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1 Introduction and motivations

In recent years, the possibility of acquiring some control over space-time non-perturbative

effects has been a unifying theme behind many developments in String Theory.

Much progress in this direction has been realized by exploiting the web of dualities

relating the five 10-dimensional string theories and the 11-dimensional M-theory through

operations that map classical or perturbative statements in one model to non-perturbative

statements in its dual. One of the most notable examples of such relations is the het-

erotic/type I duality which has been tested by checking the stable spectra on both sides [1],

– 1 –



J
H
E
P
0
7
(
2
0
0
9
)
0
9
2

and by studying the BPS-saturated quartic couplings F 4 for the gauge field and their gravi-

tational counterparts F 2R2 or R4 [2].1 In this context, these protected quartic interactions

are completely captured by a 1-loop computation on the heterotic side, while on the type

I side they receive both perturbative and non-perturbative contributions.

In this paper we will consider a set-up in which the heterotic theory is compactified on

a 2-torus T2 with Wilson lines breaking the gauge group to
[
SO(8)

]4
. In the dual theory,

called type I′, the gauge degrees of freedom are supported by stacks of D7-branes, while

the non-perturbative contributions arise by adding D(–1)-branes, also called D-instantons.

Using the recent advances in the instanton calculus in string theory (for a review see [16])

together with localization techniques [17, 18], we will extract from the integration over the

D-instanton moduli the quartic type I′ interactions for the gauge fields and their gravita-

tional corrections, and check explicitly (up to instanton number k = 5) the agreement with

the heterotic expressions. Although the structure of the type I′ contributions has already

been investigated in the literature [8][12], and checks of the heterotic results have been

performed against the F-theory background that should represent the non-perturbative

completion of the type I′ model [19], we think that our calculations provide the first case

in which the agreement is verified by a direct explicit evaluation of non-perturbative cor-

rections in the “microscopic” theory.

The heterotic/type I′ duality is not the only motivation for the computation presented

here: in fact, it can be regarded also as a prototypical instance of integration over the mod-

uli space of exotic or stringy multi-instantons. Let us explain what we mean by this. The

construction of “brane-world” models in which four-dimensional gauge and matter theo-

ries live on the world-volume of suitable D-brane stacks has assumed a prominent rôle for

possible phenomenological applications of string theory. In this context, non-perturbative

contributions to the effective action for the gauge/matter degrees of freedom can arise

from instantonic branes, that is from branes that are point-like in the four non-compact

space-time directions. Instantonic branes which in the internal space coincide with the

D-branes that support the gauge theory correspond to the usual gauge instanton configu-

rations [20][23]. From the CFT point of view, open strings suspended between instantonic

and gauge branes have four directions with mixed Neumann-Dirichlet (ND) boundary con-

ditions, and possess massless excitations in the Neveu-Schwarz sector corresponding to the

moduli which describe the size and gauge orientation of field-theoretical instanton solutions.

On the other hand, instantonic branes which do not coincide with the gauge branes

in the internal directions are usually referred to as exotic or stringy instantons. Much

interest in their properties was sparkled by the realization that they can generate terms

in the effective action which are forbidden in perturbation theory but are necessary for

phenomenological applications, such as neutrino Majorana mass terms or certain Yukawa

couplings in GUT models (see ref. [16] and references therein). From the CFT point of

view, mixed open strings have extra twisted directions besides the four ND space-time

directions. As a consequence, the bosonic moduli corresponding to the size are missing

and certain fermionic zero-modes become difficult to saturate. These unwanted zero-modes

1For earlier calculations of higher order couplings in the heterotic theory see refs. [13].
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must be either lifted [24][26] or removed by appropriate projections [27][29] in order to get

non-vanishing contributions.

The extension of the instanton calculus to the exotic cases is therefore of great rele-

vance. In some set-ups with N = 1 supersymmetry it has been shown that novel interac-

tions terms in the effective superpotential can arise from sectors with a specific instanton

number [16]. With N = 2 supersymmetry, instead, one expects contributions from all sec-

tors, in analogy with what happens for ordinary gauge instantons in four dimensions. In

this case, in fact, using the exact Seiberg-Witten solution ofN = 2 super Yang-Mills (SYM)

theories [30], one can show that the effective prepotential receives contributions from all

instantons. A few years ago [18], such a prediction was finally checked against the direct

evaluation of the non-perturbative effects at all instanton numbers in the microscopic SYM

theory. This remarkable computation was made possible by a BRST-invariant reformula-

tion of the instanton moduli action, the introduction of suitable deformations and the use

of localization techniques [17, 18].2 In ref. [36], this procedure was reproduced in a stringy

way using systems of D3/D(–1)-branes. In that context, the localization deformations arise

from interactions with a Ramond-Ramond (RR) closed string graviphoton background.

Here we extend this approach to systems of D7/D(–1)-branes in the type I′ theory. This

extension is not a priori obvious, given the very different structure of the moduli space, but

actually, as we will see, it carries over in a rather natural way, and in the end it allows us

to explicitly perform the integration over the instanton moduli and check the predictions

from the heterotic string. As discussed in detail in ref. [37], the D7/D(–1) brane systems

display the typical features of the exotic instantons in that they have “more than four”

ND directions (eight, in fact) and lack the bosonic charged moduli related to the size. The

gauge theory living on the eight-dimensional world-volume of the D7-branes has a quartic

action for the gauge fields that is described by a prepotential function, analogously to the

quadratic action for the N = 2 SYM theories in four dimensions. This prepotential receives

non-perturbative contributions from all numbers of D-instantons, and here we show how

to compute them relying on the BRST structure of the instanton action, the introduction

of deformations from the RR sector and the use of localization techniques. Given the

similarities of the moduli spectra, the techniques used in this case should be useful also for

the treatment of exotic instanton contributions in four-dimensional theories.

The structure of this paper is as follows: in the next section we briefly review the

results expected from the heterotic/type I′ duality for the non-perturbative contributions

to the quartic couplings. In section 3 we describe the BRST structure of the instanton

moduli action, which we deform by introducing a RR background in section 4. Then, in

section 5 we discuss the rescalings that lead to the localization of the moduli integrals

that are explicitly evaluated in section 6 up to instanton number k = 5. In the last two

sections we collect our results and present our conclusions. Finally, some technical details

on the conventions, on the interactions with the RR background and on the evaluation of

the moduli integrals are contained in three appendices.

2See refs. [31][35] for further applications and generalizations.
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2 Heterotic results and duality to type I′

In order to be self-contained, we begin by briefly reviewing the heterotic results on the

quartic effective action for the system we want to consider, and the philosophy of the

stringy instanton calculus that we will apply on the type I′ side.

2.1 Heterotic vs type I′ results for the quartic effective action

Let us consider a toroidal compactification of the SO(32) heterotic string. Differently

from what happens for the uncompactified case, the gauge quartic terms F 4 and their

gravitational counterparts F 2R2 and R4 are not completely fixed by supersymmetry and

anomaly cancellation, but still are sensitive only to the BPS sector of the theory and,

as such, enjoy non-renormalization properties [7]. Thus, these quartic couplings are the

natural terms to consider in order to test the duality map between the heterotic string and

the type I theory.

On the heterotic side, the quartic terms are exact at one loop and have been computed

in various toroidal compactifications with non-trivial Wilson lines. Here we consider a

compactification on a 2-torus T2 with Wilson lines that break the gauge group SO(32)

down to
[
SO(8)

]4
. This case presents some interesting peculiarities since, besides the single-

trace and double-trace quartic invariants, the group SO(8) possesses a third independent

invariant of order four: the Pfaffian. As a consequence, the algebraic structure of the

quartic effective action is richer. The part containing the simple- and double-trace terms

was computed in refs. [8, 10, 12], while the Pfaffian part was considered in ref. [11]. In

our normalizations, and denoting by Th and Uh, respectively, the (complexified) Kähler

modulus and the complex structure of the 2-torus T2, the quartic effective couplings read

t8 TrF 4

4
log

∣∣∣∣
η(4Th)

η(2Th)

∣∣∣∣
4

+
t8 (TrF 2)2

16
log

(
ImTh ImUh

|η(2Th)|8 |η(Uh)|4
|η(4Th)|4

)

+ 2 t8 Pf F log

∣∣∣∣
η(Th + 1/2)

η(Th)

∣∣∣∣
4

(2.1)

where η is the Dedekind function and t8 is the eight-index tensor arising in various string

amplitudes [38] (see appendix A.2 for more details). More precisely, the notation t8 TrF 4

stands for

t8TrF 4 ≡ 1

24
tµ1µ2···µ7µ8
8 Tr

(
Fµ1µ2 · · ·Fµ7µ8

)
(2.2)

= Tr
(
FµνF

νρF λµFρλ+
1

2
FµνF

ρνFρλF
µλ− 1

4
FµνF

µνFρλF
ρλ− 1

8
FµνFρλF

µνF ρλ
)
,

with a similar expression for t8 (TrF 2)2, while the loose notation t8 Pf F actually means

t8 Pf F ≡ 1

28
tµ1µ2···µ7µ8
8 ǫa1a2···a7a8 F

a1a2
µ1µ2
· · ·F a7a8

µ7µ8
(2.3)

with ai’s being indices of the fundamental representation of SO(8). It is interesting to

observe that the coupling functions appearing in front of all the three gauge-invariant
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structures in (2.1) are invariant under the modular3 subgroup Γ0(4) acting on Th which is

preserved by the insertion of the Wilson lines.

In this model there are also quartic interactions involving the space-time curvature

two-form R. They correspond (schematically) to the following structures

t8 TrF 2 TrR2 , t8 TrR4 , t8
(
TrR2

)2
(2.4)

and, like the pure gauge terms, they are also captured exactly by a 1-loop heterotic com-

putation. From the results contained for example in refs. [8, 12] one can deduce that (up

to an overall convention dependent coefficient) such gravitational terms are

t8

[
TrR4 +

1

4

(
TrR2

)2 − 16TrF 2 TrR2

]
log
(
ImTh ImUh |η(2Th)|4 |η(Uh)|4

)
. (2.5)

Let us now focus on the Th dependence and introduce the parameter

qh = e2πi Th . (2.6)

Then, the quartic gauge couplings (2.1) can be rewritten as

t8 TrF 4

{(
πiTh

12
− 1

2

∞∑

k=1

(
dkq

4k
h − dkq

2k
h

)
)

+ c.c.

}
(2.7a)

+ t8(TrF 2)2

{
1

16
log
(
ImThImUh|η(Uh)|4

)
+

1

8

(
∞∑

k=1

(
dkq

4k
h − 2dkq

2k
h

)
+ c.c.

)}
(2.7b)

+ 8t8Pf F

(
∞∑

k=1

d2k−1q
2k−1
h + c.c

)
(2.7c)

where the coefficients dk are given by the sum of the inverse of the divisors of k:

dk =
∑

ℓ|k

1

ℓ
. (2.8)

Likewise, the gravitational couplings (2.5) become

t8

[
TrR4 +

1

4

(
TrR2

)2 − 16TrF 2 TrR2

]
× (2.9)

×
{(

πiTh

3
+

1

2
log
(
ImTh ImUh |η(Uh)|4

)
− 2

∞∑

k=1

dkq
2k
h

)
+ c.c.

}
.

Written in this form, the quartic terms admit a direct interpretation in the dual type I′

theory. To see this, let us first recall that the type I′ theory is obtained from the type IIB

string compactified on T2 with the orientifold projection

Ω = ω (−1)FL I2 (2.10)

3The subgroup Γ0(4) ⊂ SL(2, Z) is generated by t and st4s, if t : Th → Th + 1 and s : Th → −1/Th are

the usual SL(2, Z) generators.

– 5 –
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where ω is the world-sheet parity, FL is the left-moving target-space fermion number, and

I2 is the inversion along the two directions of T2. The resulting theory is an unoriented

string model with sixteen supercharges. The action of Ω has four fixed-points on T2 where

four O7-planes are placed. A local cancellation of the RR tadpoles produced by these

O7-planes requires to place at each fixed-point eight D7-branes or, equivalently, four D7

branes plus their orientifold images. Focusing on only one of the fixed-points, we therefore

have a gauge theory with group SO(8) and N = 2 supersymmetry in eight dimensions.

The type I′ model is dual to the
[
SO(8)

]4
heterotic string on T2. In particular, the

duality map relates the complexified Kähler modulus of the torus Th on the heterotic side

and the axion-dilaton field τ on the type I′ side, while the complex structure remains

the same:

Th ↔ τ ≡ C0 +
i

gs
, Uh ↔ U , (2.11)

where gs and C0 are, respectively, the string coupling constant and the scalar of the RR

sector. Thus, on the type I′ side, upon the replacement of qh with

q ≡ e2πiτ . (2.12)

we should retrieve exactly the results of eq.s (2.7) and (2.9), namely

t8TrF 4

{(
πiτ

12
+

1

2
q2 +

1

4
q4 + . . .

)
+ c.c.

}
(2.13a)

+ t8(TrF 2)2
{(

1

32
log
(
Im τ ImU |η(U)|4

)
− 1

4
q2 − 1

4
q4 + . . .

)
+ c.c.

}
(2.13b)

+ 8t8Pf F

{(
q +

4

3
q3 +

6

5
q5 + . . .

)
+ c.c

}
. (2.13c)

Thus, for the single trace structure, from eq. (2.13a) we expect to find a tree-level term

proportional to Im τ = 1/gs plus a series of non-perturbative contributions weighted by

powers of q which, as we will see, are due to D-instantons. For the double trace structure

we identify in eq. (2.13b) a term proportional to log(Im τ) = − log gs that arises at 1-loop,

plus a series of D-instanton contributions. The Pfaffian structure, instead, gets only non-

perturbative contributions with odd instanton number, as we see from eq. (2.13b). Finally,

the quartic gravitational couplings of type I′ have a tree-level term proportional to Im τ , a

1-loop term proportional to log(Im τ) and a series of non-perturbative contributions with

even instanton number, as indicated in the second line of eq. (2.9).

In the literature, the heterotic results we described above have been compared [8, 12]

with F-theory compactified on K3, which has been argued [19] to represent a geometrized

non-perturbative version of the type I′ model. Our aim is instead to compare them with a

direct computation of non-perturbative D-instanton effects in the type I′ string theory. The

general philosophy behind such a computation is briefly summarized in the next subsection.

2.2 D-instanton contributions to the quartic effective action in type I′

When k D(–1)-branes are added to the D7-branes, new open string sectors appear, corre-

sponding to open strings with at least one endpoint attached to the D(–1)’s. The excita-

– 6 –



J
H
E
P
0
7
(
2
0
0
9
)
0
9
2

������
�����
�����
�����
�����

F

a) F

FF

=

R

RR

R

RR

R

b)

F

F

F

R

=

F

Figure 1. a) A quartic interaction vertex for the gauge field F can be induced by mixed disks

having part of their boundary attached to the D-instantons and carrying the insertion of a vertex

for F and of moduli vertices. The above diagram is connected by the integration over the moduli.

b) Instanton disks with an insertion of a closed vertex can produce curvature interactions through

the moduli integration.

tions of such strings carry no momentum; we call them moduli,4 and collectively denote

them as M(k). The action for k D-instantons has a classical part, Scl = −2πiτ k, and

a moduli-dependent part, S(M(k)), arising from disk diagrams with at least a portion of

their boundary attached to the D(–1)’s. There are also mixed disk diagrams describing

the interactions between the moduli and the gauge fields living on the D7-branes which

are encoded in a (chiral) superfield Φ. By including also these diagrams, the moduli action

S(M(k)) is promoted to S(M(k),Φ).

Non-perturbative contributions to the effective action for Φ arise upon integration over

the moduli of the exponentiated field-dependent action of the D-instantons [22, 23]:

∑

k

e−Scl

∫
dM(k) e−S(M(k),Φ) =

∑

k

qk

∫
dM(k) e−S(M(k),Φ) . (2.14)

In particular, the integration over the moduli of those mixed disks that are sources for

some components of Φ, can produce new effective couplings, as represented in figure 1a for

the quartic interaction among four gauge field strengths F .

As already noted in the literature (see for instance refs. [5–8, 10, 12]), these D-instanton

induced couplings have potentially the right structure to agree with the heterotic results

reported in eq. (2.7). Indeed, the sum over the number k of D-instantons is weighted by qk

and the dimensionality of the moduli measure dM(k) implies that the effective contributions

must be quartic in the gauge fields for all k [37].

To turn the schematic expression (2.14) into a real computational tool, it is necessary

to precisely identify the moduli M(k), compute their field-dependent action S(M(k),Φ)

and explicitly perform the matrix integrals. The latter task is far from being trivial. The

4If one considers systems of D3/D(–1)-branes (or more generally D(p + 4)/Dp-branes), the moduli

excitations in the k D-instanton sectors are in full correspondence with the moduli of the classical instanton

solutions with instanton number k, as encoded in the ADHM construction. The name “moduli” continues

to be used in more general situations where the correspondence with classical solutions might be less

immediate.

– 7 –
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2-instanton case was already considered in ref. [10] where it was argued that the correct

gauge-invariant structures TrF 4 and (TrF 2)2 are obtained from the integration over the

moduli M(2) with a relative coefficient in agreement with eq. (2.7). However, to reach

more solid conclusions, an analysis at higher values of k is necessary.

In this case, the only viable route to get explicit results is a generalization of the

methods that were successfully applied for the instanton calculus in N = 2 SYM theories

in four dimensions. This requires to exploit the particular algebraic structure and the su-

persymmetry of the moduli action S(M(k),Φ) and write it as a Q-exact expression with

respect to a suitable BRST charge Q, in such a way that the localization techniques [17, 18]

can be applied. These involve the introduction of deformations of S(M(k),Φ) which, while

not altering the final result, may drastically simplify the computation. The needed de-

formations, which could be introduced ad hoc from a purely mathematical point of view,

arise naturally from mixed disk diagrams describing the interaction of the moduli M(k)

with closed string graviphoton backgrounds from the RR sector of the theory. Treating

the RR field-strengths as constant parameters to be put to zero at the end of the com-

putation allows to write explicit contour integral expressions which, in principle, can be

evaluated for any k, and from which the quartic effective action for the gauge fields can

be extracted. If we consider the RR fields as genuine, dynamical graviphotons sitting in

the same supermultiplet W of the curvature two-form R, we can generalize eq. (2.14) and

use a field-dependent moduli action S(M(k),Φ,W) that contains also gravitational terms.

Then, the corresponding D-instanton partition functions will yield also the TrF 2 TrR2 and

TrR4 interactions (see for example figure 1b) which from the heterotic side are given in

eq. (2.5).

This procedure will be described in great detail in the following sections.

3 The D7/D(–1) system and its BRST structure

We now discuss the main features of the D7/D(–1) system in the type I′ theory, both at

the perturbative and the non-perturbative level.

3.1 The perturbative sectors

As we have already explained, the world-volume theory on the eight D7-branes located at

one of the orientifold fixed points of the type I′ string model is an eight-dimensional gauge

theory with sixteen supercharges and gauge group SO(8). Its bosonic action contains,

besides the usual Yang-Mills term, also terms of higher order in the field strength F and

its covariant derivatives. Among them, a crucial rôle for our purposes is played by the

conformally invariant tree-level quartic terms

S(4) = − 1

96π3gs

∫
d8x t8TrF 4 − iC0

192π3

∫
Tr
(
F ∧ F ∧ F ∧ F

)
. (3.1)

Introducing the chiral superfield

Φ(x, θ) = φ(x) +
√

2 θΛ(x) +
1

2
θγµνθ Fµν(x) + . . . , (3.2)

– 8 –
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where Λ is the gaugino and φ a complex scalar, the quartic action (3.1) can be conveniently

rewritten as

S(4) =
1

(2π)4

∫
d8x d8θ

[
iπτ

12
Tr Φ4

]
+ c.c. , (3.3)

where τ is the axion-dilaton combination appearing in eq. (2.11).

Other quartic terms are produced at 1-loop. Indeed, as shown for example in section

4.2 of ref. [37], the annulus and Möbius diagrams for this brane system yield the following

(divergent) contribution5

− 1

128π4

∫
d8x t8

(
TrF 2

)2
[∫ ∞

0

dt

2t
Γ(t)

]
(3.4)

where Γ(t) represents the sum over the winding modes in the two compact transverse

directions, given by

Γ(t) =
∑

(r1,r2)∈Z2

e−2πt
|r1+r2U|2ImT

ImU (3.5)

with U and T being, respectively, the complex and Kähler structures of the 2-torus T2.
The integral over the modular loop parameter t can be computed using the regularization

procedure introduced in ref. [39] (and reviewed for example in appendix A of ref. [40]) with

the result ∫ ∞

0

dt

2t
Γ(t) = −1

2
log
(
α′µ2

)
− 1

2
log

(
ImU |η(U)|4

ImT

)

= −1

2
log

(
µ2

M2
P

)
+ ∆1−loop .

(3.6)

Here µ is a low-energy scale that regularizes the IR divergence due to the massless open

string states circulating in the loop, while MP is the eight-dimensional Planck mass

M2
P =

ImT

α′ gs
(3.7)

which serves as UV cut-off in the field theory. Finally, ∆1−loop represents the (finite)

threshold corrections given by

∆1−loop = −1

2
log
(
Imτ ImU |η(U)|4

)
. (3.8)

From these results, we therefore find the following 1-loop term in the effective action

S1−loop
(4) =

1

256π4

∫
d8x log

(
Imτ ImU |η(U)|4

)
t8
(
TrF 2

)2

=
1

(2π)4

∫
d8x d8θ

[
1

32
log
(
Imτ ImU |η(U)|4

)(
TrΦ2

)2
]

+ c.c.

(3.9)

which has to be added to the tree-level contribution (3.3). Due to N = 2 supersymmetry,

there are no higher-loop quartic terms in the effective action.

5Note that for eight D7-branes there is no contribution to Tr F 4 at 1-loop.
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3.2 The non-perturbative sectors

As discussed in ref. [37], the non-perturbative sectors of this theory can be described by

adding k D(–1)-branes in the same fixed point where the D7’s are located. The D(–1)-

branes are sources for the RR scalar C0; thus, considering the Wess-Zumino part of the D7

action (3.1), it follows that k D-instantons correspond to a gauge field configuration with

fourth Chern number

c(4) =
1

4! (2π)4

∫
Tr
(
F ∧ F ∧ F ∧ F

)
= k . (3.10)

Moreover, this gauge field configuration must be such that its classical quartic action

reduces to k times the D-instanton action [37], i.e. S(4) = −2πi τ k.

The physical excitations of the open strings with at least one end-point on the D-

instantons account for the moduliM(k) of such instanton-like configurations. The neutral

sector, corresponding to D(–1)/D(–1) open strings, comprises the moduli that do not trans-

form under the gauge group and includes, in an ADHM inspired notation, the vector aµ

and the scalar χ (plus its conjugate χ̄) in the Neveu-Schwarz sector, and the chiral and

anti-chiral fermions Mα and λα̇ in the Ramond sector. The bosonic moduli have canonical

dimensions of (length)−1, while the fermionic ones have canonical dimensions of (length)−
3
2 .

All these neutral moduli are k × k matrices, but the consistency with the orientifold

projection on the D7-branes requires that χ, χ̄ and λα̇ transform in the anti-symmetric (or

adjoint) representation of SO(k), while aµ and Mα must be in the symmetric one. The

diagonal parts of aµ and Mα represent the bosonic and fermionic Goldstone modes of the

(super)translations of the D7-branes world-volume that are broken by the D-instantons

and thus can be identified with the bosonic and fermionic coordinates xµ and θα of the

eight-dimensional superspace. More precisely, we have

xµ = (2πα′) tr
(
aµ

)
, θα = (2πα′) tr

(
Mα

)
, (3.11)

where the factors of α′ have been introduced to give xµ and θα the appropriate dimensions.

The open strings stretching between the D-instantons and the D7-branes account for

the charged moduli, which transform in the fundamental representations of both SO(8) and

SO(k). The D7/D(–1) open strings have eight ND directions and thus, as discussed for

example in ref. [37], it is not possible to find bosonic excitations that satisfy the physical

state conditions. The absence of charged bosonic moduli is the hallmark of the “exotic”

instanton configurations, and has to be contrasted with what happens in the D3/D(–1)

systems where, instead, physical bosonic moduli, related to the gauge instanton size, exist.

On the other hand, the fermionic Ramond sector of the D7/D(–1) system is not empty

and contains physical moduli, denoted as µ and µ̄ depending on the orientation. They

are, respectively, k ×N and N × k matrices (with N = 8 in our specific case). Since the

orientifold parity (2.10) exchanges the two orientations, in the Type I′ theory µ and µ̄ are

not independent of each other but are related according to µ̄ = − tµ.

For all the physical moduli M(k) listed above, it is possible to write vertex operators

of conformal dimension 1 and use them to obtain the moduli action S(M(k)) ≡ S by

– 10 –
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computing disk amplitudes6 along the lines discussed in refs. [22, 23, 36]. As a result one

finds [37]

S = Scubic + Squartic + Smixed (3.12)

where7

Scubic =
1

g2
0

tr

{
iλα̇γ

α̇β
µ [aµ,Mβ ]− i√

2
λα̇[χ, λα̇]− i√

2
Mα[χ̄,Mα]

}
, (3.13a)

Squartic =
1

g2
0

tr

{
−1

4
[aµ, aν ]

2 − [aµ, χ̄] [aµ, χ] +
1

2
[χ̄, χ]2

}
, (3.13b)

Smixed =
1

g2
0

tr
{
−i
√

2 tµχµ
}
, (3.13c)

with g0 being the Yang-Mills coupling constant in zero dimensions:

g2
0 =

gs

4π3α′2
. (3.14)

Indeed, the total action (3.12) can also be derived by dimensionally reducing the N = 1

supersymmetric Yang-Mills theory with fundamental matter from ten to zero dimensions.

The quartic interactions [aµ, aν ]2 appearing in (3.13b) can be disentangled by intro-

ducing seven auxiliary fields Dm (m = 1, . . . , 7) and replacing Squartic with

S ′quartic =
1

g2
0

tr

{
1

2
DmD

m − 1

2
Dm(τm)µν [aµ, aν ]− [aµ, χ̄] [aµ, χ] +

1

2
[χ̄, χ]2

}
. (3.15)

Here (τm)µν are the γ-matrices of SO(7) (related to the octonionic structure constants as

shown in appendix A) implying that the eight-dimensional indices µ, ν, . . . are interpreted

as spinorial indices of SO(7). The resulting moduli action is similar in structure to the one

considered in ref. [17] in the analysis of the so-called Yang-Mills integrals in d = 10. By

eliminating Dm through the field equation

Dm =
1

2
(τm)µν [aµ, aν ] , (3.16)

and by exploiting the properties of the τm matrices, one can easily see that S ′quartic is

equivalent to the initial action (3.13b).

Let us now reorganize the moduli in an “octonionic” form (i.e. in representations of

SO(7)) by relabeling some of them as follows:

Mα →Mµ ≡ (Mm,−M8) , λα̇ → (λm, η) ≡ (λm, λ8) . (3.17)

In other words, the chiral moduli Mα are assembled into a spinor of SO(7), while the anti-

chiral moduli λα̇ are split into a vector and a scalar of SO(7). Then, by using the explicit

6In general one should include in the moduli action also 1-loop instantonic amplitudes without insertions,

as argued in [41, 42], see also [40, 43]. However, in the present case such 1-loop contributions vanish for

N = 8 due to a cancellation between annuli and Möbius diagrams, as shown in eq. (4.14) of [37].
7Here we use slightly different conventions for the µ’s as compared to ref. [37].
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form of the γµ matrices given in appendix A, we can rewrite the cubic action (3.13a) as

S ′cubic =
1

g2
0

tr

{
λm(τm)µν [aµ,Mν ] + η [aµ,M

µ]− i√
2
Mµ [χ̄,Mµ] (3.18)

− i√
2
η [χ, η]− i√

2
λm [χ, λm]

}
. (3.19)

It is also convenient to replace the mixed action (3.13c) with

S ′mixed =
1

g2
0

tr
{
tww − i

√
2 tµχµ

}
(3.20)

where w is an auxiliary field in the fundamental representations of SO(k) and SO(8) which

does not interact with any other modulus. Even if this auxiliary field looks trivial, it is

nevertheless useful to introduce it for reasons which will become clear in a moment.8

The total action

S ′ = S ′cubic + S ′quartic + S ′mixed (3.21)

is invariant under transformations of the D-instanton group SO(k), of the gauge group

SO(8) and of the auxiliary group SO(7). It is also invariant under the following fermionic

BRST transformations

Qaµ = Mµ , QMµ = i
√

2 [χ, aµ] ,

Qλm = Dm , QDm = i
√

2 [χ, λm] ,

Qχ̄ = −i
√

2η , Qη = − [χ, χ̄] , Qχ = 0 ,

Qµ = w , Qw = i
√

2χµ . (3.22)

The BRST charge Q is one of the supersymmetries that are preserved both by the D-

instantons and by the D7-branes; more precisely, after using (3.17), one can see that Q is

the component of the anti-chiral supercharge Qα̇ corresponding to α̇ = 8 (see eq. (B.8)).

The BRST charge is nilpotent up to an (infinitesimal) SO(k) rotation parameterized by

i
√

2χ. Indeed, on the moduli transforming either in the symmetric or in the anti-symmetric

representation of SO(k), such as aµ or λm respectively, we have9

Q2 • = i
√

2 [χ, •] , (3.23)

while on the moduli transforming in the fundamental representation of SO(k), like µ or w,

we have

Q2 • = i
√

2χ • . (3.24)

8We remark that just like the physical moduli, also the auxiliary fields, including w, can be given an

explicit string description in terms of vertex operators with conformal dimension 1, see appendix B and

refs. [23, 36] for details.
9Independently of its symmetry properties, any k × k matrix MIJ transforms under an SO(k) rotation

R as MIJ
→ RI

KRJ
LMKL = RI

KMKL(tR) J
L = (RMR−1)IJ . If R = exp(A), with A an antisymmetric

matrix whose elements parameterize the rotation, to first order we have δM = [A, M ].
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The two BRST actions (3.23) and (3.24) can be combined into a single formula by writing

Q2 • = TSO(k)

(
i
√

2χ
)
• (3.25)

where TSO(k)

(
i
√

2χ
)

denotes an infinitesimal rotation of SO(k), parameterized by i
√

2χ, in

the appropriate representation of the modulus on which it acts.

By exploiting the above properties and using the gauge-invariance under SO(k), one

can easily show that the total moduli action (3.21) is Q-exact; indeed

S ′ = QΞ (3.26)

with the “gauge fermion” given by

Ξ =
1

g2
0

tr

{
1

2
Dmλ

m − 1

2
λm(τm)µν [aµ, aν ] +

i√
2
χ̄ [aµ,M

µ]− 1

2
η [χ, χ̄] + tµw

}
. (3.27)

This property will play a crucial rôle in discussing the localization of the integral on the

instanton moduli space, as we will see in section 5.

Let us now discuss the interactions among the instanton moduli and the gauge fields

propagating on the world-volume of the D7-branes, which we have combined into the super-

field (3.2). Such interactions can be easily obtained by computing mixed disk amplitudes

involving both vertex operators for moduli and vertex operators for dynamical fields, as

discussed in detail in refs. [23, 36] for the analogous D(–1)/D3 systems. In the present case

the result is
1

g2
0

tr
{
i
√

2 tµµΦ(x, θ)
}

(3.28)

which has to be added to the moduli action (3.21). For our later purposes it is enough to

focus on the dependence on the vacuum expectation value

φ = 〈Φ(x, θ)〉 , (3.29)

and hence we will consider the following modified mixed action

S ′mixed(φ) = S ′mixed +
1

g2
0

tr
{

i
√

2 tµµφ
}
. (3.30)

Then the total moduli action becomes

S ′(φ) = S ′cubic + S ′quartic + S ′mixed(φ) . (3.31)

It is not difficult to realize that the above φ-dependent terms can be obtained by deforming

the action of the BRST charge Q on the auxiliary field w and replacing the last equation

of (3.22) by

Qw = i
√

2χµ− i
√

2µφ (3.32)

with all the rest, including the gauge fermion (3.27), unchanged. Notice that with the de-

formation (3.32) the BRST charge becomes nilpotent not only up to infinitesimal rotations
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SO(k) SO(8) SO(7) dimensions

aµ symm 1 8s (length)−1

Mµ symm 1 8s (length)−3/2

Dm adj 1 7 (length)−2

λm adj 1 7 (length)−3/2

χ̄ adj 1 1 (length)−1

η adj 1 1 (length)−3/2

χ adj 1 1 (length)−1

µ k 8v 1 (length)−3/2

w k 8v 1 (length)−2

Table 1. Transformation properties and scaling dimensions of the moduli in the D(–1)/D7 system.

of SO(k), but also up to infinitesimal rotations of the gauge group SO(8), parameterized

respectively by i
√

2χ and −i
√

2φ. Thus, eq. (3.25) gets replaced by

Q2 • = TSO(k)

(
i
√

2χ
)
• −TSO(8)

(
i
√

2φ
)
• . (3.33)

Clearly, TSO(8)

(
i
√

2φ
)

is non-trivial only on µ and w, which are the only charged moduli

transforming under the gauge group SO(8). Finally, using (3.33) one can easily show that

S ′mixed(φ) =
1

g2
0

tr
{

tww + tµQ2 µ
}
, (3.34)

whereQ2 is represented as an (8k×8k) matrix acting in the tensor product of the vector rep-

resentations of SO(k) and SO(8) that are the representations under which the µ’s transform.

We conclude our description of the D7/D(–1) system of Type I′ by summarizing in

table 1 the transformation properties of the various moduli under SO(k), SO(8) and SO(7),

as well as their scaling dimensions.

4 Deformation by a RR background

In the previous section we have exhibited the BRST structure of the moduli action for the

D(–1)/D7 system of Type I′ and found a BRST charge Q that is nilpotent on quantities

invariant under the D-instanton group SO(k) and the D7 group SO(8), as shown in (3.33).

However, since the moduli action is also invariant under the auxiliary group SO(7), it is nat-

ural to consider an SO(7)-equivariant cohomology [17], using a deformed BRST charge that

squares to zero up to an infinitesimal SO(7) transformation as well. Such a deformation

is the analogue of the ǫ-deformation introduced in ref. [18] to derive the non-perturbative

contributions to the prepotential of N = 2 super Yang-Mills theories in four dimensions
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using localization techniques for the integral over the instanton moduli space (see for ex-

ample refs. [31] [35]). As shown in ref. [36], the ǫ-deformation has a natural interpretation

in the string realization of the instanton calculus since it can be obtained from the inter-

actions of the open strings of the D(–1)/D3 system with the 3-form field strength of the

Ramond-Ramond (RR) closed string sector representing a constant (self-dual) graviphoton

background. In this section we are going to show that also the SO(7) deformation can be

obtained by turning on a constant RR background in the D(–1)/D7 system.

To this aim, let us consider a RR 3-form field strength of type Fµνz , i.e. with two

indices along the 8-dimensional world-volume of the D7 branes and one holomorphic index

in the internal torus T2. It is not difficult to realize that such a field strength survives the

orientifold projection (2.10), since Fµνz is even under the world-sheet parity ω (like any

other RR 3-form field strength), odd under (−1)FL (like any field of the RR sector) and

odd under the inversion I2 (like any field with one index in the internal torus). From now

on we denote Fµνz simply as Fµν and choose it to describe a rotation of SO(7) in the spinor

representation10 namely we take

Fµν =
1

2
fmn(τmn)µν (4.1)

where τmn = 1
2 [τm, τn] and fmn are the twenty-one parameters specifying the

SO(7) rotation.

The effects on the moduli action of this RR background can be derived by computing

mixed open/closed string amplitudes on disks with insertions of the moduli vertex operators

on the boundary, and of the vertex operators representing F in the interior. A few details

are given in appendix B for completeness, but we refer to ref. [36, 44] for a systematic

analysis and a thorough discussion of this method. In the present case the result of the

evaluation of such mixed amplitudes leads to new couplings in the moduli action which

can be accounted by replacing the cubic and quartic terms, given in (3.19) and (3.15),

as follows

S ′cubic → S ′cubic(F) = S ′cubic +
1

g2
0

tr

{
−1

2
fmn λmλn

}
, (4.2)

S ′quartic → S ′quartic(F) = S ′quartic +
1

g2
0

tr

{
i

2
√

2
[aµ, χ̄]Fµνaν

}
. (4.3)

Thus, when the RR background (4.1) is turned on, the moduli action becomes

S ′(F , φ) = S ′cubic(F) + S ′quartic(F) + S ′mixed(φ) (4.4)

with the last term given in (3.34). This new action is still BRST exact, but with respect

to a modified BRST charge Q′. Indeed, taking

Q′aµ = Mµ , Q′Mµ = i
√

2 [χ, aµ]− 1

2
Fµν aν ,

Q′λm = Dm , Q′Dm = i
√

2 [χ, λm] + fmn λ
n ,

Q′χ̄ = −i
√

2η , Q′η = − [χ, χ̄] , Q′χ = 0 ,

Q′µ = w , Q′w = i
√

2χµ− i
√

2µφ , (4.5)

10In the notation of appendix A this means that we only turn on the components F
21

µν , see eq. (A.30).
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one can check that

S ′(F , φ) = Q′ Ξ (4.6)

where the gauge fermion Ξ is the one defined in (3.27). The deformed BRST charge Q′ is

nilpotent up to (infinitesimal) transformations of all the symmetry groups of the system,

including the rotations of SO(7) under which the moduli carrying indices of type m,n, . . .

(like λm) transform in the vector representation and the moduli carrying indices of type

µ, ν, . . . (like aµ) transform in the spinor representation. Indeed, from (4.5) one can easily

show that

Q′2 • = TSO(k)

(
i
√

2χ
)
• −TSO(8)

(
i
√

2φ
)
•+TSO(7)

(
F
)
• . (4.7)

As discussed in ref. [17], in view of the explicit evaluation of the integral over the

instanton moduli space using localization methods, it is useful to further deform the above

action. Proceeding in strict analogy with ref. [36], we turn on also the component of the RR

3-form field-strength with an anti-holomorphic index, i.e. Fµνz̄ ≡ F̄µν , and then compute

mixed disk amplitudes with F̄ insertions to obtain the couplings with the instanton moduli.

Choosing

F̄µν =
1

2
f̄mn(τmn)µν (4.8)

one finds the following new terms

1

g2
0

tr

{
i

2
√

2
[aµ, χ] F̄µνaν +

1

8
F̄µνaν Fµρa

ρ +
1

4
F̄µνM

µMν

}
(4.9)

which have to be added to the moduli action (4.4). Notice that the anti-holomorphic

RR background F̄ produces quadratic “mass” terms for the moduli aµ and its fermionic

partners Mµ.

Another class of deformations which we will use in the following is obtained by adding

to F a vector component (see eq. (A.30)), namely by taking the holomorphic RR polariza-

tion tensor to be given by

Fµν =
1

2
fmn(τmn)µν + hm(τm)µν . (4.10)

In this way one gets the following new couplings in the moduli action

1

g2
0

tr
{
hmλm η +

i√
2
hmDmχ̄

}
. (4.11)

It is important to observe that both the F̄ terms (4.9) and the h terms (4.11) can be

incorporated in the BRST structure of the moduli action by deforming the gauge fermion

Ξ and replacing it according to

Ξ → Ξ′ = Ξ− 1

g2
0

tr

{
i√
2
hmλmχ̄+

1

4
F̄µνaνMµ

}
. (4.12)

Then, the full instanton moduli action in the presence of a RR background given by (4.10)

and (4.8) and of a vacuum expectation value φ for the adjoint scalar of the gauge multiplet,

is given by

S ′(F , F̄ , φ) = Q′ Ξ′ . (4.13)
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We will take advantage of the BRST exactness of the moduli action in the following section

when we will discuss the integral over the instanton moduli space.

5 Rescalings and localization

Our next goal is to compute the instanton partition function for the D(–1)/D7 system using

the deformed moduli action derived in the previous section, in order to extract from it the

non-perturbative contributions to the effective action of the SO(8) gauge theory. To do so, it

is convenient to first introduce ADHM-like variables by means of the following replacements

aµ → a′
µ

=
aµ

g0
, Mµ → M ′µ =

Mµ

g0
, µ → µ′ =

µ

g0
, w → w′ =

w

g0
, (5.1)

in such a way that a′µ has dimension of (length), M ′µ and µ′ have dimensions of (length)1/2,

and w′ is dimensionless. Then we define the partition function at instanton number k as

the following integral:11

Zk = Nk

∫
{da′µ dM ′µ dDm dλm dχ̄ dη dχ dµ′ dw′} e−S′(F ,F̄ ,φ) (5.2)

where Nk is a suitable (dimensionless) normalization factor, and S ′(F , F̄ , φ) is the moduli

action obtained from eq. (4.13) upon using the rescalings (5.1).

The charged moduli w′ and µ′ appear only quadratically in the action S′(F , F̄ , φ) (see

eq. (3.34)) and can be easily integrated, yielding12

∫
{dµ′ dw′} e−tr (tw w + tµ′Q′2µ′) ∼ Pf(k,8v,1)

(
Q′2
)

(5.3)

where the labels on the Pfaffian specify the representations on which Q′2 acts. For k = 1

no χ’s are present and the integral over w′ and µ′ produces just Pf(1,8v,1)

(
Q′2
)
∼ Pf

(
φ
)
.

Absorbing all numerical factors into the overall normalization, we can rewrite the

partition function (5.2) as

Zk = Nk

∫ {
da′

µ
dM ′µ dDm dλm dχ̄ dη dχ

}
e−S′(F ,F̄) Pf(k,8v,1)

(
Q′2
)

(5.4)

where

S ′(F , F̄ ) = tr

{
λm(τm)µν

[
a′

µ
,M ′ν

]
+ η

[
a′µ,M

′µ
]
− i√

2
M ′

µ

[
χ̄,M ′µ

]

+
1

2
Dm(τm)µν

[
a′

µ
, a′

ν]−
[
a′µ, χ̄

] [
a′

µ
, χ
]

+
i

2
√

2

[
a′µ, χ̄

]
Fµνa′ν −

i√
2g2

0

η [χ, η] +
1

2g2
0

[χ̄, χ]2 (5.5)

11Here, for simplicity, we do not include the exponential of (minus) the classical instanton action, e2πiτk;

we will restore these factors later on.
12Notice that on the µ′’s the action Q and Q′ coincide.
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+
1

2g2
0

DmD
m − 1

2g2
0

λm

(
i
√

2 [χ, λm] + fmnλn

)

+
1

4
a′µ F̄µν

(
i
√

2
[
χ, a′ν

]
− 1

2
Fνρ a

′ρ
)

+
1

4
F̄µνM

′µM ′ν

+
1

g2
0

hm

(
λm η +

i√
2
Dmχ̄

)}
.

As customary in this type of manipulations [18], we treat the variables χ and χ̄ as in-

dependent of each other and, in particular, according to our conventions, we take them

to be purely imaginary and real respectively. Then, we evaluate the integral (5.4) in the

semi-classical approximation, which due to the BRST structure of the instanton action

turns out to be exact. To proceed it is convenient to perform the following change of

integration variables

a′
µ → 1

x
a′

µ
, M ′µ → 1

x
M ′µ ,

Dm → x2Dm , λm → x2 λm , (5.6)

χ̄ → y χ̄ , η → y η ,

and rescale the anti-holomorphic background as

F̄µν → z F̄µν . (5.7)

The partition function Zk does not depend on the arbitrary parameters x, y and z, because

x and y appear only through a change of integration variables which leaves invariant the

measure in (5.4), while z appears through a change of the anti-holomorphic background

which only appears inside the gauge fermion Ξ′ as shown in (4.12). Thus, we can choose

these parameters to simplify as much as possible the structure of Zk. In particular, if we

take the limit

x → ∞ , y → 0 , z → ∞ (5.8)

with

x2y → ∞ ,
z

x2
→ ∞ , (5.9)

the moduli action (5.6) reduces to

S ′(F , F̄ ) = tr

{
g

2
DmD

m − g

2
λm

(
i
√

2 [χ, λm] + fmn λn

)

+
t

4
a′µ F̄µν

(
i
√

2
[
χ, a′ν

]
− 1

2
Fνρ a

′ρ
)

+
t

4
M ′

µ F̄µνM ′
ν (5.10)

+s hm

(
λm η +

i√
2
Dmχ̄

)}
+ . . . .

Here we have introduced the coupling constants

g =
x4

g2
0

, t =
z

x2
, s =

x2y

g2
0

, (5.11)
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which all tend to ∞ because of eq. (5.9), and have denoted with . . . the terms of the first

three lines of eq. (5.6) which are subleading in this limit. The integrals over a′µ, M ′µ, Dm,

λm, χ̄ and η can now be easily performed since they are all Gaussian.

To evaluate these integrals we choose the deformation parameters fmn and hm as in

ref. [17], namely to take the matrix f along the Cartan directions Ha
SO(7) of SO(7), i.e.

f = ~f · ~HSO(7) =

3∑

a=1

faH
a
SO(7) =




if1σ2 0 0 0

0 if2σ2 0 0

0 0 if3σ2 0

0 0 0 0


 with σ2 =

(
0 −i

i 0

)
, (5.12)

and the vector h with only h7 non-vanishing.13 When these parameters are inserted

in (5.10), the fermion λ7 lacks an explicit “mass term” from the (fλλ) coupling but it

becomes effectively “massive” thanks to the (λ7η) term proportional to h7 and thus can be

integrated without problems. Actually, it is easy to integrate out the entire quartet formed

by D7, λ7, χ̄ and η and realize that it yields just a numerical constant independent of g, s,

h7 and χ. Indeed, even if these quantities do appear in the interactions among the quartet

components, they can be scaled away by a change of integration variables that leaves the

integration measure invariant.

Once the quartet has been integrated, we can safely set h7 = 0. Thus, the deformation

matrix (4.10) becomes

F = −2




iE1σ2 0 0 0

0 iE2σ2 0 0

0 0 iE3σ2 0

0 0 0 iE4σ2


 (5.13)

with

E1 =
1

2

(
f1 − f2 − f3

)
, E2 =

1

2

(
f2 − f3 − f1

)
,

E3 =
1

2

(
f3 − f1 − f2

)
, E4 =

1

2

(
f1 + f2 + f3

)
,

(5.14)

such that

E1 + E2 + E3 +E4 = 0 . (5.15)

At this point, we are left with the integral over a′µ, M ′µ, the six “massive” fermions

λ1, . . . , λ6 (which we will label with an index m̂ = 1, . . . , 6) and the corresponding six

auxiliary bosons Dm̂, plus of course the integral over χ. From eq. (5.10), we see that the

relevant action for these fields is extremely simple and given by

tr
{g

2
Dm̂D

m̂ − g

2
λm̂

(
Q′2λ

)m̂
+
t

4
a′µ F̄µν

(
Q′2a′

)
ν

+
t

4
M ′

µ F̄µνM ′
ν

}
(5.16)

13Even if this is not the most general configuration, it is the most convenient one for the following

computations.
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with the deformed BRST charge acting as in eq. (4.7). The integral we have to compute

is then

I =

∫ {
da′

µ
dM ′µdDm̂dλm̂

}
e−tr

{
g

2
Dm̂Dm̂− g

2
λm̂(Q′2λ)m̂+ t

4
a′

µF̄
µν(Q′2a′)ν+ t

4
M ′

µF̄
µνM ′

ν

}

∼
Pf (adj,1,6⊂7)(g Q

′2) Pf (symm,1,8s)(
t
2 F̄)

det
1/2
(adj,1,6⊂7)(g) det

1/2
(symm,1,8s)

( t
2 F̄Q′2)

(5.17)

up to numerical coefficients. The origin of the various terms in the above expression is clear:

Pf (adj,1,6⊂7)(g Q
′2) comes from the integration of the six fermions λm̂ which transform in

the adjoint representation of SO(k), are singlets of SO(8) and form a 6-vector inside the 7

of SO(7), as indicated by the labels on the Pfaffian symbol. Similarly, Pf (symm,1,8s)(
t
2 F̄)

comes from the integration of the fermionsM ′µ; det
1/2
(adj,1,6⊂7)(g) comes from the integration

of the six bosons Dm̂ and finally det
1/2
(symm,1,8s)

( t
2 F̄Q′2) comes from the integration of the

bosons a′µ. Exploiting the properties of the Pfaffians, we can simplify eq. (5.17) and get

I ∼
Pf (adj,1,6⊂7)(Q

′2)

det
1/2
(symm,1,8s)

(Q′2)

. (5.18)

As expected, all dependence on g, t and the anti-holomorphic background F̄ has dropped

out from the final result, which instead depends on the holomorphic background F given

in (5.13) and on χ (the last instanton moduli to be integrated) through the action of the

deformed BRST charge.

Combining everything and absorbing all numerical factors in the overall normalization

coefficient, we finally obtain

Zk = Nk

∫
{dχ}

Pf (adj,1,6⊂7)(Q
′2) Pf (k,8v,1)(Q

′2)

det
1/2
(symm,1,8s)

(Q′2)

. (5.19)

As suggested by eq. (4.7), it is convenient to redefine i
√

2χ → χ and i
√

2φ → φ, so that

the new χ variable becomes real and

Q′2 • = TSO(k)

(
χ
)
• −TSO(8)

(
φ
)
•+TSO(7)

(
F
)
• . (5.20)

Furthermore, for ease of notation we set

P(χ) ≡ Pf (adj,1,6⊂7)(Q
′2) , R(χ) ≡ Pf (k,8v,1)(Q

′2) , Q(χ) ≡ det
1/2
(symm,1,8s)

(Q′2) (5.21)

and, after a suitable redefinition of the overall normalization, we rewrite the partition

function as follows

Zk = Nk

∫ { dχ
2πi

} P(χ)R(χ)

Q(χ)
. (5.22)

Since the integrand is singular when the denominator Q(χ) vanishes and tends to one

when χ→∞, the integral (5.22) is naively divergent and must be suitably defined to make
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sense. Here we follow the same prescription of ref. [17], and cure the singularities along the

integration path by giving the zeroes of Q(χ) a small positive imaginary part moving them

in the upper-half complex plane, and regulate the divergence at infinity by interpreting the

χ-integral as a contour integral. Even if this prescription as it stands does not seem to be

fully justified and lacks a rigorous derivation from first principles, there is clear evidence of

its validity in results of ref. [17] and their numerous generalizations discussed for example

in refs. [45][49], as well as in the agreement with numerical analysis based on Monte-Carlo

methods [50].

Using this prescription, the instanton partition function (5.22) will then be expressed as

a finite sum of residues evaluated at the poles of the integrand, showing that the integral

over the instanton moduli effectively localizes on the zeroes of Q(χ) and thus receives

contributions only from those configurations for which the bosonic “kinetic” terms vanish.

This is completely similar to the localization of the integrals over the instanton moduli space

in N = 2 super Yang-Mills theories in four dimensions discussed in refs. [18] and [31][35].

6 Explicit expressions and results for low k

6.1 k = 1

The 1-instanton partition function Z1 is particularly simple: in fact, for k = 1 there are

no λm’s and no χ’s, so that the factor P(χ) is not generated and no contour integral has

to be evaluated. Furthermore, for k = 1 the factor R(χ) reduces just to Pf
(
φ
)
, as already

observed after eq. (5.3), while from eq. (5.17) we see that the integration over a′µ and M ′µ

reduces to
∫ {

da′
µ
dM ′µ

}
e−
{

1
8
a′

µF̄
µνFρνa′ρ+ 1

4
M ′

µF̄
µνM ′

ν

}
∼ 1

det1/2(F)
∼ 1

E (6.1)

where have defined

E ≡ E1E2E3E4 . (6.2)

Thus, for k = 1 we simply have

Z1 = N1
Pf φ

E . (6.3)

Notice that the factor 1/E in the above result can be interpreted as the regulated volume

of the eight-dimensional N = 1 superspace. In fact, for k = 1 the moduli a′ and M ′ are

identified with the superspace coordinates (see eq. (3.11)), so that from (6.1) we can obtain

the effective identification14
∫
d8x d8θ ←→ (2π)4

E . (6.4)

This is the eight-dimensional analogue of the effective rule that appears in the instanton

calculus in four dimensions using localization and ǫ-deformation methods [18, 36].

14The factors of π’s are introduced for later convenience, but it is easy to trace their origin in the Gaussian

integration over the eight bosonic moduli a′µ.
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6.2 k > 1

Let us now consider the cases with k > 1. To perform the integration over the χ’s we

can exploit the SO(k) invariance of the integrand in (5.22) and, at the price of introduc-

ing a Vandermonde determinant15 ∆(χ), bring the χ’s to the Cartan subalgebra, whose

generators we denote as H i
SO(k), i.e.

χ → ~χ · ~HSO(k) =

rank SO(k)∑

i=1

χiH
i
SO(k) . (6.5)

Then the partition function becomes

Zk = Nk

∫ ∏

i

(dχi

2πi

)
∆(~χ)

P(~χ)R(~χ)

Q(~χ)
. (6.6)

Again, we have absorbed all numerical factors produced by the “diagonalization” of χ into

a redefinition of the normalization coefficient Nk.

Without any loss of generality we can assume that also the vacuum expectation values

of the scalar φ belong to the Cartan directions Hu
SO(8) of SO(8) and thus have the following

block-diagonal form

φ = ~φ · ~HSO(8) =
4∑

u=1

φuH
u
SO(8) =




iφ1σ2 0 0 0

0 iφ2σ2 0 0

0 0 iφ3σ2 0

0 0 0 iφ4σ2


 . (6.7)

With these choices, Q′2 corresponds to infinitesimal Cartan actions which can be diago-

nalized in any representation by going to the basis provided by the weights.

Let consider, for instance, the charged moduli µ′ which we relabel as

µ′
I
U → µ′

~π
~γ ∼ |~π,~γ〉 , (6.8)

where ~π belongs to the set of weights of the vector representation k of SO(k), while ~γ is a

weight of the vector representation 8v of SO(8). Then, from (5.20) we have

Q′2 |~π,~γ〉 =
(
TSO(k)(~χ)− TSO(8)(~φ)

)
|~π,~γ〉 =

(
~χ · ~π − ~φ · ~γ

)
|~π,~γ〉 . (6.9)

Notice that the variables µ′~π~γ are in general complex, and their conjugate moduli are16

µ′−~π
−~γ ; the couples of conjugate moduli are therefore labeled by half of the possible pairs of

weights (~π,~γ). Hence, the complex fermionic integration over the µ′~π~γ ’s yields

R(~χ) =
∏

~π∈k

(+)∏

~γ∈8v

(
~χ · ~π − ~φ · ~γ

)
. (6.10)

15Notice that this operation is formally acceptable only when χ is real, which is what we have argued at

the end of the previous section.
16All representations appearing in our expressions are real, namely correspond to weight sets that are

closed under parity.
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Here the product over ~γ is limited to half of the weights, that we refer to as the “positive”

ones; this is the meaning of the superscript (+) appearing above. The weights of the vector

representation 8v of SO(8) are expressed in terms of the versors ~eu (u = 1, . . . 4) spanning

the weight space as ±~eu. Taking ~eu as the positive ones, we obtain

R(~χ) =

4∏

u=1

∏

~π∈k

(
~χ · ~π − φu

)
. (6.11)

We can proceed in a similar way for the six moduli λm̂, finding

P(~χ) =
∏

~ρ∈adj

(+)∏

~α∈6⊂7

(
~χ · ~ρ− ~f · ~α

)
=

3∏

a=1

∏

~ρ∈adj

(
~χ · ~ρ− fa

)
. (6.12)

Indeed, the positive weights of the 6 ⊂ 7 representation of SO(7) correspond simply to the

versors ~ea (a = 1, 2, 3) of the weight space. Finally, considering the moduli a′µ, we get

Q(~χ) =
∏

~σ∈symm

(+)∏

~β∈8s

(
~χ · ~σ − ~f · ~β

)
=

4∏

A=1

∏

~σ∈symm

(
~χ · ~σ − EA

)
. (6.13)

Here EA (A = 1, . . . 4) denote the scalar products of the background ~f given in (5.12) with

the four positive weights of the spinor representation of SO(7), and correspond precisely to

the parameters introduced in (5.14). Also the Vandermonde determinant can be expressed

in terms of the non-zero weights of the adjoint representation of SO(k):

∆(~χ) =
∏

~ρ∈adj 6=~0

~χ · ~ρ . (6.14)

All the above expressions become explicit using the weight sets of the various representa-

tions provided in appendix C. As an illustration, let us discuss R(~χ) given in (6.11). When

k = 2n, the rank of SO(k) is n. Denoting the versors of the R
n weight space as ~ei, the

weights ~π of the vector representation 2n are simply ~π = ±~ei, so that from (6.11) we get

R(~χ) =
4∏

u=1

n∏

i=1

(χi − φu)(−χi − φu) =
4∏

u=1

n∏

i=1

(φ2
u − χ2

i ) . (6.15)

For k = 2n+ 1, the rank of SO(k) is again n but now the vector representation contains in

addition to the weights ±~ei also a null weight ~0. As a consequence, we find an extra factor

of Pf φ; indeed

R(~χ) =

4∏

u=1

(−φu)

n∏

i=1

(χi − φu)(−χi − φu) = Pf φ

4∏

u=1

n∏

i=1

(φ2
u − χ2

i ) . (6.16)

Let us notice that also the adjoint and symmetric representations of SO(k) contain null

weights, which lead to terms independent of ~χ in the products (6.12) and (6.13). In
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particular, the adjoint representation has n null weights both for k = 2n and k = 2n + 1,

leading to

P(~χ) =
(
Pf f

)n 3∏

a=1

∏

~ρ∈adj 6=~0

(~χ · ~ρ− fa) , (6.17)

where

Pf f = f1f2f3 . (6.18)

The symmetric representation, instead, has n null weights when k = 2n, and n + 1 when

k = 2n+ 1, so that

Q(~χ) = En
4∏

A=1

∏

~σ∈symm 6=~0

(~χ · ~σ − EA) for k = 2n (6.19)

and

Q(~χ) = En+1
4∏

A=1

∏

~σ∈symm 6=~0

(~χ · ~σ − EA) for k = 2n+ 1 , (6.20)

where E is the quantity defined in (6.2).

Using these explicit expressions we can perform the final integrations over the χ’s and

obtain the instanton partition functions Zk given in (6.6). As discussed at the end of

section 5, the χ-integrals are understood as contour integrals in the upper-half complex

plane and the singularities at the zeroes of the polynomial Q(~χ) are avoided by giving the

deformation parameters EA a small positive imaginary part, according to the prescriptions

of ref. [17]. In particular, we choose

ImE1 > ImE2 > ImE3 > ImE4 > Im
E1

2
> . . . > Im

E4

2
> 0 . (6.21)

Let us apply this to the simplest non-trivial case, namely k = 2, where we have

Z2 = N2
Pf f

E

∫
dχ

2πi

∏4
u=1(φ

2
u − χ2)

∏4
A=1(2χ− EA)(−2χ− EA)

. (6.22)

The integration prescription described above leads to express Z2 as a sum over the residues

of the integrand at χ = EA/2:

Z2 = N2
Pf f

2 E
4∑

A=1

∏4
u=1(φ

2
u − (EA/2)

2)∏
B 6=A(EA − EB)

∏
B(−EA − EB)

. (6.23)

If we perform the algebra, and use the relations (5.14) between the quantities EA and the

three independent parameters fa, in the end we get

Z2 = N2

{(
Pf φ

)2

4 E2
+

1

E

[
Trφ4 − 1

2

(
Trφ2

)2

256

+
Tr f2 Trφ2

2048
+

Tr f4 − 5
4

(
Tr f2

)2

16384

]}
. (6.24)
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Here we have rewritten the resulting polynomials in the eigenvalues fa and φu in terms of

invariants constructed with the matrices φ and f in order to get expressions that, although

derived choosing φ and f in the Cartan directions, are valid generically. For instance, the

terms of order φ4 in (6.24) arise in the form

∑

u>v

φ2
uφ

2
v = −1

4

(
Trφ4 − 1

2

(
Trφ2

)2
)
, (6.25)

since, according to eq. (6.7), in the block-diagonal case we have

Trφ2 = −2
∑

u

φ2
u , Trφ4 = 2

∑

u

φ4
u . (6.26)

For k = 3, the integral to be computed reads

Z3 = N3
Pf φPf f

E2

∫
dχ

2πi

χ2
∏4

u=1(φ
2
u − χ2)

∏3
a=1(f

2
a − χ2)

∏4
A=1(2χ− EA)(−2χ− EA)(χ− EA)(−χ−EA)

. (6.27)

The integration prescription leads now to the sum over two classes of residues, those in

χ = EA/2 and those in χ = EA. After the algebra has been carried out, this sum reduces to

Z3 = N3 Pf φ

{(
Pf φ

)2

12 E3
+

1

E2

[
Trφ4 − 1

2

(
Trφ2

)2

256
+

Tr f2 Trφ2

2048

+
Tr f4 − 5

4

(
Tr f2

)2

16384

]
+

1

96E

}
. (6.28)

In the cases k = 4 and k = 5 the rank of SO(k) equals 2 and we have therefore to

perform a double contour integral over χ1 and χ2. In appendix C we give some details

about the classes of residues that contribute to these integrations. The complete resulting

expressions for Z4 and Z5 are too cumbersome to report them explicitly; however, we report

the terms with the highest power of E in the denominator, namely

Z4 = N4

(
Pf φ

)4

48 E4
+ · · · , (6.29a)

Z5 = N5

(
Pf φ

)5

240 E5
+ · · · , (6.29b)

which will be useful for the calculations described in the next section.

7 The prepotential and its gravitational corrections

From the instanton partition functions Zk computed in the previous section, we define the

“grand-canonical” partition function

Z =

∞∑

k=0

Zk e2πiτk =

∞∑

k=0

Zk q
k (7.1)
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where we have conventionally set Z0 = 1, and, as in (2.12), defined q ≡ exp(2πiτ). This

allows us to obtain the non-perturbative contributions to the effective action of the D7-

branes. However, to do so one has first to take into account the fact that the k-th order

in the q-expansion receives contributions not only from genuine k-instanton configurations

but also from “disconnected” ones, corresponding to copies of instantons of lower numbers

ki such that
∑
ki = k [18]. Thus, to isolate the connected components we have to take

the logarithm of Z. Moreover, as we have explicitly shown in the previous sections, the

partition functions Zk have been obtained by integrating over all moduli, including the

“center of mass” coordinates xµ and their superpartners θα defined in (3.11). In absence of

deformations these zero-modes do not appear in the moduli action and the integration over

them would diverge, producing the (infinite) “supervolume” of the eight-dimensional base

manifold. In presence of SO(7) deformations, instead, as we remarked around eq. (6.4),

the integration over the superspace coordinates yields a factor of (2π)4/E . Therefore, to

obtain the integral over the centered moduli only, it is sufficient to remove this factor.

Having done so, we can promote the vacuum expectation value φ appearing in Z to the

full fledged dynamical superfield Φ(x, θ) and, after removing the RR deformation, obtain

the non-perturbative contributions to the effective action of the D7-branes, namely

S(n.p.) =
1

(2π)4

∫
d8x d8θ F (n.p.)

(
Φ(x, θ)

)
(7.2)

with the “prepotential” F (n.p.)(Φ) given by

F (n.p.)(Φ) = E logZ
∣∣∣
φ→Φ,f→0

. (7.3)

Expanding in instanton contributions we can write

F (n.p.)(Φ) =
∞∑

k=1

Fk q
k
∣∣∣
φ→Φ,f→0

(7.4)

and, using (7.1), express recursively each Fk in terms of the partition functions Zk and of

the coefficients Fj with j < k, according to

F1 = EZ1 ,

F2 = EZ2 −
F 2

1

2E ,

F3 = EZ3 −
F2F1

E − F 3
1

6E2
,

F4 = EZ4 −
F3F1

E − F 2
2

2E −
F2F

2
1

2E2
− F 4

1

24E3
,

F5 = EZ5 −
F4F1

E − F3F2

E − F3F
2
1

2E2
− F 2

2F1

2E2
− F2F

3
1

6E3
− F 5

1

120E4
,

. . ..

(7.5)

The prepotential F (n.p.)(Φ) must be well-defined when the closed string deformation is

turned off, and hence all coefficients Fk must be finite in the limit f → 0. On the other
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hand, as is clear from the explicit expressions obtained in the previous section, the partition

functions Zk exhibit singularities of different orders, ranging from O(f−4) (corresponding to

1/E) up to O(f−4k) (corresponding to 1/Ek). Thus, for consistency of the whole procedure,

in computing Fk all such divergences must disappear. Imposing the cancellation of the most

divergent term fixes the overall normalization coefficients Nk but, once this choice is made,

all the remaining cancellations of divergences must take place.

For k = 1, from eq. (6.3) we have directly

F1 = N1 Pf φ . (7.6)

For k = 2, we must insert the above result into eq. (7.5) and use the expression (6.24) for

the partition function Z2. The resulting contribution is

F2 =

(N2

4
− N

2
1

2

)
(Pf φ)2

E + . . . . (7.7)

We fix the normalization N2 as

N2 = 2N 2
1 (7.8)

in order to cancel the most divergent term, and having done so, we find that all other

divergences disappear, leaving

F2 = 2N 2
1

(
Trφ4 − 1

2 (Trφ2)2

256
+

Tr f2 Trφ2

2048
+

Tr f4 − 5
4(Tr f2)2

16384

)
. (7.9)

We proceed in the same way at the next order, k = 3. Using eq. (6.28) and the above

expressions for F1 and F2, one can see from eq. (7.5) that the most divergent term of

F3 reads

F3 =
(Pf φ)3

E2

(N3

12
− N2N1

4
+
N 3

1

3

)
+ . . . =

(Pf φ)3

E2

(N3

12
− N

3
1

6

)
+ . . . , (7.10)

so that we have to choose

N3 = 2N 3
1 . (7.11)

Once this is done, all other divergences cancel and we are simply left with

F3 =
N 3

1

48
Pf φ . (7.12)

It is interesting to note that the contributions from odd instanton numbers k = 2n + 1

have to contain the factor Pf φ which, being quartic, saturates already the dimensionality

of the prepotential. Thus, in these cases, there is no room for f -dependent terms.

So far, the only ambiguity left is the overall normalization factor N1. Considering the

ratio F3/F1 = N 2
1 /48, we see that by setting

N1 = 8 , (7.13)

it takes the value d3/d1 = 4/3 as in the heterotic theory (see eq. (2.7c)). With this choice

all possible ambiguities are fixed, and no further adjustments are possible. For k = 4,
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the partition function Z4 can be computed as indicated in appendix C. The cancellation

of most divergent term in the expression of F4 following from eq. (7.5), requires that

N4 = 2N 4
1 = 8192. Using this, we then find

F4 =
1

4
Trφ4 − 1

4
(Trφ2)2 +

3

32
Trφ2 Tr f2 +

3

256

(
Tr f4 − 5

4
(Tr f2)2

)
. (7.14)

In the case k = 5, having computed Z5 along the lines described in appendix C, the

cancellation of the highest divergence in F5 requires that N5 = 2N 5
1 = 65536, after which

we get

F5 =
48

5
Pf φ . (7.15)

Making the replacement φ→ Φ(x, θ) and taking the limit f → 0 in the above results,

we obtain the non-perturbative contributions to the prepotential according to eq. (7.4).

Up to instanton number k = 5, our findings are summarized in

F (n.p.)(Φ) = Tr Φ4

(
1

2
q2 +

1

4
q4 + . . .

)
− (Tr Φ2)2

(
1

4
q2 +

1

4
q4 + . . .

)

+ 8Pf Φ

(
q +

4

3
q3 +

6

5
q5 + . . .

)
,

(7.16)

which perfectly match the expectations from the heterotic string, as one can see by com-

paring eq.s (7.16) and (2.7).17

Actually, if we refrain from taking the limit f → 0, our method allows to obtain also

the instanton-induced gravitational corrections to the prepotential. Indeed, once the factor

1/E is removed from logZ as indicated in (7.3), we are allowed not only to replace φ with

the full dynamical gauge superfield Φ(x, θ) as we have done so far, but also to replace

the constant RR background f with a full-fledged dynamical gravitational superfield, in

complete analogy with what happens in the N = 2 SYM theories in four dimensions [36].

The reason is that the (7 × 7) matrix fmn defines, through eq. (4.1), an (8 × 8) anti-

symmetric tensor Fµν , which can be interpreted as the graviphoton field-strength. In turn,

Fµν can be considered as the lowest component of a eight-dimensional bulk chiral superfield

Wµν(x, θ) defined as

Wµν(x, θ) = Fµν(x) + θ χµν +
1

2
θγρσθRρσµν(x) + · · · (7.17)

where χµν is the gravitino field-strength andRρσµν is the Riemann curvature tensor. Notice

that since the matrix fmn parameterizes the 21 components of Fµν that are related to the

rotation in a 7-dimensional subspace as indicated in eq. (4.1), the graviphoton field-strength

is subject to the constraint

(P+
1 )µν

ρσ Fµν = 0 , (7.18)

where P+
1 is the octonionic projector described in appendix A.1. This constraint can be

viewed as the eight-dimensional analogue of the self-duality constraint that is imposed on

the graviphoton background in four dimensions [18, 36].

17The t8 structure is produced, according to eq.s (A.35) and (A.36), by integrating the prepotential over

d8θ to obtain the effective Lagrangian.
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In this way we can obtain the non-perturbative prepotential, including gravitational

corrections, which is therefore given by

F (n.p.)(Φ,W) = E logZ
∣∣∣
φ→Φ,f→W

. (7.19)

The first few contributions at low instanton numbers can be read from eq.s (7.6), (7.9)

and (7.14). However, to express the result in a covariant form, it is convenient to first take

advantage of the following trace identities

Tr f2 =
1

4
TrF2 ,

Tr f4 − 5

4
(Tr f2)2 = −1

8

(
TrF4 +

1

4
(TrF2)2

)
,

(7.20)

so that we obtain

F (n.p.)(Φ,W) = F (n.p.)(Φ) +
1

26
TrW2 Tr Φ2

(
q2 +

3

2
q4 + · · ·

)

− 1

210

(
TrW4 +

1

4
(TrW2)2

)(
q2 +

3

2
q4 + · · ·

)
.

(7.21)

Once we perform the integration over the fermionic superspace coordinates, this expression

shows that instantons with even topological charge induce in the D7-brane effective action

non-perturbative purely gravitational terms proportional to TrR4 + 1
4(TrR2)2, and mixed

gauge/gravitational terms proportional to TrR2 TrF 2. The relative coefficients of the

instanton corrections for the various structures are again in perfect agreement with the

expectations from the heterotic string calculations, as indicated in eq. (2.5).

8 Conclusions

In this paper we have analyzed in detail the integral over the D-instanton moduli in the

type I′ theory. Such matrix integrals are different from the D(–1) matrix integrals in type

IIB since they possess mixed moduli from the D7/D(–1) sectors. They also differ from

“ordinary” instantonic brane systems, such as the D3/D(–1) system, because the mixed

moduli are only fermionic; they are instead similar to so-called “exotic” instantons. We

have shown that localization techniques similar to the ones that were successful for type IIB

matrix integrals and for the N = 2 instanton calculus in four dimensions allow to perform

the integration also in the D7/D(-1) system for generic values of the instanton number k.

The outcome of the computation is the quartic prepotential for the SO(8) gauge multiplet

Φ(x, θ) on a stack of D7-branes. Up to k = 5 and taking into account also the tree-level

and one-loop contributions discussed in section 3.1, the explicit result we find is

F (Φ) = Tr Φ4

[
iπτ

12
+

1

2
q2 +

1

4
q4 + . . .

]

+
(
TrΦ2

)2
[

1

32
log
(
Im τ ImU |η(U)|4

)
− 1

4
q2 − 1

4
q4 + . . .

]

+ 8Pf Φ

[
q +

4

3
q3 +

6

5
q5 + . . .

]
.

(8.1)
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This expression matches perfectly the results of the heterotic
[
SO(8)

]4
theory as given in

eq. (2.13) upon use of the duality relations (2.11). Our computation represents thus an

explicit quantitative check of the heterotic/type I′ duality.

We expect that the techniques we utilized may be useful in dealing with the moduli

space integrals for other instances of “exotic” instanton systems, also the four-dimensional

ones of potential phenomenological relevance.
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A Conventions and notations

A.1 SO(7) and SO(8) gamma-matrices

SO(7) can be embedded into SO(8) in such a way that the vector representation 8 of SO(8)

is identified with the spinor representation 8s of SO(7). This embedding is best described

by using an explicit realization of the Clifford algebras in d = 7 and d = 8 based on the

octonionic structure constants.

The Clifford algebra in 7 dimensions,

{
τ i, τ j

}
αβ

= −2δij δαβ , (A.1)

can be realized by the matrices (8× 8)-matrices τ i (i = 1, . . . , 7) with elements

(τ i)αβ = δi8
αβ + C− i8

αβ (α, β = 1, . . . , 8) , (A.2)

where we made use of the totally antisymmetric, (anti)-selfdual four-index tensors in d = 8

C±
µνρσ . In turn, these tensors are expressed as

C±
ijk8 = cijk , C±

ijkℓ = ± 1

3!
ǫijkℓmnp cmnp (A.3)

in terms of the octonionic structure constants cmnp (m,n, . . . = 1, . . . , 7), with c a totally

antisymmetric tensor whose only non-zero elements can be taken to be

c127 = c163 = c154 = c253 = c246 = c347 = c567 = 1 . (A.4)

The tensor cmnp enjoys various properties, such as

cmprcnrq = −δmnδpq + δmqδnp +
1

6
ǫmnpqstucstu ≡ −δmp,nq +

1

6
ǫmnpqstucstu (A.5)

and

cmpqcnpq = 6 δmn , ǫmnpqstucstucrpq = 24 cmnr . (A.6)
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These properties imply the existence of useful identities for the tensors C±
µνρσ, such as

C±µνρσC±
ρστω = 6 δµν

τω ± 4Cµν
τω . (A.7)

The SO(7) generators T ij in the spinorial representation 8s, satisfying the so(7) algebra

[
Tmn, T pq

]
= δnp Tmq − δmp T nq + δmq T np − δnq Tmp , (A.8)

are defined as

Tmn = −1

4
[τm, τn] ≡ −1

2
τmn . (A.9)

Using the definition (A.2) and eq. (A.7), one can show that

(
Tmn

)
AB

=
1

2

(
δmn

AB +C−mn
AB

)
. (A.10)

A generic SO(7) group element in the spinor representation can then be parametrized as

R(f) = e
1
2
fmn T mn

(A.11)

and the infinitesimal SO(7) variation of any field XA transforming in the spinor represen-

tation is

δXA =
1

2
fmn

(
Tmn

)AB
XB = −1

2
FAB

21 XB (A.12)

where we have introduced (the subscript 21 will become clear later)

FAB
21 =

1

2
fmn

(
τmn

)AB
. (A.13)

The SO(7) generators tmn in the vector representation 7, satisfying the so(7) algebra

with the same normalization as in eq. (A.8) are given by

(
tmn
)
pq

= δmn
pq = δm

p δn
q − δm

q δn
p . (A.14)

Thus, in the vector representation, the SO(7) group element with parameters fmn is rep-

resented by

r(f) = e
1
2
fmn tmn

(A.15)

and the infinitesimal variation of any field φm transforming in the vector representation is

δφp =
1

2
fmn

(
tmn
)pq
φq =

1

2
fmn δ

mn,pq φq = fpq φq . (A.16)

The SO(8) Clifford algebra can be realized by taking the eight gamma matrices γµ to

be (we use now µ = 1, . . . 8, while m = 1, . . . 7)

γm = iτm ⊗ σ1 , γ8 = 18 ⊗ σ2 . (A.17)

These matrices satisfy indeed

[γµ, γν ] = 2δµν . (A.18)
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Note that this is a Weyl basis, since the chirality matrix γ is represented by

γ ≡ −γ1γ2 . . . γ8 = −τ1τ2 . . . τ7 ⊗ σ3 = 1⊗ σ3 . (A.19)

Note also that in their realization given in eq. (A.17) all the gamma matrices are antisym-

metric; the charge conjugation matrix can thus be taken to be simply the identity matrix.

The two-index gamma-matrices

γµν ≡ 1

2
[γµ, γν ] , (A.20)

which are again anti-symmetric, are given, according to eq. (A.17), by

γmn = −τmn ⊗ 12 , γm8 = −τm ⊗ σ3 . (A.21)

For the anti-chiral block we find explicitly

γ̄µν

α̇β̇
= C−µν

α̇β̇
+ δµν

α̇β̇
(A.22)

while for the chiral block we can write

(γmn)αβ = δmn
αβ + C−mn

αβ , (γm8)αβ = −δm8
αβ − C−m8

αβ (A.23)

or, splitting the spinor index α into (a, 8) with a = 1, . . . 7,

(γµν)ab = δµν
ab − C

+µν
ab , (γµν)a8 = −δµν

a8 + C+µν
a8 . (A.24)

The 28-dimensional space of anti-symmetric 8× 8 matrices, namely the adjoint space

of SO(8), admits an orthogonal decomposition 28 → 21 + 7 enforced by the following

projectors:

(P+
1 )µν

ρσ =
1

8

(
δµν
ρσ + C+µν

ρσ

)
,

(P+
2 )µν

ρσ =
3

8

(
δµν
ρσ −

1

3
C+µν

ρσ

)
.

(A.25)

Indeed, it is straightforward to check that

(P+
1 )2 = P+

1 , (P+
2 )2 = P+

2 , P+
1 P

+
2 = P+

2 P
+
1 = 0 , P+

1 + P+
2 = 1 (A.26)

using the properties of the tensor C+
µνρσ , see eq. (A.7). Since the tensor C+

µνρσ is traceless,

the dimensionality of the two eigenspaces are easily obtained by taking the trace of the

projectors:

dim Ker(P+
1 ) = 21 , dim Ker(P+

2 ) = 7 . (A.27)

The Ker(P+
1 ) subspace is spanned by the 21 matrices (τmn)µν corresponding to (twice)

the SO(7) spinorial generators in which we identify the indices A in the 8s of SO(7) with

the indices µ in the vector of SO(8). Indeed one can verify that

(P+
1 )µν

ρσ(τmn)µν ∝
(
δµν
ρσ + C+µν

ρσ

)
(τmn)µν = 0 . (A.28)
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b) c)

χ̄

D

F

a

Ȳ

F

a)

λ

λ

F

Figure 2. Disk diagrams describing the interactions of a holomorphic RR field-strength vertex (in

the interior of the disk) with moduli vertices. The boundary of the disk is on the D(–1)’s.

b) c)

χ

D

F̄

a

Y

F̄

a)

M

M

F̄

Figure 3. Disk diagrams describing the interactions of an anti-holomorphic RR field-strength

vertex (in the interior of the disk) with moduli vertices. The boundary of the disk is on the D(-1)’s.

The Ker(P+
2 ) subspace is instead spanned by the 7 matrices (τm)µν , namely the SO(7)

matrices with the above identification of spinorial indices of SO(7) and vector indices of

SO(8):

(P+
2 )µν

ρσ(τm)µν ∝
(
δµν
ρσ −

1

3
C+µν

ρσ

)
(τm)µν = 0 . (A.29)

Thus, there is a non-standard18 embedding of SO(7) into SO(8) in which the adjoint

representation of the latter, whose elements are antisymmetric 8× 8 matrices Fµν , decom-

poses into 21⊕ 7 as follows:

Fµν = F21

µν + F7

µν =
1

2
fmn(τmn)µν + hm(τm)µν . (A.30)

Eq.s (A.28) and (A.29) imply the following relations, useful in the computation of the

diagram in figure 3 a):

(τmn)µν

(
δµν
ρσ − C+µν

ρσ

)
= + 4 (τmn)ρσ , (A.31)

(τm)µν

(
δµν
ρσ − C+µν

ρσ

)
= − 4 (τm)ρσ . (A.32)

18In a standard embedding, the adjoint representation 21 of SO(7) corresponds simply to the restriction

of Fµν to its elements Fmn, while the 7 corresponds to Fm8.
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The following identities are instead useful for the computation of the diagram in fig-

ure 2 a):

(τmn)µν(γ̄µν)pq = −8δmn
pq , (τmn)µν(γ̄µν)p8 = 0 , (A.33)

(τm)µν(γ̄µν)p8 = +8δm
p , (τm)µν(γ̄µν)pq = 0 . (A.34)

A.2 The t8 tensor

The explicit expression of the totally anti-symmetric 8-index tensor t8 can be read from

eq. (2.2). Several of its properties are given, for instance, in appendix B of [37]. Here,

let us just recall how it appears from the integration over the superspace coordinates d8θ

(or d8θ̄) of chiral (or anti-chiral) superfields such as those in eq. (3.2) or eq. (7.17), see for

example appendix 9.A of ref. [38]. For bi-linear operators of the form

Rµν =
1

4
(γµν)αβθ

αθβ , R̄µν =
1

4
(γ̄µν)α̇β̇ θ̄

α̇θ̄β̇ , (A.35)

one finds∫
d8θ
(
Rµ1µ2 · · ·Rµ7µ8

)
= tµ1µ2...µ7µ8

+ ,

∫
d8θ̄
(
R̄µ1µ2 · · · R̄µ7µ8

)
= tµ1µ2...µ7µ8

− (A.36)

with the antisymmetric tensors t± being related to t8 and to the Levi-Civita tensor ǫ8 by

t± = t8 ±
1

2
ǫ8 . (A.37)

B Vertex operators and disk amplitudes

In this appendix we give some details on the evaluation of the string diagrams that describe

the interaction between the instanton moduli and the constant RR background.

As explained in refs. [23, 36, 44], to simplify the procedure it is convenient to first

rewrite the quartic interactions among aµ, χ and χ̄ appearing in S ′quartic of eq. (3.13b) in

a cubic form. This can be done by introducing two new auxiliary fields Yµ and Ȳ µ, so that

we can replace S ′quartic by

S ′aux =
1

g2
0

tr

{
1

2
DmD

m +
1

2
Dm(τm)µν [aµ, aν ]

+ Ȳ µYµ + [aµ, χ̄]Yµ + Ȳ µ [aµ, χ] +
1

2
[χ̄, χ]2

}
.

(B.1)

It is easy to see that S ′aux reduces to S ′quartic when the auxiliary fields Yµ and Ȳ µ acquire

their on-shell values:

Yµ = − [aµ, χ] , Ȳ µ = − [aµ, χ̄] . (B.2)

The entire moduli action S ′cubic+S ′mixed+S ′aux (with the first two terms given in eq.s (3.19)

and (3.20)) can be obtained by computing “scattering” amplitudes among the vertex oper-

ators representing the various instanton moduli, including the auxiliary ones. In standard

CFT notations (see for example refs. [23, 37] for details), these vertex operators are

Va = (2πα′)1/2 aµ ψ
µ e−ϕ , Vχ = (2πα′)1/2 χ Ψ̄ e−ϕ , Vχ̄ = (2πα′)1/2 χ̄Ψ e−ϕ , (B.3)
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for the neutral moduli of the Neveu-Schwarz sector, and

VM = (2πα′)3/4 Mα S
α S− e−ϕ/2 , Vλ = (2πα′)3/4 λα̇ S

α̇ S+ e−ϕ/2 , (B.4)

for those of the Ramond sector. For the fermionic charged moduli, corresponding to open

strings with eight mixed ND directions, we have instead

Vµ = (2πα′)3/4 µ∆S+ e−ϕ/2 . (B.5)

Finally, the vertex operators for the auxiliary moduli are

VD = (2πα′)Dm(τm)µν : ψµψν : , VY = (2πα′)Yµ : Ψ̄ψµ : , VȲ = (2πα′) Ȳµ : Ψψµ :

(B.6)

in the neutral sector, and

Vw = (2πα′)w∆Sα̇=8̇ (B.7)

in the charged sector. In writing these vertex operators, we have neglected all numerical

factors in the normalizations and only inserted the appropriate powers of (2πα′) that are

needed to give the moduli the canonical dimensions (not the ADHM ones). Indeed, as

we have shown in the main text, the result of the integration over the moduli space is

insensitive to the numerical coefficients of the various structures.

Notice that in eq. (B.7) we have selected the α̇ = 8̇ component of the spin field Sα̇, since

the BRST charge used in section 3 is precisely the α̇ = 8̇ component of the supersymmetry

charge Qα̇, which is preserved by both the D7- and the D(–1)-branes, and given by

Qα̇ =

∮
dz

2πi
Sα̇(z)S+(z)e−ϕ(z)/2 . (B.8)

Using this information, and applying the techniques discussed in refs. [22, 23], one can

check the BRST transformation properties reported in eq. (3.22), as well as

QMµ = i
√

2Y µ , QY µ = −[Mµ, χ] . (B.9)

This stringy approach to the instanton calculus allows to easily compute also the

interactions between moduli and bulk gravitational fields. In particular, we are interested

in the interactions with RR field-strengths F and F̄ , which correspond to the disk diagrams

represented in figures 2 and 3. These can be computed using standard CFT techniques by

inserting in the disk interior the following RR vertex operators

VF = (2πα′)1/2 Fµν (γµνγ)αβ S
α S− e−ϕ/2 S̃β S̃− e−eϕ/2 ,

VF̄ = (2πα′)1/2 F̄µν (γµνγ)α̇β̇ S
α̇ S+ e−ϕ/2 S̃β̇ S̃+ e−eϕ/2 ,

(B.10)

where the matrices γµν and γ have been defined in eq.s (A.20) and (A.19).

Let us now give some details on the computation of the disk diagram represented in

figure 2a, which corresponds to the following amplitude

〈〈
VλVλVF

〉〉
≡ C0

∫
dx1 dx2 dzdz̄

dVCKG
×
〈
Vλ(x1)Vλ(x2)VF (z, z̄)

〉
(B.11)
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where C0 is the normalization of D(–1) disk amplitudes [23]

C0 =
2

(2πα′)2
1

g2
0

(B.12)

and dVCKG is the volume of the conformal Killing group. As usual, the open string punc-

tures xi are integrated along the real axis with x1 ≥ x2 while the closed string puncture

z is integrated on the upper half complex plane. More explicitly, after reflecting the right

movers on the disk boundary, we have

〈〈
VλVλVF

〉〉
=

2

g2
0

tr
(
λα̇λβ̇Fµν(γµνγ)αβ

)∫ dx1 dx2 dzdz̄

dVCKG
× (B.13)

×
〈
(Sα̇S+e−ϕ/2)(x1)(S

β̇S+e−ϕ/2)(x2)(S
αS−e−ϕ/2)(z)SβS−e−ϕ/2(z̄)

〉
.

The correlator appearing in the second line above can be obtained by decomposing the ten-

dimensional four-point function of spin fields in 8+2 dimensions. Due to the anti-symmetry

in (αβ) of the polarization factor, the only relevant structure in this correlator is

1
2 (γρ)α̇α(γρ)

β̇β

[
(x1 − z)(x1 − z̄)(x2 − z)(x2 − z̄)

] . (B.14)

Then, inserting this into (B.13) and exploiting the Sl(2,R) invariance to fix x1 → ∞ and

z → i, we are left with the following elementary integral

2i

∫ ∞

−∞
dx2

1

1 + x2
2

= 2πi , (B.15)

so that, after some algebra, we find

〈〈
VλVλVF

〉〉
= − 1

16g2
0

tr
{
λα̇(γµν)α̇β̇λβ̇ Fµν

}
(B.16)

where we have clumped the remaining numerical factors in the normalization of the back-

ground field F . With similar calculations, one can compute all other diagrams in fig-

ure 2 obtaining 〈〈
VDVχ̄VF

〉〉
=

i

g2
0

1

8
√

2
tr
{
Dm(τm)µν χ̄Fµν

}
,

〈〈
VȲ VaVF

〉〉
=

i

g2
0

1

2
√

2
tr
{
Ȳµ aν Fµν

}
.

(B.17)

Likewise, for the diagrams with the anti-holomorphic background represented in figure 3

we find 〈〈
VMVMVF

〉〉
= − 1

16g2
0

tr
{
Mα(γµν)αβMβ F̄µν

}
,

〈〈
VDVχVF̄

〉〉
=

i

g2
0

1

8
√

2
tr
{
Dm(τm)µν χ F̄µν

}
,

〈〈
VY VaVF̄

〉〉
=

i

g2
0

1

2
√

2
tr
{
Yµ aν F̄µν

}
.

(B.18)
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From the last lines of eq.s (B.17) and (B.18), we see that the presence of a RR background

induces two extra terms in S ′aux, so that the latter must be replaced according to

S ′aux → S ′aux −
i

g2
0

1

2
√

2
tr
{
Ȳµ aν Fµν + Yµ aν F̄µν

}
. (B.19)

As a consequence, the equations of motion of the auxiliary fields change and eq. (B.2) must

be replaced by

Yµ = − [aµ, χ] +
i

2
√

2
Fµνa

ν , Ȳ µ = − [aµ, χ̄] +
i

2
√

2
F̄µνaν . (B.20)

Thus, eliminating Yµ and Ȳ µ we recover the new F-dependent quartic action

S ′quartic(F , F̄) =S ′quartic +
1

g2
0

tr

{
i

2
√

2
[aµ, χ̄]Fµνaν

+
i

2
√

2
[aµ, χ] F̄µνaν +

1

8
F̄µνaνFµρa

ρ

}
,

(B.21)

which reproduces the expression given in eq.s (4.3) and (4.9) of the main text.

Furthermore, from eq.s (B.16)–(B.18) we obtain the following background-dependent

cubic terms:

Scubic(F , F̄ ) =Scubic +
1

g2
0

tr

{
1

16
λα̇(γµν)α̇β̇λβ̇ Fµν +

1

16
Mα(γµν)αβMβ F̄µν

+
i

8
√

2
Dm(τm)µν χ̄Fµν +

i

8
√

2
Dm(τm)µν χ F̄µν

}
.

(B.22)

To compare this expression with that used in section 4, we have first to decompose the back-

ground fluxes as in eq. (A.30) and use the relabelled fermion moduli defined in eq. (3.17).

Then, performing the traces on the τ -matrices, one can show that the couplings involving

Dm receive contributions only from the F7 and F̄7 components, given by

i

8
√

2
Fµν Dm(τm)µν χ̄ = − i√

2
hmDm χ̄ ,

i

8
√

2
F̄µν Dm(τm)µν χ = − i√

2
h̄mDm χ . (B.23)

On the other hand, using eq.s (A.32) and (A.33) we can rewrite the fermionic bilinears

which appear in the first line of eq. (B.22) as follows

1

16
Fµν λα̇(γµν)α̇β̇λβ̇ =

1

16
Fµν λm(γµν)mnλn +

1

8
Fµν λm(γµν)m8η

= −1

2
fmnλmλn + hmλmη

1

16
F̄µν Mα(γµν)αβMβ =

1

16
F̄µν M

ρ
(
δµν
ρσ − C+µν

ρσ

)
Mσ

=
1

8
f̄mn(τmn)ρσM

ρMσ − 1

4
h̄m(τm)ρσM

ρMσ .

(B.24)

From these expressions we retrieve the terms of eq.s (4.3), (4.9) and (4.11) of the main text

for h̄m = 0.
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C Details on the SO(k) integrals

Weight sets of SO(2n + 1). This group has rank n. If we denote by ~ei the versors in

the R
n weight space,

• the set of the 2n + 1 weights ~π of the vector representation is given by

± ~ei , ~0 with multiplicity 1; (C.1)

• the set of n(2n + 1) weights ~ρ of the adjoint representation (corresponding to the

two-index antisymmetric tensor) is the following:

± ~ei ± ~ej (i < j) , ± ~ei , ~0 with multiplicity n; (C.2)

• the (n+ 1)(2n + 1) weights of the two-index symmetric tensor19 are

± ~ei ± ~ej (i < j) , ± ~ei , ± 2~ei , ~0 with multiplicity n+ 1 . (C.3)

Weight sets of SO(2n). This group has rank n. If we denote by ~ei the versors in the

R
n weight space,

• the set of the 2n weights ~π of the vector representation is given by

± ~ei; (C.4)

• the set of n(2n − 1) weights ~ρ of the adjoint representation (corresponding to the

two-index antisymmetric tensor) is the following:

± ~ei ± ~ej (i < j) , ~0 with multiplicity n; (C.5)

• the n(2n+ 1) weights of the two-index symmetric tensor20 are

± ~ei ± ~ej (i < j) , ± 2~ei , ~0 with multiplicity n . (C.6)

SO(7) and its spinorial weights. The SO(7) rotation group parametrized by the RR

fluxes fmn defined in eq. (4.1) act on the moduli aµ,Mµ in its spinorial representation 8s.

The set of weights of this representation is

~β =
1

2
(±~e1 ± ~e2 ± ~e3) (C.7)

and we define as “positive” weights those for which the product of the three signs is −1:

~β1 =
1

2
(−~e1 + ~e2 + ~e3) , ~β2 =

1

2
(~e1 − ~e2 + ~e3) , ~β3 =

1

2
(~e1 + ~e2 − ~e3) ,

~β4 =
1

2
(−~e1 − ~e2 − ~e3) ,

(C.8)

so that the combinations

EA = ~f · ~βA (C.9)

are exactly the combinations introduced in eq. (5.14) in the text.

19In fact, this is not an irreducible representation: it decomposes into the (n + 1)(2n + 1) − 1 traceless

symmetric tensor plus a singlet. One of the ~0 weights corresponds to the singlet.
20Again, this is not an irreducible representation, since it contains a singlet.
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Integration in the cases k = 4, 5. The group SO(4) has rank 2, and the poles of the

integrand of eq. (6.6) are determined by the polynomial Q(χ1, χ2). According to eq. (6.19)

and to the set of weights in eq. (C.6), the χ-dependent part of Q (i.e., the one determined

from the non-zero weights) is

4∏

A=1

(2χ1 − EA)(−2χ1 − EA)(2χ2 − EA)(−2χ2 − EA)

(χ1 − χ2 − EA)(−χ1 + χ2 − EA)(χ1 + χ2 − EA)(−χ1 − χ2 − EA) .

(C.10)

Let’s label the various types of monomials from 1 to 8 in the order appearing above.

With the prescriptions given in eq. (6.21), it is straightforward to see that all poles in the

integrand of eq. (6.6) are simple (in certain cases, apparent double poles are compensated

by zeroes of the Vandermonde determinant). We have to sum the residues over different

possible classes of poles. For instance, we could, from the χ1 integral, pick up the residue

from a simple pole determined by the 5th factor in eq. (C.10):

χ1 = χ2 + EA . (C.11)

After substituting this value in the remaining terms of the integrand, we integrate over χ2

and we can again pick up contributions from various possible poles. For instance, suppose

that we choose the one coming from the third factor:

χ2 =
EB

2
(C.12)

and make this replacement in all remaining factors of the integrand to compute the residue.

The choices eq. (C.11) and eq. (C.12) are possible for all A,B, so we have to sum the residues

over A,B independently; let us write this particular contribution to the integral as

∑

A,B

(5, 3) . (C.13)

With this condensed notation, it is straightforward to check that the contributions to the

integral are the following:

∑

A 6=B

(1, 3) +
∑

A,B

(1, 6) +
∑

A,B

(5, 3) +
∑

A,B

(7, 2) +
∑

A 6=B

(7, 3) +
∑

A,B

(7, 6) . (C.14)

In fact, there are also other contributions that, however, cancel in pairs:

0 =

(
∑

A 6=B

(1, 7) +
∑

A 6=B

(7, 1)

)
+

(
∑

A>B

(5, 7) +
∑

A<B

(7, 5)

)
. (C.15)

Evaluating explicitly the sums in eq. (C.14) one obtains Z4; inserting it in eq. (7.5) one

determines F4, as described in the main text.

Let us now move to SO(5), which again has rank 2. According to eq. (6.20) and to the

set of weights in eq. (C.3), the χ-dependent part of Q (i.e., the one determined from the
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non-zero weights) is

4∏

A=1

(2χ1 − EA)(−2χ1 −EA)(2χ2 − EA)(−2χ2 − EA)

(χ1 − χ2 − EA)(−χ1 + χ2 − EA)(χ1 + χ2 − EA)(−χ1 − χ2 − EA)

(χ1 − EA)(−χ1 − EA)(χ2 −EA)(−χ2 −EA) .

(C.16)

Let us label the various types of monomials from 1 to 12 in the order appearing above.

One can check that only simple poles appear and, using the condensed notation introduced

above, the classes of residues that contribute to Z5 are the following:
∑

A 6=B

(1, 3) +
∑

A,B

(1, 6) +
∑

A,B

(1, 11) +
∑

A,B

(5, 3) +
∑

A,B

(5, 11) +
∑

A,B

(7, 2) +
∑

A 6=B

(7, 3)

+
∑

A,B

(7, 6) +
∑

A,B

(7, 10) +
∑

A 6=B

(7, 11) +
∑

A,B

(9, 3) +
∑

A,B

(9, 6) +
∑

A 6=B

(9, 11) ,
(C.17)

having already taken into account the pairwise cancellation of other classes of contributions:

0 =

(
∑

A 6=B

(1, 7) +
∑

A 6=B

(7, 1)

)
+

(
∑

A>B

(5, 7) +
∑

A<B

(7, 5)

)

+

(
∑

A>B

(5, 9) +
∑

A<B

(9, 5)

)
+

(
∑

A<B

(7, 9) +
∑

A>B

(9, 7)

)
.

(C.18)

Explicitly evaluating the sums in eq. (C.17) one obtains Z5; inserting it in eq. (7.5) one

determines F5, as described in the main text.
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