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Abstract We define a new notion of extreme desirability for economies in coalitional
form. Through this, we obtain a finitely additive core-Walras equivalence theorem for
an exchange economy with a measure space of agents and an infinite dimensional
commodity space, whose positive cone has possibly empty interior.
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1 Introduction

When looking for the existence of a Walrasian equilibrium or for core-Walras equiv-
alence results, one of the major problems in dealing with models with an infinite
dimensional commodity space is the possible emptiness of the order cone. Unfortu-
nately, this prevents the use of classical separation arguments for proving the existence
of prices which support Walrasian allocations in many of the spaces that are of interest
for economic and financial models such as, for example, the L p spaces, p ∈ [1,∞).
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Therefore, conditions which can amend this difficulty have been extensively studied,
the most popular ones used in models with individual agents and preferences being
the cone condition of Chichilnisky and Kalman (1980), the properness of Mas-Colell
(1986) and the extremely desirable commodity of Rustichini and Yannelis (1991)
(these three conditions prove to be equivalent for complete preorders, see Chichilnisky
1993). We refer the reader also to Aliprantis et al. (2000) for a complete overview on
the topic.

Starting from the work of Aumann (1964), the idea that when an economy has
sufficientlymany traders everyone acts like a price-taker and only coalitionsmatter, has
been formalized through the assumption of a space of negligible agents, each endowed
with individual preferences on bundles of commodities. More precisely, both in the
case of a finite and an infinite dimensional commodity space, the primitives in these
models are a measure space of agents, a σ -algebra on the space (where each element
represents a coalition), and a nonatomic measure. Clearly, if the nonatomic measure
is non-trivial, this implies that the space is uncountable. In other words, in a countably
additive setting the space of agents has to be uncountable. To overcome this lack of
realism and of economic meaningfulness, many authors turned to the use of finitely
additive measures. Also, the fact that only the bargaining power of the coalitions can
influence the final outcomes, has suggested towork directly with coalitions themselves
(Vind 1964). After the one of Armstrong and Richter (1984), many works have thus
faced the problem of core-Walras equivalence in a coalitional finitely additive setting
(Basile 1993; Donnini and Graziano 2009). However, in all these models, when the
commodity space is of infinite dimension the non-emptiness of the positive cone is
directly assumed.

The aim of our work is twofold: on the one hand, we introduce in a coalitional
framework a condition which plays the same role of the extremely desirable com-
modity assumption combined with the additivity condition in individualistic models
(Rustichini and Yannelis 1991), thus allowing to work with commodity spaces whose
cone has possibly empty interior; on the other one,we obtain a core-Walras equivalence
theorem working in a finitely additive context. We emphasize that, in the literature,
there are other countably additive coalitional models that make use of properness-like
conditions in order to obtain core-Walras equivalence theorems. We recall the works
of Zame (1986), and the recent one of Greinecker and Podczeck (2013): the last one
includes the case of all Banach lattices, at the cost of strengthening some measure
theoretic hypotheses. The fact that properness-like assumptions are crucial in order
to account for spaces whose positive cone has empty interior is also well emphasized
by the recent work of Bhowmik and Graziano (2015), who made use precisely of the
above-mentioned conditions for individuals to extend the classical Theorem of Vind
(1972) to the case of an ordered Banach space whose positive cone may have empty
interior with the presence of atoms in the agents space.

We define the notion of coalitional extreme desirability, and we also replace the
additivity condition of Rustichini and Yannelis (1991) (see also Angeloni and Martel-
lotti 2007; Bhowmik and Graziano 2015) by a weaker condition that, contrary to the
additivity condition, is in fact satisfied for instance by balls in L p spaces, p ≥ 1.
Then, after introducing a set of natural hypotheses on coalitional preferences, we
prove a finitely additive core-Walras equivalence theorem for an exchange economy
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Coalitional extreme desirability in finitely additive exchange... 19

with a Banach lattice of commodities with the Radon–Nikodym property (RNP), with-
out any assumption on the interior of the positive orthant. We also show that, when
the commodity space is separable and has the RNP (Rustichini and Yannelis 1991),
individualistic Theorem 6.1 can be deduced from our coalitional result.

We point out that there is a huge variety of spaces of interest in economic models
and that satisfy the RNP (see Diestel and Uhl 1977), among which all reflexive spaces.
Furthermore, our new condition is satisfied when one moves from a classical individ-
ualistic model to the derived coalitional one, as in Armstrong and Richter (1984).
The present paper also represents a first preliminary step towards extensions to richer
models.

In Sect. 2, we describe themodel, recall some definitions and introduce the notion of
coalitional extreme desirability. In Sect. 3, we provide our finitely additive core-Walras
equivalence result under coalitional extreme desirability. Section 4 is devoted to the
comparisons with Rustichini and Yannelis’ (1991) result and with other coalitional
models.

2 The model

Let (�,�) be a measurable space, where � is an algebra on �, and let P be a
strongly nonatomic finitely additive (f.a.) probability on it, that is, for every A ∈ �

and ε ∈ (0, 1), there exists B ⊂ A, B ∈ �, such that P(B) = εP(A) (see
also Bhaskara Rao and Bhaskara Rao 1983). For example, if � = [0, 1) and
� = {⋃n

i=1[ai , bi ) : [ai , bi ) ∩ [a j , b j ) = ∅, i �= j, 0 ≤ ai < bi < 1}, the Lebesgue
measure on � is strongly nonatomic.1 (�,�, P) is the space of agents, and elements
in � are referred to as coalitions. �+ denotes the class of non-negligible coalitions.

Let X be a Banach lattice with the Radon–Nikodym property (RNP), with positive
cone X+ representing the commodity space. By � we shall denote the vector order in
X , that is, x � y if x − y ∈ X+. The symbol �n denotes the set {(θ1, . . . , θn) ∈ R

n+ :∑n
i=1 θi = 1}.
A coalitional exchange economy E = ((�,�, P), (
F )F∈�, e) for (�,�, P) and

X , is described as follows. An allocation is any f.a. measure m : � → X+ and, when
m � P [in the ε − δ sense of Bhaskara Rao and Bhaskara Rao (1983)], we shall refer
to m as a consumption allocation.

M denotes the set of consumption allocations in ba(�, X+). A consumption allo-
cation specifies the way commodities x ∈ X+ are assigned to coalitions.

The initial endowment is an allocation e : � → X+: e ≡ P that is, e � P and
P � e.

For any m ∈ M, and for any coalition F ∈ �, we shall denote by m|F the vector
measure defined on � by m|F (E) = m(E ∩ F), for every E ∈ �.

A simple allocation is any allocation s of the form s = ∑q
i=1 yi P|Hi , where {Hi }i

is a decomposition of �.

1 Other two simple examples can be constructed in the following way. Let P be a f.a. and semiconvex
measure on a σ -algebra, and let A be its Stone algebra. Then, the measure P̃ corresponding to P , is
strongly nonatomic onA. Or, if P is f.a. and semiconvex on a σ -algebra, then P is strongly nonatomic on
the algebra generated by a filtering family (�t )t .
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20 F. Centrone, A. Martellotti

In particular, for each x ∈ X+, we shall indicate by x P the uniform allocations x̂
of Cheng (1991).

The positive cone (X∗)+ of the norm dual of X represents the price space, and its
elements x∗ are termed as prices. The value of a commodity x at price x∗ is given by
the evaluation x∗(x).

For each coalition F ∈ �+, a preference relation 
F onM × M is assigned.
The following assumptions on preferences are natural for coalitional form

economies.

(T) 
F is transitive and irreflexive.
(I) (I.i) Ifm1,m2 ∈ M, andm2 
F m1, then, for each subcoalitionG ∈ �+,G ⊆
F,m2 
G m1; (I.ii) if m2 
F m1,m2 
G m1, then m2 
F∪G m1, for each
F,G ∈ �+.

(WM) (weak monotonicity) For any m ∈ M and x ∈ X+ \ {0}, m + x P 
� m.
(S) (selfishness) If m1,m2,m3 ∈ M, F ∈ �+ are such that m1|F = m2|F then
[m3 
F m1 ⇐⇒ m3 
F m2] and [m1 
F m3 ⇐⇒ m2 
F m3].
(A) (availability) e(�) � 0 (where the notation x � 0 means that x∗(x) > 0 for
every nonzero price x∗ ∈ (X∗)+).
Assumptions (I), (S) and (A), and variants of (WM), have natural economic

interpretations and are common to most of coalitional finitely additive models (see
Armstrong and Richter 1984; Basile 1993; Basile and Graziano 2001; Donnini and
Graziano 2009). Instead, some coalitional models (e.g., Donnini and Graziano 2009)
do not assume transitivity of preferences. However, we point out that transitivity is a
standard assumption in countably additive coalitional models (see for example Zame
1986 and the recent work of Greinecker and Podczeck 2013) as well as for the coali-
tional models derived from individualistic ones (e.g., Armstrong and Richter 1984),
where transitivity of coalitional preferences derives from that of individual prefer-
ences. Therefore, this assumption does not appear too demanding.

It is easily seen that (WM) is implied by the usual monotonicity assumed in Arm-
strong and Richter (1984).
Note that (WM), jointly with condition (T), implies the following weak form of
transitivity (WT), which should be compared with condition (V.3) in Cheng (1991):

(WT) if f 
� g and x ∈ X+\{0} then f + x P 
� g.

We also assume the following form of continuity:

(C) For every F ∈ �+, any α, β ∈ M with β 
F α, and any τ > 0, there exist
F0 ∈ �+, F0 ⊆ F , and ρ(τ) > 0 such that P(F\F0) < τ and, for every simple
allocation s with ‖s − β‖ < ρ, s 
F0 α.

Definition 2.1 m ∈ M is feasible provided m(�) = e(�).
Denote by F the set of feasible allocations.
Given m1,m2 ∈ M and F ∈ �+, we say that m1 blocks m2 via F if m1 
F m2

and m1(F) = e(F).
α ∈ F is called a core allocation if no allocationm ∈ M blocks α via any F ∈ �+.
α ∈ F is called aWalrasian allocation, if there is a nonzero price x∗ ∈ (X∗)+ such

that, for each coalition F ∈ �+, x∗(α(F)) ≤ x∗(e(F)), and x∗(β(F)) > x∗(e(F))
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Coalitional extreme desirability in finitely additive exchange... 21

whenever β is a consumption allocation with β 
F α. The pair (x∗, α) is called a
Walrasian equilibrium.

We now extend the additivity condition as well as the notion of extreme desirability
of Rustichini and Yannelis (1991) to coalitional preferences, in the following way.

Definition 2.2 Coalitional preferences 
F are called proper if

(P) there are u ∈ X+, and an open, convex, solid neighborhoodU of 0 in X , fulfilling
the following two conditions:
(P.i) there exists ϑ > 0 such that, for every n ∈ N, y1, . . . , yn ∈ X+ ∩Uc, and

every (t1, . . . , tn) ∈ �n , the vector
∑n

i=1 ti yi /∈ ϑU ;
(P.ii) setting H = ⋃

t>0 t (u +U ), if y ∈ X+, t ∈ [0, 1], v ∈ X+ are such that
z = (y + tu − v) ∈ (y + H) ∩ X+, then zP 
� yP .

u is called an extremely desirable commodity with respect to U .
Let us briefly comment on these two properties.
Observefirst that condition (P.ii) can be equivalently formulated in themore familiar

form: setting H = ⋃
t>0 t (u +U ), if y ∈ X+, t ∈ [0, 1], v ∈ X+ are such that

z = (y + tu − v) ∈ (y + H) ∩ X+, then zP 
� yP (use for example Aliprantis and
Border 2006, Lemma 5.28 page 182).

Under this form, one immediately deduces that (P) is satisfied by the coali-
tional model derived from an individualistic one, where individual preferences satisfy
assumptions (A.10) and (A.11) in Rustichini and Yannelis (1991), or the properness
of Angeloni and Martellotti (2007).

Condition (P.i) replaces the so-called additivity condition inRustichini andYannelis
(1991); in Angeloni and Martellotti (2007) it had been noted that the additivity con-
dition can be equivalently reformulated in the form : Uc ∩ X+ is convex, and another
equivalent formulation, expressed in terms of linear functionals and half-spaces thus
determined, appears in Martellotti (2008).

The main advantage of the weaker form of the additivity condition (P.i) above, is
that it is immediately satisfied by the balls of some important spaces.

For instance, (P.i) holds if U = ρX1 (X1 denotes the unitary open ball) and X =
L p(T,A, μ) for somemeasure space (T,A, μ) and p ≥ 1. In fact, if q is the conjugate
exponent of p, then (P.i) holds with ϑ = ρ

q√q . By Schwartz’s inequality, for every

(θ1, . . . , θn) ∈ R
n+, one immediately has:

n∑

i=1

θi ≤ q
√
q p

√
√
√
√

n∑

i=1

θ
p
i .

Indeed, write
∑n

i=1 θi = θ · 1 as a scalar product between two vectors in R
n . Hence:

n∑

i=1

θi = θ · 1 ≤ ‖1‖q · ‖θ‖p = q
√
q p

√
√
√
√

n∑

i=1

θ
p
i .
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Thus, if θ ∈ �n , then
∑n

i=1 θ
p
i ≥ 1

q
p
q
.

Then, as ‖yi‖p ≥ ρ one finds:

∥
∥
∥
∥
∥

n∑

i=1

ti yi

∥
∥
∥
∥
∥

p

p

=
∫

A

(
n∑

i=1

ti yi

)p

dμ ≥
∫

A

(
n∑

i=1

t pi y
p
i

)

dμ

=
n∑

i=1

t pi ‖yi‖p
p ≥ ρ p

n∑

i=1

t pi ≥ ρ p

q
p
q

whence
∥
∥∑n

i=1 ti yi
∥
∥
p ≥ ρ

q√q = ϑ .
Similarly, if X is a real Hilbert space, and again U = ρX1, then (P.i) is satisfied

with ϑ = 1√
2
.

In fact, as in the above computation, one finds:

∥
∥
∥
∥
∥

n∑

i=1

ti yi

∥
∥
∥
∥
∥

2

=
〈∑

ti yi ,
∑

ti yi
〉
≥

∑
t2i ‖yi‖2 ≥ ρ2

∑
t2i ≥ ρ2

2
.

It should be underlined that the space L1(T,A, μ) does not enjoy however the RNP.
Finally, if (X+)◦ �= ∅ and coalitional preferences satisfy (WM), then (P.ii) is

automatically satisfied.

3 Main result

Coalitional extreme desirability allows us to prove core-Walras equivalence.
Before proving it, we recall a lemma from Martellotti (2007).

Lemma 3.1 Let P be a strongly nonatomic f.a. probability on an algebra �. Then,
for every ε > 0, and every finite decomposition of E, {E1, . . . E�} ⊆ �, there exists
a decomposition of E, say {F, F1, . . . , Fq}, such that P(F) = P(E\ ⋃

Fq) < ε,
P(F1) = · · · = P(Fq), and {F1, . . . , Fq} is finer than the corresponding decomposi-
tion of E\F by {E1, . . . E�}.

Let now α be an allocation in the core. Define the set:

K =
⋃

F∈�+

[{γ (F) : γ ∈ M, γ 
F α} − e(F)
]
.

By (WM), K is nonempty. Moreover, consider the sets W = ϑU , with ϑ determined
by (P.i), and C = ⋃

t>0 t (u + W ).

Lemma 3.2 K ∩ (−C) = ∅
Proof Since −C is open, one can prove equivalently that K ∩ (−C) = ∅.

Let by contradiction z = γ (F) − e(F) ∈ K ∩ (−C) be fixed, and take ε > 0 such
that z + εX1 ⊂ (−C).
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Coalitional extreme desirability in finitely additive exchange... 23

Let δ = δ( ε
7 ) be determined by the absolute continuity of γ and e w.r.t. P . By (C),

we can choose τ = δ and determine F0 ⊆ F , F0 ∈ �+, with P(F\F0) < τ , and the
corresponding ρ(τ) = ρ.

As X has the RNP, we can choose a simple allocation s = ∑q
i=1 yi P|Fi , where{Fi }i is a decomposition of F0, such that ‖γ − s‖ < min { ε

7 , ρ} (see Uhl 1967); thus
s 
F0 α.

Now, setting z0 = s(F0) − e(F0), we obtain:

‖z0 − z‖ = ‖s(F0) − γ (F) + e(F) − e(F0)‖
≤ ‖s(F0) − γ (F0)‖ + ‖γ (F\F0)‖ + ‖e(F\F0)‖ <

3

7
ε.

Hence, s(F0) − e(F0) ∈ (−C), with s 
F0 α.
W.l.o.g. we can assume that P(F1) = · · · = P(Fn) = ξ . In fact, otherwise,

applying Lemma 3.1 we can reduce to a subset F̃ ⊆ F0 with P(F0\F̃) < τ , and to a
decomposition {E1, . . . , En} of F̃ with P(E1) = · · · = P(En) = ξ . Hence, consider
z̃ = s(F̃) − e(F̃). We get:

‖z − z̃‖ ≤ ‖z − z0‖ + ‖z0 − z̃‖
≤ 3

7
ε + ‖s(F0) − γ (F0)‖ + ‖γ (F0\F̃)‖ + ‖γ (F̃) − s(F̃)‖ + ‖e(F0\F̃)‖ < ε

and so, s(F̃) − e(F̃) ∈ (−C), with s 
F̃ α.
Therefore, s(F0) − e(F0) ∈ −t (u + W ) for some t > 0, that means:

q∑

i=1

yiξ − e(F0) = −t (u + v0) (1)

for some v0 ∈ W , or else:

q∑

i=1

yi + w − v = e(F0)

ξ
∈ X+

where w = t
ξ
u, v = − t

ξ
v0 ∈ t

ξ
W .

As in Rustichini and Yannelis (1991), we can choose w.l.o.g. that v ∈ X+.
Again, similarly to the proof in Rustichini and Yannelis (1991), for every choice of

(t1, . . . , tq) ∈ �q , one finds with the Riesz Decomposition Property of X , v1, . . . vq ∈
X+ with v1 + . . . + vq = v and yi + tiw � vi , i = 1, . . . , q.

Set now H = ⋃
t>0 t (u +U ), and remember that (u,U ) is a properness pair.

Define di : [0, 1] → R as di (t) = dist
[
yi + tw − vi , (yi + H) ∩ X+]

, and
f : �q → �q as:
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24 F. Centrone, A. Martellotti

f (t1, . . . , tq) =
(

ti + di (ti )

1 + ∑q
i=1 di (ti )

)

i=1,...,q

and let (t1, . . . , tq) be a fixed point:

ti

q∑

i=1

di (ti ) = di (ti ).

We claim that
∑q

i=1 di (ti ) > 0.
Suppose by contradiction that di (ti ) = 0 for each i = 1, . . . , q, that is:

(yi + tiw − vi ) ∈ (yi + H) ∩ X+ ⊆ (yi + H) ∩ X+;

then, by (P.ii) and (I.i), (yi + tiw − vi )P 
Fi yi P and, by (I.ii) and (T), we have:

q∑

i=1

(yi + tiw − vi )P|Fi 
F0 s 
F0 α.

Set now s0 = ∑q
i=1(yi + tiw − vi )P|Fi + α|�\F0 . Then, s0 
F0 α. But, from (1), also

s0(F0) = e(F0); therefore s0 blocks α via F0, which contradicts the assumption that
α is in the core.

Then, we turn to the case
∑q

i=1 di (ti ) > 0.
Although pretty similar to that in Rustichini and Yannelis (1991), we include some

details here, to show how the weaker formulation of the additivity condition (this is the
unique point where it has been used in Rustichini and Yannelis 1991) still leads to a
contradiction. In fact, for those indices i for which di (ti ) = 0, one has necessarily that
ti = 0 too and, conversely, if ti = 0, then di (ti ) = 0. Hence, we can split {1, . . . , q}
into I = {i : di (ti ) = 0} = {i : ti = 0} and J = {1, . . . , q}\I .

For i ∈ I , necessarily vi = 0; in fact, if vi �= 0 one would find that:

yi � yi − vi = yi + tiw − vi

and yi − vi �= yi , whence, by (WM), yi P 
� (yi − vi )P .
But this leads to the conclusion that (yi − vi ) /∈ (yi + H) ∩ X+ for otherwise,

because of (P), the converse (yi − vi )P 
� yi P should hold.
Therefore, di (ti ) > 0 for i ∈ I , a contradiction to the very definition of I .
Hence, v = ∑q

i=1 vi = ∑
i∈J vi .

For i ∈ J , as di (ti ) > 0, necessarily (yi + tiw − vi ) /∈ X+ ∩ (yi + H) and, since
(yi + tiw − vi ) ∈ X+ (for yi ∈ X+ and we have chosen vi � yi + tiw), a fortiori
tiw − vi /∈ H , i.e., ti tξ u − vi /∈ H .

Thus, vi /∈ ti · t
ξ
U for i ∈ J , and

∑
i∈J ti = 1.
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Hence, ξ
t · vi

ti
/∈ U ; by virtue of (P.i):

∑

i∈J

ti · ξ

t
· vi

ti
= ξ

t

∑

i∈J

vi = ξ

t
v /∈ ϑU

which precisely contradicts the original assumption that v = t
ξ
v0 ∈ t

ξ
W = t

ξ
ϑU .

Hence K ∩ (−C) =Ø. ��
Lemma 3.3 K is convex.

Proof Fix z1, z2 ∈ K, λ ∈ (0, 1); to prove that zλ = λz1 + (1− λ)z2 ∈ K we have to
prove that, for each ε > 0, there exists ξ ∈ K with ‖zλ − ξ‖ < ε

2 .
Since zi ∈ K, there are allocations γi , i = 1, 2 and coalitions Fi , i = 1, 2: γi 
Fi α

and:

‖γi (Fi ) − e(Fi ) − zi‖ < ε.

By (C), after determining δ through the absolute continuity of γi , i = 1, 2 and e
w.r.t. P , choose τ = δ( ε

12 ), and determine ρi = ρi (τ ), and Ei ⊆ Fi , Ei ∈ �+ with
P(Fi\Ei ) ≤ τ , i = 1, 2. Set ρ = min{ρ1, ρ2}. As previously, we can replace γ1, γ2, e
by means of simple allocations s1, s2, η: ‖si − γi‖ < min

{
ε
12 , ρ

}
, ‖e − η‖ < ε

12 and
si 
Ei α.

Also, since s1, s2, η are simple, we can rearrange them on a common decomposition
D and, by means of suitable refinements, D can be represented as D = D1∪D2∪D3,
where D1 = {G1, . . . ,Gn} is a decomposition of E1\E2, D2 = {H1, . . . , Hp} of
E1 ∩ E2 and D3 = {K1, . . . , Kq} of E2\E1.

By the nonatomicity of P , we can find in eachGi a subsetGi,λ such that P(Gi,λ) =
λP(Gi ) and, analogously, a subset K j,(1−λ) ⊂ K j with P(K j,(1−λ)) = (1−λ)P(K j );
finally each H� splits into H�,λ, H�\H�,λ with P(H�,λ) = λP(H�), P(H�\H�,λ) =
(1 − λ)P(H�).

Consider now:

S1 =
n⋃

i=1

Gi,λ ⊂ E1\E2, S2 =
p⋃

�=1

H�,λ ⊂ E1 ∩ E2,

S3 =
p⋃

�=1

H�\H�,λ ⊂ E1 ∩ E2, S4 =
q⋃

j=1

K j,(1−λ) ⊂ E2\E1.

Note that S2 ∩ S3 =Ø.
Also, (s1−η)(S1∪S2) = λ(s1−η)(E1) and (s2−η)(S3∪S4) = (1−λ)(s2−η)(E2).
Moreover, s11S1∪S2 
S1∪S2 α and s21S3∪S4 
S3∪S4 α, whence:

s11S1∪S2 + s21S3∪S4 
S1∪...∪S4 α.
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26 F. Centrone, A. Martellotti

Hence:

s1(S1 ∪ S2) + s2(S3 ∪ S4) − e(S1 ∪ . . . ∪ S4) ∈ K.

But:

‖(s1 − η)(S1 ∪ S2) − λz1‖
≤ λ(‖(s1 − η)(E1) − (γ1 − e)(E1)‖ + ‖(γ1(F1\E1) − e(F1\E1))‖

+‖z1 − (γ1 − e)(E1)‖) ≤ 5

6
λε

and, similarly:

‖(s2 − η)(S3 ∪ S4) − (1 − λ)z2‖ ≤ 5

6
(1 − λ)ε.

Furthermore,

‖(s1−e)(S1 ∪ S2)−(s1−η)(S1 ∪ S2)‖<
ε

12
, ‖(s2−e)(S3 ∪ S4)−(s2−η)(S3 ∪ S4)‖<

ε

12

so:

‖s1(S1 ∪ S2) + s2(S3 ∪ S4) − e(S1 ∪ . . . ∪ S4) − zλ‖ ≤ ε

6
+ 5

6
λε + 5

6
(1 − λ)ε = ε.

��
Theorem 3.1 Under assumptions (T), (I), (WM), (S), (A), (C), (P), α is in the core
if and only if α is a Walrasian allocation.

Proof As usual, it is straightforward to prove that every Walrasian allocation is in the
core.

To prove the converse inclusion, note that, from Lemmas 3.2 and 3.3, since −C
is open we can strictly separate K and −C by means of a nonzero linear functional
x∗ ∈ X∗, namely we can find a nonzero x∗ ∈ X∗, t ∈ R:

x∗(x) ≥ t > x∗(y), x ∈ K, y ∈ −C.

Since 0 ∈ K ∩ (−C), necessarily t = 0; hence x∗(x) ≥ 0 on K. x∗ is therefore
positive, since X+\{0} ⊂ K.

It remains to prove that (x∗, α) is a Walrasian equilibrium.
Consider the allocation α + εx P , with ε > 0, x ∈ X+\{0}. Using (WM) and (I.i),

we deduce x∗(α(F)+εx P(F)−e(F)) ≥ 0, for each F ∈ �+; hence, if x∗(x) = 0we
have x∗(α(F)) ≥ x∗(e(F)), otherwise, if x∗(x) > 0, letting ε ↓ 0 we get x∗(α(F)) ≥
x∗(e(F)), for each F ∈ �+. Furthermore, if x∗(α(F)) > x∗(e(F)), for some F ∈
�+, then x∗(α(�)) = x∗(α(F)) + x∗(α(�\F)) > x∗(e(F)) + x∗(e(�\F)) =
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x∗(e(�)), contradicting the feasibility of α. Hence, x∗(α(F)) = x∗(e(F)), for every
F ∈ �+.

Now let F ∈ �+ and β ∈ M: β 
F α. It is then impossible that x∗(β(F)) <

x∗(e(F)). Suppose x∗(β(F)) = x∗(e(F)).
Now two cases can occur:
(I) x∗(β(F)) > 0. Then, by β � P and the continuity of x∗, there exists τ > 0

such that each F0 ∈ �+, F0 ⊆ F with P(F\F0) < τ has x∗(β(F0)) > 0.
By (I.i), on each such F0 we have β 
F0 α.
Applying (C), corresponding to the above τ , we determine ρ(τ) > 0 and F0 ⊆

F, F0 ∈ �+ (with P(F\F0) < τ ), such that β 
F0 α. Let now s be a simple
allocation, s = ∑

xi P|Fi such that ‖s − β‖ <
ρ
3 , where {Fi }i is a decomposition of

F0.
Then, s 
F0 α and at least one of the Fi s has strictly positive x∗β—measure.

For the sake of simplicity, let us assume that it is F1. We can as well assume that
0 < P(F1) < 1 (otherwise, by the nonatomicity of P , we can split F1 into F1

1 , F
2
1 ,

with P(F1
1 ) = P(F2

1 ) = 1
2 P(F1), and substitute x11F1 with x11F1

1
+ x11F2

1
). Now,

we can choose G1 ∈ �+, G1 ⊆ F1 such that:

P(G1)‖x1‖ ≤ ρ

3
;

x∗β(G1)

P(G1)
≥ x∗β(F1)

P(F1)
.

Notice that such a set exists, since the range of the 2-valued measure (P, x∗β) has
convex closure, i.e., its closure is a zonoid (see theAppendix for a detailed explanation).

Consider now σ = β(F1)P|G1
+ s|�\G1

. We have:

‖s − σ‖=‖β(F1)−x1‖P(G1)≤‖β(F1)−x1P(F1)‖ + ‖x1‖(1 − P(F1))P(G1)

<
ρ

3
+ ‖x1‖(1 − P(F1))P(G1) <

2

3
ρ.

Hence, ‖σ − β‖ < ρ, and so σ 
F0 α. For γ = σ|G1 + β|�\G1 , it holds γ 
F α,
therefore γ (F) − e(F) ∈ K. So,

x∗(e(F)) ≤ x∗(γ (F)) = x∗(σ (G1)) + x∗(β(F\G1))

= x∗(β(F1))P(G1) + x∗(β(F)) − x∗(β(G1)) = x∗(β(F))

+ x∗[β(F1)P(G1) − β(G1)].

As P(F1) < 1, we have x∗β(G1)
P(G1)

≥ x∗β(F1)
P(F1)

> x∗β(F1), and so the previous inequal-
ities yield x∗(e(F)) ≤ x∗(γ (F)) < x∗(β(F)) = x∗(e(F)), thus we have reached a
contradiction.

(II) x∗(β(F)) = 0
In this case, x∗(e(F)) = 0. Take the allocation γ = α + e(F)P . Since, by the

equivalence of e and P , we have that e(F) ∈ X+\{0}, by (WM) it holds γ 
� α and
x∗(γ (�)) = x∗(α(�)) + x∗(e(F)) = x∗(e(�)).
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So, by (A), we are again in the conditions of case (I) above, namely, the allocation
γ and the grand coalition � can play the role of β and F of the previous case to lead
us to a contradiction. ��
Remark 3.1 Our core-Walras equivalence theorem also holds when P is nonatomic
and� is an algebra with the Seever property (that is, if {An} is an increasing sequence
and {Bn} a decreasing sequence of sets in �, with An ⊂ Bn , for every n, there is a
C ∈ � such that An ⊂ C ⊂ Bn for all n) as Lemma 3.1 can be proved under these
hypotheses as well.

Remark 3.2 In coalitional models, it is standard to work with cone M of allocations
(see, for example, Armstrong and Richter 1984; Cheng 1991). According to one ref-
eree’s suggestion, we want to point out that, in our case, the proof line can also be
applied to the case of any Banach lattice X , provided the class M of allocations
is bounded to integral allocations (namely those allocations admitting a density in
L1
X (P)). This would hence allow also L1 as commodity space.

Remark 3.3 Notice that Theorem 3.1 can also be proved, ceteris paribus, assuming
the following weaker form of continuity in place of (C):

(C∗) Let F ∈ �+, and α, β ∈ M with β 
F α. Then, for every τ > 0, there exists
ρ(τ) > 0 such that, for every simple allocation s with ‖s−β‖ < ρ, there exists
F0 = F0(s) ∈ �+, F0 ⊆ F , with P(F \ F0) < τ and s 
F0 α.

Together with the standard continuity assumption (see, for example, Greinecker
and Podczeck 2013):

(C∗∗) or every F ∈ �+, any α, β ∈ M with β 
F α, and any τ > 0, there exists
ε ∈ (0, 1) and F0 ∈ �+, F0 ⊆ F , such that P(F\F0) < τ and εβ 
F0 α.

Indeed, it is immediate to get convinced that assumption (C∗) is enough to prove
Lemmas 3.2 and 3.3, while assumption (C∗∗) can be used to do the final step of
Theorem 3.1 in order to show that (x∗, α) is aWalrasian equilibrium, namely, to prove
that if F ∈ �+, and β 
F α, then x∗(β(F)) > x∗(e(F)).

In fact, take F ∈ �+ and β ∈ M : β 
F α. It is impossible that x∗(β(F)) <

x∗(e(F)).
Suppose then that x∗(β(F)) = x∗(e(F)). Suppose first that x∗(β(F)) > 0. By

(C∗∗), for some ε ∈ (0, 1) and F0 ⊆ F , F0 ∈ �+, we have εβ 
F0 α. Moreover, by
β � P and the continuity of x∗, F0 can be taken so that x∗(β(F0)) > 0. So, setting
γ = εβ|F0 + β|F\F0 , by (I) and (S), we get γ 
F α, and hence γ (F) − e(F) ∈ K. So
x∗(e(F)) ≤ x∗(γ (F)) = x∗(β(F)) + (ε − 1)x∗(β(F0)) < x∗(β(F)) = x∗(e(F)), a
contradiction. Using (A), the case x∗(β(F)) = 0 can now be treated exactly as case
(II) in the last part of Theorem 3.1.

Remark 3.4 If one takesM to be the cone of simple allocations, Theorem 3.1 can be
proved by replacing hypothesis (C) with (C∗∗).

In fact, in this case, the continuity assumption needs to be used just in the last part
of the proof, namely, to prove that (x∗, α) is a Walrasian equilibrium, and this follows
from exactly the same line of the previous remark.
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Remark 3.5 As for the comparison with other coalitional finitely additive models, in
most of the coalitional literature in such a setting, the separation argument is deduced
from the assumption that the interior of X+ is nonempty (Vind 1964; Armstrong and
Richter 1984; Basile and Graziano 2001). To our knowledge, the only papers attempt-
ing to avoid this assumption are Cheng (1991) and Donnini and Graziano (2009). In
both of these papers the commodity spaces are not Banach lattices. Moreover, in the
first one, the author makes use of a sort of properness (conditions (V.1)–(V.3)) that we
cannot compare to ours, because the consumption set in Cheng (1991) is the whole
space X . Also, in Donnini and Graziano (2009), the authors suggest a condition surro-
gating the non-emptiness of the interior of the cone, the so defined (K–V) condition.
However, in this case, one cannot dispense from involving the production set and,
therefore, as the authors themselves mentioned, the result is not applicable to pure
exchange economies.

4 Comprehensiveness and countably additive case

We now show that, when X is separable and has the RNP, and countable additivity
is assumed, our result, under the hypotheses discussed in Remark 3.3, covers the
individualistic core-Walras equivalence theorem of Rustichini and Yannelis (1991).
The translation of the individualistic model into the coalitional one is the standard one
of Armstrong and Richter (1984).

Proposition 4.1 Assumptions (A.5.) and (A.7.) of Theorem 6.1 of Rustichini and Yan-
nelis (1991) imply assumptions (C∗) and (C∗∗).

Proof Take α ∈ M where α = ∫
adP , with a : � −→ X+. Then, by (A.7.) of

Rustichini and Yannelis (1991), the set �(ω) = {
x ∈ X+ : x 
ω a(ω)

}
is measur-

able, for every ω ∈ �. Take E ∈ �+, and β = ∫
bdP ∈ M, β 
E α, that is,

b(ω) 
ω a(ω), P-a.e. in E . From (A.5.) of Rustichini and Yannelis (1991), there
exists ρ(ω) > 0 such that b(ω) + ρ(ω)X1 ⊂ �(ω), P-a.e. in E . We claim that
ω �→ ρ(ω) can be taken to be measurable. Indeed, as X is separable, the multi-
function defined by G(ω) = X+\�(ω) is measurable (Riecǎn and Neubrunn 1997,
page 261), and so it is also weakly measurable. As �(ω) is open and b(ω) ∈ �(ω),
P-a.e. in E , it holds d(b(ω),G(ω)) > 0, P-a.e. in E . Notice that G(ω) is com-
plete; hence, by Theorem III.7 page 66 of Castaing and Valadier (1977), there exists
a sequence {gn}n of measurable selections of G such that G(ω) = {gn(ω), n ∈ N}.
Hence, d(b(ω),G(ω)) = infn ‖b(ω)−gn(ω)‖, soω �→ d(b(ω),G(ω)) is measurable
and the same holds forω �→ 1

2d(b(ω),G(ω)). Hence, define ρ(ω) = 1
2d(b(ω),G(ω))

and notice that ρ(ω) > 0 and b(ω) + ρ(ω)X1 ⊂ �(ω), as ρ(ω) < d(b(ω),G(ω))

and, if y ∈ X+ is such that ‖b(ω) − y‖ < ρ(ω), then y /∈ G(ω) and so y ∈ �(ω).
Consider now En = {

ω ∈ E : ρ(ω) > 1
n

}
. We have P(En) → P(E).

Fix 0 < τ < 2P(E), and choose n such that 1
n < τ

2 and P(E\En) < τ
2 .

123



30 F. Centrone, A. Martellotti

Set now ρ(τ) = 1
n2
, and let s be a simple allocation such that ‖s − β‖ < 1

n2
, that

is,

∫

�

∥
∥
∥
∥
ds

dP
− b

∥
∥
∥
∥ dP <

1

n2
.

Then, for H =
{

ω ∈ E :
∥
∥
∥
∥
ds

dP
(ω) − b(ω)

∥
∥
∥
∥ >

1

n

}

, it holds P(H) ≤ 1

n
. Set F =

En\H : we have E\F = (E\En) ∪ H , and hence P(E\F) ≤ τ
2 + 1

n < τ . Notice
that n can be chosen in such a way that P(En) > τ

2 . Hence, as P(H) ≤ 1
n , then

P(F) = P(En) − P(En ∩ H) > τ
2 − 1

n > 0. So, F �= ∅.
As F ⊂ En , then, for ω ∈ F , ρ(ω) > 1

n and, as F ∩ H = ∅, then

‖ ds
dP (ω) − b(ω)‖ ≤ 1

n . Hence, ‖ ds
dP (ω) − b(ω)‖ < ρ(ω) and so,

ds

dP
(ω) ∈ �(ω), P-

a.e. in F , that is, s 
F α. Hence, (C∗) holds.
Fix now τ > 0, and choose an n such that:

P({ω ∈ E : ‖b(ω)‖ > n}) <
τ

2

and

P

({

ω ∈ E : ρ(ω) ≤ 1

n

})

<
τ

2
.

Take F = E\(A1 ∪ A2), where A1 = {ω ∈ E : ‖b(ω)‖ > n}, and A2 ={
ω ∈ E : ρ(ω) ≤ 1

n

}
. Then, P(E\F) < τ and, for ω ∈ F , b(ω) + 1

n X1 ⊂ �(ω).

Take ε ∈
(
1 − 1

n2
, 1

)
, and consider εβ. Then, pointwise in F , one has ‖b(ω) −

εb(ω)‖ = (1 − ε)‖b(ω)‖. Then, ‖b(ω) − εb(ω)‖ < 1
n2

‖b(ω)‖ ≤ 1
n , so εb(ω) ∈

b(ω) + 1
n X1 ⊂ �(ω), whence εb(ω) 
ω a(ω) in F , therefore εβ 
F α, and so (C∗∗)

is proved. ��
It is now routine to show that the assumptions of Rustichini and Yannelis (1991)

imply all our other coalitional assumptions, provided the initial endowment in their
model has P-a.e. nonzero values. Hence, for separable commodity spaces with the
RNP, our theorem covers their Theorem 6.1.

We now shortly compare the result in Sect. 3 with other countably additive
coalitional core-Walras equivalence theorems existing in the literature. A deeper inves-
tigation is postponed to a future work.

(a) The validity of Proposition 4.1 above is deeply dependent on the assumption of
the separability of the space X : this precludes the comparison with results such
as Corollary 4 in Evren and Hüsseinov (2008).

(b) Zame (1986) proved a coalitional core-Walras equivalence result in the countably
additive setting (Theorem 2). Although his result cannot be deduced directly
from Theorem 3.1 when X enjoys the RNP, it is worthwhile to mention that a
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similar result can be proved along the same lines of our proof, actually without the
requirement that e has relatively compact range (if we assume a countably additive
setting, relative compactness of the range follows directly from the nonatomicity
of P , the absolute continuity of e w.r.t. P , and Theorem 10, page 266 in Diestel
and Uhl, 1977). In fact, (C-1)–(C-5) of Zame either coincide or imply (T), (I), (S)
and (WM), and (P) can replace (C-9). Indeed, according to the statement of the
author, the individualistic analogous of assumption (C9) is “quite a bit stronger”
than Mas-Colell (1986) properness (hence than Rustichini and Yannelis’, 1991,
condition). Moreover, conditions (C-6) and (C-8) can be used to prove the initial
part of Lemma 3.2 as well as Lemma 3.3.

(c) Zame’s framework has been recently reconsidered by Greinecker and Podczeck
(2013); as in our work, their aim is to significantly extend the class of Banach
lattices on which a coalitional core-Walras equivalence result holds. However,
the point of view of the two approaches is substantially different. While we offer
an approach adapted to a new class of possible Banach lattices, their effort is
based on the idea of completely abandoning any requirement on the commodity
space, and to focus on the measure theoretic properties of the space of agents and
on a strengthening of the nonatomicity notion of the probability P . The models
also differ in some of the assumptions on preferences: indeed, their assumption
(P.7) is implied by our (C), when M is the cone of simple allocations, while we
have both aweakermonotonicity and a “quiteweaker”properness-like assumption
(they assume (C9) of Zame 1986). We think that, one of the appealing features
of our approach, is the easiness in detecting whether a Banach lattice enjoys the
RNP (see Diestel and Uhl 1977, pages 217–219).

(d) In the countably additive case, the proof of the convexity of the set K can be
shortened and given analogously to Armstrong and Richter (1984), Lemma 4, in
the following way.

Lemma 4.1 K is convex.

Proof Fix z1, z2 ∈ K, t1, t2 ∈ [0, 1] such that t1 + t2 = 1; to prove that z = t1z1 +
t2z2 ∈ K, we have to prove that, for each ε > 0, there exists ξ ∈ K with ‖z − ξ‖ < ε.

Since zi ∈ K, there are allocations γi , i = 1, 2 and coalitions Fi ,i = 1, 2: γi 
Fi α

and ‖γi (Fi ) − e(Fi ) − zi‖ < ε
14 .

Let δ > 0 be determined by γi , e � P , i = 1, 2 and, by (C), choose τ = δ
( ε

14

)
,

and determine ρ(τ) = min{ρ1(τ ), ρ2(τ )}. As in Lemma 3.3, we can replace γ1, γ2
by means of simple allocations s1, s2: ‖si − γi‖ < ε

14 and si 
Gi α, where Gi ∈ �+,
Gi ⊆ Fi and P(Fi\Gi ) < τ . Now, from si � P and e � P , it follows that each si and
e are nonatomic and so, asX has theRNP, the range of si and e have convex closure (see
Uhl 1969). Hence, as in Armstrong and Richter (1984), Lemma 4, we can choose two
disjoint measurable sets E1 ⊆ G1 and E2 ⊆ G2, such that ‖si (Ei ) − ti si (Gi )‖ < ε

14

and ‖e(Ei ) − ti e(Gi )‖ <
ε

14
, i = 1, 2. Define the allocation s as the allocation

which equals si on Ei , i = 1, 2, and e outside E1 ∪ E2. Let E = E1 ∪ E2. Hence
s 
E α, therefore ξ = s(E) − e(E) ∈ K. Moreover, an easy computation shows that
‖s(E) − e(E) − (t1z1 + t2z2)‖ < ε. ��
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5 Appendix

In this Appendix we will give an explanation of the fact that, in Theorem 3.1 it is
possible to choose G1 ∈ �+, G1 ⊆ F1 such that:

P(G1)‖x1‖ ≤ ρ

3
;

x∗β(G1)

P(G1)
≥ x∗β(F1)

P(F1)
.

Since we are assuming that P is strongly nonatomic, P satisfies the Darboux Property,
that is for every τ > 0 and every E ∈ � one can decompose E into finitely many
disjoint �-measurable sets, each with probability P less than τ .

All allocations are assumed to be absolutely continuous with respect to P in the
ε − δ-sense; hence x∗β will also fulfill the Darboux Property. Since x∗ is a positive
functional, we are reasoning on a R

2+-valued finitely additive measure on an algebra
�.

By means of a Stone argument, � is transformed into a pure algebra (i.e., con-
taining no countable unions), the Stone algebra, where therefore P and x∗β transfer
to countably additive measures which we shall denote by P̃ and x̃∗β . By a stan-
dard argument in measure theory, one can extend each of these two set functions to a
nonnegative measure on the generated σ -algebra, and this measure will automatically

inherit the Darboux Property; let us denote by ˜̃P and
˜
x̃∗β these two further extensions

(see Martellotti 2001, Sect. 2, for a complete treatment of this construction).
Now we are in a countably additive setting, where all forms of nonatomicity are

equivalent.

The Liapounoff’s Theorem then implies that the range of the pair

(
˜̃P,

˜
x̃∗β

)

is

a compact convex subset of the positive orthant which contains the origin and is

symmetricw.r.t themiddle point of the line joining the originwith

(
˜̃P(�), (

˜
x̃∗β)(�)

)

.

Classically, the range of a finite dimensional, nonatomic, countably additive measure
is called a zonoid (see Bolker 1969).

Furthermore, we know that the image under (P̃, x̃∗β) of the Stone algebra is dense
in this zonoid, as well as we know that the image of the Stone algebra under (P̃, x̃∗β)

precisely coincides with the range of (P, x∗β).
In conclusion, the image of � under the pair (P, x∗β) is dense in a zonoid of R

2.
Due to its symmetry properties, a two-dimensional zonoid (which, in the case of

nonnegative measures, is a subset of the positive orthant) will look like the “leaf” in
the picture below.
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The above argument can be analogously applied to the coalition F1 instead of the
whole grand coalition �.

Hence the image of the trace algebra �F1 under the pair (P, x∗β) is dense in
a form of the type in the following picture, where the endpoint P has coordinates
(P(F1), x∗β(F1)).

Now it is enough to note that the ratios involved in the inequality:

x∗β(G1)

P(G1)
≥ x∗β(F1)

P(F1)

represent the slope of the segments joining O with Q, if Q = (P(G1), x∗β(G1)), and
O with P .

Hence, the two requirements simply reduce to finding a set on the upper part of the
leaf, so that the slope of the joining segment is greater than that of the diagonal, and
with first coordinate P(G1) small enough.
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