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a b s t r a c t

We prove a coalitional core-Walras equivalence theorem for an asymmetric information exchange
economy with a finitely additive measure space of agents, finitely many states of nature, and an
infinite dimensional commodity space having the Radon–Nikodym property and whose positive cone
has possibly empty interior. The result is based on a new cone condition, firstly developed in Centrone
and Martellotti (2015), called coalitional extreme desirability. We also formulate a notion of incentive
compatibility suitable for coalitional models and study it in relation to equilibria.
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1. Introduction

Since the seminal paper of Radner (1968) a huge literature
has grown in the area of Equilibrium Theory under Asymmetric
Information, which allows for the possibility of having differ-
ently informed agents. From the mathematical point of view,
the classical Arrow–Debreu exchange economy representation is
thus enriched by taking into account the informational aspects;
namely, ifΩ is a set of states of the world, each agent is endowed
with a probability measure on Ω representing the agent’s prior
beliefs, an ex-ante utility function which depends on the pos-
sible states of the world, an initial endowment which specifies
the agent’s resources in each state, and a partition of Ω which
represents the agent’s initial information. The notion of a Walras
equilibrium, called a Walras expectation equilibrium, is adapted to
include the aforesaid informational aspects. The second notion
of our paper, the core, allows for the possibility of cooperation
among agents and is usually associated with Edgeworth. It is
well recognized that the asymmetric context gives rise to dif-
ferent possibilities of sharing information among members of
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coalitions and thus, accordingly, different notions of core have
been developed (Wilson, 1978; Yannelis, 1991).

In individual models, both the cases of a finite and an in-
finite dimensional commodity space have been treated, with
various degrees of generality; most of these models assume
anyway a countably additive measure space of agents, and a
finite-dimensional commodity space or a commodity space whose
positive cone has a nonempty interior, in order to apply classical
separation theorems to support optimal allocations with nonneg-
ative prices, refer to Angeloni and Martins-da Rocha (2009), Einy
et al. (2001), Graziano and Meo (2005). Only recently, Bhowmik
(2013) has adapted Rustichini and Yannelis’s (1991) additivity
condition and extremely desirable commodity assumption1 to
the asymmetric information framework, in a way, to obtain a
countably additive individualistic core-Walras equivalence the-
orem with an infinite dimensional commodity space, without
assumptions on the positive cone.

Anyway, in the literature, Vind’s (1964) model is well estab-
lished, where the author proposed to replace the individualistic

1 this condition is very well known in the literature, together with Mas
Colell’s properness (Mas-Colell, 1986) and Chichilnisky and Kalman’s cone
condition (Chichilnisky and Kalman, 1980), and is a widely used condition as
it allows a separation argument; see also (Aliprantis et al., 2000) for a complete
survey.
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representation of a complete information economy with a coali-
tional one: the rationale of this choice is the fact that only the
bargaining power of coalitions matters. Hence, coalitions are used
as primitives, preferences are defined directly on coalitions and
allocations are countably additive measures. Later, Armstrong
and Richter (1984) abandoned the countable additivity setting to
assume finite additivity for the sake of realism, claiming that a
countable union of coalitions need not be a coalition. Under this
hypothesis and considering infinitely many commodities, we can
also recall the work of Cheng (1991). Basile et al. (2009) then
introduced asymmetric information into this framework, working
with a Boolean algebra and a Euclidean space of commodities. As
pointed out by the authors themselves another advantage of the
f.a. approach is that it allows us to include the case of a countable
set of asymmetrically informed agents, as in limit economies. We
refer the reader to Basile et al. (2009) for further motivations.

The use of coalitional models in the presence of asymmetric
information to prove core-Walras equivalence theorems, finds a
justification in the criticism of Forges et al. (2002): they in fact
claim that, being the notion of the core based on agents mak-
ing agreements to trade among themselves and not through an
anonymous market, this involves communication among agents,
and ‘‘it is then unreasonable to impose the restriction that an
agent cannot entertain a contract which varies with information
he does not possess’’. Indeed, the main point which allows to
overcome this criticism lies in the definition of the private core
introduced in Basile et al. (2009), as in coalitional models private
feasibility of allocations depends just on the information of the
coalitions themselves (requiring measurability just with respect
to information of the coalitions) regardless of the one available
to single individuals.

Up to now, to our knowledge, there are no core-Walras equiv-
alence results covering both the cases of a finitely additive coali-
tional model with an infinite dimensional commodity space. The
aim of this work is to try to fill this gap, by introducing in the
asymmetric context a Banach lattice as the commodity space, the
notion of coalitional extremely desirable commodity, which is the
extension of that in Centrone and Martellotti (2016) given for
complete information. We point out that the use of properness
conditions in asymmetric information models already appeared
in the literature in the context of individualistic models (see for
example Aliprantis et al., 2000; Angeloni and Martins-da Rocha,
2009).

In this paper we obtain a coalitional asymmetric core-Walras
equivalence result in a framework whose commodity space is
X+, the positive cone of a Banach lattice X having the Radon–
Nikodym property (see Diestel Jr. and Uhl (1977)) and feasibility
is defined as free disposal; note that this allows for a great
variety of infinite dimensional commodity spaces interesting for
economics and finance, for example, all the Lp spaces for p > 1.
The idea underlying our properness condition is linked to the
familiar idea to see an economy with asymmetric information
where uncertainty is captured by n states of nature and having
X+ as a commodity space, as a complete information economy
having Xn

+
as a commodity space. In individualistic models, when

feasibility is defined with free disposal it is however well known
that equilibria may not be incentive compatible and hence con-
tracts may not be enforceable (see Glycopantis et al. (2003)).
So this is the main motivation to try to give results assuming
exact feasibility (see Angeloni and Martins-da Rocha (2009)).
The same problem can thus be faced in the coalitional setting.
Under suitable hypothesis, we are not only able to prove a core-
Walras equivalence without free disposal, but we also propose
a suitable notion of coalitional incentive compatibility and show
that private core allocations are incentive compatible. We also
point out that the introduction of asymmetric information and

of the arising informational constraint made it necessary to adopt
new techniques with respect to those in Centrone and Martellotti
(2016).

The rest of the paper is organized as follows: Section 2 deals
with the description of our model, some assumptions and the
necessary concepts. In Section 3, we introduce the notion of
coalitional extremely desirable commodity in the asymmetric in-
formation framework and prove some technical lemmas that
play central roles in the proofs of our main results. We also
compare our properness notion with the one of Aliprantis et al.
(see Podczek and Yannelis (2008)). In Section 4, we present
our coalitional core-Walras equivalence theorem under the free
disposal feasibility condition. In Section 5 we face the question
of exact feasibility and prove a core-Walras equivalence theorem
under this assumption. Moreover, we define a suitable notion of
coalitional incentive compatibility and prove that core allocations
are incentive compatible. Section 6 is devoted to some asymmet-
ric individualistic results, deriving from our coalitional ones in
the spirit of comprehensiveness of Armstrong and Richter (1984).
Lastly, we summarize and compare our results in Section 7.

2. Description of the coalitional model

A coalitional model of pure exchange economy EC with asym-
metric information is presented. The exogenous uncertainty is de-
scribed by a measurable space (Ω,F ), where Ω = {ω1, . . . , ωn}

is the set of states of nature containing n elements and F denotes
the power set of Ω . The economy extends over two time periods
τ = 0, 1. Consumption takes place at τ = 1. At τ = 0, there is
uncertainty over the states and agents make contracts that are
contingent on the realized state at τ = 1. Let X be a Banach
lattice having the Radon–Nikodym property (RNP) and a quasi-
interior point. The partial order on X is denoted by ≤ and the
positive cone of X , given by X+ = {x ∈ X : 0 ≤ x}, represents
the commodity space of EC . The symbol 0 < x means that x is a
non-zero point of X+.

Let the space of agents be a space (I,Σ,P), where I is the set
of agents with Σ an algebra on I and P a strongly non-atomic
finitely additive (f.a.) probability measure on Σ , that is, for every
A ∈ Σ and ε ∈ (0, 1) there is some B ∈ Σ such that B ⊆ A
and P(B) = εP(A). Each element in Σ with positive probability
is termed as a coalition, whose economic weight on the market
is given by P. If E and F are two coalitions, and E ⊆ F then E is
called a sub-coalition of F .

Analogously to Radner (1968), we assume that assignment
of resources is state-contingent. By an assignment, we mean a
function α : Σ × Ω → X+ such that α(·, ω) is a f.a. measure
of bounded variation on Σ , for each ω ∈ Ω . Moreover, each
assignment α can be associated with the function ᾱ : Σ → (X+)n
by letting ᾱ(E) = (α(E, ω1), . . . , α(E, ωn)), where (X+)n is the
positive cone of the Banach lattice Xn, which is endowed with
the point-wise algebraic operations, the point-wise order and the
product norm. With slightly abuse of notation, we assume that
≤ also denotes a point-wise order on Xn. The only admissible
assignments in our model are connected with some absolute
continuity property. Recall that, given a Banach lattice Y and two
vector measures µ : Σ → Xk and ν : Σ → Y , µ is called
absolutely continuous with respect to ν, denoted by µ ≪ ν, if for
every ε > 0 there is some δ > 0 such that each F ∈ Σ with
∥ν(F )∥Y < δ implies ∥µ(F )∥Xk < ε. Let

M = {α : Σ ×Ω → X+ : α is an assignment and ᾱ ≪ P}.

Thus, an allocation is defined to be an element of M . There is a
special allocation, denoted by e : Σ ×Ω → X+, such that e(F , ω)
is the initial endowment of the coalition F if the state of nature ω
occurs. We call such an allocation as initial endowment allocation.
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Similarly to Basile et al. (2009), a preference relation ≻F is defined
on M for any coalition F . Intuitively, α ≻F β expresses the idea
that the members of the coalition F prefer what they get from α

to what they get from β . Each coalition F is also associated with
some private information, which is described by a F -measurable
partition PF of Ω . The interpretation is that, if ω is the true
state of nature, then coalition F cannot discriminate the states
in the unique element PF (ω) of PF containing ω. Let FF be the
σ -algebra generated by PF . The triple (FF ,≻F , e(F , ·)) is called
the characteristics of the coalition F . Thus, the economy can be
described by

EC = {(I,Σ,P); X+; (Ω,F ); (FF ,≻F , e(F , ·))F∈Σ } .

To relate the weight of coalitions to the commodities that they
can trade on the market, we assume that e is equivalent to P, that
is, e and P are absolutely continuous with respect to each other.
We now impose some restriction on the class of preferences. To
this end, given an allocation α ∈ M and a coalition F , define a
vector measure ᾱ|F : Σ → (X+)n by letting ᾱ|F (E) = ᾱ(E ∩ F )
for all E ∈ Σ . A simple allocation is any allocation s such that, for
every ω ∈ Ω ,

s(·, ω) =

q∑
i=1

yi(ω)P|Hi
,

where {Hi}i is a decomposition of I such that each Hi is measur-
able. The following assumptions on preferences will be assumed
implicitly throughout the rest of the paper:

[P.1] ≻F is irreflexive and transitive, for every F ∈ Σ;

[P.2] For any coalition F and α1, α2 ∈ M with α1 ≻F α2, we must
have α1 ≻G α2 for all sub-coalitions G of F ;

[P.3] If α1 ≻F α2 and α1 ≻G α2 for two coalitions F and G, then
α1 ≻F∪G α2;

[P.4] For any α ∈ M and any element x ∈ (X+)n \ {0}, we have
α + xP ≻I α, where the allocation xP : Σ ×Ω → X+ is defined
by xP(F , ω) = x(ω)P(F );

[P.5] If α1, α2, α3 ∈ M and F is a coalition satisfying ᾱ1|F
= ᾱ2|F

,
then the following double implications hold:

[α1 ≻F α3 ⇐⇒ α2 ≻F α3] and [α3 ≻F α1 ⇐⇒ α3 ≻F α2].

Remark 2.1. Assumption [P.2] claims that as almost all members
of F prefer what they get from α than what they get from β (refer
to Debreu (1967) for a deterministic economy), they do the same
under G. Assumption [P.3] is similar to Assumption (VI) in Debreu
(1967). The monotonicity assumption is discussed in [P.4], which
is analogous to the assumption (WM) in Centrone and Martellotti
(2016). It is worth pointing out that our monotonicity assumption
is weaker than the one in Armstrong and Richter (1984) for
a deterministic economy. Lastly, Assumption [P.5] is termed as
selfish property in the literature, and can be found in Armstrong
and Richter (1984), Basile (1993), Basile et al. (2009).

The following assumption is referred to as nested condition
in the literature for information sharing rules in individualistic
economies (Allen, 2006; Bhowmik, 2015; Hervés-Beloso et al.,
2014), where the initial private information of each agent is
susceptible to be altered when the agent becomes a member of
a coalition. This issue is particularly interesting in the individu-
alistic economies as the information structures within coalitions
have great influence on the set of allocations which can be attain-
able alternatives. The mechanism which associates information
with agents within a coalition can be the result of an information
sharing process among agents belonging to the same coalition,

or on the contrary, it could be a consequence of some rules that
prevent the use of information other than the common one.

[A.1] For all E, F ∈ Σ with E ⊆ F , we have FE ⊆ FF .

Remark 2.2. The above assumption also appeared in a coali-
tional model of Basile et al. (2009), representing the intuitive
idea that the state of information can never decrease if coalitions
share their private information. To support this assumption, we
assume that the information FF of a coalition F is given by some
information sharing rule that may depend on the initial private
information of each of its members (Allen, 2006; Bhowmik, 2015;
Hervés-Beloso et al., 2014). This formalization of information
sharing may provide a connection between the information of
a coalition and the information of each of its members. Some
of these connections are given, for any coalition F , as follows:
(i) PF = {∅,Ω}, which means that this information sharing rule
associates to each coalition member the null information {∅,Ω}

which is independent of the initial information of agents; (ii) PF
is defined to be the join information of all agents in I; (iii) PF is
defined to be the common information of all agents in I; (iv) PF
is defined to be the join information of members of F only.

We shall assume throughout the rest of the paper that PI =

{{ω1}, . . . , {ωn}}, i.e. the discrete partition of the set Ω; this is
a reasonable assumption because, if two states are not distin-
guished by the whole grand coalition, no other coalition will
distinguish between them, so they can be identified.

Let P = {Q1, . . . ,Qm
} denote the finite family of partitions

of Ω such that for each Qi
∈ P there is some coalition F ∈ Σ

satisfying PF = Qi. For each Qi, define

Ti = {F ∈ Σ : PA = Qi

for all non-empty measurable subset A of F},

Ii =

⋃
{F : F ∈ Ti}.

We shall assume the following:

[A.2] Ii ∈ Σ for each Qi
∈ P.

Observe that, the decomposition PI is maximal in P in the
sense of refinements, i.e. no decomposition in P refines it. For
the sake of consistency in notation, let us denote it as Q = PI .

Set

P0 = {Qi
∈ P|̸ ∃Q′

∈ P that is refined by Qi
}.

As Ω is finite, P0 is non-empty.
Let now Q0 ∈ P0 be fixed; a finite sequence Q0,Q1, . . . ,Qp ∈

P is a P-chain, if Qi+1 refines Qi, i = 0, . . . , p − 1.
A P-chain is optimal if there is no Q ∈ P refining Qi and that

is refined by Qi+1. In other words an optimal chain connects the
worst state of information Q0 to the best Q into finitely many
steps, all representing real state of information in P, and without
ignoring possible intermediate states of information; clearly, one
can connect two different states of information, one refining the
other, through many different optimal chains. For any Q ∈ P\P0,
define

L(Q) = {Q′
∈ P : Q refines Q′

}.

Analogously, for any Q ∈ P \ Q, define

U(Q) = {Q′
∈ P : Q′ refines Q}.

Lemma 2.3. Under the assumption [A.1], the following are satisfied;

(i) for every Qi
∈ P0 and each non-empty F ∈ Σ with PF = Qi

one finds that F ∈ Ti.
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(ii) for every Qi
∈ P \ P0 and each non-empty F ∈ Σ with

PF = Qi one finds that G := F \

⋃
{Ij : Qj

∈ L(Qi)} ∈ Ti if
G ̸= ∅.

Proof. The proof of statement (i) is straightforward. To prove (ii)
choose a partition Qi

∈ P \ P0 and a non-empty element F ∈ Σ

with PF = Qi such that L(Qi) ⊆ P0. Define

G = F \

⋃
{Ij : Qj

∈ L(Qi)}.

Assume that G ̸= ∅. Choose a non-empty element H ∈ Σ such
that H ⊆ G. By [A.1] again, either PH = Qi or PH = Qk for
some Qk

∈ L(Qi). But, if PH = Qk for some Qk
∈ L(Qi), by

(i), one concludes H ⊆ Ik, whereas H ⊆ G and G ∩ Ik = ∅.
Hence, PH = Qi for every non-empty measurable subset H of
G, i.e. G ∈ Ti. Thus, the statement is true for every Qi

∈ P \ P0
and all non-empty F ∈ Σ such that PF = Qi and L(Qi) ⊆ P0.
Let Qi

∈ P \ P0 and assume that the statements (i) and (ii) are
satisfied for all Qr

∈ L(Qi). Let F be a non-empty measurable set
such that PF = Qi. Define

G = F \

⋃
{Ir : Qr

∈ L(Qi)}.

Let G ̸= ∅ and take a non-empty subset H of G. By [A.1] again,
either PH = Qi or PH = Qj for some Qj

∈ L(Qi). Assume that
PH = Qj for some Qj

∈ L(Qi). Then either PH = Qj
∈ P0, in

which case H ⊆ Ij, or PH = Qj
∈ P \ P0, in which case

A := H \

⋃
{Is : Qs

∈ L(Qj)} ∈ Tj,

if A ̸= ∅. So, A ⊆ Ij if A ̸= ∅. Thus, in either case,

H ⊆

⋃
{Is : Qs

∈ L(Qj)}
⋃

Ij.

Since Qj
∈ L(Qi) and L(Qj) ⊆ L(Qi), one must have

H ⊆

⋃
{Is : Qs

∈ L(Qi)},

which leads to a contradiction as H ⊆ G. Hence, our supposition
that PH = Qj for some Qj

∈ L(Qi) is wrong. Thus, PH = Qi.
Therefore, G ∈ Ti. By the principle of Mathematical Induction, the
proof is completed. □

Corollary 2.4. Given P = {Q1, . . . ,Qm
} and assumptions [A.1]–

[A.2], the grand coalition decomposes into finitely many pairwise
disjoint coalitions I1, . . . , Im such that PIi = Qi, for every i =

1, . . . ,m, and PE = Qi for every non-empty measurable set E ⊆ Ii,
i = 1, . . . ,m.

Proof. From Lemma 2.3 and the fact that for every Qi
∈ P,

there is a coalition F such that PF = Qi it is clear that Ti ̸= ∅.
Applying Lemma 2.3 to the grand coalition I and [A.2], we obtain
the decomposition of I ,

I =

⋃
{Ii : 1 ≤ i ≤ m},

into the finitely many pairwise disjoint sub-coalitions I1, . . . , Im,
fulfilling the assertion. □

Similarly to Basile et al. (2009), we now restrict the set of
consumption bundles that are informationally attainable for any
coalition F , that is, the coalition F cannot consume different
amounts on events that it cannot distinguish. Thus, the consump-
tion set of a coalition F is the set of such restricted consumption
bundles, which can be formally defined as

XF =
{
x ∈ Xn

+
: x is FF -measurable

}
.

An allocation α is said to be privately feasible for a coalition F
whenever α(E, ·) ∈ XE for each coalition E ⊆ F . It means that any

privately feasible allocation for a coalition F requires not only that
the coalition F is able to distinguish what it consumes but also re-
quires all sub-coalitions of it do the same thing. We denote the set
of privately feasible allocations for a coalition F by MF . In the case
when F = I , then we simply say MI as the set of privately feasible
allocations. We assume that e is privately feasible. An allocation α
is termed as physically feasible for a coalition F if α(F , ω) ≤ e(F , ω)
for all ω ∈ Ω . In particular, physically feasible allocations for I are
simply referred to as physically feasible allocations. Finally, we
say that an allocation is feasible for a coalition F if it is privately
as well as physically feasible for F , and the set of such allocations
is denoted by YF . Without any confusion, feasibility for I will be
termed as feasibility.

Definition 2.5. An allocation α is privately blocked by a coalition
F if there is an allocation β ∈ YF such that β ≻F α. The private
core of EC , denoted by PC (EC ), is the set of feasible allocations
which are not privately blocked by any coalition.

A price system is a non-zero function π : Ω → X∗
+
, where X∗

+

is the positive cone of the norm-dual X∗ of X . The budget set of a
coalition F with respect to a price system π is defined by

B(F , π ) =

{
α ∈ MF :

n∑
i=1

π (ωi)α(F , ωi) ≤

n∑
i=1

π (ωi)e(F , ωi)

}
.

Analogously to the private core, the definition of Walras equilib-
rium also takes into account the information structure.

Definition 2.6. AWalrasian expectations equilibrium of EC is a pair
(α, π ), where α is a feasible allocation and π is a price system,
such that

(i) α ∈ B(F , π ) for each coalition F ∈ Σ;

(ii)
n∑

i=1

π (ωi)α(I, ωi) =

n∑
i=1

π (ωi)e(I, ωi);

(iii) for every coalition F and β ∈ MF , β ≻F α H⇒ β ̸∈ B(F , π ).

In this case, α is termed as Walrasian expectations allocation and
the set of such allocations is denoted by W (EC ).

3. Some technical results

In this section, we establish some technical lemmas for later
use.

Lemma 3.1. Under assumptions [A.1]–[A.2], if α ∈ MF for some
coalition F , then for each ε > 0 there exists a simple allocation
s ∈ MF such that ∥ᾱ − s̄∥ < ε.

Proof. Let us fix a listing order for Ω , say Ω = {ω1, . . . , ωn}. For
each Qi

∈ P0 denote by Ωi the subset of its real distinguished
states formed by exactly those elements from each member of
Qi whose index is the lowest among all the elements in the same
member of Qi. Let now F , α and ε be fixed. Set

J = {k : 1 ≤ k ≤ m and P(F ∩ Ik) > 0},

where Ik is defined in [A.2]. Hence the information partition of
each Fj := F ∩ Ij is Qj for j ∈ J and F =

⋃
j∈J

(F ∩ Ij).

Suppose for simplicity that 1 ∈ J , and setΩ1 := {ωi1 , . . . , ωim},
where 1 = i1 < i2 < · · · < im.

Since α ∈ MF , we have that α|F1
∈ MF1 . For any index ℓ

such that ωℓ ̸∈ Ω1 necessarily ih < ℓ < ih+1 for one 1 ≤

h ≤ m − 1 and α|F1
(·, ωℓ) = α|F1

(·, ωih ). In other words only the
components of α|F1

relative to states in Ω1 can be different in
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F1. Then according to the approximate Radon–Nikodym Theorem
(Diestel Jr. and Uhl, 1977; Uhl, 1967), we can choose precisely m
simple approximations {s11, . . . , s

1
m} ⊆ M in F1 such that⏐⏐⏐α|F1

(·, ωih ) − s1h
⏐⏐⏐ < ε

2n|J|
,

and note that each s1i also approximates the identical components
of α|F1

as well. Thus we can rearrange them into an n-dimensional
simple function σ1 ∈ MF1 .

2

Thusα|F1
− σ1

 ≤

∑
ω∈Ω1

⏐⏐⏐α|F1
(·, ω) − s1ω

⏐⏐⏐ < |Ω1|
ε

2n|J|
<

ε

2|J|
.

Finally choose any simple approximation s0 of ᾱ|I\F1
such thatᾱ|I\F1

− s0
 < ε

2
.

We set now s =

∑
j∈J

σj|Fj
+ s0|I\F , so

∥ᾱ − s̄∥ ≤

∑
j∈J

ᾱ|Fj
− σj

+
ᾱ|I\F − s0

 < ε

which completes the proof. □

For a fixed allocation α ∈ MF and a coalition F , let

K =

⋃
F∈Σ, P(F )>0

{γ̄ (F ) − ē(F ) : γ ∈ MF , γ ≻F α} .

Our next technical results and main theorems require some
continuity-like assumptions. Here, we employ an assumption
similar to that in Centrone and Martellotti (2016).

[A.3] Let F be a coalition and α, β ∈ MF be such that β ≻F α.
For every τ > 0, we can find some ρ(τ ) > 0 such that for every
simple allocation s ∈ MF with ∥s̄ − β̄∥ < ρ(τ ) there exists a
coalition F0 = F0(s, τ ) ⊆ F with P(F \ F0) < τ and s ≻F0 α.

Given this assumption, our proof for the next lemma exactly
follows analogous arguments of the final step of Lemma 3.3
in Centrone and Martellotti (2016), taking into account Lemma
3.1. Thus, we skip the formal proof for this result.

Lemma 3.2. Suppose that EC satisfies [A.1] and [A.3]. Then the set
K is convex, where K denotes the norm-closure of K in Xn.

It is well-known that an affirmative answer to the classical
core-Walras equivalence result in a framework of a Banach lat-
tice as the commodity space cannot be obtained without any
‘‘properness-like’’assumption (refer to Rustichini and Yannelis
(1991)). In our model, we suitably extend the extremely desirable
commodity assumption of Centrone and Martellotti (2016).

[A.4] There exist some u ∈ Xn
+

and an open, convex, solid
neighborhood U of 0 in Xn such that the following two conditions
are satisfied: (i) U c

∩ Xn
+

is convex, where U c is the complement
of U in Xn; (ii) If y ∈ Xn

+
and z ∈ (y + Cu) ∩ Xn

+
, then zP ≻I yP,

where

Cu =

⋃
{t(u + U) : t > 0}.

Observe that since PI is the finest partition of Ω the allocations
zP and yP are both in MI .

In the rest of the paper, we shall refer to (u,U) as a properness
pair. To prove our next result, given (u,U) is a properness pair,
we now find other possible properness pairs (w,U). Observe first

2 For example, if Ω = {ω1, ω2, ω3} and Q1 = {{ω1, ω2}, {ω3}} whence
Ω1 = {ω1, ω3} then, given the pair (s11, s

1
2), we shall consider σ1 = (s11, s

1
1, s

1
2).

that, if u ≤ û then (û,U) is a properness pair as well. Indeed, let
y ∈ Xn

+
and z ∈ (y + Cû) ∩ Xn

+
. Pick an ε > 0. It follows that

B(z, ε)∩ (y+ t(û+U)) ̸= ∅ for some t > 0, where B(z, ε) denotes
the open ball in Xn centered at z with radius ε. Thus,

B(z, ε) ∩ (y + t(û − u) + t(u + U)) ̸= ∅.

Consequently, z ∈ (y + t(û − u) + Cu) ∩ Xn
+
. So, zP ≻I (y +

t(û − u))P. By [P.1] and [P.4], we conclude zP ≻I yP. As a result,
we can replace the original extremely desirable commodity u =

(u1, . . . , un) with w = (w0, . . . , w0), where

w0 =

n∑
i=1

ui,

so that wP ≻I uP and the allocation wP|F ∈ MF , for each coalition
F ∈ Σ . Henceforth, the vector w will be used instead of u in the
extreme desirability assumption.

One may want to compare the properness condition expressed
in [A.4] with the ATY-properness proposed in Podczek and Yan-
nelis (2008) for a finite set of agents. In the coalitional language,
ATY-properness would appear as follows:

For each coalition F the preference ≻F is ATY-proper at x ∈ XF
if there exists a convex set P̃F (x) with a non-empty interior and
such that int̃PF (x) ∩ XF ̸= ∅ and zP ≻F xP for all z ∈ P̃F (x) ∩ XF .
It is then clear that, under assumptions [A.1] and [A.4], for each
coalition F , ≻F would be ATY-proper at each x ∈ XF with P̃F (x) =

x + Cw .
Define

K =

⋃{
t
(
w +

1
n
U
)

: t > 0
}
.

As
1
n
U ⊆ U , we must have K ⊆ Cw . Let y ∈ Xn

+
and z ∈

(y + K ) ∩ Xn
+
. It follows that z ∈ (y + Cw) ∩ Xn

+
. Consequently,

zP ≻I yP.
Our next result follows the lines of the last part of the proof

of Theorem in Rustichini and Yannelis (1991). However, since
some of the steps of their original prof need to be adapted to the
present situation, we shall include the whole proof for the sake
of comprehension.

Lemma 3.3. Assume that [A.1]–[A.4] hold. If α is a private core
allocation, then K ∩ (−K ) = ∅.

Proof. Since −K is open, it is enough to prove that K ∩ (−K ) is
empty. Assume K ∩ (−K ) ̸= ∅ and that

ζ = γ̄ (F ) − ē(F ) ∈ −K

for some coalition F . Pick an ε > 0 such that ζ + B(0, ε) ⊂ −K ,
where B(0, ε) is the open ball in Xn centered at the origin and
radius ε. By the absolute continuity of γ and e with respect to P,
there exists some δ > 0 such that for all E ∈ Σ , ∥γ (E)∥, ∥e(E)∥ <
ε

7
whenever P(E) < δ.

Corresponding to δ = δ

( ε
7

)
choose ρ = ρ(δ) according to

assumption [A.3]. Choose now, by means of Lemmas 2.3 and 3.1,

a simple allocation s, defined by s(·, ω) =

r∑
i=1

yi(ω)P|Fi for all ω ∈

Ω , where {Fi : 1 ≤ i ≤ r} is a decomposition of F , such that

(i) s ∈ MF ;
(ii) ∥γ̄ − s̄∥ < min

{ ε
7
, ρ

}
.

(iii) for each 1 ≤ i ≤ r , there is some 1 ≤ j ≤ m such that
Fi ∈ Tj.
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In the light of [A.3], we can find some coalition F0 ⊆ F with
P(F \ F0) < δ, and s ≻F0 α. Since s is simple, s ∈ MF , F0 ⊆ F , we
must have s ∈ MF0 .

Put ζ0 = s̄(F0) − ē(F0), then

∥ζ0 − ζ∥ < ∥s̄(F0) − γ̄ (F0)∥ + ∥γ̄ (F \ F0)∥ + ∥ē(F \ F0)∥

<
3ε
7
.

We assume that P(Fi) = ξ for all 1 ≤ i ≤ r3. Since ζ0 ∈ −K , there
exists some t > 0 such that

s̄(F0) − ē(F0) ∈ −t
(
w +

1
n
U
)
,

whence s̄(F0) − ē(F0) = −t(w+ v0) for some v0 ∈
1
n
U . By setting

z =
t
ξ
w and v = −

t
ξ
v0 ∈

t
ξn

U , we have

r∑
i=1

yi + z − v =
ē(F0)
ξ

∈ Xn
+
.

Since
∑r

i=1 yi + z ∈ Xn
+

and
t
ξn

U is solid, we have v+
∈

t
ξnU

and v+
≤

∑r
i=1 yi + z. For any r-tuple σ = (σ1, . . . , σr ) of

non-negative real numbers with
∑r

i=1 σi = 1, we have

v+
≤

r∑
i=1

(yi + σiz).

By the Riesz-decomposition property, we obtain a finite set
{vσ1 , . . . , v

σ
r } ⊆ Xn

+
such that

v+
=

r∑
i=1

vσi and vσi ≤ yi + σiz

for all 1 ≤ i ≤ r . Define Λk = {i : Fi ⊆ Ik} for all 1 ≤ k ≤ m.
Thus, yi + σiz is Qk-measurable if i ∈ Λk. For i ∈ Λk, define the
function dσi : Ω → X+ by letting

dσi (ω) = max{vσi (ω
′) : ω′

∈ Qk(ω)},

for all ω ∈ Ω . So, dσi is Qk-measurable and dσi ≤ yi + σiz for all
i ∈ Λk.

Given any 1 ≤ i ≤ r , put

δσi = dist
(
yi + σiz − dσi , (yi + Cw) ∩ Xn

+

)
,

and consider the continuous function f : ∆r
→ ∆r defined by

f (σ ) =

(
σ1 + δσ1

1 +
∑r

j=1 δ
σ
j
, . . . ,

σm + δσr

1 +
∑r

j=1 δ
σ
j

)
,

where ∆r denotes the (r −1)-dimensional simplex. By Brouwer’s
fixed point theorem, one obtains a σ ∗

= (σ ∗

1 , . . . , σ
∗
r ) ∈ ∆r

satisfying δσ
∗

i = σ ∗

i
∑r

j=1 δ
σ∗

j for all 1 ≤ i ≤ r . The rest of the
proof is decomposed into two sub-cases.

Sub-case 1. δσ
∗

i = 0 for all 1 ≤ i ≤ r. In this sub-case,

yi + σ ∗

i z − dσ
∗

i ∈ (yi + Cw) ∩ Xn
+ ⊆ (yi + Cw) ∩ Xn

+

3 Otherwise, it follows from Lemma 3.1 in Centrone and Martellotti (2016)
that there are a subset E0 ⊆ F0 with P(F0 \ E0) < δ and a decomposition
{E1, . . . , Ek} of E0 with P(Ei) = ξ for all 1 ≤ i ≤ k. If ζ ′

= s̄(E0) − ē(E0), then

∥ζ − ζ ′
∥ < ∥ζ − ζ0∥ + ∥ζ0 − ζ ′

∥

<
3ε
7

+ ∥s̄(F0) − γ̄ (F0)∥ + ∥γ̄ (F0 \ E0)∥

+∥s̄(E0) − γ̄ (E0)∥ + ∥ē(F0 \ E0)∥

< ε.

As a result, ζ ′
= s̄(E0) − ē(E0) ∈ −K with s̄ ≻

n
E0
ᾱ.

for all 1 ≤ i ≤ r . By (ii) of [A.4], we obtain (yi+σ ∗

i z−dσ
∗

i )P ≻I yiP
for all 1 ≤ i ≤ r . Thus, it follows from [P.2] that (yi + σ ∗

i z −

dσ
∗

i )P ≻Fi yiP for all 1 ≤ i ≤ r . Consequently, applying [P.3], we
have
r∑

i=1

(yi + σ ∗

i z − dσ
∗

i )P|Fi ≻F0

r∑
i=1

yiP|Fi = s ≻F0 α.

Define s1 by letting

s1(·, ω) =

r∑
i=1

(yi(ω) + σ ∗

i z(ω) − dσ
∗

i (ω))P|Fi + α(·, ω)|I\F

for all ω ∈ Ω . Then s1 ≻F0 α and

s̄1(F0) ≤ ξ

(
m∑
i=1

yi + z − v+

)
≤ ξ

(
m∑
i=1

yi + z − v

)
= ē(F0).

Hence, α /∈ PC (EC ), which is a contradiction.
Sub-case 2.

∑r
j=1 δ

σ∗

j > 0. In this sub-case, δσ
∗

i = 0 if and only
if σ ∗

i = 0. Define J = {i : δσ
∗

i = 0}. Let J ̸= ∅ and pick an i ∈ J .
Then

yi − dσ
∗

i ∈ (yi + Cw) ∩ Xn
+
.

From (ii) of [A.4], we conclude

(yi − dσ
∗

i )P ≻I yiP,

which is a contradiction. Thus, J = ∅ and

yi + σ ∗

i z − dσ
∗

i /∈ (yi + Cw) ∩ Xn
+
.

for all 1 ≤ i ≤ r . Consequently,

yi +
σ ∗

i t
ξ
w − dσ

∗

i /∈ yi + Cw,

which further implies that dσ
∗

i /∈
σ ∗

i t
ξ

U and so, by (i) of [A.4],∑r
i=1 d

σ∗

i /∈
t
ξ
U . Note that dσ

∗

i ≤
∑

ω∈Ω v
σ∗

i (ω)1Ω , where 1Ω =

(1, . . . , 1), and so
r∑

i=1

dσ
∗

i ≤

∑
ω∈Ω

v+(ω)1Ω .

Since,
∑

ω∈Ω v
+(ω)1Ω ∈

t
ξ
U and

t
ξ
U is solid, we must have∑r

i=1 d
σ∗

i ∈
t
ξ
U , which is a contradiction. □

Remark 3.4. Both Lemmas 3.2 and 3.3 slightly generalize the
analogous versions in Centrone and Martellotti (2016), in that
assumption [A.3] above is more general than the continuity as-
sumption there. Indeed in Centrone and Martellotti (2016) the
‘‘large’’ subcoalition F0 was assumed to depend simply upon β
and τ , that is a form of uniform continuity with respect to the
simple approximations of β was supposed.

4. Coalitional core-walras equivalence

In this section, we provide core-Walras equivalence theorems
for the model described in Section 2. To obtain the first main re-
sult, we use the following assumption on the initial endowment.

[A.5] The following two conditions are satisfied:

(i) e(I, ω) is a quasi-interior point of X+ for all ω ∈ Ω;
(ii) For every privately feasible allocation α and every partition

{F1, F2} of I , where F1 and F2 are coalitions, there exists
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some β ∈ MF2 such that β ≻F2 α and

β(F2, ω) ≤ e(F1, ω) + α(F2, ω)

for all ω ∈ Ω .

The second condition is known as irreducibility assumption
(Basile et al., 2009). We shall also require a further continuity
condition on coalitional preferences, namely

[A.6] Let F be a coalition and α, β ∈ MF be such that β ≻F α.
For every τ > 0, there exist an ε ∈ (0, 1) and a coalition
F0 = F0(τ ) ⊂ F such that P(F \ F0) < τ and εβ ≻F0 α.

We are now ready to state our first core-Walras equivalence
Theorem.

Theorem 4.1. Suppose that EC satisfies [A.1]–[A.6], and let α be a
private core allocation. Then there exists an equilibrium price for α.

Proof. Applying Lemmas 3.2 and 3.3 together with the separation
theorem, we can find an n-tuple p = (p1, . . . , pn) ∈ (X∗

+
)n that

separates K and −K . As usual, this would yield that px ≥ 0 for
every x ∈ K . Define π : Ω → X∗

+
by letting π (ωi) = pi for

all 1 ≤ i ≤ n. To show that (α, π ) is a competitive equilibrium
of EC , we need to verify conditions (i)–(iii) of Definition 2.6. By
invoking arguments similar to those of Basile et al. (2009), items
(i) and (ii) of Definition 2.6 can be proved. Thus, we now turn to
prove assertion (iii). Observe first that (i) and (ii) together imply
pᾱ = pē on Σ . Suppose (iii) is not true and that there are a
coalition E and an allocation β ∈ ME such that β ≻E α and
p[β̄(E)] = p[ē(E)].4 The rest of the proof is decomposed in the
following three cases:

Case 1. p[β̄(E)] > 0. Then there exists some τ > 0 such
that for each sub-coalition F of E with P(E \ F ) < τ , we have
p[β̄(F )] > 0. From [A.6] there is a ε ∈ (0, 1) and a subcoalition
F ⊂ E with P(E \ F ) < τ and such that εβ ≻F α. Then the
allocation γ = εβ|F + β|I\F is in ME and γ ≻E α; therefore
γ (E) − ē(E) ∈ K , whence

p[ē(E)] ≤ p[γ (E)] = εp[β(F )] + p[β(E \ F )]

< p[β(F )] + p[β(E \ F )] = p[β(E)] = p[ē(E)],

which is impossible.
Case 2. p[β̄(E)] = 0. In this case, p[ē(E)] = 0. The rest of the

proof is decomposed into following two sub-cases:
Sub-case 1. There exists an allocation γ such that γ ∈ MI\E ,

γ ≻I\E α and p[γ̄ (I \ E)] = p[ē(I \ E)]. Applying (i) of [A.5], we
have p[ē(I \ E)] = p[ē(I)] > 0. Thus, we would again fall in the
contradiction determined by occurrence of Case 1 with I \E in the
role of E.

Sub-case 2. There does not exist any allocation γ such that γ ∈

MI\E , γ ≻I\E α and p[γ̄ (I\E)] = p[ē(I\E)]. In this sub-case, setting
F1 = E, F2 = I \ E, by (ii) of [A.5], there should be some γ∗ ∈ MF2
with γ∗ ≻F2 α and

γ∗(F2) ≤ ē(F1) + ᾱ(F2).

This, along with the fact that px ≥ 0 for all x ∈ K , yields
p[ē(F1)] + p[ᾱ(F2)] ≥ p[γ̄∗(F2)] and p[γ̄∗(F2)] > p[ē(F2)]. But,
p[ē(F2)] = p[ᾱ(F2)]. Thus,

p[ē(F1)] + p[ē(F2)] = p[ē(F1)] + p[ᾱ(F2)] ≥ p[γ̄∗(F2)] > p[ē(F2)]

whence p[ē(F1)] = p[ē(E)] > 0, which leads to a contradiction. □

5. Exact feasibility

In this section, we discuss the core-Walras equivalence the-
orem in the case of exact feasibility and discuss the issue of
incentive compatibility.

4 By [P.2] and [P.4], we ignore the case p[β̄(E)] < p[ē(E)].

5.1. Equivalence theorem

The physical feasibility of an allocation for any coalition in
most of asymmetric information frameworks in the literature
(also in our model) is expressed in terms of an inequality while
the feasibility of an allocation in a complete information economy
is expressed by means of an equality. Towards this direction, the
question has been raised by some authors (for instance, Angeloni
and Martins-da Rocha (2009), Einy et al. (2001)) whether free
disposal is necessary in the definition of physical feasibility in
order to obtain core-Walras equivalence theorems. We now show
that a core-Walras equivalence theorem can be established under
the exact feasibility condition in the presence of an additional
assumption.

Assume that [A.4] is satisfied, i.e., the economy under consid-
eration has a properness pair (u,U). Define

w̃0 =

n∑
i=1

⎛⎝ui + m
m∑
j=1

e(Ij, ωi)

⎞⎠ .
Since (u,U) is a properness pair, we can also conclude that
(w̃,U) is a properness pair, where w̃ = (w̃0, . . . , w̃0). To intro-
duce our additional assumption, we first recall Proposition 3.1
in Martellotti (2007).

Proposition 5.1. If (v, V ) is a properness pair, then there exist
a positive functional x∗

∈ (X∗
+
)n and c > 0 such that V ∩ Xn

+
=

G−(x∗, c) ∩ Xn
+

and V c
∩ Xn

+
= F+(x∗, c) ∩ Xn

+
, where G−(x∗, c)

(respectively F+(x∗, c)) denotes the open lower (resp. closed upper)
half space determined by the hyperplane {x ∈ Xn

: x∗(x) = c}.

As a consequence of Proposition 5.1 and the fact that (w̃,U) is
a properness pair, there are some positive functional x∗

∈ (X∗
+
)n

and c > 0 such that (a) x∗(x) < c for all x ∈ U ∩ Xn
+
; and (b)

x∗(x) ≥ c for all x ∈ U c
∩ Xn

+
. Since (w̃,U) is a properness pair,

we have w̃ ∈ U c . Therefore, x∗(w̃) ≥ c.

Lemma 5.2. Suppose that EC satisfies [A.1]–[A.3]. Assume that

(w̃, λU) remains a properness pair, where λ =
x∗(w̃)

c
. If α is a

private core allocation, then K ∩ (−C) = ∅, where

C =

⋃
{t(w̃ + λU) : t > 0}.

Proof. Similarly to Lemma 3.3, it is enough to prove that K ∩

(−C) is empty. For each 1 ≤ i ≤ m, let

Ki =

⋃
F∈Σ, P(F )>0

{γ̄ (F ∩ Ii) − ē(F ∩ Ii) : γ ∈ MF , γ ≻F α}.

Claim 1. Ki∩ (−C) = ∅ for all 1 ≤ i ≤ m implies K ∩ (−C) = ∅.
The claim can be done if we show that γ̄ (E) − ē(E) ∈ K ∩ (−C)
for some coalition E implies γ̄ (E ∩ Ij)− ē(E ∩ Ij) ∈ −C for some j.
Thus, we assume that γ̄ (E)− ē(E) = −t(w̃+ v) for some v ∈ λU ,

t > 0. By putting β̄ = γ̄+
tv+

P(E)
P, we have β̄(E)−ē(E)+tw̃ = tv−,

which is equivalent to β̄(E)− ē(E)+ w̃ = tv−
+ (1− t)w̃. Clearly,

β̄(E) − ē(E) ∈ K and v−
∈ λU . Since (w̃, λU) is a properness

pair, as a consequence of Proposition 5.1, we have z ∈ λU ∩ Xn
+

implies x∗(z) < λc = x∗(w̃). Thus, tv−
+ (1 − t)w̃ ∈ Xn

+
and

x∗(tv−
+ (1 − t)w̃) < λc. As a result, β̄(E) − ē(E) + w̃ ∈ λU ∩ Xn

+
.

If Ki ∩ (−C) = ∅ for all 1 ≤ i ≤ m, then we have

β̄(E ∩ Ii) − ē(E ∩ Ii) +
1
m
w̃ ∈

(
λU
m

)c

.

It follows from the definition of w̃ that

β̄(E ∩ Ii) − ē(E ∩ Ii) +
1
m
w̃ ∈ Xn

+
.
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The convexity of
(
λU
m

)c

∩ Xn
+

implies

β̄(E) − ē(E) + w̃ =

m∑
i=1

[
β̄(E ∩ Ii) − ē(E ∩ Ii) +

1
m
w̃

]
/∈ λU,

which is a contradiction.
Claim 2. Ki ∩ (−C) = ∅ for all 1 ≤ i ≤ m. This can be proven

by invoking arguments similar to those in the proof of Lemma 3.3
and using the monotonicity of ≻I .5 □

Remark 5.3. As the extremely desirable commodity bundle w
is larger than the extremely desirable bundle u, the extra as-
sumption in the previous Lemma says that w remains extremely
desirable when added to a bundle y even if one subtracts some-
thing relatively ‘‘large’’, namely almost at the level of hyperplane
determined by means of Proposition 5.1. This assumption is em-
ployed to demonstrate that Lemma 3.1 (and hence Theorem 4.1)
can be obtained in a framework without free disposal assumption.
However, in the absence of this assumption, a slightly different
approach has been used in Lemma 3.1 under free disposal as-
sumption. Note that such an approach is not applicable for the
case when the feasibility is defined to be exact (without free
disposal).

5.2. Incentive compatibility of core allocations

In this subsection, following Angeloni and Martins-da Rocha
(2009) and Koutsougeras and Yannelis (1993), we introduce the
concept of (weak) coalitional incentive compatibility of an allo-
cation and show that the private core allocations are (weakly)
coalitional incentive compatible.

The private core, as well as a Walras expectations equilibrium,
is defined to be as ex-ante solution concepts corresponding to
actions taken at τ = 0, that is, before the resolution of un-
certainty. In this period, all signed contracts specify deliveries
and receipts of commodities contingent on the realized state at
τ = 1. However, if the execution of some contract in some
state ω at τ = 1 would lead to an inferior consumption bundle
compared to the initial endowment for some coalition, then the
coalition may have an incentive to refuse to admit that ω has
been realized, even though the coalition knows that ω is a true
state and that this is known by its complementary coalition too.
Thus, in order to address the issue of execution (or enforcement)
of contracts at τ = 1, we assume that there is an intermediary
(a ‘‘government institution" or a ‘‘market institution") who can
verify the occurrence of the state ω and is responsible for the
execution of contracts at τ = 1. The aforesaid assumption is
reasonable if we are in the symmetric information framework.
But one cannot assume that the intermediary knows the true
state in the asymmetric information framework. Otherwise, each
coalition anticipates such knowledge of intermediary at τ = 0
and then, trusting the enforcement capabilities of the intermedi-
ary at τ = 1, coalitions might sign at τ = 0, non-measurable
contracts with respect to the private information, even though
they may not be able by themselves to identify the true state at
τ = 1.

We thus assume that the intermediary has an incomplete
information about the true state. Given this and the assumption
that different coalitions may have different information, coali-
tions may have incentives to misreport the private information
and claim the net trade corresponding to the false information
reported by them. To clarify this, suppose that some state ω0

5 The monotonicity assumption will be used to obtain exact physically
feasible allocation from s1 to block a private core allocation.

is realized and ≻
ω
E is an ex-post preference of coalition E at an

arbitrary state ω, that is ≻
ω
E is a preference relation on the set

Mω
= {α(·, ω) : Σ → X+

: α ∈ M }.6 Then each coalition E
only knows that the state of nature belongs to PE(ω0), but does
not know exactly the true state of nature. Now, given a feasible
allocation α (that is, a contract at τ = 0), if e(E, ω) + α(E, ωE) −

e(E, ωE) ∈ X+ and e(·, ω) + α(·, ωE) − e(·, ωE) ≻
ω
E α(·, ω) for

all ω ∈ PE(ω0)7 and some state ωE /∈ PE(ω0), the coalition E
will gain by reporting the state ωE when the true state is ω0.
Suppose now that two coalitions E and F = I \ E misreport that
the true states are ωE and ωF , respectively, when the actual true
state is ω0. If α(E, ωE) + α(F , ωF ) ̸= e(E, ωE) + e(F , ωF ), then
the intermediary cannot execute the contract. In order to avoid
such false information, we assume that there is a legal procedure
that any coalition can use to prove that either the coalition itself
is not misreporting or the complementary coalition is reporting
a false information, and that this procedure is costly and the
cost of the procedure should be paid by the coalition reporting a
false information. Then we can conclude that a coalition will not
misreport unless it is sure that the misreport cannot be detected
by any other coalition. Therefore, a coalition E ⊆ Ii cannot lie
whenever µ(E) < µ(Ii) because Ii \ E has the same information
as the coalition E. So, if some coalition E lies then it must be the
union of some Ii’s. Moreover, when ω0 is a true state, a coalition
E will have an incentive to misreport by announcing the state ω′

if (i) the complementary coalition cannot discern ω′ and PE(ω0),
that is, {ω′

} ∪ PE(ω0) ⊆ PI\E(ω0); and (ii) e(E, ω) + α(E, ω′) −

e(E, ω′) ∈ X+ and e(E, ω) + α(E, ω′) − e(E, ω′) ≻
ω
E α(E, ω) for all

ω ∈ PE(ω0). This motivates us to define the concept of coalitional
incentive compatibility.

Definition 5.4. A physically feasible allocation α is called coali-
tionally incentive compatible if it is not possible to find a coalition
E and two states ω0, ω

′ such that

(i) {ω′
} ∪ PE(ω0) ⊆ PI\E(ω0);

(ii) e(E, ω) + α(E, ω′) − e(E, ω′) ∈ X+ for all ω ∈ PE(ω0); and
(iii) e(E, ω) + α(E, ω′) − e(E, ω′) ≻

ω
E α(E, ω) for all ω ∈ PE(ω0).

Thus, a physically feasible allocation is coalitionally incentive
compatible if it is not possible to find a coalition E and two states
ω0 and ω′ such that the complementary coalition cannot discern
ω′ and PE(ω0) and the coalition E is better off by announcing ω′

whenever ω0 is the true state. We now state and prove the coali-
tional incentive compatibility of feasible allocations, where the
physical feasibility is defined as exact. This result, in particular,
implies that any private core allocation is coalitionally incentive
compatible.

Theorem 5.5. Every feasible allocation is coalitionally incentive
compatible.

Proof. Suppose, by contradiction, that a feasible allocation α
is not coalitionally incentive compatible, namely there exist a
coalition E and two states ω0 and ω′ such that conditions (i)–(iii)
in Definition 5.4 are satisfied. It follows from (i) that α(I \E, ω) =

α(I \ E, ω′) and e(I \ E, ω) = e(I \ E, ω′) for all ω ∈ PE(ω0). The
feasibility of α implies that α(I, ω) − e(I, ω) = 0 = α(I, ω′) −

e(I, ω′) for all ω ∈ PE(ω0), which further implies α(I, ω)−α(I, ω′)

6 Given α, β ∈ M , we assume that α(·, ω) ⪰
ω
E β(·, ω) for all ω ∈ Ω and

α(·, ω′) ≻
ω′

E β(·, ω′) for some ω′
∈ Ω imply α ≻E β , where α(·, ω) ⪰

ω
E β(·, ω)

means that for every sub-coalition F of E, β(·, ω) is not preferred to α(·, ω) by
≻
ω
F .
7 Since e and α are FE -measurable, it is equivalent to e(E, ω0) + α(E, ωE ) −

e(E, ωE ) ∈ X+ and e(·, ω0) + α(·, ωE ) − e(·, ωE ) ≻
ω0
E α(·, ω0) if ≻

ω
F =≻

ω′

F for all
ω,ω′

∈ Ω and all coalitions F .
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= e(I, ω) − e(I, ω′) for all ω ∈ PE(ω0). Since α and e are both
finitely additive, we must have α(E, ω) − α(E, ω′) = e(E, ω) −

e(E, ω′) for all ω ∈ PE(ω0). Hence, e(E, ω)+ α(E, ω′)− e(E, ω′) =

α(E, ω) for all ω ∈ PE(ω0), which contradicts (iii). □

6. Individual core-Walras results

In this section, we derive individualistic core-Walras results
in an economy with asymmetric information, from the equiva-
lences stated in Theorem 4.1. We can express an individualistic
economic model as follows

EI = {(I,Σ,P); X+; (Ω,F ); (Ft ,Ut , η(t, ·),Pt )t∈I} ,

where (i) (I,Σ,P) is a measure space of agents where P is
a non-atomic countably additive measure on the σ -algebra Σ;
(ii) X+ and (Ω,F ) are the same as in EC ; (iii) Ft is the σ -algebra
generated by a partition Pt ⊆ F of Ω representing the private
information of agent t; (iv) Ut : Ω×X+ → R is the state-dependent
utility function of agent t , representing the (ex post) preference of
agent t; (v) η(t, ·) : Ω → X+ is the initial endowment density of
agent t; and (vi) Pt is a probability measure on F , representing
the prior belief of agent t .

The ex ante expected utility of an agent t for x : Ω → X+ is
defined by Vt (x) =

∑
ω∈Ω Ut (ω, x(ω))Pt (ω) and the consumption

set of an agent t is defined by

Xt =
{
x ∈ Xn

+
: x is Ft-measurable

}
.

An allocation in EI is a function f : I ×Ω → X+ such that f (·, ω)
is Bochner integrable for all ω ∈ Ω . It is said to be privately
feasible whenever f (t, ·) ∈ Xt P-a.e., and physically feasible if∫
I f (·, ω)dP ≤

∫
I η(·, ω)dP for all ω ∈ Ω . Furthermore, we say

that an allocation is feasible if it is privately as well as physically
feasible. An allocation f is privately blocked by a coalition F if there
is an allocation g such that g(t, ·) ∈ Xt and Vt (g(t, ·)) > Vt (f (t, ·))
for all t ∈ S, and

∫
S f (·, ω)dP ≤

∫
S η(·, ω)dP for all ω ∈ Ω .

The private core of EI , denoted by PC (EI ), is the set of feasible
allocations which are not privately blocked by any coalition. A
Walras expectations equilibrium of EI is a pair (f , π ), where f is
a feasible allocation and π is a price system, such that f (t, ·)
maximizes B(t, π ) P-a.e.8 and
n∑

i=1

π (ωi)
∫
I
f (·, ωi)dP =

n∑
i=1

π (ωi)
∫
I
η(·, ωi)dP.

We assume that X is separable. Let {Q1, . . . ,Qk} be a collec-
tions of partitions of Ω such that Ii = {t ∈ I : Pt = Qi} is
measurable and P(Ii) > 0 for all 1 ≤ i ≤ k. We assume that
I =

⋃
{Ii : 1 ≤ i ≤ k}. Consider a function ϕ : (I,Σ,P) → ∆n

defined by ϕ(t) = Pt for all t ∈ I , where ∆n denotes the (n − 1)-
simplex of Rn. The function ϕ is assumed to be measurable, where
∆n is endowed with the Borel structure. For each ω ∈ Ω , define a
function ψω : I×X+ → R by ψω(t, x) = Ut (ω, x). For each ω ∈ Ω ,
the function ψω is assumed to be Carathéodory, that is, ψω(·, x)
is measurable for all x ∈ X+ and ψω(t, ·) is norm-continuous for
all t ∈ I . The following assumptions will also be used

[B.1] For all (t, ω) ∈ I×Ω , Ut (ω, x+y) > Ut (ω, x) for all x, y ∈ X+

with y > 0.

[B.2] There exist some u ∈ (X+)n and an open, convex, solid
neighborhood U of 0 in Xn such that (i) U c

∩ (X+)n is convex;
and (ii) y ∈ (X+)n and z ∈ (y + Cu) ∩ (X+)n implies Vt (z) > Vt (y)
P-a.e., where Cu =

⋃
{t(u + U) : t > 0}.

[B.3] η is a privately feasible allocation such that
∫
I
η(·, ω)dP is a

quasi-interior point of X+ for all ω ∈ Ω; and for every privately

8 B(t, π ) denotes the ex ante budget set of agent t at price π .

feasible allocation f and every partition {F1, F2} of I , where Fi is
a coalition, there exists an allocation g such that g(t, ·) ∈ Xt
and Vt (g(t, ·)) > Vt (f (t, ·)) P-a.e. on F2, and

∫
F2
g(·, ω)dP ≤∫

F1
η(·, ω)dP +

∫
F2
f (·, ω)dP for all ω ∈ Ω .

For each allocation f in EI , we are associating an allocation
Ξ [f ] in EC by letting Ξ [f ](E, ω) =

∫
E f (·, ω)dP. For each F ∈ Σ ,

we define PF to be the smallest partition that refines each Pt for
all t ∈ F . Thus, the individualistic economy EI corresponds to the
coalitional economy EC given by

EC = {(I,Σ,P); X+; (Ω,F ); (FF ,≻F , e(F , ·))F∈Σ } ,

where e(F , ·) = Ξ [η](F , ·); FF is the σ -algebra generated by PF ;
and the coalitional preference ≻F is defined by letting α ≻F β

if and only if Vt (a(t, ·)) > Vt (b(t, ·)) P-a.e. on F , where a(·, ω)
and b(·, ω) are Radon–Nikodym derivatives of α(·, ω) and β(·, ω),
respectively, for each ω ∈ Ω with respect to P. Analogously,
one can define α(·, ω) ≻F β(·, ω) if and only if Ut (ω, a(t, ω)) >
Ut (ω, b(t, ω)) P-a.e. on F . Since Proposition 4.2 of Basile et al.
(2009) can be easily extended to this new framework, we have
the following core-Walras equivalence theorem.

Theorem 6.1. Let [B.1]–[B.3] be satisfied for the economy EI . A
feasible private allocation f belongs to the private core of EI if and
only if it is a Walras expectations allocation of EI .

By taking an assumption similar that of [A.7] and the results
and techniques in Sections 4 and 5, one can obtain a similar
individualistic core-Walras equivalence theorem without free dis-
posal, in the sense of Angeloni and Martins-da Rocha (2009).
This would then contain Theorem 5.1 in Angeloni and Martins-da
Rocha (2009) as a corollary when preferences are represented by
continuous and monotone utilities. Indeed, all the hypotheses of
Theorem 6.1 are either explicitly assumed, or stated as part of the
standard definition for the economy in Angeloni and Martins-da
Rocha (2009) in a framework of an Euclidean space as the com-
modity space. Note that our core-Walras equivalence theorems in
coalitional as well as the individualistic models are first attempts
to the literature for the case of exact feasibility and an infinite
dimensional commodity space.

Let ω ∈ Ω and let Qi(ω) be the atomic event in Qi which
contains ω.9 If J ⊆ {1, . . . , k} then we denote by QJ the meet of
Qi for all i ∈ J which is interpreted as the common knowledge
information of the coalition whose members’ types belong to
{Qi : i ∈ J}. For any coalition E, we define PE(ω) to be equal
to QI(E)(ω), where QI(E)(ω) is the atomic element of QI(E) and
I(E) = {j ∈ {1, . . . k} : P(E ∩ Ij) > 0}.

We now recall the definition of coalitional incentive com-
patibility for individualistic models given by Koutsougeras and
Yannelis (Koutsougeras and Yannelis, 1993), as stated in Angeloni
and Martins da Rocha (Angeloni and Martins-da Rocha, 2009) for
the case of economies with a continuum of agents.

Definition 6.2. A feasible allocation f is said to be coalitionally
incentive compatible in EI if it is not possible to find a coalition E
and two states ω0, ω

′ such that

(i) {ω′
} ∪ PE(ω0) ⊆ Pt (ω0), P-a.e. on I \ E;

(ii) for every ω̃ ∈ PE(ω0), e(t, ω̃)+ f (t, ω′)−e(t, ω′) ∈ X+, P-a.e.
on E;

(iii) for every ω̃ ∈ PE(ω0), Ut (ω̃, e(t, ω̃) + f (t, ω′) − e(t, ω′)) >
Ut (ω̃, f (t, ω̃)), P-a.e. on E.

9 Recall that we assume that there exists a collection {Q1, . . . ,Qk} of
partitions of Ω such that Ij = {t ∈ I : Pt = Qj} is measurable and P(Ij) > 0 for
all 1 ≤ j ≤ k.
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Condition (i) says that almost all members of I \ E cannot dis-
tinguish ω′ and any element of PE(ω0). Conditions (ii) and (iii)
together imply that almost all members of E are better off by
misreporting the state ω′ whenever the true state is ω0.

It is known from Angeloni and Martins-da Rocha (2009) and
Koutsougeras and Yannelis (1993) that any feasible allocation
that belongs to the private core of EI is coalitionally incentive
compatible in EI where the physical feasibility is defined to be
exact. Thus, it would be interesting to obtain the above result as
a corollary of Theorem 5.5. As X has the RNP, it is true that f is
in the private core of EI if and only if Ξ [f ] belongs to the private
core of EC (indeed, Lemma 4.1 and Point 1. of Proposition 4.2 in
Basile et al. (2009) are straightforwardly adapted). However, at
this moment, it is unclear to us the link between the two concepts
of incentive compatibility for the individualistic and coalitional
case. In particular, to derive the result of Angeloni and Martins-
da Rocha (2009) and Koutsougeras and Yannelis (1993) from
Theorem 5.5 one should prove that the incentive compatibility
of Ξ [f ] implies the one of f : as this does not appear to be an
immediate task, it will be the subject of further work.

7. Concluding remarks

Remark 7.1. Our first concern will be that of comparing
Theorem 6.1 with some of the core-Walras equivalence result for
economies with asymmetric information already existing in the
literature. Most of the results are given under the assumption that
the commodity space coincides with the Euclidean space Rℓ for
any given ℓ ≥ 1. In this case, clearly X is a separable Banach
lattice having the RNP, and [B.2] is a default.

We begin our overview with Basile et al. (2009), where the
commodity space is Rℓ. The coalitional results in Basile et al.
(2009) (i.e. Theorem 3.2 and Theorem 3.7) cannot be derived
from our coalitional equivalences for two main reasons: (a) we
are assuming a different form of continuity, and (b) we need
assumption [A.2]. Nevertheless, when one turns to the individual
formulation, Theorem 4.3 in Basile et al. (2009) can be proven via
Theorem 4.1. In fact, the private feasibility of η in [B.3], although
not explicitly stated, is mentioned as an implicit assumption (and
needed to have the condition (A.4) of Basile et al. (2009) fulfilled).
All the other conditions in Theorem 4.3 of the aforementioned
paper either coincide or imply those of Theorem 6.1.

Secondly, our individualistic result (i.e. Theorem 6.1) is not
a direct extension of the core-Walras equivalence results in
Bhowmik (2013), Evren and Hüsseinov (2008) as the commodity
spaces in Bhowmik (2013), Evren and Hüsseinov (2008) are not
necessarily satisfying the RNP.

Remark 7.2. We conclude this paper with a list of possible di-
rections of further investigations, and problems where the setting
that we propose here (X has the RNP and preferences satisfy the
transitivity and the properness-like assumption) could enlarge
the class of economies in which previous results can be extended:

- Different types of the core are considered by several authors,
both in the finite dimensional (Allen, 2006; Einy et al., 2001) and
in infinite dimensional (Bhowmik, 2015; Graziano and Meo, 2005)
commodity spaces; it would be interesting to investigate whether
the results obtained for these cores in the mentioned papers can
be extended under the properness-like assumption to a Banach
lattice X having the RNP.

- A huge variety of papers focus on the existence results in the
framework of differential information (Angeloni and Martellotti,

2004; Einy et al., 2001; Podczek and Yannelis, 2008). Do the
assumptions proposed in our model provide extra tools to prove
the existence of an equilibrium?

- Another problem one may think of, concerns of the transi-
tivity assumption. Transitivity is standard in models making use
of utility functions, and therefore also in coalitional models à la
Radner stemming from such individual economies. Although it
is quite a reasonable assumption, it is a fact that there exists
literature not assuming it in the coalitional setting; hence, the
one presented here is not the most general model. Therefore, it
could be quite interesting to examine whether one can weaken
the transitivity assumption, for instance directly requiring that
the extremely desirable commodity is measurable with respect
to any partition in P0.

- A final problem to mention is the necessity of assumption
[A.2] in the coalitional setting. We have not been able to provide a
counterexample in this direction so far; and it could be in fact true
that one could move from an economy where [A.2] does not hold
to the finer economy where the σ -algebra of coalitions is enlarged
somehow to the one generated byΣ and {Ii : 1 ≤ i ≤ m}. Perhaps
a suitable extension of the probability P would provide a way to
derive equivalence results in more general situations than those
proved in this paper.
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