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1. Introduction

The search for extensions of the gauge/gravity correspondence towards non-conformal theo-

ries with a reduced number of supercharges has recently achieved some interesting progress.

Indeed, it has been shown that many relevant properties of non-conformalN = 1 andN = 2

supersymmetric gauge theories in four dimensions can be extracted from dual supergravity

solutions associated to different set-ups of strings and D-branes. For example, at the per-

turbative level one can get the correct logarithmic running of the coupling constant and

the chiral anomaly, while at the non-perturbative level one can discuss instantons, gaugino

condensation and confining strings.

Many of these results can be obtained by studying in detail the supergravity solutions

produced by stacks of fractional D3-branes in conifold [1]–[5] and orbifold [1] and [6]–

[8] backgrounds. Alternatively, non-conformal gauge theories with N = 1 or N = 2

supersymmetry can be realized by wrapping D-branes on suitable supersymmetric cycles

in Calabi-Yau or K3 manifolds [9]. Also in these cases, a detailed study of the corresponding

supergravity solutions has provided relevant information on the dual gauge theory [4, 10].

Most of these developments are covered in recent reviews [11, 12] to which we refer also

for a more extended bibliography.

Another line of research has been the study of the so-called “geometric transitions” [13,

14], where one engineers gauge theories by wrapping D5-branes on two-cycles of resolved

Calabi-Yau manifolds in such a way that the geometry flows to a deformed manifold where

branes are replaced by fluxes through the newly blown-up three-cycles. In this framework, it

has been shown [15, 16] how to get the non-perturbatively generated effective superpotential

of the dual N = 1 gauge theory [17, 14] by means of geometric considerations.

In this paper we bring together these lines of research, and show that the explicit

knowledge of the supergravity solution produced by a stack of D-branes can be fruitfully

combined with general geometric considerations on the background in which they are em-

bedded. In this way one can obtain relevant information on the dual gauge theory, both at

a perturbative and at a non-perturbative level. In particular we will discuss the Affleck-
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Dine-Seiberg theory, namely U(N) N = 1 Super QCD with Nf < N flavors of quarks and

antiquarks, which we realize as the world-volume theory of a stack of fractional D3-branes

on a C3/Z2 × Z2 orbifold. We then show how to use this fractional brane configuration to

obtain the running coupling constant, the classical moduli space of the low-energy theory

and the non-perturbative effective superpotential [18] of SQCD in the chosen regime. We

also comment on SQCD with N = Nf which simply arises as a particular case of our

construction.

This paper is organized as follows. In section 2 we introduce the C3/Z2 × Z2 orbifold

and show how U(N) SQCD can be engineered via a specific configuration of fractional

D3-branes. After summarizing in section 3 the corresponding supergravity solution, in

section 4 we study the dual gauge theory, deriving the running gauge coupling constant

and exploring the classical moduli space. Finally, in section 5 we show how the non-

perturbatively generated Affleck-Dine-Seiberg superpotential can be obtained by the fluxes

of the dual supergravity solution together with some geometric considerations.

2. SQCD from fractional branes on C3/Z2 × Z2

The system we are going to con- C3/Z2×Z2
︷ ︸︸ ︷

0 1 2 3 4 5 6 7 8 9

D3 − − − − · · · · · ·

Table 1: Fractional D3-branes on C3/Z2 × Z2.

sider is a stack of fractional D3-branes

on the orbifold R1,3×C3/Z2 × Z2 [19].

In this space, which is a singular and

non-compact Calabi-Yau three-fold, a

stack of D-branes will preserve four

supercharges. In particular we arrange the fractional branes according to table 1, where

− and · indicate, respectively, longitudinal and transverse directions. In the following we

will denote with xα (α = 0, . . . , 3) the coordinates transverse to the orbifold, and introduce

three complex coordinates in the orbifolded directions xr (r = 4, . . . , 9) as follows

z1 = x4 + ix5 , z2 = x6 + ix7 , z3 = x8 + ix9 . (2.1)

The generators of the two Z2 factors of the orbifold group are denoted by g1 and g2,

and their action on the complex coordinates is given by

z1 z2 z3
g1 z1 −z2 −z3
g2 −z1 z2 −z3

(2.2)

The remaining two elements of the orbifold group are of course the identity e and g3 = g1g2.

As is well known, the most elementary configurations of branes on orbifolds are made by

fractional branes [20]. These are defined by the fact that the Chan-Paton factors of the open

strings attached to them transform in the irreducible representations of the orbifold group;

moreover, they have the property of being stuck at the orbifold fixed point. In our Z2×Z2

orbifold, we then have four different types of fractional D3-branes, that we denote as A, B,

C, D, corresponding to the four irreducible one-dimensional representations of the orbifold

– 2 –
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A B

NA NB

NCND

CD

N Nf

A B

Figure 1: Each node i of the quiver dia-

gram represents a gauge group factor U(Ni)

with the corresponding vector multiplet, and

each oriented arrow from node i to node j

represents a chiral multiplet in the (Ni, N̄j)

representation.

Figure 2: The quiver diagram associated to

a system of N fractional D3-branes of type A

and Nf fractional D3-branes of type B which

is used to engineer U(N) SQCD with Nf fla-

vors.

group. The low-energy theory living on a generic system of Nk D3-branes of type k, is a

four-dimensional N = 1 gauge theory with gauge group U(NA)×U(NB)×U(NC)×U(ND)

and twelve chiral multiplets, which transform in the fundamental (or anti-fundamental)

representation of a particular gauge group factor and carry a flavor index with respect

to the other three factors. All this information can be encoded in the quiver diagram

represented in figure 1.

Our goal is to use this orbifold set-up to engineer U(N) N = 1 SQCD, which is a theory

with Nf flavors of “quarks” and “antiquarks”. A possibility to do this would be to consider

a stack of N fractional D3-branes of a given type, and add to them Nf D7-branes in order

to introduce the fundamental and anti-fundamental chiral multiplets [8]. Here, however, we

will follow an alternative and simpler route [21], which allows to obtain the main features

of N = 1 SQCD in a very natural way by using only D3-branes. This alternative strategy

amounts simply to consider a configuration of N fractional D3-branes of, say, type A and

Nf fractional D3-branes of, say, type B, which gives rise to the U(N)×U(Nf ) gauge theory

represented by the diagram of figure 2.

From this quiver model we clearly can obtain U(N) SQCD with Nf flavors if we

concentrate only on the low-energy degrees of freedom associated to the branes of type

A by a suitable selection of open strings with appropriate Chan-Paton factors. Even if

in the complete theory the flavor symmetry U(Nf ) is also gauged, we will see that this

configuration of fractional D3 branes is able to provide a big deal of information on SQCD

via the gauge/gravity correspondence.

3. Summary of the supergravity solution

The classical supergravity solution describing a system of Nk fractional D3-branes of type

k placed at the origin z1 = z2 = z3 = 0 of C3/Z2×Z2 was constructed in Ref. [7]. Here we

briefly summarize its main properties.

– 3 –
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Let us first recall that the bosonic fields of type IIB supergravity are the metric, the

2-form B2 and the dilaton φ from the NS-NS sector, and the 0-form C0, the 2-form C2 and

the 4-form C4 with self-dual field strength F̃5 from the R-R sector. Then, the fractional D3-

brane solution is obtained by assuming that the two 2-forms B2 and C2 have components

only along the three exceptional shrinking 2-cycles Ci (i = 1, 2, 3) of the orbifold geometry.

Specifically, one writes

B2 = bi ω
(i)
2 , C2 = ci ω

(i)
2 , (3.1)

where the anti-self dual (1,1)-forms ω
(i)
2 , dual to the 2-cycles Ci, are defined and normalized

as ∫

Ci

ω
(j)
2 = δji ,

∫

ω
(i)
2 ∧ ω

(i)
2 = −1

4
, ?4ω

(i)
2 = −ω(i)2 . (3.2)

The scalar fields bi and ci in (3.1) are called twisted fields, and precisely correspond to

massless degrees of freedom of the three NS-NS and R-R twisted sectors of the conformal

field theory describing closed strings in the orbifold C3/Z2 × Z2.

If we define

G3 = dC2 +
(
C0 + i e−φ

)
dB2 , (3.3)

and

γi = ci + i bi , (3.4)

then the solution for a stack of Nk fractional D3 branes of type k reads [7]

ds2 = H
−1/2
3 ηαβ dx

αdxβ + H
1/2
3 δrs dx

rdxs ,

C0 = 0 , eφ = 1 ,

F̃5 = dH−13 dx0 ∧ · · · ∧ dx3 + ?
(
dH−13 dx0 ∧ · · · ∧ dx3

)
,

G3 = dγi ∧ ω(i)2 . (3.5)

Here the functions γi are given by

γi = iK fi(Nk) ln
zi
ε0
, (3.6)

where ε0 is a short-distance regulator, K = 4πgsls
2 (gs being the string coupling constant

and ls the string length) and the fi’s are functions of the numbers of the different types of

fractional branes

f1(Nk) = NA +NB −NC −ND ,

f2(Nk) = NA −NB +NC −ND ,

f3(Nk) = NA −NB −NC +ND . (3.7)

Finally, H3 is a specific function of zi whose explicit expression, which we will not need in

the following, can be found in ref. [7].

As is clear from the solution (3.5), each individual fractional D3-brane is charged under

all three twisted sectors of the closed string theory on the orbifold C3/Z2 × Z2, as well as

under the untwisted one. This is perfectly consistent with the description of fractional D-

branes in terms of boundary states which represent the sources for all closed string states

emitted by the D-branes. In our specific case, the boundary states for the various fractional

– 4 –
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D3-branes are schematically given by

|A〉 = |U〉+ |T1〉+ |T2〉+ |T3〉 ,
|B〉 = |U〉+ |T1〉 − |T2〉 − |T3〉 ,
|C〉 = |U〉 − |T1〉+ |T2〉 − |T3〉 ,
|D〉 = |U〉 − |T1〉 − |T2〉+ |T3〉 , (3.8)

where |U〉 is the contribution of the untwisted sector, |Ti〉 is the one of the i-th twisted

sector corresponding to the group element gi, and the signs are consistent with (3.7).

Finally, we remark that the supergravity solution (3.5) has a naked singularity of re-

pulson type, a common feature of all classical solutions describing fractional branes on

orbifolds. One should then proceed to examine the appearance of an enhançon mecha-

nism [22] that would make this geometry acceptable, but we will not perform this analysis

here. Instead, in the following sections we will use the above solution to study the dual

N = 1 gauge theory.

4. The dual gauge theory and its classical moduli space

Let us now concentrate on the configuration made up of N fractional D3-branes of type A

and Nf fractional D3-branes of type B that we introduced in section 2 and represented in

figure 2. As we have seen, the theory on the world-volume of the type A branes is U(N)

SQCD with N = 1 supersymmetry, Nf “quark” chiral multiplets, Qi, and Nf “antiquark”

chiral multiplets, Q̃̃.

Many properties of this gauge theory

zi

αi

βi

Figure 3: The compact 1-cycle αi and the non-

compact 1-cycle βi in the zi plane.

can be explicitly obtained from the super-

gravity solution (3.5) (with NC = ND = 0).

As a first example, let us consider the run-

ning gauge coupling constant gYM, which,

as shown in ref. [7], can be directly related

to the twisted scalars bi of the dual geome-

try, according to

1

g2YM
=

1

8πgs

1

(2πls)2

3∑

i=1

bi . (4.1)

The right hand side of this equation can be

equivalently written also in terms of the flux

of G3 across an appropriate singular 3-cycle

of the orbifold C3/Z2×Z2. To see this, and

also for our later analysis of the superpotential, it is useful to identify the singular 3-cycles

that exist in this non-compact Calabi-Yau space.

Since there are no exceptional (1,2) or (2,1)-forms coming from the twisted sectors,

everything should arise from the (1,1)-forms ω
(i)
2 , dual to the singular 2-cycles Ci that we

– 5 –
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already encountered in section 3. Thus, we can introduce three compact 3-cycles Ai and

three non-compact 3-cycles Bi by simply taking the direct product of Ci with suitable

1-cycles in the zi planes. Specifically, we define

Ai = αi × Ci , Bi = βi × Ci (i = 1, 2, 3) , (4.2)

where the compact cycles αi and the non-compact cycles βi in the zi plane are orthogonal

to each other and are shown in figure 3.

Using the last equation of (3.5) and the normalizations (3.2), one can easily see that

the fluxes of G3 along these 3-cycles are given by
∫

Ai ( or Bi)
G3 =

∫

Ai ( or Bi)
dγj ∧ ω(j)2 =

∫

αi ( or βi)
dγi

∫

Ci

ω
(i)
2 =

∫

αi ( or βi)
dγi . (4.3)

In particular, for our specific brane configuration, we find
∫

A1

G3 = −2πK(N +Nf ) ,

∫

A2

G3 =

∫

A3

G3 = −2πK(N −Nf ) , (4.4)

and
∫

B1

G3 = iK(N +Nf ) ln
ρc
ρ0

,

∫

B2

G3 =

∫

B3

G3 = iK(N −Nf ) ln
ρc
ρ0

. (4.5)

In the last line, the integrations over ρi = |zi| in the non-compact cycles βi extend up to a

cut-off ρc, which sets the higher scale, while the lower scale ρ0 is introduced as a further

short-distance cut-off, since the validity of the singular supergravity solution stops at a

finite distance from the brane position.

If we identify ρ0 with the (arbitrary) cut-off ε0 appearing in (3.6), we immediately see

that bi = −i
∫

Bi
G3, and thus (4.1) becomes

1

g2YM
=

1

8πgs

1

(2πls)2

3∑

i=1

(

−i
∫

Bi

G3

)

=
1

8π2
(3N −Nf ) ln

ρc
ρ0

. (4.6)

Introducing the renormalization scale µ and the dynamically generated scale Λ through

the usual energy/radius relations

ρc = 2πls
2 µ , ρ0 = 2πls

2 Λ , (4.7)

that follow from a “stretched string” analysis [23], we easily get from (4.6) the correct

one-loop running coupling constant for our U(N) SQCD theory.

We now turn to the vacuum structure of this theory and show how it can be recovered

from the supergravity solution (3.5) of fractional D3-branes in a very simple way. Since

it is known that U(N) SQCD has a very different behavior depending on the number of

flavors (see for instance Ref. [24]), here we concentrate on the case in which the number of

flavors Nf is less than the number of colors N . This is the so-called Affleck-Dine-Seiberg

(ADS) theory [18], in which an effective superpotential is generated by non-perturbative

effects.

– 6 –
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N − Nf

z1

Nf

N − Nf

z1

Nf

∆

Figure 4: Moduli space of the ADS theory

via fractional branes: A+B superpositions

at arbitrary points of the z1 plane, together

with their images on the covering space.

Figure 5: Moduli space of the ADS the-

ory via fractional branes: The configuration

which makes the meson matrix M i
̃ propor-

tional to the identity.

To see how the vacuum structure of the ADS theory can be recovered from supergravity,

let us begin by considering a single fractional D3-brane of type A together with one of

type B. As individual objects, these branes are charged under all four sectors of closed

string theory, and for this reason they cannot move off the orbifold fixed point (see the

corresponding boundary states (3.8)). However, since A and B are mutually BPS objects,

we can easily construct the superposition A+B, which will be charged under the sector

twisted by g1 (with a charge double with respect to a single fractional brane), but will

not carry any charge under the other two twisted sectors. This can be easily seen in the

boundary state description, where one writes

|A + B〉 = |A〉+ |B〉 = 2 (|U〉+ |T1〉) . (4.8)

Thus, the superposition A+B can freely move in the z1 plane, which is left fixed by the

action of g1. Notice that when the pair A+B is not at the origin, it cannot be divided

anymore into its components, which indeed are defined only at the orbifold fixed point. The

crucial observation is that the motion of A+B causes the breaking of the U(1)×U(1) gauge

group of the theory living on the superposition down to U(1) via the Higgs mechanism.

Returning to our SQCD configuration and repeating the above argument, one finds

that out of the N branes of type A and the Nf branes of type B, it is possible to build

Nf A+B superpositions and move them away from the origin at arbitrary points in the

z1 plane. The motion of these A+B pairs is naturally interpreted as giving arbitrary

vacuum expectation values to the meson matrixM i
̃ = QiQ̃̃, thus breaking the gauge group

U(N) down to U(N −Nf ) corresponding to the world-volume theory of remaining N −Nf

fractional branes of type A still placed at the origin. Therefore, this D-brane construction

uncovers the correct classical moduli space of the ADS theory in a very natural way, as

shown in figure 4.

This same mechanism works also for N = Nf . In this case, all branes can form

pairs and, since no unpaired A branes are left, no unbroken gauge theory remains. Notice

that this description makes very clear that something drastic happens when passing from

– 7 –
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Nf ≤ N to Nf > N , in agreement with the known field theory results [24]. Indeed, if

Nf > N , all we have done is no longer valid and one is forced to look for some alternative

description.

Let us now discuss how the supergravity solution (3.5) gets modified when we form the

A+B superpositions and move them in the z1 plane. For simplicity, but without any loss

of generality, we place all Nf superpositions at the same point z1 = ∆ on the real axis of

the z1 plane, as shown in figure 5 (clearly, in order to have an even configuration under the

orbifold group, we also need to put images at the identified point z1 = −∆). This set-up

makes the meson matrix proportional to the identity, M i
̃ = m2δĩ, where m is related to ∆

via the usual gauge/gravity identification

∆ = 2πls
2m. (4.9)

We will be interested in the case in which ∆ and m are very large.

As we have seen before, what is relevant for the dual gauge theory is the knowledge of

the twisted fields γi, which now become

γi = iK

[

(N −Nf ) ln
zi
ε0

+ δi,1 Nf ln
z1 −∆

ε0
+ δi,1 Nf ln

z1 +∆

ε0

]

. (4.10)

Then, using (4.2) and (4.3), we find that the flux of G3 along the Ai cycles is given by

∫

Ai

G3 = −2πK(N −Nf ) (4.11)

for all i’s, while the flux along the Bi cycles becomes

∫

Bi

G3 = iK

[

(N −Nf ) ln
ρc
ρ0

+ δi,1 2Nf ln
∆

ρ0

]

, (4.12)

where we have assumed ρc ¿ ∆ and denoted again by ρ0 the minimum distance (from the

branes at the origin and the pairs in ±∆) that one can reach along the integration path

on ρi = |zi| in the βi cycles.
1

Thus, the gauge coupling constant for the world-volume theory of the unpaired A

branes is

1

g2YM
=

1

8πgs

1

(2πls)2

3∑

i=1

(

−i
∫

Bi

G3

)

=
3

8π2
(N −Nf ) ln

ρc
ρ0

+
2Nf

8π2
ln

∆

ρ0
, (4.13)

which in terms of the gauge theory scales becomes

1

g2YM
=

3

8π2
(N −Nf ) ln

µ

Λ
+

2Nf

8π2
ln
m

Λ
, (4.14)

1Notice that if instead ρc À ∆, the flux of G3 along the Bi cycles is given by (4.5), in agreement with

the fact that in this case all degrees of freedom are light and thus contribute to the running of the coupling

constant as in (4.6).

– 8 –
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with µ¿ m. The above coupling can be expressed also in terms of the low-energy effective

unbroken U(N −Nf ) theory as

1

g2YM
=

3

8π2
(N −Nf ) ln

µ

ΛL
, (4.15)

where the low-energy scale ΛL is related to Λ and m via

Λ
3(N−Nf )

L =
Λ3N−Nf

m2Nf
=

Λ3N−Nf

detM
. (4.16)

We then see that the supergravity computation precisely reproduces, beyond the running

coupling constant, also the expected matching of scales in the gauge theory [24]. This

concludes our analysis of the theory at the classical and perturbative levels. In the next

section, we will turn to non-perturbative phenomena, with the computation of the effective

superpotential.

5. The ADS superpotential

We now study the quantum moduli space of SQCD using our D-brane set-up, and see that

our quantitative results perfectly agree with the field theory analysis, predicting that the

classical moduli space is lifted by the generation of the ADS superpotential [18].

The main ingredient we will implement is the formula [17, 14] that, in the cases where

the dilaton is constant, expresses the N = 1 effective gauge superpotential Weff in terms

of the fluxes of the complex three-form G3 of the dual IIB supergravity solution and the

periods of the holomorphic (3,0)-form Ω of the Calabi-Yau orbifold in which the branes are

put, namely

Weff ∝
∑

i

[ ∫

Ai

G3

∫

Bi

Ω−
∫

Ai

Ω

∫

Bi

G3

]

. (5.1)

As a brief summary, we recall that this formula has been shown to give the correct answer

in many set-ups where the gauge theory is engineered via D-brane configurations on Calabi-

Yau manifolds which undergo a geometric transition, where some 3-cycles of the manifold

blow up and the branes are replaced by fluxes of IIB supergravity fields [13, 14]. For

example, using this approach the Veneziano-Yankielowicz superpotential [25] of pureN = 1

super Yang-Mills theory has been extracted [15, 26] from the warped deformed conifold

solution by Klebanov and Strassler [3].

In the case at hand, the supergravity solution we have at our disposal is not smooth,

unlike the solution of Ref. [3]. Rather, we are in a situation, the orbifold limit, where all 2-

and 3-cycles are shrinking, similarly to what happens in the singular conifold solution of

Klebanov and Tseytlin [2]. However, this does not seem to be an obstacle for using (5.1).

In fact, in the conifold case the knowledge of the singular Klebanov-Tseytlin solution is

sufficient for computing the G3 fluxes that are needed in (5.1), for the very simple reason

that they are precisely identified with the fluxes of the regular Klebanov-Strassler solution.2

2This identification also explains the relation between the radial coordinate r appearing in the singular

KT solution, and the coordinate τ appearing in the regular KS solution (see for example [11, eq. (100)]).
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The same is true also in our case, and thus even if we do not know a regular solution in a

deformed orbifold, the G3 fluxes can be obtained from the singular solution as described

in section 4. On the other hand, the periods of Ω that enter in (5.1) cannot be determined

in the singular case, since they crucially depend on the details of the deformation of the

geometry. However, the geometric considerations which are necessary for getting the correct

periods do not depend on the details of the classical solution and can be worked out in full

generality also for the orbifold C3/Z2×Z2. Thus, we can fruitfully combine the knowledge

of the fluxes coming from our explicit supergravity solution with the geometric features of

the deformed background. This is the approach we take with our fractional D-branes in

the orbifold C3/Z2 × Z2.

We already derived the fluxes of G3 along the Ai and Bi cycles: they are given in (4.11)

and (4.12). Let us then consider the periods of the holomorphic (3, 0)-form Ω. As in the

case of the conifold, in order to get sensible results it is necessary to deform the singular

geometry of the orbifold. Let us start by noting that the space C3/Z2×Z2 can be described

as the F (x, y, z, t) = 0 hypersurface in C4, where

F (x, y, z, t) = xyz + t2 . (5.2)

The invariant variables in this function are related to the complex coordinates (2.1) by

x = z21 , y = z22 , z = z23 , t = i z1z2z3 , (5.3)

and thus their engineering dimensions are [x] = [y] = [z] = L2, and [t] = L3. The simplest

deformation of the complex structure, which also resolves completely the singularity, is a

constant deformation with parameter ξ, namely

F (x, y, z, t) → Fξ(x, y, z, t) = xyz + t2 − ξ2 (5.4)

(notice that [ξ] = L3). In ref. [21], Berenstein has shown, via holomorphy considerations

strengthened by a matrix model computation, that (5.4) is indeed the correct deformation

to consider. He also showed that the deformation parameter ξ is related to the gaugino

condensate S of the dual gauge theory, as we too will argue below. Given (5.4), we can

write the holomorphic (3,0)-form Ω in the usual way, according to

Ω =
1

2πi

∮

Fξ=0

dx ∧ dy ∧ dz ∧ dt
Fξ

=
dx ∧ dy ∧ dz
2
√

ξ2 − xyz
. (5.5)

In order to compute the periods of Ω along a specific Ai (or Bi) cycle, we define (with a

little abuse of notation) x = z2i , y = u + iv, z = u − iv and ε2 = ξ2/x, so that from (5.5)

we get ∫

Ω = −i
∫

dx ∧ du ∧ dv
√

ξ2 − x(u2 + v2)
= −i

∫
dx√
x

∫

Ci

du ∧ dv√
ε2 − u2 − v2

. (5.6)

The last integral can be easily evaluated, and is in fact a well-known result in the context

of the geometry of the K3 manifold
∫

Ci

du ∧ dv√
ε2 − u2 − v2

=

∫ ε

−ε
du

∫

γu

dv√
ε2 − u2 − v2

=

∫ ε

−ε
du

∫

γ∞

dw

iw
= 4πε .
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Using this inside (5.6), we then have
∫

Ω = −i
∫

dx√
x

4π
ξ√
x
= −4πi ξ

∫
dx

x
= −8πi ξ

∫
dzi
zi

. (5.7)

Thus, the periods of Ω along the cycles Ai and Bi are finally given by
∫

Ai

Ω = −8πi ξ
∮

dzi
zi

= 16π2ξ , (5.8)

and ∫

Bi

Ω = −8πi ξ
∫ ρc

ξ1/3

dρi
ρi

=
8πi

3
ξ ln

ξ

ρ3c
, (5.9)

where in the latter we have used the same upper cutoff ρc already used in the computation

of the fluxes of G3, while the lower limit of integration must now be given by a suitable

power of the deformation parameter ξ (notice that since ξ has dimension L3, this power is

1/3 in order to match with the length dimension of ρi = |zi|).
We have now all the necessary ingredients to compute the effective superpotential

of the gauge theory by means of formula (5.1). Inserting the appropriate dimensionful

prefactors, we find that the gauge effective superpotential is given by

Weff =
1

16π2iK

1

(2πls
2)3

3∑

i=1

[ ∫

Ai

G3

∫

Bi

Ω−
∫

Ai

Ω

∫

Bi

G3

]

= − 1

(2πls
2)3

[

3(N −Nf )
ξ

3
ln

ξ

ρ3c
+ 3(N −Nf ) ξ ln

ρc
ρ0

+ 2Nf ξ ln
∆

ρ0

]

.(5.10)

We now re-express the geometrical quantities in terms of gauge theory quantities, by using

again the “stretched string” energy/radius relation. Notice that the deformation parameter

ξ, due to its engineering dimensions, is identified by the relation with a mass dimension 3

operator in the gauge theory, which is then natural to identify with the gaugino condensate

S (see also ref. [21]). In summary the gauge/gravity relations are

ρc = 2πls
2 µ , ρ0 = 2πls

2 Λ , ∆ = 2πls
2 m, ξ = (2πls

2)3 S , (5.11)

so that (5.10) becomes

Weff = −(N −Nf ) S ln
S

Λ3
− 2Nf S ln

m

Λ
. (5.12)

Though this result is correct, let us redefine the scales in order to write it in a more

conventional way. The appropriate redefinition is Λ→ e1/3Λ, m→ e1/3m, and we get

Weff = (N −Nf )

[

S − S ln
S

Λ3

]

− 2Nf S ln
m

Λ
, (5.13)

which is precisely the Taylor-Veneziano-Yankielowicz superpotential for SQCD with Nf

flavors [27]. At the minimum the gaugino condensate is

S =

(
Λ3N−Nf

m2Nf

) 1
N−Nf

, (5.14)
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so that from (5.13) we get the ADS superpotential [18]:

Weff = (N −Nf )

[
Λ3N−Nf

m2Nf

] 1
N−Nf

= (N −Nf )

[
Λ3N−Nf

detM

] 1
N−Nf

. (5.15)

As an aside, we note that if Nf = 0 the above results reproduce the Veneziano-Yankielowicz

superpotential for pure N = 1 Super Yang-Mills theory [25]

WVY = N

[

S − S ln
S

Λ3

]

. (5.16)

Its value at the minimum (where S = Λ3) is WVY = NΛ3. We stress that this is not just

a formal limit of the result obtained for Nf > 0; indeed, one could have started from the

beginning by considering only N fractional branes of type A, and apply formula (5.1) to

obtain the Veneziano-Yankielowicz superpotential.

Another observation concerns the case in which Nf = N . As we have mentioned before,

our brane construction can still be used in this case where all branes form A+B superpo-

sitions and no fractional branes (and thus no effective gauge theory) are left. Therefore,

the result for the moduli space can be read from the superpotential (5.13) for Nf = N . In

this case, the minimization procedure implies detM = Λ2N , which is indeed the correct

result expected for a N = 1 gauge theory with gauge group U(N) and N flavors.

Therefore we can conclude that our classical supergravity solution, together with some

geometrical considerations, has been able to provide relevant information on the N = 1

SQCD with Nf flavors, both at at the classical and perturbative level, and also at a non-

perturbative level. It would be very interesting to use this system of fractional branes

to analyze SQCD also in the phase where Nf > N , where Seiberg duality is supposed

to take place [28]. Indeed a construction of Seiberg duality for generic quiver theories

was presented in Refs. [29, 21] with the implementation of quite formal methods involving

also anti-branes. A more explicit analysis of these methods in the specific model we have

studied here is under current investigation [30].
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