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Irregular Indeterminate Repeated Facts
in Temporal Relational Databases

Paolo Terenziani

Abstract—Time is pervasive of reality, and many relational database approaches

have been developed to cope with it. In practical applications, facts can repeat

several times, and only the overall period of time containing all the repetitions may

be known (consider, e.g., On January, John attended five meetings of the

Bioinformatics project). While some temporal relational databases have faced

facts repeated at (known) periodic time, or single facts occurred at temporally

indeterminate time, the conjunction of non-periodic repetitions and temporal

indeterminacy has not been faced yet. Coping with this problem requires an in-

depth extension of current techniques. In this paper, we have introduced a new

data model, and new definitions of relational algebraic operators coping with the

above issues. We have studied the properties of the new model and algebra (with

emphasis on the reducibility property), and how it can be integrated with other

models in the literature.

Index Terms—Temporal databases, database design, modeling andmanagement
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1 INTRODUCTION

TIME is pervasive of our way of dealing with reality. As a conse-
quence, time is often modelled in databases. The scientific commu-
nity agrees that time has a special status with respect to the other
data, so that its treatmentwithin a relational database context requires
dedicated techniques [1], [2]. A plethora of dedicated approaches
have been developed in the area of temporal relational databases (TDB
in the following; see, e.g., [3], [4]), and different approaches have
been proposed for supporting efficient access to temporal data [5]
and improving the effectiveness of information retrieval [6]. Most
TDB approaches focus on individual occurrences of facts, whose
time of occurrence (valid time [2]) is exactly known. However, in real
world applications, it is often the case that the same fact/event is
repeated several times. Tuzhilin and Clifford [7] distinguished
among (1) “strongly periodic” events, occurring at equally distant
intervals of time (e.g., Mondays, weeks); (2) “nearly periodic”
events, occurring at regular intervals of time, but not necessarily at
equally distant intervals (e.g., a person going to the cinema once
each week—and thus at regular intervals—, but not necessarily in
the same day—thus, not at equally distant intervals); (3)
“intermittent” events, which occur repeatedly in time, but without
any regularity (e.g., a man visiting a pub “periodically”, meaning
that the visits can be quite irregular). While several approaches,
including Tuzhilin and Clifford’s one, considered the first two clas-
ses above, the third class has been, to the best of our knowledge,
neglected by the TDB literature. Of course, if a fact/event repeats at
irregular times, but each time is exactly known, it can be easilyman-
aged as a set of timestamped tuples. However, in many cases, only
the span of time (frame time henceforth; “January 2015” in Example
1) containing all the repetitions, and the number (henceforth cardi-
nality; “five” in Example 1) of such repetitions is available, such as,
e.g., in Example 1

Example 1. In January 2015, John attended five times the meetings of
the Bioinformatics project.

In many cases, as in the above example, the exact time of facts at
the given TDB granularity is not known, and can only be

approximated, so that temporal indeterminacy (Dyreson, 2009) has to
be faced. Temporal indeterminacy is so important that “support
for temporal indeterminacy” was already one of the eight explicit
goals of the data types in TSQL2 consensus approach [2]. In effect,
temporal indeterminacy has various possible sources, including
scale, dating techniques, future planning, unknown or imprecise
event times, clock measurements (this list is not exhaustive, and is
taken from TSQL2 book [2]). Additionally, many facts and human
activities are repeated in time, and, given the above causes, repeti-
tions are expressed in a temporally indeterminate way. For
instance, examples like Example 1 arise in many tasks (e.g., sched-
uling, planning, office automation) and domains, ranging from the
recording of employee activities (see Example 1 above) to the elici-
tation patient symptoms (e.g., On 9/9/2011 between 9am and 12am
John had three stool evacuations), from manufacturing (e.g., 125
machines were produced between 8am and 6pm) to auditing (e.g., there
were 23 phone calls from Rome on 9/9/2011 between 9am and 12am) and
monitoring (e.g., John had 81 heart-beats at 10:15). In all such
domains, it is quite unrealistic to pretend that the exact time of
each episode (each one of the repetitions) is known. For instance, a
patient usually cannot record the exact starting and ending time of
her/his stool evacuations, but just their number and the frame of
time when they occurred. Similar considerations hold for all the
other domains elicited above.

Despite the diffusion of the phenomenon, dealing with irregu-
larly repeated (i.e., intermittent [7]) facts/events in a frame time is, to the
best of our knowledge, an entirely new goal in TDBs. Coping with
it requires the joint treatment of two phenomena: the cardinality of
irregular repetitions (intermittent events in [7]) and temporal indetermi-
nacy (see, e.g., [8]), since only the frame time (and not the exact
time of each occurrence) is known. Up to now, only few TDB
approaches have faced temporal indeterminacy, and none of them
copes with cardinalities. Indeed, in Section 2 we show that coping
with cardinalities is a challenging problem: they must be an explicit
part of the data model and algebra, their treatment cannot be dele-
gated to users, and involves an in-depth extension of current alge-
brae (as shown in Section 4, where Property 3 clarifies the
differences between current algebrae and our extended one).

For generality, our approach considers also the possibility that (i)
the frame time is a non-convex span of time (in Example 2, “working
days of January 2015” excludes Saturdays, Sundays, and holidays),
and/or (ii) the exact cardinality of repetitions is unknown (but it is
bounded by a minimum and maximum value—“five” and “six” in
Example 2).

Example 2. In the working days of January 2015, Ann attended five
or six meetings of the Bioinformatics project.

In this paper, we extend the current TDB literature to cope with
such phenomena. In Section 2 we discuss the key problems and
challenges, and sketch our solutions. Then, we provide (i) a data
model to represent intermittent indeterminate repetitions (Section
3), and (ii) a temporal relational algebra to query it, investigating
its properties (Section 4). Section 5 presents related works, and Sec-
tion 6 contains conclusions.

2 MAIN PROBLEMS AND SOLUTIONS

We aim at identifying a data model and relational algebraic operators
to cope with irregular indeterminate repetitions (like in Example 1
and Example 2 above) in TDBs. The data model must be closed with
respect to the algebraic operators to query it, so that the results of
the application of such operators must still be expressible in our
data model. Such a goal leads to important implications about our
data model

We proceed incrementally. First, we focus on exact cardinality
and convex frame time (as in Example 1), and then we generalize.
Two different problems have to be faced to cope with cases like
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Example 1: repetitions of facts, and temporal indeterminacy. As regard
repetitions, we could allow for duplicates: several tuples represent-
ing occurrences of value-equivalent facts, holding at the same
frame time, could be inserted in the same relation. However, the
adoption of duplicates has several disadvantages, e.g., as regard
space, and cannot be generalized to the case in which the exact
number of repetitions is unknown (as in Example 2). We thus pro-
pose a compact solution, where numeric attributes are used to rep-
resent the number of repetitions of a fact in a frame time. For
instance, as a first approximation, Example 1 could be modelled
by the tuple <John, Bioinformatics j 5, January 2015>. It is worth
emphasizing that such a number of repetitions (i.e., the cardinality)
cannot be coped with as a “standard” numeric attribute, to be man-
aged directly by users/developers. We will show in Section 4 that
relational algebraic operators have to be re-defined to correctly
deal with such numbers. Such a definition must be provided once-
and-for-all, and cannot be demanded to users/developers.

The second problem regards the treatment of temporal indetermi-
nacy. Indeed, in Example 1, “January 2015” is not the exact time
when any of the five meetings occurred: it is a span of time contain-
ing (the exact valid time of) the repetitions. Such a form of tempo-
ral indeterminacy makes the definition of relational algebraic
operators quite challenging, as exemplified in Example 3 below.

Example 3. Let us consider a temporal relation SYMPT ¼ {<John,
headache j 5,Jan2015>, <Mary,headache j 3,Jan2015>} represent-
ing patient symptoms (defined on the schema<Patient, Symptom
j Repetitions, Frame-time>) and supposewewant to know

(Q1) when both John and Mary had headache?

Since we only know that the symptoms are during January
2015, many different scenarios are possible. Three of them are
shown in Fig. 1 (where John’s headache episodes are in red, with
round endpoints, and Mary’s ones in blue, with diamond
endpoints).

Scenarios (a) and (c) show two extreme situations: in (a)
the intersection is empty (its cardinality is zero), while in (c) the
cardinality of the intersection is the maximum possible between
five and three intervals (i.e., seven).

Abstracting from the specific example, since we don’t know the
exact temporal location of the input facts (but just the frame of time
containing them), we cannot know (i) the exact location of the inter-
sections (but just their frame time), and (ii) the exact number of the
intersections, but just a minimum (zero in the example) and maxi-
mum (seven in the example) bound for it.

However, we want that our data model is expressive enough
to model the results of relational algebraic operations. The generali-
zation to model not just a fixed cardinality, but a minimum and
maximum bound of it, is a natural way to achieve such a goal.

A second generalization, required to cope with complex cases
such as Example 2, regards the fact that, in our approach, the

frame time may be a non-convex period of time. For instance,
“the working days of January 2015” cover (in our University)
the time intervals [Jan 7, Jan 9], [Jan 12, Jan 16], [Jan 19, Jan 23],
[Jan 26, Jan 30].

It is worth noticing that the cases in which

(i) there is just one repetition and\or
(ii) the exact number of repetitions of events is known

can be easily modelled, and constitute specific cases of our gen-
eral model, in which the minimum and maximum cardinalities are
(i) set to the value ‘one’ or (ii) set to be equal respectively. Indeed,
the example in Fig. 1 demonstrates that, even in case the exact
input cardinalities are known, the cardinalities obtained after the
application of relational operators may only be bounded by a mini-
mum and a maximum value. In particular, temporal intersection
(and, thus, Cartesian Product) always produce a lower bound of 0
regardless of the initial values. As a result, we may end up with
query results that are quite imprecise. This is especially disadvan-
tageous when the query is heavily nested as the result imprecision
can be accumulated from one level to the next level. However, we
stress that such a behaviour is not due to our choice of the data
model and algebraic operators, but is an intrinsic feature of the
phenomena we cope with.

In the rest of the paper, the above ideas are detailed.

3 DATA MODEL

Tuples are associated with valid time (for the sake of brevity,
transaction time is not considered in this paper). The timeline is
partitioned into granules of a chosen basic granularity. As is
BCDM [2; Chap.X] (which is the semantic model underlying
many TDB approaches, including the “consensus” TSQL2 [2]),
the time domain is totally ordered and is isomorphic to the sub-
sets of the domain of natural numbers. The domain of valid
times DVT is given as a set DVT ¼ ft1; t2; . . . ; tkg of granules. The
number of repetitions of a fact is encoded by two cardinality
attributes N and M, defined on the domains of natural numbers
and of positive natural numbers respectively, with the constraint
that the minimal cardinality is less or equal that the maximum
cardinality. The schema of a “IR” (Irregular Repeated) temporal
relation R ¼ (A1, . . . , An jN,M,FT) consists of an arbitrary num-
ber of non-temporal attributes A1, . . . , An, encoding some fact,
of a minimal cardinality attribute N, of a maximal cardinality
attribute M, and of an attribute FT representing a (possibly non-
convex) frame time as a temporal element [9] (i.e., a set of non-

overlapping time intervals), with domain 2DVT . Thus, a tuple
x ¼ ða1; . . . ; anjn1; n2; tÞ (where n1 � n2, and n2 > 0) in a tempo-
ral relation r(R) on the schema R consists of a n-tuple of values
for the non-temporal attributes associated with a minimum car-
dinality n1, a maximum cardinality n2, and a frame time t 2 DVT ,
and represents the fact that there are between n1 and n2 occurrences
of the fact a1; . . . ; an in the frame time t. As an example, consider a
temporal relation MEET modelling meetings at the granularity
of days. The schema of MEET is <Employee, Meeting j N, M,
FT>. The first two tuples represent Example 1 and Example 2
respectively, while the third tuple represents Example 4

Example 4. Sue attended oneMath meeting in January 2015.

Notation 1. Given a tuple x defined on the schema R ¼ (A1, . . . ,
An jN,M,FT), we denote by A the set of attributes A1, . . ., An. x
[A] denotes the values of the A attributes in x, x[FT] denotes the
frame time, x[N] and x[M] denote the minimum and maximum
cardinality respectively.

Note. It is worth pointing out that the frame time may easily
contain timestamps ti2DVT (instead of durative time intervals), rep-
resented by “degenerate” intervals [ti,ti].

Fig. 1. Different scenarios for Q1.
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3.1 Consistent Extension Properties

Recently, Anselma et al. [10] have proposed a family of data models
and algebrae to cope with different forms of temporal indetermi-
nacy (but not with repetitions). Our datamodel is a consistent exten-
sion of one of such models, called “ITE” (Property 1), as well as of
valid-time TSQL2 relations (Property 2). In particular, in the ITE
approach, a (possibly non-convex) set of granulesGS is used to rep-
resent the valid time of a tuple, meaning that the tuple may hold at
any possible subset of the granules in GS . E.g., an ITE tuple <John,
Bioinf j {1,2,3}> represents the fact that John attended a Bioinf.
meeting at granules {1}, or {2}, or {3}, or {1,2}, or {1,3}, or {2,3}, or
{1,2,3}, or Ø –so that hemight also not have attended themeeting).

Properties 1 and 2 grant that we can cope with the same content
than “ITE” and TSQL2 valid-time relations. They are, indeed, a
restriction of our relations, in which both minimum and maximum
cardinalities of tuples must be set to the value ‘one’, and (in the
case of TSQL2) the frame time is a single (convex) time interval.

Property 1. “ITE” relations can be modelled by temporal relations in our
approach.

Property 2. TSQL2 valid-time relations can be modelled by temporal
relations in our approach.

For example, at the granularity of days, the third tuple in Table 1
may represent the “ITE” tuple <Sue, Math j {Jan1, Jan2, . . ., Jan31}>
and the TSQL2 tuple <Sue, Math j [Jan1, Jan31]>. However, it is
important to stress that in TSQL2 a tuple<Sue,Math j [Jan1, Jan31]>
is interpreted (and treated by algebraic operators) as meaning that
Sue attended the Math meeting at all granules between January 1st
and January 31st. On the other hand, in our approach (and in the ITE
model) the tuple has a quite different interpretation: Sue attended a
Mathmeeting in a time contained in January. Such a semantics is sup-
ported by the algebraic operators defined in Section 4.

4 TEMPORAL RELATIONAL ALGEBRA

Codd defined as complete any query language that is as expressive
as his set of five relational algebraic operators: relational union ([),
relational difference (�), selection (sP ), projection (pA), and Carte-
sian Product (�) [11]. Here we propose a temporal extension of
Codd’s operators to query the data model in Section 3. Several tem-
poral extensions to Codd’s operators have been provided in the
TDB literature [9]. In most cases, such extensions behave like stan-
dard non-temporal operators on the non-temporal attributes, and
involve the application of set operators on the temporal attributes.
For instance, in TSQL2 “consensus” approach, (i) Cartesian Prod-
uct involves pairwise concatenation of the values of non-temporal
attributes and pairwise intersection of their temporal values, (ii)
difference r-s operates in the standard way on non-temporal attrib-
utes, and make the difference of valid times (by subtracting from
each tuple f2r the valid times of all the tuples f’2s value equivalent
[2] to it), and (iii) relational union, non-temporal selection, and pro-
jection operate in the standard way on the non-temporal part, and
do not operate on the temporal part.

4.1 Relational Algebra for Irregular Repetitions

We ground our approach on such a “consensus” background,
extending the algebraic operators to cope with the new attributes.

In the definition Definition 2 we use the superscript “IR” (Irregular
Repeated) for our operators, while [, \, -, denote standard set
operators. For the sake of brevity, we preliminarily define the set
VE_INT(f,s) of all the tuples in the relation s that are value-equiva-
lent to a tuple f (i.e., that are equal to f as regards the values of
the non-temporal attributes [2]) and whose frame time intersects
with f ‘s frame time (Definition 1). In the following, “{x\ . . .}”
stands for “all x’s such that”.

Definition 1 (Sets of value equivalent tuples). Given two relations r
and s defined over the schema R ¼ (A1, . . . , An jN,M,FT), and a tuple
f ¼ <v jn1, m1,t1> 2 r, we define VE_INT(f,s) ¼ {f’\f’ 2 s^ f’[A] ¼
f[A] ^ f[FT] \ f’[FT] 6¼Ø} as the set of all and only the tuples f’ in s
that are value equivalent to f and that temporally intersect f.

Definition 2 (Temporal algebraic operators). Let r and s denote tem-
poral relations in our model having the proper schema.

r [IR s ¼ {< v jn,m,t > \
<v jn,m,t> 2 r _ <v jn,m,t> 2 s}

r -IR s ¼ {<v j n,m,t > \
9n1,m1,t1 (<v j n1, m1,t1> 2 r ^ VE_INT(<v j n1,m1,t1>,s) ¼ Ø
^ n ¼ n1 ^ m ¼ m1 ^ t ¼ t1) _
9n1,m1,t1 (<v jn1, m1,t1>2r ^VE_ INT(<v j n1,m1,t1>,s)6¼Ø ^
^ n ¼ 0 ^ m ¼ m1þ

P
f
i
2VE_ INT(<v j n1,m1,t1>,s) fi[M]^ t ¼ t1)

r �IR s ¼ {<v1 � v2 jn,m,t> \ 9n1,m1,t1 (<v1 jn1, m1, t1 >

2 r ^ 9n2,m2,t2 (<v2 jn2,m2,t2>2 s) ^ n ¼ 0 ^ m ¼ m1þm2�1 ^
t ¼ t1 \ t2 ^ t1 \ t26¼Ø)}

pIR
A (r) ¼ {<v jn,m,t > \ 9 v1,n1,m1,t1 (<v1 j n1, m1,t1>2r ^ v

¼ pA(v1) ^ n ¼ n1 ^ m ¼ m1 ^ t ¼ t1}

sIRP (r) ¼ {(<v jn1,m1,t> \ (<v j n1, m1,t>2r ^ P(v)}

As motivated above, all our algebraic relational operators oper-
ate in the standard way on the non-temporal attributes. As in
TSQL2, our union, projection and non-temporal selection do not
modify the temporal attributes. Considering difference (r-IRs), any
tuple f2r that has no value-equivalent tuple in s that intersects its
frame time (i.e., such that VE_INT(f,s) ¼ Ø) is reported in output,
unchanged. Otherwise, all the tuples in VE_INT(f,s) must be consid-
ered. The output tuple is value equivalent to f. Its minimum cardi-
nality is 0, since the valid times of all repetitions in f can be
“covered” by the valid times of tuples in VE_INT(f,s). Its maximum
cardinaliy is the sum of all themaximum cardinalities (i.e., themaxi-
mum cardinality of f plus the maximum cardinalities of all the
tuples in VE_INT(f,s)). This is due to the fact that the difference
between each pair of time intervals may generate a maximum of
two time intervals. Notably, the frame time of the result is the one
of f.1 As an example, Fig. 2 shows the difference between the red

TABLE 1
Relation MEET: Representation of Ex. 1, 2, and 4

Employee Meeting N M FT

John BioInf 5 5 {[Jan1, Jan31]}
Ann BioInf 5 6 {[Jan7, Jan9], [Jan12, Jan16],

[Jan19, Jan23], [Jan26, Jan30]}
Sue Math 1 1 {[Jan1, Jan31]}

Fig. 2. Difference (shown in yellow) between red intervals and blue intervals. The
figure shows an example of maximum cardinality.

1. This is due to the fact that the frame time represents just a span of time in
which the valid time of each repetition is contained. Thus, the valid times in the
result may be placed within the frame time of the subtrahend. For instance, the
first four valid times of the result (yellow intervals with segment endpoints) in
Fig. 2 are contained also in FT2. The figure shows clearly that the output frame
time must be the frame time of the minuend, and may include (part of) the frame
time of the subtrahend.
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intervals with round endpoints (contained in the frame time FT1)
and the blue intervals with diamond endpoints (contained in FT2).
The resulting frame time is FT (FT ¼ FT1), and the resulting repeti-
tions are shown in yellow (segment endpoint).

Our Cartesian Product operates the intersection between frame
times. The minimum cardinality is 0, since it may always be the
case that the valid times of the repetitions (contained in the inter-
section of frame times) do not intersect with each other (see, e.g.,
Fig. 1a). The maximum cardinality is the sum of the two input max-
imum cardinalities, minus 1 (see, e.g., Fig. 1c).

As a first example of algebraic query, (Q1) in Section 2 can be
asked as follows:

(Q1) pIR
symptom ((sIRpatient ¼ John ^ symptom ¼ headache (SYMT)) �IR

(sIRpatient ¼ Mary ^ symptom ¼ headache (SYMT)))

As an additional example, let us consider a database containing
the relation MEET in Table 1, and the relation REP in Table 2, rep-
resenting the episodes when employees have written reports.
Queries Q2 and Q3 ask about reports written during meetings, and
not written during meetings respectively.

(Q2) pIR
Employee (s

IR
MEET.Employee ¼ REP.Employee(MEET�IRREP)).

(Q3) REP -IR (PIR
Employee(MEET)).

4.2 Reducibility Properties of the Algebra

Reducibility is fundamental for TDB approaches, to grant that the
semantics of new operators, which extend simpler operators to
cope with new phenomena, reduces to that of simpler operators
when the new phenomena are disregarded [2], [9]. In general (see,
e.g., [9]), given any two relational models and algebrae X and Y,
the reducibility of X to Y is proved by introducing a reduction
operator R and by proving that, indicating by OpX and OpY two
corresponding operators in X and Y, and r a relation in X, the fol-
lowing holds (the analogous holds for binary operators): R(OpX(r))
¼ OpY(R(r)).

The specific new phenomenon dealt with by our approach is
the treatment of irregular repetitions. Thus, natural candidates for
reducibility include, first of all, approaches not considering repeti-
tions. Specifically, since we cope with repetitions for which the
exact valid time is unknown, we chose to consider a TDB approach
coping with temporal indeterminacy, namely the “ITE” approach
[10] (see also Section 3.1). To prove the reducibility of our algebra
to the ITE one, we have to define a reduction operator RITE. In the
following, we use three auxiliary functions: (1) Gran(I), that takes
in input a (convex) time interval I, and returns the granules it
contains (e.g., Gran([1,3]) ¼ {1,2,3}), (2) Gran�({I1, . . . , In}) that iter-
ates Gran on a set of time intervals (e.g., Gran�({[3,5],[7,8]}) ¼
{3,4,5,7,8}), and (3) Max_Cover(g1, . . . , gk) that takes in input a set of
granules, and returns the minimum set of disjoint time intervals
exactly covering them (e.g., Max_Cover({3,4,5,7,8}) ¼ {[3,5],[7,8]}).

The reduction operator RITE can be defined as follows.

Definition 3 (RITE). Let r a temporal relation in our approach, defined on
the schema R ¼ (A1, . . . , An jN,M,FT), and let R’ ¼ (A1, . . . , An jT)
the corresponding schema in the ITE model, where T22DVT (i.e., T is a
set of granules in DVT). R

ITE(r) ¼ {z\9x2r z[A] ¼ x[A] ^ x[M]>0 ^
z[T] ¼ Gran�(x[FT])}

Given the above definition, Property 3 holds.

Property 3 (Reducibility to ITE). Our algebra is reducible to ITE’s
algebra through RITE, i.e., RITE(OpIR(r)) ¼ OpITE(RITE(r)), where
OpIR and OpITE represent corresponding relational operators in our
algebra and in the ITE algebra respectively.

The proof of this and of the following property are reported in
the digital library as supplementary material, which can be found
on the Computer Society Digital Library at http://doi.ieeecompu-
tersociety.org/10.1109/TKDE.2015.2509976.

As in classical proofs of reducibility to Codd operators [9], we
use as reduction operator a time-slicing operator (that we call
Rt

CODD), selecting all and only those tuples x holding at a specific
time t (i.e., such that x[FT] \ t 6¼Ø), and removing the temporal dimen-
sion from them.

Defintion 4 (Rt
CODD). Rt

CODD (r) ¼ {z \ 9x2r z[A] ¼ x[A] ^ x[M]>0
^ x[FT] \ t6¼Ø}.

Reducibility through Rt
CODD does not hold for difference.

Property 4 (Reducibility to Codd). Our union, projection non-tempo-
ral selection and Cartesian Product (but not difference) relational
operators are reducible to Codd’s corresponding operators through
Rt

CODD.

Property 5 (Additional Overhead). It is worth comparing our data
model and algebra with the ones of other TDB approaches to see the
additional overhead that we add with respect to the TDB models that
do not consider repetitions. Concerning the data model, two additional
attributes are required, to cope with minimum and maximum cardi-
nality. On the other hand, temporal elements are used by many
TDB approaches, including TSQL2, to model valid time. Concerning
algebraic operators, as discussed at the beginning of Section 4, we fol-
low the TSQL2 “consensus” approach. Thus, our definitions of tempo-
ral operators are similar to TSQL2’s ones, except for the fact that our
operators also work on minimum and maximum cardinality, perform-
ing simple operations (sum). Thus, the I/O operations are the same
with respect to TSQL2 (and TDB approaches based on BCDM), and
only a limited constant overhead to CPU time is added.

4.3 Algebraic Operators on Time and Cardinality

New operators can be introduced to cope with the temporal and
the cardinality components of our data model. For instance, we
show the cardinality selection operator sIR’(r), which selects all those
tuples whose minimum and maximum cardinality satisfy a selec-
tion predicate ’

sIR’(r) ¼ {z \ 9x2r z[A] ¼ x[A] ^ z[N] ¼ x[N] ^ z[M] ¼ x[M] ^ z
[FT] ¼ x[FT] ^ ’ (x[N],x[M])}.

For instance, with ’:(x[N] ¼ 3 ^ x[M] ¼ 3) one can select all the
facts which occurred exactly three times.

4.4 Interplay with Other Temporal Algebrae

Besides relations storing irregular repetitions (“IR” relations), a
database can consist also of other types of (temporal) relations.
Thus, it is important to study whether a (algebraic) query can oper-
ate on such different types of relations. Properties 1 and 3 above
are very important to this respect. Given Property 1, an ITE relation
can be extended to become an IR one, so that IR operators can be
applied on it (and on primitive IR relations). Given Property 3, the
RITE operator can be applied to reduce an IR relation to an ITE one,
so that ITE operators can be applied. Thus, with the simple addi-
tion of RITE and of an operator extending ITE relations into IR ones,
ITE and IR relations can be combined in the queries. Another inter-
esting result regards the joint treatment of IR relations and rela-
tions dealing with periodic events [7]. Several different approaches
have been developed to deal with periodic events (see, e.g., [12],
[13], [14], [15], [16], [17] and the surveys in [7], [18]). However,

TABLE 2
Relation REP (Reports)

Employee N M FT

John 8 8 {[Jan5, Jan15],[Jan 20,Feb10]}
Ann 10 12 {[Jan1, Jan30]}
Sue 1 1 {[Jan1, Jan31]}
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independently of the representation model, if periodic data are
temporally bounded (i.e., when there are no infinite repetitions),
they can be converted into an explicit set of temporal non-periodic
data, by making the extensions of the periodicity explicit (see, e.g.,
[17]). After such a transformation, periodic data can be easily rep-
resented within the ITE data model, whose interplay with the IR
model has been discussed above. In such a way, a comprehensive
temporal database consisting of ITE, IR and periodic relations can
be managed in an integrated way by temporal algebraic operators.

5 RELATED WORKS

In TDBs, several approaches have focused their attention on peri-
odic events [7], coping in an intensional way (i.e., without making
all occurrences explicit) with periodicity. Roughly speaking, such
approaches can be divided into three mainstreams (terminology
derived from [12], [13]): (i) Deductive rule-based approaches, using
deductive rules. For instance, Chomicki and Imielinsky [14] dealt
with periodicity via the introduction of the successor function in
Datalog; (ii) Constraint-based approaches, using mathematical for-
mulae and constraints (e.g., [15]); Symbolic approaches (e.g., [16],
[17]), providing symbolic languages to cope with temporal period-
icity in a compositional way. (See also the surveys in [7], [18]).

On the other hand, in this paper we cope with irregular repetitions
(“intermittent periodic events” in [7]) whose valid time is indetermi-
nate, since it is only approximated by a frame time containing all its
occurrences. Despite its practical relevance, such a phenomenon
has not been faced in the TDB area yet. Our work also involves the
treatment of temporal indeterminacy, which is intrinsically involved
in the notion of “frame time”. A survey of TDB approaches to tem-
poral indeterminacy has recently been provided in [8]. In one of the
earliest TDB work on temporal indeterminacy, an indeterminate
instant was modeled with a set of possible chronons [19]. Dyreson
and Snodgrass [20] and Dekhtyar et al. [21] have proposed probabi-
listic approaches. Recently, Anselma et al. [10] have introduced a
family of algebraic approaches coping with different forms of tem-
poral indeterminacy. Our model is a consistent extension of the ITE
approach in [10] (see Property 1), and, if we disregard repetitions,
our algebra can be reduced to ITE’s one (Property 3).

6 DISCUSSION AND CONCLUSIONS

Despite the importance of the phenomenon, our approach is the first
TDB approach coping with irregular indeterminate repetitions of facts
in a frame time. We have introduced a new data model, new rela-
tional algebraic operators, and we have studied their reducibility
properties. In Section 4.4, we have also started to analyse the integra-
tion of our approach with the ITE one and with current approaches
coping with periodic events. In our future work, we aim at further
exploring such a promising research direction, by (i) devising a tem-
poral relational approach (data model and algebra) coping with
nearly-periodic events [7] (supporting also the cardinality of repeti-
tions), and (ii) proposing the first comprehensive approach coping
in an integrated way with the different types of repeated data (peri-
odic, nearly periodic, and intermittent [7]), as well as with temporally
indeterminate and “standard” temporal data. We are developing a
prototypical implementation of our approach. Experimental evalua-
tions will follow, to experimentally show the overhead we add with
respect to TDBs approaches not managing repetitions.
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