E <Z H{bn(lfin)<vi<bn}> =0 (nQbid/@i) . (35)

i=1

About the second addend in (34), define the sequence t,, with ¢, — oo as n — oo and consider
n 2
E (Z;H{ﬁd_nd||||xi_x|>wn}ﬂ{vi<bn}>
i=
n 2
=E (2 Lt~ b ) Vebn) (Tpixiali<ta) + H{||Xim|>tn})>
=
n 2
<2E (Z;]I{|ﬁd—Hd|||Xi—z|>nnbn}ﬂ{|xix||<tn}]I{Vz‘<bn}>
i=
n 2
+2E <Z;H{||ﬁd_nd||xi_m|>nnbn}ﬂ{|xix|>tn}ﬂ{vi<bn}>
n 2
< 2 L)y 11| > b /) (2} H{vi<bn}>

n 2
+2E (Z H{|Xiz|>tn}ﬂ{vi<bn}> (36)

i=1

Results in [Biau and Mas, 2012, Lemma 5.5] give

2
n Kby
E H{||ﬁd7HdH>Kﬂn,bn/tn} (Z H{%S’M}) = n20 <6XP <Cn o) )) . (37)
=1

For what concerns the second addend in the right hand side of (36), as a consequence of Jensen
inequality, the fact that Cov (H{\|X1—$H>tn}7H{Hnd(Xl—l‘)HSbn}) <0, E [H{Hnd(xl—w)HSbn}] ~ bﬁ and
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Assumption A.7, then one has, for any strictly positive integer r,

2 2
n 1 n
2
E (Zﬂuxizlm}ﬂ{vxbn}) =nk <nzﬂ{|xiz|>tn}ﬂ{vi<bn}>

i=1 i=1

1 n
<n’E [n Zﬂ{lxi—ﬂnn}ﬂ{wsm}]
=1

2
= 10°E [I{)x, —a >t} 1100 (X1 )| <bn}

2
< 7E [Igx,—af>t0}) E [T, —o)l<bn}]
B (X~ 2] > 4B

=o0 (n%ﬁe—””) . (38)
Thus, combining the bounds (34), (35), (36), (37) and (38) one has

2 272 /42
¢ exp (—cnk2 b2 [t2 exp (—rt,
E (Z (]IAmBi+]IAmBi)> :O(/@i)—&-()( ( 2 )> —&—O(E)d )>

2
(nb%) i=1

(39)

Finally, to prove that the latter bound is o (n‘zp/@p"’d)) we have to choose b, x, and t,. Once

again by, is chosen to be the optimal bandwidth like in (12), whereas for &, let consider the following
choice,

log® (nb%)

log® (nbi)
@ nb?

2
< ks <cg
- nb?

, for some 0 < ¢5 < cg < +0

which guarantees that the first addend of the right hand side of (39) and x2 are o (n=2/(2P+d)),
for any d > 2. For what concerns t,, note that, because of the last two addends of the right hand
side of (39), it should satisfy nk2b2 /t2 — oo and t,, — co. Hence

t2 =o(nkibl) =o (log8 (nb2))
so that a suitable choice for ¢,, might be
cr log4 (nbi) < t% < cg log4 (nbi) , for some 0 < ¢7 < cg < +00

for which b,,?? exp (—Cnr2b2 /t2) and e~ "' /bl are o (nfzp/@p*d)). This concludes the proof. m

Lemma 8 Assume A.1-A.7, then for d > 2,
~ 2
E [(Cd,n (2, h) — Cap (2, h)) ] -0 (n—zp/(2p+d)) ,

Proof. Consider the decomposition

~

() Sy () — Sy () 1 ~
@ S @ 5@ (20 @) = 20 )

Can (x,h) — Cqp (x,h) =

SR



where the involved objects are defined in (23) and (24). Since 0 < Y; < 1, similar arguments as in
Biau and Mas [2012] lead to write

E [(@n (z,h) — Can (z, h))z] <c
where

E [(Zn (z) = Zn (a:)ﬂ
(nbd)? - (nbd)?

Lemma 7 gives the thesis. m

Lemma 9 Assume A.1-A.7, then for d > 2,
A ~ 2
E |:(Cd,n (x,h) — Can (z, h)) } =0 (n*2p/(2p+d)>
Proof. Consider

K (| Ta(X; — )] /b2)
> Fo(|[a(X; — @) /ba)

Y, Y-

(éd,n (2, h) — Can (z, h)) < . (40)

About the numerator in (40), note that because ((1 - %) H{tghz})d/z is a Lipschitz function with
respect to t on [0,00), then there exists a strictly positive constant L’ such that

Y- Y| =

<L

—~ 2
It (% - o) - - ]
Now, Parseval identity allows to write:
2 E 2 2 9 ~ 2
et 6= ] = [ = o = 1=l = s, = ) (1 = ol = Lt = )
~ 2 9
= [facx: = )| = Ima(x: = @)

and hence,

~

~ 2
Y- vi| < 1|l = o) - I - o))

< L|Ia(X; = @)l] = (X - )|

29
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where the latter inequality is a consequence of g (t) = t? being Lipschitz.
The reverse triangle inequality, the definition of operatorial norm and the boundedness of the
projectors give

[ITLa(X: = )| = ITa(X: = 2) ] < [Tl (X3 = @) = T (X; = )
SHHd—HdH [ Xi — x|,

and thus, because the strictly positiveness of K5, the numerator of the left hand side of (40) can
be bounded as follows

[Facx - o [acx — o]
| K, T <LHHd HdH ZHX 2| Ko . (41

Since K> is a decreasing function, the algebraic Chebychev inequality (see, for instance, [Mitrinovié
et al., 1993, page 243]) gives

ZHX ] K [ = ] < T3 IXi-al ZK
=1

and so, combining equations (40), (41) and (42), it follows

Eics (¥~ ¥) Kall (X, - )1/t < o - i (1i|X —xn)

=) [pucx =]

(42)

=t ([ )
Thus

B | (Can (0.1~ G (01)) | < 128 (Hnd i (i > - xn
i=1

4
~ 4 1 <&
< L2 EHH fHH ol = N p
< { d 4 n ; [ z||
where the latter follows from the Chauchy—Schwarz inequality. Results in [Biau and Mas, 2012,

Theorem 2.1 (iii)] provides
4 1
e [Jr-a ] o ()
o] n

while the strong law of large numbers and Assumption A.7 guarantee that
1< 1<
SN =l = ST X — el — E(IX — 2l + E[1X — 2] = Op (1),
i=1 i=1

Finally, the last two bounds give

E {(Cyn (z,h) — Can (z, h)ﬂ =0 (i) =0 (n*%/ <2p+d>) .
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