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2DiSEI and AI@UPO, Università del Piemonte Orientale, Italy
3Gnampa, INdAM

February 17, 2021

Abstract

In this work we propose an analysis of the correction term appearing in a Small-Ball Prob-
ability factorization for random elements taking values in a separable Hilbert space. Its local
nature, its meaning and behavior are discussed also through the derivation of some bounds.
Nonparametric kernel–type estimators of the considered statistics are introduced and some
asymptotic properties are provided. Finally, in the context of reconstructing a sample of
curves by truncated Karhunen–Loève expansion, a local approach to select the dimensionality
is illustrated through numerical and real data examples.

Keywords: Hilbert random elements, Karhunen–Loève expansion, nonparametric estimation,
asymptotic theorems

1 Introduction

In the last two decades, functional statistic has consolidated, reaching increasingly deeper levels
of maturity along different directions. As evidence of this, there are several monographs Ramsay
and Silverman [2005], Ferraty and Vieu [2006], Horváth and Kokoszka [2012], Hsing and Eubank
[2015], Kokoszka and Reimherr [2017], many specialized conference proceedings Bongiorno et al.
[2014], Aneiros et al. [2017, 2020] and special issues Goia and Vieu [2016], Ferraty et al. [2019],
Aneiros et al. [2019b,a] that especially in recent years have enriched the literature on this topic.
Nevertheless, in the frenzied rush to explore the enormous potential of functional statistics in the
applications, different aspects has been left underdeveloped. Among these, an overlooked tool is
the small–ball probability (SmBP) that, for a random element X of a metric space H, is ϕ(x, h) =
P(X ∈ B(x, h)) as h → 0 where B(x, h) is the ball centered at x ∈ H with radius h. The main
difficulty, which has limited the exploitation of SmBP in applications, consists in transforming a
purely theoretical concept into a useful operative instrument. In fact, until recently, the use of the
SmBP has been limited to the evaluation of the convergence rates of the estimators emerging from
functional regression problems (see Ferraty and Vieu [2006] and references therein) and, only in the
last decade, few works have given to the SmBP an active role in applications as well. The efforts
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made so far are closely related to the possibility of factorizing the SmBP, for example assuming
that, for any x ∈ H and as h→ 0,

ϕ(x, h) ∼ ψ(x)φ(h), (1)

with the identifiability constraint E[ψ(X)] = 1. The convenience of the above factorization resides
in the fact that it isolates the way the SmBP depends upon x and h (the space and volumetric
variables respectively) and allows to interpret ψ and φ as a surrogate of the probability density of
X (that can not be straightforwardly defined in a infinite dimensional space) and a volumetric term
respectively. This interpretation of the factorization (1) strongly resembles the multivariate case
and has led to define a concept of mode (see Gasser et al. [1998]), to introduce a surrogate-density
(see Ferraty et al. [2012]) and to evaluate the intrinsic complexity or dimension of the underlying
process X (see Bongiorno et al. [2017, 2019, 2020]).

Although the factorization (1) appears very attractive from both a theoretical and a practical
point of view, it is known that it holds true only for some processes (see Li and Shao [2001], Lifshits
[2012] and references therein) and there is no global theory that assesses its validity for a general
process X. To compensate for this lack, some alternatives have been proposed (see Delaigle and
Hall [2010], Bongiorno and Goia [2017]).

In this paper, a three terms factorization proposed in Bongiorno and Goia [2017] is considered:
given x ∈ H, a separable Hilbert space, as h→ 0,

ϕ(x, h) ∼ fd(Πdx)Vd(h)Cd (x, h) , (2)

where fd(Πdx) is the pdf of the first d principal components, Vd is the volume of the d–dimensional
ball of radius h and Cd (x, h) ∈ (0, 1], depending on x, h and d denotes a suitable correction factor.
While fd and Vd maintain the same meaning of ψ and φ respectively in (1), making possible the
use of fd in density based techniques (e.g. Bongiorno and Goia [2016], Jacques and Preda [2014]
and references therein), the factor Cd has never been analyzed or used for statistical purposes.

The aim of this work is to fill this gap deepening the knowledge of Cd (x, h) to understand
what role it plays in factorizing the SmBP, how it can modify the assessments made on the process
and/or on its SmBP and, finally, how it can be exploited in the applications in identifying a local
dimension to parsimoniously represent x. At the first glance, looking at the factorization (2), Cd
provides a compensation for the use of the finite dimensional factorization fdVd; in particular, the
closer the correction factor and zero are, the worse the factorization fdVd is in approximating the
SmBP. This implies that, instead of using the sole fd in the density based statistical applications,
one should employ its adjusted version ψd = fdCd. Going deeper, this work studies the behaviour
of Cd (x, h) varying x by means of some bounds. For some processes, it is proven that Cd (x, h)
reaches its maximum over all the points in the space Hd generated by the first d eigenfunctions of the
covariance operator of X. These latter results allow to interpret Cd (x, h) as a local measure of the
quality of the representation of x as an element of Hd. As a consequence, in this paper the correction
factor is used to customize the dimension used in the truncated Karhunen–Loève representation
of each curve of a given sample defining a novel local reduction dimensionality principle that can
be seen as an alternative to the well known fraction of explained variance which leads to a unique
dimension for all the curves. Further, the average behaviour of Cd is also studied, leading in a
natural way to charaterize finite dimensional processes.

To make Cd usable in practice, a kernel–type nonparametric estimate is provided exploiting
the fact that, by its own definition, Cd is a conditioned mean. For this estimator, it has been
proved that the rate of convergence in quadratic mean is the optimal one. As a by–product,
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similar results are derived for the surrogate density fd and its adjusted version ψd. By using the
proposed nonparametric estimate of the correction factor, a local reduction dimensionality algorithm
is proposed, implemented and its performances are analysed by means of a Monte Carlo simulation
study. Finally, the new technique is applied to two real datasets.

The outline of the paper goes as follows. Section 2 formally introduces factorization (2). Sec-
tion 3 discusses various aspects of the correction factor proposing some interpretations, properties
and potential uses. Section 4 studies nonparametric estimators for fd, Cd and ψd. Section 5 in-
troduces the local reduction dimensionality algorithm which is tested by means of simulations.
Applications to two real cases are illustrated in Section 6. Finally, proof of theoretical results are
collected in Appendix.

2 Preliminaries: a factorization result

Let (Ω,F ,P) be a probability space and H = L2
[0,1] be the Hilbert space of square integrable real

functions on [0, 1], endowed with the standard inner product 〈g, h〉 =
∫ 1

0
g (t)h (t) dt and the induced

norm ‖g‖2 = 〈g, g〉. Consider a measurable map X defined on (Ω,F) taking values in (H,B), where
B denotes the Borel sigma–algebra induced by ‖ · ‖. Assume that the mean function and covariance
operator of X, defined by µX = {E [X (t)] , t ∈ [0, 1]} and Σ [·] = E [〈X − µX , ·〉 (X − µX)] respec-
tively, are well posed. Consider the Karhunen–Loève expansion associated to X (see e.g. Bosq
[2000]): denoting by {λj , ξj}∞j=1 the decreasing to zero sequence of positive eigenvalues and the
associated orthonormal eigenfunctions of the covariance operator Σ, the random curve X admits
the representation X (t) = µX (t) +

∑
j≥1 θjξj (t), 0 ≤ t ≤ 1, where θj = 〈X − µX , ξj〉 are the

so–called principal components (PCs in the sequel) of X satisfying E [θj ] = 0, V ar (θj) = λj and
E [θjθj′ ] = 0, j 6= j′. From now on and without loss of generality, assume that µX = 0.
Consider the following assumptions:

A.1 ϕ(x, h) > 0, for any x ∈ H, and h > 0.

A.2 The center x ∈ H of the ball B(x, h) = {‖X − x‖ ≤ h} satisfies x2
j ≤ c1λj for any j ≥ 1,

where xj = 〈x, ξj〉 for some strictly positive constant c1; that means that projections xj of x
decay to zero at most with the same rate of

√
λj and in some sense x is sufficiently close to

the process along all directions ξj .

A.3 Denote by Πd the projector onto Hd the d–dimensional space spanned by {ξj}dj=1, and by Π⊥d
its orthogonal projector.

(a) The first d PCs, ΠdX = (θ1, . . . , θd)
′, admit a joint strictly positive probability density,

ϑ ∈ Rd 7→ fd(ϑ). Moreover, fd is twice differentiable at ϑ = (ϑ1, . . . , ϑd)
′ ∈ Rd, and

there exists a strictly positive constant c2 (not depending on d) for which∣∣∣∣ ∂2fd
∂ϑi∂ϑj

(ϑ)

∣∣∣∣ ≤ c2√
λiλj

fd(Πdx)

for any d ∈ N, i, j ≤ d and ϑ such that
∑
j≤d(ϑj − xj)2 ≤ ρ2 for some ρ ≥ h.

(b) The r.v. ‖Π⊥d (X − x)‖2/h2 admits a strictly positive density whose support includes
(0, 1).
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It is worth noting that the last assumption includes, for instance, the case of Gaussian Hilbert–
valued processes.

The following result, proved in [Bongiorno and Goia, 2017, Theorem 1], provides a three terms
factorization of the SmBP introducing the correction term that plays a main role along all the
paper.

Proposition 1 If A.1–A.3 hold, then, for a finite strictly positive integer d and a given point
x ∈ L2

[0,1],

ϕ(x, h) ∼ fd(Πdx)Vd(h)Cd (x, h) for h→ 0 (2)

where Vd(h) = hdπd/2/Γ (d/2 + 1) is the volume of the d–dimensional ball with radius h,

Cd (x, h) = E

[((
1− ‖Π

⊥
d (X − x)‖2

h2

)
I{‖Π⊥

d (X−x)‖2≤h2}

)d/2∣∣∣∣∣Πdx

]
∈ (0, 1] (3)

and Π⊥d denotes the orthogonal projector of Πd.

In other words, for a fixed d and as h→ 0, the SmBP ϕ(x, h) behaves as fd(Πdx)Vd(h)Cd (x, h),
the usual first order approximation of the SmBP in a d–dimensional space fd(Πdx)Vd(h) up to the
scale factor Cd (x, h). Changing d affects all the terms in the factorization but asymptotic in (2)
still remains true. A sketch of the proof of Proposition 1 is proposed in Appendix, more details can
be found in Bongiorno and Goia [2017] and Bongiorno and Goia [2018].

3 The correction factor Cd

This section focuses on the scale factor Cd (x, h), defined by (3), showing how it provides a local
index of dimensionality and a characterization for finite dimensional processes.

In order to understand the role of Cd (x, h) in the infinite dimensional setting, it is useful to
preliminarily consider what happens in the finite dimensional case. In fact, if H = RD, D > 1, and
the probability law of X is dominated by the Lebesgue measure on RD, then, as 0 < d < D,

ϕ(x, h) ∼ fD(x)VD(h)

= fd(Πdx)Vd(h)
VD(h)

Vd(h)
fD−d(Π

⊥
d x|Πdx)︸ ︷︷ ︸

Cd(x,h)

where fD(x) and fD−d(Π
⊥
d x|Πdx) denote the joint distribution of X and the conditional one of

Π⊥d X given ΠdX = Πdx respectively. In other words, Cd (x, h) combines the information about the
conditional probability law of the last components given the first ones with a suitable volumetric
ratio and compensates for the information lost when one tries to approximate a D–dimensional
distribution with a d–dimensional one. Clearly if the probability law of X can be represented in a
lower dimension (say d < D), then correction factor can be dropped.

Moving back to the infinite dimensional setting, since the densities cannot be defined in general,
the conditional mean Cd(x, h) surrogates the conditional law of Π⊥d X given ΠdX = Πdx multiplied
by a volumetric part, acting as a correction factor which shrinks the overestimate of the SmBP
at x provided by fd (Πdx)Vd (h). In fact, fd (Πdx) reflects the probability behavior of X only on
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the subspace Hd neglecting the probability effects of the process on the orthogonal subspace H⊥d
which are then captured by Cd(x, h). To fix the idea, consider x ∈ H for which xj 6= 0 for some
j > d, that, in the following, is named as d–high frequency curve. The larger |xj | /

√
λj are for some

j > d, the smaller is the probability of
{
‖Π⊥d (X − x)‖2 ≤ h2

}
and the closer to zero is Cd (x, h).

This pushes SmBP to zero even if the corresponding surrogate density fd (Πdx) is large. As a
consequence, the use of fd as the pseudo-density in the statistical applications (such as clustering
density based approaches, discriminant methods, or mode computation) could lead to biased results
and interpretations because the pseudo–density fd could associate too much importance to the d–
high frequency curves. So, whenever one needs the evaluation of the pseudo-density, a good practice
in applications would be to use the adjusted pseudo-density ψd(x, h) = fd(Πdx)Cd(x, h) instead of
fd(Πdx) even if Cd (x, h) implicitly includes a volumetric part of the SmBP. In fact, since this
volumetric part is common to all the x ∈ H its effects on ψd may be assumed to be homogeneous
over all x. In this perspective, the correction factor may be seen as a local measure at x of the
goodness of the SmBP approximation via fd (Πdx)Vd (h).

3.1 Some bounds

At this point, it is clear the importance of exploring what is the range of Cd as a function of x, h
and d and, to do this, some bounds are provided in the following proposition whose proof can be
found in the Appendix A.2.

Proposition 2 Given A.1–A.3 and denoting Ad,h =
{
‖Π⊥d (X − x) ‖2 ≤ h2

}
, then for any x and

h > 0,

0 < Cd (x, h) ≤
(

1− 1

h2
E
[
‖Π⊥d (X − x) ‖2

∣∣ IAd,h = 1,Πdx
])1/2

d = 1 (4)

1−d+ 2

2h2
E
[
‖Π⊥d (X − x) ‖2

∣∣ IAd,h = 1,Πdx
]
≤ Cd (x, h) ≤ 1− 1

h2
E
[
‖Π⊥d (X − x) ‖2

∣∣ IAd,h = 1,Πdx
]

d > 1.

(5)

Such a bounds confirm what said above on the values of Cd (x, h) when x is a d–high frequency
curve. On the other hand, given that

E
[
‖Π⊥d (X − x) ‖2

∣∣ IAd,h = 1,Πdx
]
≤ ‖Π⊥d x‖2 + E

[
‖Π⊥d X‖2

∣∣ IAd,h = 1,Πdx
]
,

whenever x ∈ Hd (a d–low frequency curve), then xj = 0 for any j > d and the inferior bound (5)
increases leading greater values than if x is a d–high frequency curve. Anyway, thanks to A.3.b,
the expectations in Proposition 2 are strictly positive and, consequently, all the upper bounds are
strictly smaller than 1.

In some cases, it is possible to prove that Cd (x, h) admits a maximum as shown in the next
proposition whose proof is in Appendix A.2.

Proposition 3 Given A.1–A.3. Fix h > 0 and a strictly positive integer d. Assume that ((1 −
‖Π⊥d (X − x) ‖2/h2)I{‖Π⊥

d (X−x)‖2≤h2})
d/2 is uncorrelated with {ΠdX = Πdx}. Then, Cd (x, h) ad-

mits a maximum Md (h) over H and it is achieved for any x ∈ Hd.

Roughly speaking, the maximum of Cd (x, h) is reached at any point x ∈ Hd such that xj = 0 for
any j > d. Note that the uncorrelation hypothesis holds true for all the processes with independent
PCs as, for example, the Gaussian processes.
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As a consequence the results illustrated in this section, Cd (x, h) can be of help in identifying
the d–low frequency curves leading to a parsimonious representation of them. In fact, the closer
Cd (x, h) and Md (h) are, the more accurate the representation of x over the subspace Hd is: addi-
tional dimensions do not substantially improve the quality of the approximation. In this view, the
correction factor provides a local index of dimensionality that could replace the use of the Fraction
of Explained Variance (FEV) which instead furnishes a global measure of dimensionality. This
idea is the starting point for a new local reduction dimensionality approach that is presented in
Section 5.

3.2 A finite dimensionality characterization result

Results above are stated in the case of a infinite dimensional process for which the factorization (2)
holds true. For a finite dimensional process, there exists a positive integer d0 such that for every

d > d0 assumption A.3.b fall since
∥∥Π⊥d (X − x)

∥∥2
/h2 = 0 a.s.. In this situation, the factorization

still holds true for each d < d0, while for d = d0 the factorization simplifies to fd0 (Πd0x)Vd0 (h).
This means that Cd(x, h) (whose definition is well posed regardless of the factorization) allows to
characterize the finite dimensionality of a process as shown in the next result.

Proposition 4 Let X ′ be an independent copy of X, d a strictly positive integer and h > 0. Then
the following statements are equivalent:

i) E [Cd (X ′, h)] = 1;

ii) Cd (X ′, h) = 1 a.s.;

iii) λd+1 = 0;

iv) the process admits the following finite dimensional representation X =
∑d
j=1 θjξj a.s..

The smallest d for which one of the above statements holds true is d0, that is the dimension of
the process X. If such a minimum does not exists then X is a infinite dimensional process.

Suppose that one wants to test the null hypothesis that X has dimension d0. Then one could
test that E [Cd0 (X ′, h)] equals one against less than one, but this is equivalent to test that λd0+1 = 0
for which some statistical procedures have been already explored (see Bathia et al. [2010] and Hall
and Vial [2006]).

4 Nonparametric Estimate

Consider a sample X1, . . . , Xn drawn from X, nonparametric estimates of fd (x) and Cd (x, h) are
provided: combining them, one gets also a nonparametric estimate of the adjusted pseudo–density
ψd(x, h).

For what concerns the first, consider the Parzen–Rosenblatt estimator

fd,n (x) =
1

nbd1

n∑
i=1

K1

(
‖Πd(Xi − x)‖

b1

)
(6)

where b1 is a bandwidth (in general depending on n) and K is a suitable kernel.
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For the second term, consider X ′ an independent copy of X and define the real r.v.

Y =

((
1− ‖Π

⊥
d (X −X ′)‖2

h2

)
I{‖Π⊥

d (X−X′)‖2≤h2}

)d/2
, (7)

then Cd (x, h) can be seen as the regression function of Y , given the d–dimensional random vector
Z = ΠdX

′ at X ′ = x. This interpretation suggests a way to estimate nonparametrically Cd by
means of the classical Nadaraya–Watson approach:

Cd,n (x, h) =

n∑
i=1

wi (x, b2)

((
1− ‖Π

⊥
d (Xi − x)‖2

h2

)
I{‖Π⊥

d (Xi−x)‖2≤h2}

)d/2
(8)

where

wi (x, b2) =
K2(‖Πd(Xi − x)‖/b2)∑
j K2(‖Πd(Xj − x)‖/b2)

(9)

with b2 being a bandwidth (in general depending on n) and K2 a suitable kernel.
Combining (6), (8) and (9) one also gets the following

ψd,n(x, h) = fd,n (x)Cd,n (x, h) (10)

that, whenever K1 = K2 = K and b1 = b2 = b, simplifies to

ψd,n(x, h) =
1

nbd

n∑
i=1

((
1− ‖Π

⊥
d (Xi − x)‖2

h2

)
I{‖Π⊥

d (Xi−x)‖2≤h2}

)d/2
K

(
‖Πd(Xi − x)‖

b

)
. (11)

Note that the latter is nothing but the fd,n whose series arguments are adjusted by a factor depend-
ing on

∥∥Π⊥d (Xi − x)
∥∥. This means that ψd,n depends on ‖Π⊥d (Xi − x)‖ and ‖Πd(Xi − x)‖ (whose

sum gives ‖Xi − x‖), differently from fd,n that depends only on ‖Πd(Xi − x)‖.
Now, to derive some consistency results for the introduced estimators, consider the following

additional assumptions:

A.4 fd (x) is a bounded function, p times differentiable at x ∈ Rd, with p ≥ 2;

A.5 the sequences {bj = bj,n}, j = 1, 2, satisfy: bj → 0 and nbdj/ log n→∞ as n→∞;

A.6 the kernels K1,K2 are Lipschitz, bounded, integrable density functions with compact support
[0, 1];

A.7 as t→∞, P (‖X − x‖ > t) = o (exp {−rt}) for any strictly positive integer r.

Assumptions A.4–A.6 are standard hypothesis in the nonparametric framework, while A.7 im-
plies that all the moments of ‖X − x‖ are bounded and holds for a wide family of processes,
including the Gaussian ones.

Theorem 5 Under assumptions A.1–A.7, choosing

c1n
−1/(2p+d) ≤ b1 ≤ c2n−1/(2p+d), (12)

c3n
−1/(2p+d) ≤ b2 ≤ c4n−1/(2p+d), (13)

for some strictly positive constants c1, c2, c3, c4, and for a given h > 0, then fd,n, Cd,n (x, h) and
ψd,n(x, h) are L2–consistent estimator of fd (x), Cd (x, h) and ψd(x, h) with the optimal rates

7



(i) E
[
(fd,n (x)− fd (x))

2
]

= O
(
n−2p/(2p+d)

)
,

(ii) E
[
(Cd,n (x, h)− Cd (x, h))

2
]

= O
(
n−2p/(2p+d)

)
,

(iii) E
[
(ψd,n(x, h)− ψd(x, h))

2
]

= O
(
n−2p/(2p+d)

)
.

It is worth noticing that the proposed estimators involve the projectors Πd and Π⊥d that, in
practice, are not available and must be estimated from data. This leads to define new estimators
plugging the empirical versions of the projectors in (6), (8) and (10). Hence, the resulting estimators
are

ψ̂d,n(x, h) = f̂d,n (x) Ĉd,n (x, h) (14)

f̂d,n (x) =
1

nbd1

n∑
i=1

K1

(
‖Π̂d(Xi − x)‖

b1

)

Ĉd,n (x, h) =

n∑
i=1

ŵi (x, b2)

((
1− ‖Π̂

⊥
d (Xi − x)‖2

h2

)
I{‖Π̂⊥

d (Xi−x)‖2≤h2}

)d/2
(15)

with

ŵi (x, b2) =
K2(‖Π̂d(Xi − x)‖/b2)∑
j K2(‖Π̂d(Xj − x)‖/b2)

.

In the special case K1 = K2 = K and b1 = b2 = b, (14) is estimated by

ψ̂d,n(x, h) =
1

nbd

n∑
i=1

((
1− ‖Π̂

⊥
d (Xi − x)‖2

h2

)
I{‖Π̂⊥

d (Xi−x)‖2≤h2}

)d/2
K

(
‖Π̂d(Xi − x)‖

b

)
.

The following results hold for the introduced estimators f̂d,n, Ĉd,n and ψ̂d,n.

Theorem 6 Under assumptions A.1-A.7 f̂d,n (x), Ĉd,n (x, h) and ψ̂d,n(x, h) are L2–consistent es-
timators of fd (x), Cd (x, h) and ψd(x, h) for any d > 2 and h > 0. Moreover, if one chooses the
optimal bandwidths as in equations (12) and (13) the optimal rates are achieved:

(i) E
[(
f̂d,n (x)− fd (x)

)2
]

= O
(
n−2p/(2p+d)

)
,

(ii) E
[(
Ĉd,n (x, h)− Cd (x, h)

)2
]

= O
(
n−2p/(2p+d)

)
,

(iii) E
[(
ψ̂d,n(x, h)− ψd(x, h)

)2
]

= O
(
n−2p/(2p+d)

)
.
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5 Local dimension selection criterion

Given a sample of curves a typical criterion to approximate them is to use a truncated version of
the Karhunen–Loève decomposition. The selection of the dimension of the subspace on which the
curves are projected is often based on the well-known fraction of explained variance (FEV), that is

FEV (d) =

∑d
j=1 λj∑∞
j=1 λj

100%

where λj are the eigenvalues of the covariance operator of the process that, since unknown in
practice, are usually estimated by their empirical versions. The chosen dimension is heuristically
selected in order to obtain a large enough ammount of the FEV (for instance, a reasonable threshold,
could be about 90%). This criterium is global in the sense that it selects the same dimension
for all the curves of the sample which could be too large (or too small, resp.) for some curves
producing inefficient (or inadequate, resp.) representations. Moreover, if the sample size is small,
the estimation of eigenfunctions associated to the lowest eigenvalues suffers of problems that worsens
the representation quality.

Intuitively, the quality of reconstructions can be improved customizing the choice of dimension
for each curve through a local–based methodology. To do this, one can exploit the nature of the
correction factor Cd and, in particular, its ability in distinguishing d–low and d–high frequency
curves (see Section 3). What follows illustrates an algorithm that, based on estimates of Cd,
provides a local–based reconstruction of a set of curves.

Consider a sample of curves {Xi, i = 1, . . . , n} and a set of centers {χj , j = 1, . . . , N} (that may

coincide with the sample). The idea is to reconstruct χj over the subspace Hd?j
= span

{
ξ1, . . . , ξd?j

}
where d?j is chosen as the smallest d for which Cd(χj , h) is close enough to the upper bound Md(h)
given in Section 3. Such proximity is heuristically quantified by considering if (Md(h)− Cd(χj , h)) /Md(h)
is larger or smaller than α, with α ∈ (0, 1) being a given threshold. In practice, for all j = 1, . . . , N ,
the chosen dimension for χj is

d?j = min
{
d ∈ {1, . . . , dmax} : Ĉd,n (χj , h) ≥ (1− α) M̂d,n(h)

}
, (16)

where dmax is a suitable strictly positive integer, Ĉd,n is defined by (15) and the empirical maximum

over the sample M̂d,n (h) = maxi Ĉd,n (Xi, h) provides an estimate of Md(h). If, for a given curve,
an optimal dimension is not found, the procedure assignes to it the dimension dmax + 1.

If dmax can be easily selected by using the FEV, the choice of the parameter α is instead a more
delicate matter. Indeed, if α were too small, there would be a risk of systematically chose too large
dimensions, producing conservative results and less parsimonious reconstructions. Conversely, if α
were too large, the dimensions d?j would be too small, providing imprecise reconstructions. Therefore
the choice of α must balance the trade-off between the variability of d?j (over the sample) and the
estimation error of the reconstructions. The impact of the choice of α is illustrated in the numerical
examples in the following.

5.1 An introductory example

To understand how the algorithm works in practice and what kind of results produces, an illustrative
example is here detailed.
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Figure 1: Left: sample of curves. Right: distributions of Ĉd,n varying d and their maxima.

Consider a sample of n = 200 curves generated according to

Xi (t) =

Q∑
q=1

√
λqZqiφq (t) t ∈ [0, 1] , i = 1, . . . , n (17)

where Q = 20, Zqi are i.i.d. standard Gaussian r.v.s, φq is the q–th term of the Fourier basis

φq (t) =

{ √
2 sin (2πmt− π) q = 2m− 1√
2 cos (2πmt− π) q = 2m

and λq = 2(2q−1)π/2. Each trajectory is discretized over a grid of 100 equispaced points. The left
panel in Figure 1 visualizes that curves.

The first step is to estimate the bounds Md(h) over this sample used as a training–set. To do
this Cd is estimated for d = 1, . . . , 19 by using the nonparametric estimator introduced in Section 4
and then the maxima M̂d,n (h) are calculated. In this preliminary study, the radius h is chosen as

the 10%–quantile of the estimated norms
∥∥∥Π̂d (Xi −Xj)

∥∥∥, whereas the bandwidth b2 is selected as

a percentage (not smaller than 30%) of the range of the same quantitites, following a data–driven
approach in order to guarantee that the weights wi (χj , b2) are well defined. In the right panel of

Figure 1 the distributions of Ĉd,n (Xi, h) for any d and their maxima are depicted.
The second step is to evaluate the algorithm performance in reconstructing curves. Therefore,

consider a test–set of N = 300 curves χj (t) generated according to (17) with:

� Q = 2 for j = 1, . . . , 100,

� Q = 4 for j = 101, . . . , 200,

� Q = 7 for j = 201, . . . , 300.

Using (16) with 1 − α = 0.99, the local dimension d?j is estimated for each of these curves,
obtaining the frequency distribution plotted in the left panel of Figure 2 with average 3.52 and
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↓ d?j Q→ 2 4 7

1 16 0
2 82 21 1
3 2 34 11
4 45 15
5 19
6 23
7 31

100 100 100

Table 1: Joint frequency distribution of the selected d?j against the true dimensions Q.

standard deviation 1.76. To appreciate the ability of the algorithm in detecting parsimoniously the
dimension of a curve, the joint frequency distribution of the selected d?j and the true dimensions Q
of the curves χj is reported in Table 1. Naturally, it is reasonable that a curve χj generated with
a given Q could be well represented in lower dimension than Q, whereas it is desirable that the
algorithm does not pick an higher dimension than Q.

To conclude the experiment, the quality of the approximation have to be evaluated. Then, the
classical approximations by the Karhunen–Loève expansion χdj = Π̂dχj are computed for d = d?j
and with a fixed common d for all the curves (d = 1, . . . , 19). The goodness of the approximations
is measured by the classical quadratic L2-norm, namely the Integrated Square Error:

ISEj (d) =

∫ 1

0

(
χj (t)− χdj (t)

)2
dt (18)

where the integral is approximated by summation. Table 2 collects the means and standard devia-
tions of errors (18) obtained when one uses d?j or a global d (only results with d ≤ 9 are reported);
the values have been multiplied by 100 to improve the readability. For the sake of completeness,
the FEV (d), estimated on the data, are provided. It arises that the approximations based on
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d d? 1 2 3 4 5 6 7 8 9
FEV (d) 3.52 80.4% 90.1% 93.7% 95.6% 96.9% 97.7% 98.2% 98.5% 98.8%

Mean 0.148 7.055 2.169 1.038 0.477 0.259 0.117 0.027 0.022 0.021
St. dev. 0.152 7.512 2.899 1.461 0.862 0.493 0.266 0.026 0.021 0.020

Table 2: Means and standard deviations of ISE(d) (results are multiplied by 100) obtained when
one uses the proposed algorithm or global dimensions.

local dimensions provides a mean error of a comparable order as that corresponding to a global
dimension 6, for which the FEV is greater than 97%. To better understand the behaviour of these
errors varying the selected dimension, the right panel in Figure 2 visualizes their distributions for
d = 3, 4, 5, 6 and when d?j are used (in the plot, the average dimension is reported on the horizontal
axis). The box–plots highlight the good performances resulting from the employ of the local–based
algorithm for dimension selection. Note that if one takes as global dimension d = 3 or d = 4, that
are the closest dimensions to the mean of d?j that is 3.52, the mean error would be much bigger.

5.2 Simulation study

In the following simulation study, an experiment similar to the one conducted in the previous section
is replicated many times under different experimental conditions, in order to assess the stability
of the introduced procedure and to show what happens when one modifies the parameter α, the
radious h of the ball, the size n of the training–set sample and the nature of the process.

More in detail, let consider training–sets of curves generated according to (17) with φq the
q–th term of the Fourier basis, λq = 2(2q−1)π/2 and Q = 20. The random coefficients Zqi in the
expansion are choosen i.i.d. standard Gaussian r.v.s and i.i.d. standardized Student t with 5 degree
of freedom: in the first case the PCs are independent, while in the second are only uncorrelated.
Samples of small (n = 50), medium (n = 100) and relatively large sizes (n = 200) are used. For
what concerns the parameters in the algorithm, 1− α = 0.9, 0.95, 0.97, 0.99, dmax = 15, whereas h
should be small enough to guarantee that the SmBP factorization makes sense but avoiding that
the balls {‖Xi −Xj‖ ≤ h} are sistematically empty; a reasonable choice is to consider the quantile

of the estimated norms
∥∥∥Π̂d (Xi −Xj)

∥∥∥ of order 5% and 10%. The test–set consists of 10 blocks of

100 curves, generated according to (17), each one with fixed dimension Q = 1, . . . , 10, for a total of
N = 1000 curves.

For each experimental setting, 1000 Monte Carlo replications are conducted and, for each of
them, the mean of the selected dimensions (denoted by d

?

m, m = 1, . . . , 1000) and the ISEs (18)
are computed.

The box–plots in Figure 3 show the empirical distributions of the means of the errors (values
are multiplied by 100) calculated in the Gaussian and Student t case with n = 200, when both
the global dimensions d = 3, . . . , 7 and the local ones provided by the algorithm are exploited
(h is set as the 10%–quantile of the estimated norms and 1 − α = 0.99). In the graphics, the
values on the horizontal axis associated to the box-plots obtained from the proposed algorithm
(highlighted by a grey box) are the averages of the means d

?

m. Both plots show the good quality of
the approximations gotten in reconstructing the curves with customized dimensions. For instance,
in the Gaussian case, with a mean dimension of 4.26, results comparable to those obtained using
d = 6 are obtained (FEV (6) is about the 98%): the reconstruction appears choerent with the
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Figure 3: Empirical distributions from 1000 Monte Carlo replications of the means of the ISEs
(multiplied by 100) for the Gaussian (left) and the Student t (right) cases. In each panel, the third
box–plot from the left refers to the introduced algorithm; on the horizontal axis it is printed the
mean of the dimension averages obtained by each Monte Carlo replication.

chosen mixture of the test–set curves and globally parsimonious.
To allow a general overview on the whole experiment, tables 3 and 4 collect a summary of results

under the different experimental conditions; the first table belongs to the Gaussian case, whereas
the second to the Student t one. The first 8 lines of each table contain the results obtained by
applying the new algorithm varying 1 − α, and the remaining 8 the ones with global dimensions
d = 3, 4, 5, 6. Since, when one uses the algorithm for the different sample sizes n and choices
of h, each Monte Carlo replication generates a mean dimension and a mean of the ISEs, in the
higher part of the tables a synthesis is provided by the means and the standard deviations of these
quantities: the first columns refer to the dimension, the second ones to the error; the standard
deviations are in brackets. In the lower part of the table, since the dimensions are fixed, only the
means and the standard deviations of the mean of ISEs from each repetition are reported. To
allow a more effective reading, errors are multiplied by 100.

As a general comment, the algorithm produces parsimonious and precise reconstructions of
the curves in a more efficient way than the FEV selector can do, for almost all the proposed
parameter constellations, also for rather small sample sizes. More in detail, one observes that the
best performances on the errors are achieved when h is the 10%–quantile of estimated norms and
1−α = 0.99: in such cases, the mean errors are comparables with those obtained by globally using
d = 6. Clearly, the employ of the 5%–quantile for h can be reasonable only for large sample sizes.
The expected trade-off between α and the selected dimensions appears evident: trying to stay as
close as possible to the maximum Md leads to a more effective representation in terms of error, but
less efficient in terms of parsimony (d

?

m decreases when 1 − α increases). Note that, since in this
controlled experiment the mean dimension of the test-set is 5.5, the choice 1 − α = 0.99 could be
seen as a good compromise for n = 100 and n = 200, whereas 1−α = 0.95 can be used for n = 50.
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6 Applications

In this section, the methodology proposed and illustrated in Section 5 is applied to two real datasets.
For both examples, after a brief description of the dataset, the approximation by means of local
and global dimensions is performed and its quality is evaluated by using the ISEs, following a
cross-validation approach.

6.1 Tecator dataset

The first example illustrated involves the well-known Tecator dataset. It consists of 215 spectra
in the near infra-red (NIR) wavelength range from 852 to 1050 nm, discretized on a grid of 100
equispaced points, corresponding to the same number of finely chopped pork samples. The sample
of spectrometric curves is visualized in the top panel of Figure 4. The curves appear rather smooth
and it is well known that a shift is present: in fact, the empirical FEV (d) reaches 99.58% and
99.9% for d = 2 and d = 3 respectively, and a good representation of the curves can be obtained
by using d = 3.

One might wonder if the proposed algorithm provides more parsimonious representations man-
taining a comparable precision. To do this, the dataset is split randomly in two parts: the first
one, containing 200 curves, is used to estimate the bounds Md(h) for d = 1, . . . , 5, whereas the
remaining part {χj , j = 1, . . . , 15} is used to evaluate the local dimensions d?j and the correspon-
dent ISEs. For what concerns the algorithm parameters, h is the 10%-quantile of the estimated
norms coherently with the link between this parameter and the sample size (see simulations),
1 − α = 0.85, 0.86, . . . , 0.99, and dmax = 5. Given the small size of the test-set, the procedure is
repeated 100 times: in each replication, the means of ISEs obtained using both a global dimension
d and the local one are computed, as well as the mean dimension d

?

m.
To select a reasonable threshold 1 − α, which is able to balance parsimony and accuracy, it

could be useful to observe the behaviour of the mean errors with respect to the means of selected
dimensions and to relate it to the mean errors obtained when a global dimension d is used (see the
bottom left panel of Figure 4, where the latter errors are visualized by horizontal lines). From the
graphic it emerges that it is better to select 1−α rather small, corresponding to a mean dimension
smaller than 2. In fact, choosing for instance 1−α = 0.87, the mean of the mean dimensions d

?

m is
1.91 to which corresponds a mean error 0.068: the customization of dimensions produces an efficient
representation of the curves, when compared with that which would occur when global dimensions
are adopted. This is made evident by looking at the distributions of the mean ISEs (whose values
multiplied by 100) plotted in the bottom right panel of Figure 4.

6.2 Neuronal dataset

The second example proposed deals with a dataset coming from a behavioural experiment performed
at the Andrew Schwartz motorlab at University of Pittsburgh. In that experiment, a macaque
monkey performed a centre-out and out-centre target reaching task with 26 targets in a virtual
3D environment while its neural activity was recorded (see Todorova et al. [2014] for details). The
dataset collects 1000 curves representing the voltage of neurons versus the time, discretized over a
grid of 32 equispaced points normalized between 0 and 1. A sample of 30 of such a curves selected
randomly, together with the empirical mean, is shown in the left panel of Figure 5. In the right
panel of the same figure, the first three estimated eigenfunctions are shown; note that the process
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n→ 50 100 200
h→ 5% 10% 5% 10% 5% 10%

1− α d
?

ISE d
?

ISE d
?

ISE d
?

ISE d
?

ISE d
?

ISE
0.9 4.032 0.812 3.539 0.868 3.476 0.691 3.166 0.770 3.387 0.590 3.090 0.694

(0.618) (0.243) (0.507) (0.209) (0.294) (0.165) (0.261) (0.148) (0.183) (0.107) (0.166) (0.102)
0.95 4.823 0.646 4.426 0.621 3.973 0.518 3.762 0.519 3.810 0.415 3.638 0.436

(0.768) (0.214) (0.677) (0.171) (0.359) (0.138) (0.321) (0.114) (0.217) (0.088) (0.199) (0.077)
0.97 5.267 0.584 4.984 0.530 4.262 0.455 4.110 0.429 4.014 0.352 3.910 0.346

(0.846) (0.204) (0.773) (0.156) (0.423) (0.129) (0.375) (0.102) (0.237) (0.080) (0.220) (0.068)
0.99 5.808 0.525 5.749 0.443 4.667 0.394 4.628 0.344 4.275 0.294 4.256 0.265

(0.937) (0.194) (0.897) (0.142) (0.522) (0.119) (0.495) (0.089) (0.282) (0.073) (0.266) (0.058)
#PC ISE ISE ISE

3 1.538 1.387 1.317
(0.137) (0.070) (0.045)

4 0.912 0.781 0.718
(0.090) (0.047) (0.028)

5 0.587 0.470 0.414
(0.068) (0.037) (0.023)

6 0.391 0.285 0.236
(0.054) (0.026) (0.014)

Table 3: Gaussian case – Means and standard deviations (in brackets) of mean dimensions and
mean ISEs obtained by each Monte Carlo replication varying the sample size, the choice of h and
1− α, compared with the means and standard deviations of mean ISEs when a global dimension d
is used.

n→ 50 100 200
h→ 5% 10% 5% 10% 5% 10%

1− α d
?

ISE d
?

ISE d
?

ISE d
?

ISE d
?

ISE d
?

ISE
0.9 4.508 0.598 3.951 0.667 3.758 0.502 3.402 0.588 3.571 0.428 3.255 0.523

(0.727) (0.196) (0.638) (0.188) (0.609) (0.127) (0.505) (0.137) (0.490) (0.096) (0.415) (0.109)
0.95 5.377 0.469 4.957 0.470 4.380 0.369 4.126 0.390 4.086 0.296 3.885 0.324

(0.893) (0.172) (0.830) (0.152) (0.797) (0.106) (0.771) (0.104) (0.671) (0.076) (0.641) (0.077)
0.97 5.847 0.421 5.571 0.397 4.742 0.320 4.565 0.317 4.362 0.249 4.233 0.254

(0.976) (0.163) (0.938) (0.137) (0.884) (0.097) (0.871) (0.090) (0.743) (0.068) (0.726) (0.066)
0.99 6.416 0.375 6.392 0.328 5.239 0.273 5.216 0.249 4.737 0.204 4.721 0.190

(1.075) (0.154) (1.079) (0.124) (1.011) (0.088) (1.025) (0.077) (0.829) (0.060) (0.837) (0.054)
#PC ISE ISE ISE

3 1.591 1.412 1.327
(0.217) (0.148) (0.118)

4 0.958 0.794 0.727
(0.143) (0.082) (0.059)

5 0.620 0.484 0.419
(0.104) (0.062) (0.038)

6 0.416 0.299 0.242
(0.078) (0.045) (0.029)

Table 4: Student t case – Means and standard deviations (in brackets) of mean dimensions and
mean ISEs obtained by each Monte Carlo replication varying the sample size, the choice of h and
1− α, compared with the means and standard deviations of mean ISEs when a global dimension d
is used.
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Figure 4: Top: Tecator dataset. Bottom Left: behaviour of mean dimension and mean error.
Horizontal lines refer to mean errors for global dimensions. Bottom Right: empirical distributions
of the means of the ISEs.

underlying the data appears rather concentrated: the first 3 estimated PCs explain the 97.3% of
the total variance, whereas using 6 PCs allows to achieve a FEV equal to 99%.

A two-fold cross-validation is performed: the dataset is randomly split in half, obtaining a
training–set of 500 curves used to estimate Md and a test–set of as many of curves on which the
local dimensions and the corresponding approximation errors are computed, as well as the errors
got when a global dimension is used. The parameter 1 − α is set as in the first example whereas,
because of the large size of the training–set, h has been selected as the 5%–quantile of the estimated
norms. Finally, dmax is fixed to 15.

Observing the behaviour of the mean errors varying the means of selected dimensions and
comparing it with the mean of ISEs computed when a global dimension is assigned (see the left
panel in Figure 6), one can note that with a mean dimension 10.03 (obtained when 1 − α = 0.91)
one has the same mean error as with a fixed dimension 11, whereas with a mean dimension 11.02
(corresponding to 1−α = 0.94) one reaches performances equivalent to those with global dimension
12.

From a parsimonious perspective, it is reasonable to choose 1 − α = 0.91; Figure 6 shows the
distributions of selected dimensions d?j (middle panel) and of ISEs for global and local dimensions
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Figure 5: Neuronal experiment. Left: a random sample of 30 curves (in grey) and the empirical
mean (in black). Right: the first three estimated eigenfuntions with the corresponding explained
variance.

(right panel with the grey boxplot corresponding to the proposed algorithm). Thanks to the curve
dimension customization procedure, it is then possible to achieve a better quality of the approxi-
mation (both in terms of mean and variability) than that which would be obtained by assigning
a global dimension. In particular, the method suggests that few curves could be well represented
in low dimension, and to obtain a good approximation quality, one needs from 9 to 12 PCs to
approximate the most part of the test–set.

A Appendix

A.1 Sketch of the proof of Proposition 1

Fix d ∈ N, x ∈ H and define

S1 = S1(d, x) =
∑
j≤d

(θj − 〈x, ξj〉)2
, S = S(d, h, x) =

1

h2

∑
j≥d+1

(θj − 〈x, ξj〉)2
,

then applying the Parseval’s identity,

ϕ(x, h) = P
(
‖X − x‖2 ≤ h2

)
= P

(
S1 + h2S ≤ h2

)
= P

({
S1 ≤ h2 (1− S)

}
∩ {0 ≤ S ≤ 1}

)
=

∫ 1

0

P
(
S1 ≤ (1− S)h2

∣∣S = s
)
fS (s) ds

where fS is the pdf of S that is strictly positive on (0, 1) thanks to A.3.b. Now, the first order
approximation gives, for h→ 0,

P
(
S1 ≤ (1− S)h2

∣∣S = s
)
∼ fd|S (Πdx|s)Vd

(
h
√

1− s
)
,
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Figure 6: Neuronal experiment. Left: behaviour of mean dimension and mean error. Middle: the
distribution of selected dimensions. Right: distributions of ISEs in the test–sample.

where fd|S is the pdf of (θ|S) that is fdfS|d/fS and Vd(h) is the volume of Bd(0, h) ⊂ Rd. Note
that both fd|S fS|d are well defined and strictly positive thanks to A.1 and A.3. Finally, Bayes’s
theorem applied to fd|S provides the considered factorization, as h→ 0,

ϕ(h, x) ∼fd (Πdx)Vd(h)

∫ 1

0

fS|d (s|Πdx) (1− s)d/2 ds

=fd (Πdx)Vd(h)E
[(

(1− S) I{0≤S≤1}
)d/2∣∣∣Πdx

]
.

A.2 Proofs of propositions of Section 3

Proof of Proposition 2. Consider Equation (4). The lower bound is a consequence of the
definition of C1. For what concerns the upper bound, by Jensen inequality one gets

C1 (x, h) = E

[((
1− ‖Π

⊥
1 (X − x)‖2

h2

)
IA1,h

)1/2
∣∣∣∣∣x1

]

≤
(
E
[(

1− ‖Π
⊥
1 (X − x)‖2

h2

)
IA1,h

∣∣∣∣x1

])1/2

where

E
[(

1− ‖Π
⊥
1 (X − x) ‖2

h2

)
IA1,h

∣∣∣∣x1

]
= E

[
1− ‖Π

⊥
1 (X − x) ‖2

h2

∣∣∣∣ IA1,h
= 1, x1

]
P (A1,h|x1)

≤ E
[

1− ‖Π
⊥
1 (X − x) ‖2

h2

∣∣∣∣ IA1,h
= 1, x1

]
.

Consider now Equation (5). In order to prove the lower bound, consider the Bernoulli inequality
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(1− s)r ≥ 1− rs for any s ∈ [0, 1] and r ≥ 1 to get

Cd (x, h) = E

[((
1− ‖Π

⊥
d (X − x) ‖2

h2

)
IAd,h

)d/2∣∣∣∣∣Πdx

]

≥ E
[(

1− d

2h2
‖Π⊥d (X − x) ‖2

)
IAd,h

∣∣∣∣Πdx

]
= E

[
1− d

2h2
‖Π⊥d (X − x) ‖2

∣∣∣∣ IAd,h = 1,Πdx

]
P (Ad,h|Πdx)

= P (Ad,h|Πdx)− d

2h2
E
[
‖Π⊥d (X − x) ‖2

∣∣ IAd,h = 1,Πdx
]
P (Ad,h|Πdx)

≥ P (Ad,h|Πdx)− d

2h2
E
[
‖Π⊥d (X − x) ‖2

∣∣ IAd,h = 1,Πdx
]
.

Applying Markov inequality it holds

Cd (x, h) ≥ 1− 1

h2
E
[
‖Π⊥d (X − x) ‖2

∣∣ IAd,h = 1,Πdx
]
− d

2h2
E
[
‖Π⊥d (X − x) ‖2

∣∣ IAd,h = 1,Πdx
]

= 1− d+ 2

2h2
E
[
‖Π⊥d (X − x) ‖2

∣∣ IAd,h = 1,Πdx
]
.

For what concerns the upper bound, noting that (1− s)r/2 ≤ 1− s for any s ∈ [0, 1] and r ≥ 2, one
has

Cd (x, h) = E

[((
1− ‖Π

⊥
d (X − x) ‖2

h2

)
IAd,h

)d/2∣∣∣∣∣Πdx

]

≤ E
[(

1− ‖Π
⊥
d (X − x) ‖2

h2

)
IAd,h

∣∣∣∣Πdx

]
= E

[
1− ‖Π

⊥
d (X − x) ‖2

h2

∣∣∣∣ IAd,h = 1,Πdx

]
P (Ad,h)

≤ 1− 1

h2
E
[
‖Π⊥d (X − x) ‖2

∣∣ IAd,h = 1,Πdx
]
.

Proof of Proposition 3. In this proof, the following notations are used

x(d) = Πdx, x(d⊥) = Π⊥d x, ‖ · ‖d⊥ = ‖Π⊥d · ‖.

Cd (x, h) = Cd
(
x(d) + x(d⊥), h

)
= E

[((
1−
‖X − x‖2d⊥

h2

)
I{‖X−x‖2

d⊥
≤h2

})d/2∣∣∣∣∣x(d)

]
. (19)

Clearly, x(d) ∈ Hd = span {ξ1, . . . , ξd}, x(d⊥) ∈ H⊥d , x = x(d)+x(d⊥), ‖ (X − x)(d⊥) ‖2d⊥ = ‖X−x‖2d⊥
and

Md (h) = sup
x∈H

Cd (x, h) = sup
x(d)∈Hd

sup
x(d⊥)∈H

⊥
d

Cd
(
x(d) + x(d⊥), h

)
.
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Given the fact that

((
1− ‖X−x‖

2

d⊥
h2

)
I{‖X−x‖2

d⊥
≤h2

})d/2 is uncorrelated with
{
X(d) = x(d)

}
, the

conditioning in (19) can be dropped leading to

Cd (x, h) = Cd
(
x(d⊥), h

)
= E

[((
1−
‖X − x‖2d⊥

h2

)
I{‖X−x‖2

d⊥
≤h2

})d/2] (20)

=

∫
H⊥
d

((
1−
‖y − x‖2d⊥

h2

)
I{‖y−x‖2

d⊥
≤h2

})d/2 dPX(d⊥)
(y) (21)

where PX(d⊥)
is the probability law of X(d⊥). Hence, Md (h) = supx(d⊥)∈H

⊥
d
Cd
(
x(d⊥), h

)
and to

get the thesis, it is enough to prove that Md (h) = Cd (0, h) where 0 here denotes the null element
in H⊥d .

Note that Md (h) is strictly positive thanks to A.3.b and since the expectation argument in (20) is
strictly positive over

{
‖X − x‖2d⊥ < h2

}
and null otherwise. Moreover, by definition of supremum,

consider a sequence {x (n)}n∈N ⊂ H⊥d such that Cd (x (n) , h) → Md (h) as n → ∞. Such a
sequence must be bounded (i.e. ‖x (n) ‖d⊥ ≤ c) otherwise there will be a subsequence {x (nk)}
for which ‖x (nk)‖d⊥ → ∞ as k → ∞ and, by reverse triangular inequality ‖X − x (nk) ‖2d⊥ ≥
(‖X‖d⊥ − ‖x (nk)‖d⊥)

2
, it holds I{‖X−x(nk)‖2

d⊥
≤h2

} ≤ I{
(‖X‖d⊥−‖x(nk)‖

d⊥)
2≤h2

} and

Cd (x (nk) , h) ≤ E
[
I{

(‖X‖d⊥−‖x(nk)‖
d⊥)

2≤h2
}]→ 0 < Md (h) , k →∞,

that contradicts the fact that Md (h) > 0. Thus, since {x (n)} is bounded, there exists a subsequence
that, without loss of generality is still denoted by {x (n)} and, weakly converges to an element
m ∈ H⊥d (i.e. 〈x (n) , y〉 → 〈m, y〉 for any y ∈ H⊥d as n→∞).

The element m is a maximizer of Cd
(
x(d⊥), h

)
over H⊥d if {x (n)} strongly converges to it.

Indeed in this case, by the dominate convergence theorem, it is possible to exchange the limit and
the integral obtaining the following chain of equalities

Md (h) = lim
n→∞

Cd (x (n) , h) = lim
n→∞

∫
H⊥
d

((
1−
‖y − x (n) ‖2d⊥

h2

)
I{‖y−x(n)‖2

d⊥
≤h2

})d/2 dPX(d⊥)
(y)

=

∫
H⊥
d

lim
n→∞

((
1−
‖y − x (n) ‖2d⊥

h2

)
I{‖y−x(n)‖2

d⊥
≤h2

})d/2 dPX(d⊥)
(y)

= Cd (m,h) .

In what follows it is shown that {x (n)} strongly converges to m in H⊥d . To do this, consider
δ > 0, n ∈ N and the subset of

Aδ =
{
y ∈ H⊥d : lim inf ‖y − x (n) ‖2d⊥ > ‖y −m‖2d⊥ + δ

}
,

Anδ =
{
y ∈ H⊥d : ‖y − x (k) ‖2d⊥ > ‖y −m‖2d⊥ + δ, ∀k ≥ n

}
for which PX(d⊥)

(Anδ ) → PX(d⊥)
(Aδ) as n → ∞. By contradiction assume that {x (n)} does not

strongly converge tom, then it is known that lim inf ‖y−x (n) ‖2d⊥ > ‖y−m‖2d⊥ and limδ→0+ PX(d⊥)
(Aδ) =
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1. Fix δ0 < h2 such that PX(d⊥)
(Aδ) > 0. By limit definition for any ε > 0, there exists

δ < δ0 such that P (Aδ) > 1 − ε or equivalently PX(d⊥)

(
ACδ
)
< ε. Thus, denoting by f (X − x) =((

1− ‖X − x‖2d⊥/h
2
)
I{‖X−x‖2

d⊥
≤h2

})d/2, it holds

lim
n→∞

(Cd (x (n) , h)− Cd (m,h)) = lim
n→∞

∫
H⊥
d

(f (y − x (n))− f (y −m)) dPX(d⊥)
(y)

= lim
n→∞

(∫
Anδ0

(f (y − x (n))− f (y −m)) dPX(d⊥)
(y) +∫

(
Anδ0

)C
∩Aδ

(f (y − x (n))− f (y −m)) dPX(d⊥)
(y) +

∫
(
Anδ0

)C
∩(Aδ)

C

(f (y − x (n))− f (y −m)) dPX(d⊥)
(y)

)
. (22)

By definition of Anδ0 , one has∫
Anδ0

(f (y − x (n))− f (y −m)) dPX(d⊥)
(y)

=

∫
Anδ0

[(
1−
‖y − x (n) ‖2d⊥

h2

)d/2
I{‖y−x(n)‖2

d⊥
≤h2

} −
(

1−
‖y −m‖2d⊥

h2

)d/2
I{‖y−m‖2

d⊥
≤h2

}
]
dPX(d⊥)

(y)

≤
∫
Anδ0

[(
1−
‖y −m‖2d⊥

h2
− δ0
h2

)d/2
−
(

1−
‖y −m‖2d⊥

h2

)d/2]
I{‖y−m‖2

d⊥
+δ0≤h2

}dPX(d⊥)
(y)

and, because
(
1− ‖y −m‖2d⊥/h

2 − δ0/h2
)d/2

<
(
1− ‖y −m‖2d⊥/h

2
)d/2

, there exists δ̃0 > 0 such
that∫
Anδ0

(f (y − x (n))− f (y −m)) dPX(d⊥)
(y) ≤ −δ̃0PX(d⊥)

({
‖X −m‖2d⊥ ≤ h

2 − δ0
}
∩Anδ0

)
= −η0.

Because Anδ0 ⊃ Aδ,
(
Anδ0
)C ∩ Aδ = ∅ and the second addend in (22) is null. Moreover, since(

Anδ0
)C ∩ (Aδ)

C ⊂ (Aδ)
C

one has∫
(
Anδ0

)C
∩(Aδ)

C

(f (y − x (n))− f (y −m)) dPX(d⊥)
(y) ≤

∫
(Aδ)

C

(f (y − x (n))− f (y −m)) dPX(d⊥)
(y)

≤ PX(d⊥)

(
(Aδ)

C
)
< ε

and, thanks to the arbitrariness of ε, the third addend in (22) is not positive. Thus,

Md (h) = lim
n→∞

Cd (x (n) , h) ≤ Cd (m,h)− η0

that is in contrast with the supremum definition of Md (h) and thus {x (n)} must strongly converges
to m.
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It remains to prove that m = 0 (the zero element in H⊥d ) or equivalently that ‖m‖d⊥ = 0. The
proof procedes by contradiction using similar arguments as above and for this reason some details
are skipped. In particular, given a sequence {x (n)} strongly convergent to m, the following sets
are considered

Bδ =
{
y ∈ H⊥d : lim inf ‖y − x (n) ‖2d⊥ > ‖y‖2d⊥ + δ

}
,

Bnδ =
{
y ∈ H⊥d : ‖y − x (k) ‖2d⊥ > ‖y‖2d⊥ + δ, ∀k ≥ n

}
for which PX(d⊥)

(Bnδ ) → PX(d⊥)
(Bδ) as n → ∞. By contradiction assume that ‖m‖d⊥ > 0, then

lim inf ‖y−x (n) ‖2d⊥ > ‖y‖2d⊥ and limδ→0+ PX(d⊥)
(Bδ) = 1. Fix δ0 < h2 such that PX(d⊥)

(Bδ) > 0.

By limit definition, for any ε > 0 there exists δ < δ0 such that P (Bδ) > 1 − ε or equivalently
PX(d⊥)

(
BCδ
)
< ε. Thus, using similar arguments as above,

lim
n→∞

(Cd (x (n) , h)− Cd (0, h)) ≤ η0

and, then
Md (h) = lim

n→∞
Cd (x (n) , h) ≤ Cd (0, h)− η0

that, once again, contrasts with the supremum definition of Md (h) and implies that m = 0 ∈ H⊥d .

Proof of Proposition 4. Note that

E [Cd (X ′, h)] = E

[
E

[((
1− ‖Π

⊥
d (X −X ′)‖2

h2

)
I{‖Π⊥

d (X−X′)‖2≤h2}

)d/2∣∣∣∣∣ΠdX
′

]]

= E

[((
1− ‖Π

⊥
d (X −X ′)‖2

h2

)
I{‖Π⊥

d (X−X′)‖2≤h2}

)d/2]
.

Because Cd (X ′, h) ≤ 1, then E [Cd (X ′, h)] = 1 is equivalent to Cd (X ′, h) = 1 a.s. to ‖Π⊥d (X −
X ′)‖2 = 0 a.s. and to E

[
‖Π⊥d (X −X ′)‖2

]
= 0 (see e.g. [Shiryayev, 1996, p.185]) that proves i)⇔

ii). Now, using the explicit expression of Π⊥d X, thanks to the orthonormality of the eigenfunctions
and the independence of X and X ′ (and consequently of their PCs), then

E
[
‖Π⊥d (X −X ′)‖2

]
= E

[
‖Π⊥d X‖2

]
+ E

[
‖Π⊥d X ′‖2

]
− 2E

[〈
Π⊥d X,Π

⊥
d X
′〉]

= 2
∑
j≥d+1

λj − 2E

〈 ∑
j≥d+1

θjξj ,
∑
j≥d+1

θ′jξj

〉
= 2

∑
j≥d+1

λj − 2
∑
j≥d+1

E
[
θjθ
′
j

]
= 2

∑
j≥d+1

λj .

Hence, ii) ⇔ iii) if and only if λj = 0 for any j ≥ d + 1. Finally, iii) ⇔ iv) is a consequence
of the fact that, for a zero mean process, the Karhunen–Loève expansion is X (t) =

∑
j≥1 θjξj (t),

0 ≤ t ≤ 1, with E [θj ] = 0 and V ar (θj) = λj with j ≥ 1.
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A.3 Proofs of theorems in Section 4

Proof of Theorem 5. The statement (i) is a consequence of classical results on kernel density
estimation (see Stone [1980]) which guarantees that, for a fixed x, d and h, if one chooses the
optimal bandwidth (12), the optimal rate is n−2p/(2p+d). On the other hand, because 0 ≤ Y ≤ 1
(see definition (7)), classical results on kernel regression estimators applies (see Stone [1982]) and
then, choosing the bandwidth (13), the optimal rate (ii) is achieved. For what concerns (iii), it
holds

E
[
(ψd,n(x, h)− ψd(x, h))

2
]
≤ 2E

[
(fd,n (x)Cd,n (x, h)− fd (x)Cd,n (x, h))

2
]

+ 2E
[
(fd (x)Cd,n (x, h)− fd (x)Cd (x, h))

2
]
.

Since Cd,n, Cd ≤ 1 and fd ≤ m (a strictly positive constant),

E
[
(ψd,n(x, h)− ψd(x, h))

2
]
≤ 2E

[
(fd,n (x)− fd (x))

2
]

+ 2mE
[
(Cd,n (x, h)− Cd (x, h))

2
]

and finally thanks to (i) and (ii) the thesis is completed.
Next proof invokes some technical Lemmas that are stated and proved in the next section.

Proof of Theorem 6. For what concerns (i), note that

E
[(
f̂d,n (x)− fd (x)

)2
]
≤ 2E

[(
f̂d,n (x)− fd,n (x)

)2
]

+ 2E
[
(fd,n (x)− fd (x))

2
]

where, thanks to Lemma 7,

E
[(
f̂d,n (x)− fd,n (x)

)2
]

= o
(
n−2p/(2p+d)

)
while Theorem 5 guarantees that

E
[
(fd,n (x)− fd (x))

2
]

= O
(
n−2p/(2p+d)

)
.

For the second statement (ii), consider

E
[(
Ĉd,n (x, h)− Cd (x, h)

)2
]
≤ 2E

[(
Ĉd,n (x, h)− Cd,n (x, h)

)2
]

+ 2E
[
(Cd,n (x, h)− Cd (x, h))

2
]
.

The second addend is O
(
n−2p/(2p+d)

)
(see Theorem 5), while for the first one it holds

E
[(
Ĉd,n (x, h)− Cd,n (x, h)

)2
]
≤ 2E

[(
Ĉd,n (x, h)− C̃d,n (x, h)

)2
]
+2E

[(
C̃d,n (x, h)− Cd,n (x, h)

)2
]

where

C̃d,n (x, h) =

n∑
i=1

((
1− ‖Π

⊥
d (Xi − x)‖2

h2

)
I{‖Π⊥

d (Xi−x)‖2≤h2}

)d/2
K2(‖Π̂d(Xi − x)‖/b2)∑
j K2(‖Π̂d(Xj − x)‖/b2)

.
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Note that, differently from Ĉd,n, in C̃d,n the projector Π⊥d is not estimated as if Y (see Equation (7))
was fully observed without errors. Lemma 8 provides that, for d > 2,

E
[(
C̃d,n (x, h)− Cd,n (x, h)

)2
]

= o
(
n−2p/(2p+d)

)
,

whereas Lemma 9 gives

E
[(
Ĉd,n (x, h)− C̃d,n (x, h)

)2
]

= o
(
n−2p/(2p+d)

)
.

Finally, to prove (iii), consider

E
[(
ψ̂d,n(x, h)− ψd(x, h)

)2
]
≤ 2E

[(
ψ̂d,n(x, h)− ψd,n(x, h)

)2
]

+ 2E
[
(ψd,n(x, h)− ψd(x, h))

2
]
.

Properties of the second addend are explored in Theorem 5, while for the first addend, because
0 ≤ Ĉd,n ≤ 1 and fd,n ≤ m, it holds

E
[(
ψ̂d,n(x, h)− ψd,n(x, h)

)2
]
≤ 2E

[(
f̂d,n (x) Ĉd,n (x, h)− fd,n (x) Ĉd,n (x, h)

)2
]

+

2E
[(
fd,n (x) Ĉd,n (x, h)− fd,n (x)Cd,n (x, h)

)2
]

≤ 2E
[(
f̂d,n (x)− fd,n (x)

)2
]

+ 2mE
[(
Ĉd,n (x, h)− Cd,n (x, h)

)2
]
.

Using (i) and (ii) in the latter the thesis is achieved.

A.4 Technical Lemmas

In this section, the following notations are considered

Sn (x) =

n∑
i=1

K

(
‖Πd (Xi − x)‖

bn

)
, Ŝn (x) =

n∑
i=1

K


∥∥∥Π̂d (Xi − x)

∥∥∥
bn

 (23)

Zn (x) =

n∑
i=1

YiK

(
‖Πd (Xi − x)‖

bn

)
, Ẑn (x) =

n∑
i=1

YiK


∥∥∥Π̂d (Xi − x)

∥∥∥
bn

 (24)

so that

fd,n (x) =
Sn (x)

nbdn
, f̂d,n (x) =

Ŝn (x)

nbdn

Cd,n (x, h) =
Zn (x)

Sn (x)
, C̃d,n (x, h) =

Ẑn (x)

Ŝn (x)
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and the following events

Ai = {Vi ≤ bn} Bi =
{
V̂i ≤ bn

}
where Yi is defined in (7), Vi = ‖Πd (Xi − x)‖, V̂i =

∥∥∥Π̂d (Xi − x)
∥∥∥ and, to unburden notations, bn

denotes b1,n or b2,n according to the setting.

Lemma 7 Assume A.1–A.7, then for d > 2, if one chooses the optimal bandwidth like in (12),
then

E
[(
f̂d,n (x)− fd,n (x)

)2
]

= o
(
n−2p/(2p+d)

)
.

Proof. The proof follows similar arguments of those in Biau and Mas [2012] where the same thesis
is achieved under the assumption that X is bounded and only giving some hints for a more general
setting. In that paper, it is shown that

E
[(
f̂d,n (x)− fd,n (x)

)2
]

=
1

(nbdn)
2E
[(
Sn (x)− Ŝn (x)

)2
]

≤ c

(nbdn)
2E



∥∥∥Πd − Π̂d

∥∥∥
∞

bn

(
n∑
i=1

‖Xi − x‖ IAi

)2
+

c

(nbdn)
2E

( n∑
i=1

(
IAi∩Bi + IAi∩Bi

))2
 (25)

where c denotes a general strictly positive constant.
FIRST STEP. Consider the first addend of the right hand side of (25); for i = 1, . . . , n, let

Ui = ‖Xi − x‖ IAi − E [‖Xi − x‖ IAi ] and write

E

(∥∥∥Πd − Π̂d

∥∥∥
∞

(
n∑
i=1

‖Xi − x‖ IAi

))2
 ≤ 2E

(∥∥∥Πd − Π̂d

∥∥∥
∞

(
n∑
i=1

Ui

))2


+ 2n2 {E [‖X1 − x‖ IA1
]}2 E

[∥∥∥Πd − Π̂d

∥∥∥2

∞

]
. (26)

Results in Biau and Mas [2012] guarantee that

E
[∥∥∥Πd − Π̂d

∥∥∥2

∞

]
= O

(
1

n

)
, (27)

while the fact that Cov (‖X1 − x‖ , IA1
) ≤ 0, Assumption A.7 and E [IAi ] ∼ bdn give

{E [‖X1 − x‖ IA1
]}2 ≤ (E [‖X1 − x‖])2

(E [IA1
])

2
= O

(
b2dn
)
. (28)

Hence, (27) and (28) provide

2n2 {E [‖Xi − x‖ IAi ]}
2 E
[∥∥∥Πd − Π̂d

∥∥∥2

∞

]
= O

(
nb2dn

)
. (29)
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For what concerns the first addend in the right hand side of (26), applying Chauchy–Schwarz
inequality one gets

E

(∥∥∥Πd − Π̂d

∥∥∥
∞

(
n∑
i=1

Ui

))2
 ≤

√√√√√E
[∥∥∥Πd − Π̂d

∥∥∥4

∞

]
E

( n∑
i=1

Ui

)4
. (30)

Results in Biau and Mas [2012] guarantee

E
[∥∥∥Πd − Π̂d

∥∥∥4

∞

]
= O

(
1

n2

)
, (31)

while, denoting by Wi = ‖Xi − x‖ IAi and by Wn the mean of {Wi},

E

( n∑
i=1

Ui

)4
 = E

( n∑
i=1

(Wi − E [Wi])

)4
 = E

[(
nWn − nE [W1]

)4]
= n4E

[(
Wn − E [W1]

)4]
.

The latter fourth moment can be bounded by using the second centered moment of W = ‖X − x‖ IA
(see, as instance, Dodge and Rousson [1999]) as follows

E

( n∑
i=1

Ui

)4
 = n4

E
[
(W − E [W ])

4
]

n3
+

3 (n− 1)

n3

(
E
[
(W − E [W ])

2
])2


= O

(
n2
(
E
[
W 2
]
− (E [W ])

2
)2
)

= O
(
n2
(
E
[
W 2
])2)

+O
(
n2 (E [W ])

4
)
,

that, using similar arguments to get (28), gives

E

( n∑
i=1

Ui

)4
 = O

(
n2b2d

)
. (32)

Combining (31) and (32) in (30) one gets

E

(∥∥∥Πd − Π̂d

∥∥∥
∞

(
n∑
i=1

Ui

))2
 = O

(
bdn
)
. (33)

Hence, using (33), (29) in (26) one gets that the first addend of the right hand side of (25) can be
bounded as follows

c(
nbd+1
n

)2E
(∥∥∥Πd − Π̂d

∥∥∥
∞

(
n∑
i=1

‖Xi − x‖ IAi

))2
 =

c(
nbd+1
n

)2 (O (bdn)+O
(
nb2dn

))
= O

(
1

nb2n

)
.

Finally, choosing the optimal bandwidth like in (12), it holds that 1/
(
nb2n
)

= o
(
n−2p/(2p+d)

)
.

26



SECOND STEP. For what concerns the second addend of the right hand side of (25) note that

E

( n∑
i=1

(
IAi∩Bi + IAi∩Bi

))2
 ≤ 2E

( n∑
i=1

IAi∩Bi

)2
+ 2E

( n∑
i=1

IAi∩Bi

)2


and, because the two addend can be treated similarly, it is sufficient to focus on the first addend.
To do this, define the sequence κn, with κn → 0 as n → ∞, and using the same argument as in
[Biau and Mas, 2012, Lemma 5.5] it holds

E

( n∑
i=1

IAi∩Bi

)2
 ≤ 2E

( n∑
i=1

I{bn(1−κn)<Vi≤bn}

)2
+2E

( n∑
i=1

I{‖Π̂d−Πd‖‖Xi−x‖>κnbn}I{Vi≤bn}

)2
 .

(34)
and

E

( n∑
i=1

I{bn(1−κn)<Vi≤bn}

)2
 = O

(
n2b2dn κ

2
n

)
. (35)

About the second addend in (34), define the sequence tn, with tn →∞ as n→∞ and consider

E

( n∑
i=1

I{‖Π̂d−Πd‖‖Xi−x‖>κnbn}I{Vi≤bn}

)2


= E

( n∑
i=1

I{‖Π̂d−Πd‖‖Xi−x‖>κnbn}I{Vi≤bn}
(
I{‖Xi−x‖≤tn} + I{‖Xi−x‖>tn}

))2


≤ 2E

( n∑
i=1

I{‖Π̂d−Πd‖‖Xi−x‖>κnbn}I{‖Xi−x‖≤tn}I{Vi≤bn}

)2


+ 2E

( n∑
i=1

I{‖Π̂d−Πd‖‖Xi−x‖>κnbn}I{‖Xi−x‖>tn}I{Vi≤bn}

)2


≤ 2E

I{‖Π̂d−Πd‖>κnbn/tn}

(
n∑
i=1

I{Vi≤bn}

)2


+ 2E

( n∑
i=1

I{‖Xi−x‖>tn}I{Vi≤bn}

)2
 (36)

Results in [Biau and Mas, 2012, Lemma 5.5] give

E

I{‖Π̂d−Πd‖>κnbn/tn}

(
n∑
i=1

I{Vi≤bn}

)2
 = n2O

(
exp

(
−cnκ

2
nb

2
n

t2n

))
. (37)

For what concerns the second addend in the right hand side of (36), as a consequence of Jensen
inequality, the fact that Cov

(
I{‖X1−x‖>tn}, I{‖Πd(X1−x)‖≤bn}

)
≤ 0, E

[
I{‖Πd(X1−x)‖≤bn}

]
∼ bdn and
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Assumption A.7, then one has, for any strictly positive integer r,

E

( n∑
i=1

I{‖Xi−x‖>tn}I{Vi≤bn}

)2
 = n2E

( 1

n

n∑
i=1

I{‖Xi−x‖>tn}I{Vi≤bn}

)2


≤ n2E

[
1

n

n∑
i=1

I{‖Xi−x‖>tn}I{Vi≤bn}

]
= n2E

[
I{‖X1−x‖>tn}I{‖Πd(X1−x)‖≤bn}

]
≤ n2E

[
I{‖X1−x‖>tn}

]
E
[
I{‖Πd(X1−x)‖≤bn}

]
∼ n2P (‖X1 − x‖ > tn) bdn

= o
(
n2bdne

−rtn
)
. (38)

Thus, combining the bounds (34), (35), (36), (37) and (38) one has

c

(nbdn)
2E

( n∑
i=1

(
IAi∩Bi + IAi∩Bi

))2
 = O

(
κ2
n

)
+O

(
exp

(
−cnκ2

nb
2
n/t

2
n

)
b2dn

)
+ o

(
exp (−rtn)

bdn

)
.

(39)
Finally, to prove that the latter bound is o

(
n−2p/(2p+d)

)
we have to choose bn, κn and tn. Once

again bn is chosen to be the optimal bandwidth like in (12), whereas for κn let consider the following
choice,

c5
log8

(
nb2n
)

nb2n
≤ κ2

n ≤ c6
log8

(
nb2n
)

nb2n
, for some 0 < c5 < c6 < +∞

which guarantees that the first addend of the right hand side of (39) and κ2
n are o

(
n−2p/(2p+d)

)
,

for any d > 2. For what concerns tn, note that, because of the last two addends of the right hand
side of (39), it should satisfy nκ2

nb
2
n/t

2
n →∞ and tn →∞. Hence

t2n = o
(
nκ2

nb
2
n

)
= o

(
log8

(
nb2n
))

so that a suitable choice for tn might be

c7 log4
(
nb2n
)
≤ t2n ≤ c8 log4

(
nb2n
)
, for some 0 < c7 < c8 < +∞

for which b−2d
n exp

(
−Cnκ2

nb
2
n/t

2
n

)
and e−rtn/bdn are o

(
n−2p/(2p+d)

)
. This concludes the proof.

Lemma 8 Assume A.1–A.7, then for d > 2,

E
[(
C̃d,n (x, h)− Cd,n (x, h)

)2
]

= o
(
n−2p/(2p+d)

)
.

Proof. Consider the decomposition

C̃d,n (x, h)− Cd,n (x, h) =
Ẑn (x)

Ŝn (x)

Sn (x)− Ŝn (x)

Sn (x)
+

1

Sn (x)

(
Ẑn (x)− Zn (x)

)
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where the involved objects are defined in (23) and (24). Since 0 ≤ Yi ≤ 1, similar arguments as in
Biau and Mas [2012] lead to write

E
[(
C̃d,n (x, h)− Cd,n (x, h)

)2
]
≤ c

E
[(
Sn (x)− Ŝn (x)

)2
]

(nbdn)
2 + c

E
[(
Ẑn (x)− Zn (x)

)2
]

(nbdn)
2

where

E
[(
Ẑn (x)− Zn (x)

)2
]

(nbdn)
2 ≤

E
[(
Sn (x)− Ŝn (x)

)2
]

(nbdn)
2 = E

[(
fd,n (x)− f̂d,n (x)

)2
]
.

Lemma 7 gives the thesis.

Lemma 9 Assume A.1–A.7, then for d > 2,

E
[(
Ĉd,n (x, h)− C̃d,n (x, h)

)2
]

= o
(
n−2p/(2p+d)

)
Proof. Consider

∣∣∣Ĉd,n (x, h)− C̃d,n (x, h)
∣∣∣ ≤ ∑n

i=1

∣∣∣Ŷi − Yi∣∣∣K2(‖Π̂d(Xi − x)‖/b2)∑
j K2(‖Π̂d(Xj − x)‖/b2)

. (40)

About the numerator in (40), note that because
((

1− t
h2

)
I{t≤h2}

)d/2
is a Lipschitz function with

respect to t on [0,∞), then there exists a strictly positive constant L′ such that

∣∣∣Ŷi − Yi∣∣∣ =

∣∣∣∣∣∣∣∣
((

1−
∥∥Π⊥d (Xi − x)

∥∥2

h2

)
I{‖Π⊥

d (Xi−x)‖2≤h2}

)d/2
−


1−

∥∥∥Π̂⊥d (Xi − x)
∥∥∥2

h2

 I{‖Π̂⊥
d (Xi−x)‖2≤h2}


d/2
∣∣∣∣∣∣∣∣

≤ L′
∣∣∣∣∥∥Π⊥d (Xi − x)

∥∥2 −
∥∥∥Π̂⊥d (Xi − x)

∥∥∥2
∣∣∣∣ .

Now, Parseval identity allows to write:∥∥Π⊥d (Xi − x)
∥∥2 −

∥∥∥Π̂⊥d (Xi − x)
∥∥∥2

= ‖Xi − x‖2 − ‖Πd(Xi − x)‖2 −
(
‖Xi − x‖2 −

∥∥∥Π̂d(Xi − x)
∥∥∥2
)

=
∥∥∥Π̂d(Xi − x)

∥∥∥2

− ‖Πd(Xi − x)‖2

and hence, ∣∣∣Ŷi − Yi∣∣∣ ≤ L′ ∣∣∣∣∥∥∥Π̂d(Xi − x)
∥∥∥2

− ‖Πd(Xi − x)‖2
∣∣∣∣

≤ L
∣∣∣‖Π̂d(Xi − x)‖ − ‖Πd(Xi − x)‖

∣∣∣
29



where the latter inequality is a consequence of g (t) = t2 being Lipschitz.
The reverse triangle inequality, the definition of operatorial norm and the boundedness of the
projectors give ∣∣∣‖Π̂d(Xi − x)‖ − ‖Πd(Xi − x)‖

∣∣∣ ≤ ∥∥∥Π̂d (Xi − x)−Πd (Xi − x)
∥∥∥

≤
∥∥∥Π̂d −Πd

∥∥∥
∞
‖Xi − x‖ ,

and thus, because the strictly positiveness of K2, the numerator of the left hand side of (40) can
be bounded as follows

n∑
i=1

∣∣∣Ŷi − Yi∣∣∣K2


∥∥∥Π̂d(Xi − x)

∥∥∥
b2

 ≤ L∥∥∥Πd − Π̂d

∥∥∥
∞

n∑
i=1

‖Xi − x‖K2


∥∥∥Π̂d(Xi − x)

∥∥∥
b2

 . (41)

Since K2 is a decreasing function, the algebraic Chebychev inequality (see, for instance, [Mitrinović
et al., 1993, page 243]) gives

1

n

n∑
i=1

‖Xi − x‖K2


∥∥∥Π̂d(Xi − x)

∥∥∥
b2

 ≤ 1

n

n∑
i=1

‖Xi − x‖
1

n

n∑
i=1

K2


∥∥∥Π̂d(Xi − x)

∥∥∥
b2

 (42)

and so, combining equations (40), (41) and (42), it follows∣∣∣∣∣∣
∑n
i=1

(
Ŷi − Yi

)
K2(‖Π̂d(Xi − x)‖/b2)∑n

i=1K2

(∥∥∥Π̂d(Xi − x)
∥∥∥ /b2)

∣∣∣∣∣∣ ≤ L
∥∥∥Πd − Π̂d

∥∥∥
∞

(
1

n

n∑
i=1

‖Xi − x‖

)
.

Thus

E
[(
Ĉd,n (x, h)− C̃d,n (x, h)

)2
]
≤ L2E

(∥∥∥Πd − Π̂d

∥∥∥
∞

(
1

n

n∑
i=1

‖Xi − x‖

))2


≤ L2

√√√√√E
[∥∥∥Πd − Π̂d

∥∥∥4

∞

]
E

( 1

n

n∑
i=1

‖Xi − x‖

)4


where the latter follows from the Chauchy–Schwarz inequality. Results in [Biau and Mas, 2012,
Theorem 2.1 (iii)] provides

E
[∥∥∥Πd − Π̂d

∥∥∥4

∞

]
= O

(
1

n2

)
while the strong law of large numbers and Assumption A.7 guarantee that

1

n

n∑
i=1

‖Xi − x‖ =
1

n

n∑
i=1

‖Xi − x‖ − E [‖X − x‖] + E [‖X − x‖] = OP (1) .

Finally, the last two bounds give

E
[(
Ĉd,n (x, h)− C̃d,n (x, h)

)2
]

= O

(
1

n

)
= o

(
n−2p/(2p+d)

)
.
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