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Abstract

Many medical information systems record data about the executed process

instances in the form of an event log. In this paper, we present a framework,

able to convert actions in the event log into higher level concepts, at different

levels of abstraction, on the basis of domain knowledge. Abstracted traces

are then provided as an input to trace comparison and semantic process dis-

covery. Our abstraction mechanism is able to manage non trivial situations,

such as interleaved actions or delays between two actions that abstract to the

same concept. Trace comparison resorts to a similarity metric able to take

into account abstraction phase penalties, and to deal with quantitative and

∗Corresponding author. Tel. +39 0131 360158
Published version at: https://doi.org/10.1016/j.jbi.2018.05.012

Email address: stefania.montani@uniupo.it (Stefania Montani)

Preprint submitted to Elsevier



qualitative temporal constraints in abstracted traces. As for process discov-

ery, we rely on classical algorithms embedded in the framework ProM, made

semantic by the capability of abstracting the actions on the basis of their

conceptual meaning. The approach has been tested in stroke care, where we

adopted abstraction and trace comparison to cluster event logs of different

stroke units, to highlight (in)correct behavior, abstracting from details. We

also provide process discovery results, showing how the abstraction mech-

anism allows to obtain stroke process models more easily interpretable by

neurologists.

Keywords: Abstraction, Trace comparison, Semantic process mining,

Stroke management

1. Introduction

Today’s medical information systems log enormous amounts of data, in-

cluding details about the actions that have been executed at a given orga-

nization. Such data collections can be provided in the form of event logs

[1], which maintain the sequences (traces [1] henceforth) of actions that have

been completed, identified by their names, together with their timestamps

and possible additional data elements.

Event logs are exploited by process mining [1], a term that encopasses

a family of a-posteriori analysis techniques. Basically, event logs can be used

to feed and run four types of process mining tasks[2, 3, 1]:

� discovery. A discovery technique takes as input the event log and pro-

duces a process model. Discovery is the most relevant and widely used

process mining activity;



� conformance. A conformance technique takes as input the event log

and an existing process model: the model is compared to the log of

the same process, to measures the alignment (i.e., the conformance)

between the model and reality;

� enhancement. An enhancement technique takes as input the event log

and an existing process model as well. It aims at improving the existing

model using information about the actual process recorded in the log;

in fact, if needed, the a-priori model can be changed, to better mirror

the log data.

� operational support. An operational support technique does not operate

off-line, as in the previous cases. On the contrary, it is used to influence

the running process instance by checking, predicting, or recommending

actions to be executed. It typically resorts to the comparison and/or

analysis of past traces similar to the running one.

The action names maintained in the traces in the event log are strings

without any semantics, so that identical actions, labeled by synonyms, will

be considered as different, or actions that are special cases of other actions

will be processed as unrelated by the process mining techniques illustrated

above.

On the other hand, the capability of relating semantic structures such as

ontologies to actions in the log can enable all such tasks to work at different

levels of abstraction (i.e., at the level of instances and/or concepts) and,

therefore, to mask irrelevant details, to promote reuse, and, in general, to

make process mining much more flexible and reliable.
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In fact, it has been observed that human readers are limited in their

cognitive capabilities to make sense of large and complex process models

[4, 5], while it would be often sufficient to gain a quick overview of the

process, in order to familiarize with it in a short amount of time. One well-

known way to address this issue is by applying process model abstraction

[6], thus retaining the essential properties of the model on a particular level

of analysis, while simultaneously hiding insignificant details for that level.

Of course, deeper investigations can still be conducted, subsequently, on the

detailed (ground) process model.

Interestingly, semantic process mining, defined as the integration of se-

mantic processing capabilities into classical process mining techniques, has

been proposed in the literature since the first decade of this century (see,

e.g., [7, 8], and Section 6). However, while more work has been done in the

field of semantic conformance checking [7, 9], to the best of our knowledge

semantic process discovery and semantic-based trace analysis for operational

support need to be further investigated.

In this paper, we present a semantic-based, multi-level abstraction

mechanism, able to operate on event log traces. In our approach:

� actions in the event log are related to the medical goals they are aimed

to fulfill, by means of an ontology;

� a rule base is exploited, in order to identify which of the multiple

goals of an action in the ontology should be considered as the correct

abstraction of the action itself.

The abstraction mechanism is then provided as an input to further anal-
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ysis mechanisms, namely trace comparison and process discovery.

The methodological approach has been tested in the field of stroke patient

management, where we have adopted our framework for trace clustering and

process model discovery. In the first case, we have verified that it is possible

to obtain more homogeneous clusters, abstracting from details such as local

resource constraints or local protocols, but still preserving the capability

of isolating outlying situations; in the second experiment, we have mined

more readable process models, where unnecessary details are hidden, but

key behaviors are clear.

The paper is organized as follows. Section 2 introduces a motivating

example in the field of stroke care. Section 3 presents the terminology that

will be adopted in the paper. Section 4 presents methodological and technical

details of the framework. Section 5 describes experimental results. Section

6 addresses comparisons with related works and discusses the novelty of the

approach. Finally, Section 7 is devoted to conclusions and future research

directions.

2. The need for multi-level abstraction in stroke care

In this section, we present our methodology in the context of a real-

life scenario, where we aim at comparing two process traces executed at

two different hospitals for the treatment of patients with ischemic stroke.

The traces in Figure 1 show the sequence of actions performed by hospital

T1 and T2, respectively, to treat two patients admitted in their emergency

department and potentially affected by ischemic stroke in the acute phase.

In hospital T1, the patient firstly undergoes a contrast-enhanced Computed

Tomography scan (CAT-C), then a Diabetologist Counseling (DC), then a
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Magnetic Resonance (MRI). After these examinations, the patient is treated

with an Endovascular Procedure (EP) and with the administration of Anti-

Aggregants (AAG). Hospital T2, instead, performs a different sequence on

its patient: it starts with a MRI, then it continues by performing the CAT-C,

then treating the patient with thrombolysis (tissue plasminogen activator -

TPA) and finally by administering an Anticoagulant Oral Therapy (AOT).

Figure 1: Traces showing the treatment of two stroke patients in two different hospitals

Apparently, the traces in Figure 1 describe two very different behaviors,

considering both the actions and their order. However, the Italian guidelines

for the treatment of stroke (ISO-SPREAD guidelines1), offer the domain

knowledge for a more abstract interpretation.

According to the guidelines, in the acute phase some of the goals to be

pursued are the identification of the pathogenetic mechanism of the ischemic

stroke and its localization, the reduction of the brain damage through re-

canalization therapies, if possible, and the secondary prevention to lower the

risk of recurrence. The pathogenetic mechanism and localization of stroke

can be investigated through neuro-imaging tests such as a CAT-C scan or a

MRI, potentially executed both, in any order, for a deeper analysis. The main

therapy to reduce brain damage is the TPA drug, which tries to dissolve the

1http://www.iso-spread.it/index.php, last accessed on 11/09/2017
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thrombus and to restore the brain circulation in order to mitigate damages

from ischemia, but mechanical revascularization through endovascular pro-

cedures could be performed, if necessary and if the patient is not eligible for

TPA. Early relapse prevention can be obtained through the administration

of anti-thrombotic drugs, mainly antiaggregants or anticoagulants.

Applying this knowledge to the traces in Figure 1, it is possible to obtain

a higher level interpretation of the operations performed by the two hospitals,

by means of abstracted traces that show the therapeutic and diagnostic goals

instead of the ground actions. This “bird’s eye view” allows to perform a

comparison that ignores unnecessary details. In trace T1, CAT-C and MRI

are merged into a single macro-action PE (Parenchima Examination); EP

abstracts to a macro-action RT (Recanalization Therapy); AAG becomes an

ERP (Early Relapse Prevention) macro-action. It is worth noting that in

the trace T1, a DC is also executed. This action, however, is not part of

any of the main goals to be achieved in the management of the acute phase,

therefore it remains an isolated action, performed during PE. Regarding T2,

MRI and CAT-C are abstracted as PE; TPA is abstracted as RT, while AOT

is abstracted as ERP. The result of the abstraction process on the traces T1

and T2 is shown in Figure 2.

Figure 2: Abstraction of the traces in Figure 1

Comparing T1 and T2 at this higher level of abstraction, we can observe
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that they are indeed very similar: ground differences do exist, but they can

be interpreted as minor variations of two process instances, which share the

same goals, and are thus basically compliant with the guideline indications.

Interestingly, the abstraction technique is not only able to shed the light

on the compatibility of apparently different behaviors, but is also able to

preserve significant differences. For example, the abstracted traces in Figure

2 show even more clearly than the ones in Figure 1, that hospital T1 performs

a single DC action not in line with the goals suggested by guideline, while

hospital T2 is compliant with the guideline recommendations. This situation

suggests an investigation of the causes for this non-compliance to be carried

out by the T1 managers, who can conclude, for example, that the additional

DC is driven by an excess of precaution: it could be considered as a waste of

resources and time, if not even a damage for the patient, since other critical

procedures could be delayed (DC could be useful in case of a diabetic patient

indeed, but it should be performed after the acute phase, when it is very

important that most urgent examinations and treatments are delivered as

quick as possible).

3. Terminology

The terminology we will use henceforth is briefly summarized below:

Action or ground action: an action recorded in an event log trace.

Delay: time interval between two ground actions logged in a trace, within

which no other action takes place.

Interleaved action: a ground action that, with respect to two ground ac-

tions being considered for abstraction, implements a different goal, and is

placed between the two actions at hand.
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Macro-action: partial output of the abstraction process; a macro-action

is an abstracted action that covers the whole time span of multiple ground

actions, and is labeled as their common goal in the ontology, at the specified

abstraction level. As a special case, the macro-action can abstract a single

ground action as its goal.

Abstracted trace: global output of the abstraction process; an abstracted

trace is the transformation of an input trace into a new trace containing only

macro-actions.

4. The multi-level abstraction framework

The architecture and the data flow of the framework we have developed

are shown in Figure 3.

The first step to be executed when adopting the framework is event log

preparation, which takes as input the available database (containing action

execution information, such as timestamps, and additional data, like, e.g.,

patient’s demographics and clinical data in our application domain), and

exploits domain knowledge sources (an ontology and a rule base). This

step generates an event log where traces are represented in an eXtensi-

ble Event Stream (XES) [10] file. The XES format is an extension of the

MXML [11] format, where elements have an optional extra attribute called

modelReference. This attribute allows to link an action to a concept in the

ontology. Proper action attributes also allow to record contextual informa-

tion to be used by rules, as it will be exemplified in Section 4.1.

More in detail, the event log preparation is articulated as follows:

1. we analyse the available database tables and their contents, for the
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identification of the actions performed by the personnel to manage and

treat the patients. In our current application, we rely upon the Stroke

Registry, a common database exploited by all the Stroke Unit Net-

work (SUN) collaborating centers of the Lombardia region, Italy. The

Stroke Registry is strongly structured, all actions are coded, and action

starting/ending times are explicitly reported. Moreover, the logging

granularity is the one of ground actions in our ontology. The quality

of data was carefully considered during the design and development

of the Stroke Registry user’s interface, which contains a lot of data

input checks, constraints on the entered values (e.g., admissible value

ranges), and strategies to minimize missing data, thus we are confident

on a good data quality [12];

2. we exploit starting/ending times to sequentialize actions; we can thus

reorganize the information of the Stroke Registry into a set of execu-

tion traces, where each trace contains the reconstruction of the clinical

history of each patient, in the correct temporal order;

3. we translate the traces to the XES format, and complete all action

attribute values, including modelReference.

The event log then undergoes multi-level abstraction, which resorts to the

domain knowledge sources as well, and will be described in Section 4.2. The

abstracted event log can be given as an input to trace comparison, presented

in Section 4.3, or to process discovery, currently realized as illustrated in

Section 4.4.
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Figure 3: Framework architecture and data flow

4.1. Domain knowledge sources

In our framework, domain knowledge is provided by means of an ontology

and of a rule base. In the paper, we will refer to the domain of stroke

management.

An excerpt of our stroke management ontology is reported in Figure 4.

The ontology, which has been formalized by using the Protègè editor,

extends the one we presented in [13, 14]2.

In detail, it comprises:

� a goal taxonomy, composed by a set of classes, representing the main

goals in stroke management, namely: “(Secondary) Prevention”, “Patho-

genetic Mechanism Identification”, “Brain Damage Reduction” and

2A partial view of the ontology, closely related to the exam-
ples and experiments of this paper, can be accessed in the form of
Protègè files at https://drive.google.com/file/d/1yInh0WwJrI0NK42cA6-NW6-
j91V2VafA/view?usp=sharing
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Goal

Administrative
Actions Brain Damage

Reduction

In-Hospital 
Disability 
Reduction

Neuro 
Protection

Pathogenetic 
Mechanism 

Identification

Parenchima 
Examination

Prevention

Early Relapse 
Prevention

MonitoringAntiaggregants no TPA Timing

CAT Heparin Oyxgen

aimsTo aimsTo aimsTo

. . . 

aimsTo

Causes 
Identification

. . . 

MRI MRI with DWI

. . . . . . 

. . . 

aimsTo aimsTo

Action

Figure 4: An excerpt from the stroke domain ontology

“Causes Identification”. Moreover, the class “Administrative Actions”

collects procedures related to the administrative aspects of health care,

such as admission, discharge, transfer, and so forth. These main goals

can be further specialized into subclasses, according to more specific

goals (relation “is-a”; e.g., “Early Relapse Prevention” is a subgoal of

“Prevention”);

� an action taxonomy, composed by all the ground actions that can be

logged in stroke management traces (in “is-a” relation with the general

class “Action”);

� a set of “aimsTo” relations, which formalize that a ground action can be

executed to implement a (sub)goal. Multiple “aimsTo” relations could

connect a given ground action to different goals (e.g., CAT (Computer
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Aided Tomography) can implement “Monitoring” or “Timing” even

within the same guideline).

All ground actions are being mapped to SNOMED concepts3. The ontol-

ogy partially showed in Figure 4 is therefore being integrated with the most

comprehensive and precise clinical health terminology product in the world,

accepted as a common standard for health terms.

In the abstraction step (see Section 4.2), the user will specify at what

level of the goal taxonomy s/he wants to operate, i.e., whether at the level

of the most general goals (level 1, since level 0 is the root “Goal” in Figure

4), or at the level of progressively more specific subgoals.

In the case of multiple “aimsTo” relations, the proper goal to be used to

abstract a given action will be selected by the rule base, which extends a

previous version published in [13].

The rule base, in fact, encodes medical knowledge as well. Contextual

information (i.e., the actions that have been already executed on the patient

at hand and are logged earlier in the trace, and/or her/his specific clinical

conditions) is used to activate the correct rules. The rules are thus meant to

infer why the action was performed in practice, in the specific trace at hand4.

The rule base has been formalized in Drools [15]. Patient findings have

been mapped to SNOMED concepts as well.

As an example, referring to the CAT action, the rules reported below

3http://www.snomed.org/snomed-ct, last accessed on 11/09/2017
4Note that, if this disambiguation is not needed, because multiple goals are admissible

for the same action in the given trace, the system can be easily adapted, by simply skip-
ping the rule-based step, and, e.g., maintaining the indication of all the plausible goals
(thus allowing for multiple mergers of the abstracted macro-action, see Section 4.2). This
direction will be considered in our future work.
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(showed as a simplified pseudocode with respect to the system internal repre-

sentation, for the sake of simplicity) state that, if the patient has experienced

a severe brain damage and suffers from atrial fibrillation, s/he must initiate a

proper therapy. Such a therapy starts with ASA (a class of anti-inflammatory

drugs), and continues with daily AC (anti-coagulant drug) administration.

Before the first AC, a CAT is required, to assess AC starting time, which

could be delayed in case CAT detects a hemorrhagic transformation. After

a few days of AC administration, another CAT is needed, to monitor ther-

apeutic results. Therefore, depending on the context, CAT can implement

the “Timing” or the “Monitoring” goal (see Figure 4). Forward chaining on

the rules below allows to determine the correct goal for the CAT action.

rule "SevereDamage"

when

(

Damage(value > threshold) &&

AtrialFibrillation(value=true)

)

then

logicalInsertFact (DamFib);

end

rule "Fibrillation1"

when

existInLogical(DamFib) &&

isBefore("CAT", "AC")

then

setGoalName("CAT", "Timing");

end

rule "Fibrillation2"

when

existInLogical(DamFib) &&

isAfter("CAT", "AC")

then
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setGoalName("CAT", "Monitoring");

end

4.2. Abstraction

The abstraction mechanism we have implemented has been designed

to properly tackle non-trivial issues that could emerge. Specifically:

� two actions having the same goal (relation “aimsTo”) in the ontology

may be separated in the trace by a delay, or by interleaved actions.

Our approach allows to deal with these situations, by creating a single

macro-action; the macro-action is however built only if the total delay

length, or the total number/length of interleaved actions, do not over-

come proper admissibility thresholds set by the medical expert. The

delays and interleaved actions are quantified and recorded, for possible

use in further analyses. In particular, in Section 4.3 we will present a

similarity metric where this information is accounted for as a penalty,

and affects the similarity value in abstracted trace comparison;

� abstraction may generate different types of temporal constraints be-

tween pairs of macro-actions; specifically, given the possible presence

of interleaved actions, we can obtain an abstracted trace with two (or

more) overlapping or concurrent macro-actions. An example will be

shown in Section 4.2.2. Our approach allows to represent (and ex-

ploit) this information, by properly maintaining both quantitative and

qualitative temporal constraints in abstracted traces. Once again, this

temporal information can be exploited in further analyses. In particu-
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lar, the similarity metric we adopt in trace comparison can manage all

types of temporal constraints.

To deal with these issues, we have defined a dynamic programming algo-

rithm, able to identify, for every goal a at the input abstraction level, the best

(i.e., the longest in time) macro-actions that abstract as a, independently of

where (i.e., in correspondence of what ground action) they start in the trace.

This optimization criterion (defining macro-actions with the longest dura-

tion), indicated by our medical co-author, generates abstracted traces with a

low number of macro-actions. Possible different criteria could be considered

in the future, and, given the modularity of the implementation, this change

would only affect a few portions of the code.

The algorithm is illustrated in the following Section.

4.2.1. Dynamic programming algorithm

Our dynamic programming multi-level abstraction procedure takes as in-

put an event log trace, the domain ontology, the rule base, and the level

in the ontology chosen for the abstraction (where level 1 corresponds to an

abstraction up to the most general goals, i.e., the children of the root “Goal”

in Figure 4). It also takes as input three thresholds (delay th, n inter th

and inter th). These threshold values have to be set by the domain expert

in order to limit the total admissible delay time within a macro-action, the

total number of interleaved actions, and the total duration of interleaved

actions, respectively. In fact, it would be hard to justify that two ground

actions share the same goal (and can thus be abstracted to the same macro-

action), if they are separated by very long delays, or if they are interleaved

by many/long different ground actions, meant to fulfill different goals.
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First, an initialization phase is conducted, where every action i in the in-

put trace is labeled referring to the goal of i in the ontology, at the abstraction

level provided as an input. The correct goal to be chosen is identified ex-

ploiting the ontology and the rule base, as explained in Section 4.1. This

activity will partition the actions in the input trace.

At the end of the initialization phase, for every element in the partition

(i.e., for every set of actions in the trace sharing the same goal a), Algorithm 1

is applied. Function abs dynProgr takes as input the actions in the partition

element, the number n(a) of actions that belong to the partition element

itself, the input trace, and the three thresholds discussed above. It outputs

a triangular matrix M . The matrix M , whose dimension is n(a) ∗ n(a) (line

2), maintains the solutions of subproblems.

Elementary subproblem solutions will be stored along the diagonal: M [i, i]

(line 10) will contain the length of the macro-action starting at the beginning

of the i-th action in the partition element, and ending at the end of the i-th

action itself (lines 4-6; indeed, in the elementary subproblem, the macro-

action contains only the ground action i, that has been properly abstracted,

i.e., labeled as its goal). In the i-th cycle, a set of accumulators for this

macro-action (totaldelayi, num interi and total interi) are also initialized

to 0 (lines 7-9).

After the elementary subproblem calculation, the rest of the matrix cells

can be filled, row by row (lines 12-22). For every row i, an iteration is

executed, considering all the actions in the partition element that follow

the i-th action (lines 13-21): accumulators (total delayi, num interi and

total interi) are updated, by taking into account, respectively, the total delay,
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the number of interleaved actions, and the total length of the interleaved

actions that appear in the input trace between action i and action j (lines

14-16). If the accumulators do not exceed the thresholds passed as an input,

the ending time of the macro-action starting at the beginning of the i-th

action is updated to include action j (line 18), and the macro-action is stored

in M [i, j] (line 19). If any of the accumulators exceeds the threshold, the row

will not be completely filled. In this way, the last filled cell for every row

corresponds to the longest macro-action that can be abstracted starting at

the i-th action in the input trace.

Once the matrix has been filled, our procedure identifies the optimal

solution, i.e., the macro-action of maximal time length in M . This macro-

action is provided as a solution item in the abstracted trace. Later, rows and

columns involving the optimal macro-action are deleted, in order to eliminate

other macro-actions that are included in (or are started by) the optimal one,

and to split macro-actions that are ended by the optimal one, so that only the

non-overlapping prefixes will be considered further. The process of optimum

identification is then repeated on every sub-matrix obtained after this row

and column deletion.

In the end, a set of macro-actions, abstracted as the goal of the given

partition element, is provided by our approach; these macro-actions will be

appended to the output abstracted trace. This part of the code is not shown,

for the sake of brevity.

Matrix building and optimal solution identification are repeated for every

partition, to build the overall output abstracted trace. The procedure, in

the end, may generate different types of temporal constraints [16] between
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Figure 5: Abstraction example. Ground actions (white) and delays (blue) are reported
in the top layer (rectangles width is proportional to elapsed time), while the subsequent
three layers report the abstracted macro-actions on the same timeline

macro-actions, as it will be exemplified in Section 4.2.2.

Complexity.The cost of abstracting a trace is O(
∑partition−elements

a=1 n(a) ∗

n(a)), where n(a) is the number of actions in the a-th partition element.

Property. The dynamic programming algorithm always identifies, for every

goal a at the input abstraction level, the best (i.e., the longest) macro-action

that abstracts as a, independently of where (i.e., in correspondence of what

ground action) it starts in the trace.

4.2.2. An abstraction example

Figure 5 shows a trace abstraction example. The two ground actions

“MRI” and “MRI with DWI” are abstracted to the macro-action “Parenchima

Examination”, when abstracting up to level 2 in the ontology of Figure 4.

While creating this macro-action m i, the lengths of the two delays D1 and

D2 are summed up and accumulated in total delayi. Similarly, the length of

the interleaved action “Heparin” is accumulated in tot interi, and num interi

is set to 1. If, for instance, D1 +D2 had exceed the delay threshold delay th,

“MRI with DWI” would not have added to the macro-action started by

“MRI”. On the other hand, “Heparin” and “Oxygen” are abstracted to the

macro-action “In-Hospital Disability Reduction”, with “MRI with DWI” and
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M = abs dynProgr(partition, n(a), trace, delay th,1

n inter th, inter th);

create matrix M [n(a)][n(a)] initially empty ;2

foreach i← 1 to n(a) do3

create macro-action : mi4

mi.start = i.start5

mi.end = i.end6

total delayi = 07

num interi = 08

total interi = 09

M [i, i] = {mi}10

end11

foreach i← 1 to n(a) do /* rows */12

foreach j ← i+ 1 to n(a) do /* columns */13

total delayi = total delayi + length(delay i− j)14

num interi = num interi + |interl.act.i− j|15

total interi = total interi + length(interl.act.i− j)16

if ((total delayi < delay th) ∧ (num interi <17

n inter th) ∧ (total interi < inter th)) then
mi.end = max(mi.end, j.end)18

M [i, j] = {mi}19

end20

end21

end22

return M2424

Algorithm 1: Dynamic programming algorithm – part of the multi-level
abstraction procedure
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“Anti-aggregants No TPA” operating as interleaved actions, and D2, D3 and

D4 operating as delays. “Anti-aggregants No TPA” alone abstracts to the

macro-action “Early Relapse Prevention”. In the end, the macro-actions

“Parenchima Examination” and “In-Hospital Disability Reduction” overlap

[16], while the macro-action “Early Relapse Prevention” is during [16] the

macro-action “In-Hospital Disability Reduction”. This reflects the inherent

parallelism of several clinical workflows, which are governed not only by clin-

ical protocols, but also by organizational constraints, such as the availability

of diagnostic instruments and personnel shifts.

4.3. Trace comparison

In our framework, we have extended a metric we described in [17], which

worked on ground traces, in order to permit the comparison of abstracted

traces as well.

In the current, more general approach, every trace is a sequence of actions

(whether ground actions or abstracted macro-actions), each one stored with

its execution starting and ending times. Therefore, an action is basically a

symbol (plus the temporal information). Starting and ending times allow to

get information about action durations, as well as qualitative (e.g., Allen’s

before, overlaps, equals etc. [16]) and quantitative temporal constraints (e.g.,

delay length, overlap length [18]) between pairs of consecutive actions/macro-

actions.

The main features of the metric published in [17] are summarized below.

The extensions needed to deal with abstracted traces are also discussed later

in this section.

In the metric in [17], we first take into account action types, by calcu-
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lating a modified edit distance which we have called Trace Edit Distance

[17]. As the classical edit distance [19], Trace Edit Distance tests all possible

combinations of editing operations that could transform one trace into the

other one. However, the cost of a substitution is not always set to 1. Indeed,

as already observed, we have organized actions in an ontology: we can there-

fore adopt a more semantic approach, and apply Palmer’s distance [20], to

impose that the closer two actions are in the ontology, the less penalty we

introduce for substitution.

Definition 1: Palmer’s Distance.

Let α and β be two actions in the ontology t, and let γ be the closest common

goal of α and β. Palmer’s Distance dt(α, β) between α and β is defined as:

dt(α, β) =
N1 +N2

N1 +N2 + 2 ∗N3

where N1 is the number of arcs in the path from α and γ in t, N2 is the

number of arcs in the path from β and γ, and N3 is the number of arcs in

the path from the ontology root (“Goal”) and γ.

It is worth noting that other distance definitions can be relied upon if

domain knowledge is available as a semantic network with different charac-

teristics. As an example, the metric in [21] can be relied upon when dealing

with an incomplete ontology, or with an ontology containing many dense

sub-ontologies. Our framework is modular and easily adaptable to this end.

Trace Edit Distance traceNGLD(P,Q) is then calculated as the Normalized

Generalized Levenshtein Distance (NGLD) [22] between two traces P and Q

(interpreted as two strings of symbols). Formally, we provide the following
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definitions:

Definition 2: Trace Generalized Levenshtein Distance.

Let P and Q be two traces of actions, and let α and β be two actions. The

Trace Generalized Levenshtein Distance traceGLD(P,Q) between P and Q is

defined as:

traceGLD(P,Q) = min{
k∑

i=1

c(ei)}

where (e1, . . . , ek) transforms P into Q, and:

� c(ei) = 1, if ei is an action insertion or deletion;

� c(ei) = dt(α, β), if ei is the substitution of α (appearing in P ) with β

(appearing in Q), with dt(α, β) defined as in Definition 1 above.

Definition 3: Trace Edit Distance (Trace Normalized Generalized Lev-

enshtein Distance).

Let P and Q be two traces of actions, and let traceGLD(P,Q) be defined as in

Definition 2 above. We define Trace Edit Distance traceNGLD(P,Q) between

P and Q as:

traceNGLD(P,Q) =
2 ∗ traceGLD(P,Q)

|P |+ |Q|+ traceGLD(P,Q)

where |P | and |Q| are the lengths (i.e., the number of actions) of P and Q

respectively.
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Trace Edit Distance then takes the combination of editing operations

associated to the minimal cost. Such a choice corresponds to a specific align-

ment of the two traces (optimal alignment henceforth), in which each action

in one trace has been matched to an action in the other trace–or to a gap.

Given the optimal alignment, we can then take into account temporal

information. In particular, we compare the durations of aligned actions by

means of a metric we called Interval Distance [17]. Interval distance cal-

culates the normalized difference between the length of two intervals (repre-

senting action durations in this case).

Moreover, we take into account the temporal constraints between two

pairs of subsequent aligned actions on the traces being compared (e.g., ac-

tions A and B in trace P ; the aligned actions A′ and B′ in trace Q). We

quantify the distance between their qualitative constraints (e.g., A and B

overlap in trace P ; A′ meets B′ in trace Q), by resorting to a metric known

as Neighbors-graph Distance [17]. If Neighbors-graph Distance is 0, be-

cause the two pairs of actions share the same qualitative constraint (e.g., A

and B overlap in trace P ; A′ and B′ also overlap in trace Q), we compare

quantitative constraints by properly applying Interval Distance again (e.g.,

by calculating Interval Distance between the two overlap lengths).

In the metric in [17], these three contributions (i.e., Trace Edit Distance,

Interval Distance between durations, Neighbors-graph Distance or Interval

Distance between pairs of actions) are finally put in a linear combination

with non-negative weights.

When working on macro-actions, however, the metric in [17] needs to be

extended. Indeed, two otherwise identical abstracted traces, for simplicity
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composed by just one macro-action each, may differ only because the macro-

action in the first trace includes some delay or interleaved action, while the

macro-action in the second trace does not (it is a pure direct sequence of

ground actions sharing the same goal). Our extended metric allows to penal-

ize this difference, by considering, given the optimal macro-actions alignment,

two additional contributions:

� a penalty due to the different length of the delays incorporated into the

two aligned macro-actions;

� a penalty due to the different number, length and type of interleaved

actions in the two aligned macro-actions being compared.

The extended metric includes in the linear combination these two penal-

ties as well.

Of course, if the user is not interested in highlighting these aspects, s/he

can set to 0 the weight of these penalty contributions.

Formally, we provide four definitions. Definition 3 and Definition 4 were

published in [14], but are reported here in order to make the section self-

contained. Definition 5 and Definition 6, on the other hand, represent a new

contribution of this paper.

Delay penalty is defined straightforwardly as follows:

Definition 3: Delay Penalty.

Let A and B be two macro-actions, that have been matched in the optimal

alignment. Let delayA =
∑k

i=1 length(i) be the sum of the lengths of all the

k delays that have been incorporated into A in the abstraction phase (and

let delayB be analogously defined). Let maxdelay be the maximum, over all
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the abstracted traces, of the sum of the lengths of the delays incorporated

in an abstracted trace. The Delay Penalty delayp(A,B) between A and B is

defined as:

delayp(A,B) =
|delayA − delayB|

maxdelay

As for interleaved actions penalty, we have foreseen different possible

definitions (and additional ones may be introduced, on the basis of domain

needs).

The first definition operates analogously to delay penalty, by summing up

the lengths of all interleaved actions that have been incorporated within a

single macro-action in the abstraction phase, without distinguishing among

the different types of such interleaved actions.

Definition 4: Interleaving Length Penalty.

Let A and B be two macro-actions, that have been matched in the opti-

mal alignment. Let interA =
∑k

i=1 length(i) be the sum of the lengths of

all the k interleaved actions that have been incorporated into A in the ab-

straction phase (and let interB be analogously defined). Let maxinter be

the maximum, over all the abstracted traces, of the sum of the lengths of

the interleaved actions incorporated in an abstracted trace. The Interleaving

Length Penalty interLp(A,B) between A and B is defined as:

interLp(A,B) =
|interA − interB|

maxinter

The next definition compares the number of interleaved actions in the

two macro-actions matched by the optimal alignment.
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Definition 5: Interleaving Number Penalty.

Let A and B be two macro-actions, that have been matched in the optimal

alignment. Let numberA be the number of the interleaved actions that have

been incorporated into A in the abstraction phase (and let numberB be anal-

ogously defined). Let maxnumber be the maximum, over all the abstracted

traces, of the number of the interleaved actions incorporated in an abstracted

trace. The Interleaving Number Penalty interNp(A,B) between A and B is

defined as:

interNp(A,B) =
|numberA − numberB|

maxnumber

The last definition we present is the most complex. In this case, we want

to sum up the lengths of all the interleaved actions as in Definition 4, but

every length will be weighted by Palmer’s distance [20] (see Definition 1) be-

tween the interleaved action itself and the goal that labels the macro-action

incorporating it. In this way, if a very unrelated action (e.g., counseling about

smoke habits) is interleaved in a macro-action (e.g., pathogenetic mechanism

identification), it will increase the penalty value more significantly with re-

spect to a more similar (i.e., closer) action in the ontology (e.g., a diagnostic

action).

Definition 6: Interleaving Weighted Penalty.

Let A and B be two macro-actions, that have been matched in the optimal

alignment. Let weightedA =
∑k

i=1 length(i) ∗ dt(i, A) be the sum of the

lengths of all the k interleaved actions that have been incorporated into A

in the abstraction phase, each weighted by Palmer’s distance between the
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interleaved action itself and A. Let weightedB be analogously defined. Let

maxinter be the maximum, over all the abstracted traces, of the sum of the

lengths of the interleaved actions incorporated in an abstracted trace. The

Interleaving Weighted Penalty interWp(A,B) between A and B is defined as:

interWp(A,B) =
|weightedA − weightedB|

maxinter

It is worth noting that our metric, given its capability to manage both

quantitative and qualitative temporal constraints, enables to properly deal

with temporal information at all abstraction levels.

By allowing the treatment of abstraction penalties (in a very flexible

way, thanks to the different definitions we provide), and the management of

temporal information, the metric is therefore able to address all the issues

we cited in Section 4.2.

4.4. Process discovery

In our approach, we are resorting to the well-known process mining tool

ProM, extensively described in [23]. ProM (and specifically its newest version

ProM 6) is a platform-independent open source framework that supports

a wide variety of process mining and data mining techniques, and can be

extended by adding new functionalities in the form of plug-ins.

For the experimental work described in this paper, we have exploited

ProM’s Heuristic Miner [24]. Heuristic Miner [24] is a plug-in for process

discovery, able to mine process models from event logs. Heuristic Miner

receives as input the log, and considers the order of the actions within every

single trace. It can mine the presence of short-distance and long-distance
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dependencies (i.e., direct or indirect sequence of actions), and information

about parallelism, with a certain degree of reliability. The output of the

mining process is provided as a graph, where nodes represent actions, and

edges represent control flow information. The output can be converted into

other formalisms as well.

Currently, we have chosen to rely on Heuristics Miner, because it is known

to be tolerant to noise, a problem that may affect medical event logs (e.g.,

sometimes the logging may be incomplete). Anyway, testing of other algo-

rithms available in ProM 6 is foreseen in our future work. Moreover, the

interface of our framework to ProM will allow us to test additional analysis

plug-ins in the future.

5. Results

In this section, we describe two experimental works we have conducted,

in the application domain of stroke care. In the first one (see Section 5.1), we

have studied the impact of multi-level abstraction on trace comparison; in

particular, we have designed a set of clustering experiments, to verify whether

it is possible to highlight correct behaviors and anomalies with respect to the

latest clinical practice guidelines for stroke management, abstracting from

details (such as, e.g., local resource constraints or local medical practice),

that are irrelevant to the verification of medical appropriateness of a macro-

action.

In the second work (see Section 5.2), we wished to verify whether our

support to process discovery, and specifically the capability of abstracting

the traces on the basis of their semantic goal, allows to obtain clearer medical
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process models, where unnecessary details are hidden, but key behaviors are

clear.

Parameter setting. In the experiments, thresholds were common to all

traces in the log, and set as follows: delay th = 300 minutes, n inter th = 3,

inter th = 300 minutes. This choice was set by our medical co-author, on

the basis of medical knowledge and experience. Interestingly, we also made

tests with different thresholds (making changes of up to 10%). The impact

of these changes on process discovery (in terms of fitness) will be presented

in Section 5.2.

The metric we adopted for trace comparison is the one we described in

Section 4.3, where the linear combination weights were all equal and their

sum was 1, and we resorted to Definition 6 for interleaving penalty.

Experimental dataset. The available event log was composed of more

than 15000 traces (each trace representing a different patient), collected at

the 40 Stroke Unit Network (SUN) collaborating centers of the Lombardia

region, Italy. Our medical co-author belongs to one of the SUN stroke units.

Thus, she has a very deep insight into the registry data. Traces were com-

posed of 13 actions on average, with a median of 15.

Machine characteristics. Experiments were run on a machine equipped

with an Intel(R) Xeon(R) CPU E5-2640v2, CPU @ 2GHz, 4GB RAM.

Results are provided in the following.

5.1. Trace comparison

As a first experimental work, we have analyzed the impact of our abstrac-

tion mechanism on trace comparison, and more precisely on the quality of

trace clustering.

30



In our study, we considered the traces of every single Stroke Unit (SU),

and compared clustering results on ground traces with respect to those on

abstracted traces.

Specifically, we resorted to a hierarchical clustering technique, known

as Unweighted Pair Group Method with Arithmetic Mean (UPGMA) [25].

UPGMA is typically applied in bioinformatics, where sequences of symbols

(similar to our traces) have to be compared. The algorithm operates in a

bottom-up fashion. At each step, the nearest two clusters are combined into

a higher-level cluster. The distance between any two clusters A and B is

taken to be the average of all distances between pairs of objects “x” in A and

“y” in B, that is, the mean distance between elements of each cluster. After

the creation of a new cluster, UPGMA properly updates a pairwise distance

matrix it maintains. UPGMA also allows to build the phylogenetic tree (the

hierarchy) of the obtained clusters.

In our experiments, the hypothesis we wished to test was the following:

“the application of the abstraction mechanism as a pre-processing step for

UPGMA clustering allows to obtain more homogeneous and compact clusters

(i.e., able to aggregate closer examples); however, outliers are still clearly

identifiable, and isolated in the cluster hierarchy”.

Homogeneity is a widely used measure of the quality of the output of a

clustering method (see e.g., [26, 27, 28, 29]). The average of the homogene-

ity H of the individual clusters can be calculated on (some of) the clusters

obtained through the method at hand, in order to assess clustering quality.

Average cluster homogeneity allows one to compare the output of different

clustering techniques on the same dataset, or the output obtained by differ-
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ently setting up the same clustering technique, as we did by pre-processing

traces by means of the abstraction mechanism.

We computed the average of cluster homogeneity values level by level in

the hierarchies. In order to avoid biases, to calculate homogeneity we resorted

to the classical normalized Levensthein’s edit distance [19], with no use of

semantic, temporal or abstraction information (indeed, if homogeneity is

calculated resorting to the metric defined in this paper, it obviously increases

when working on abstracted traces, since Palmer’s distance [20] decreases

when operating at higher levels of the hierarchy).

As a first example, we report on the results of applying UPGMA to the

200 traces of a specific SU.

Figure 6 shows a comparison of the average homogeneity values, com-

puted level by level in the cluster hierarchies, operating (i) on ground traces,

(ii) on traces abstracted at level 2 in the ontology, and (iii) on traces ab-

stracted at level 1 in the ontology. As it can be observed, the more we ab-

stract, the more homogeneity increases. Indeed, homogeneity on abstracted

traces is always higher then the one calculated on ground traces; moreover,

homogeneity when abstracting at level 1 (i.e., up to the most general medical

goals) is never lower than the one calculated at level 2.

It is also interesting to study the management of outliers, i.e., in our ap-

plication domain, traces that could correspond to the treatment of atypical

patients, or to medical errors. These traces record rather uncommon actions,

and/or present uncommon temporal constraints among their actions. For in-

stance, trace 73 is very peculiar: it describes the management of a patient

suffering from several inter-current complications (diabetes, hypertension),
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Figure 6: Comparison between average homogeneity values, computed level by level in the
three cluster hierarchies obtained by UPGMA working at different levels of abstraction,
in the first SU

who required many extra-tests and many specialist counseling sessions, in-

terleaved to more standard actions.

Ideally, these anomalous traces should remain isolated as a singleton clus-

ter for many UPGMA iterations, and be merged to other nodes in the hi-

erarchy as late as possible, i.e., close to the root (level 0). When working

on ground traces, 9 outliers of the example SU were merged very late to the

hierarchy, as expected (between level 1 and level 7, see Figure 7). In particu-

lar, trace 73 was merged only at level 1. Very interestingly, this capability of

isolating outliers was preserved when working on abstracted traces. Indeed,

as it can be seen in the figure, despite some differences, all 9 outliers were

early isolated, in both the abstraction experiments. Trace 73, in particular,

was the latest trace to be merged to the cluster trees at both abstraction

levels.

Very similar considerations can be drawn when observing the results on

another SU, that we report in Figures 8 and 9. In this case, homogeneity

on abstracted traces was always higher then the one calculated on ground

traces as well (see Figure 8); moreover, all 11 outliers were always isolated

between level 1 and level 8 (see Figure 9).
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Figure 7: Identification of outliers (in rectangles) in cluster hierarchies in the first SU. From
left to right: part of the cluster hierarchy built on ground traces, on traces abstracted at
level 2, and on traces abstracted at level 1

Figure 8: Comparison between average homogeneity values, computed level by level in the
three cluster hierarchies obtained by UPGMA working at different levels of abstraction,
in the second SU

Figure 9: Identification of outliers (in rectangles) in cluster hierarchies in the second SU.
From left to right: part of the cluster hierarchy built on ground traces, on traces abstracted
at level 2, and on traces abstracted at level 1
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In conclusion, our hypothesis was verifed by the experiments (even con-

sidering different subsets of the Stroke Registry data), since the application

of the abstraction mechanism allowed to obtain more homogeneous clusters,

still clearly isolating outlying traces.

5.2. Process discovery

As a second experimental work, we have tested whether our capability to

abstract the event log traces on the basis of their semantic goal allowed to

obtained process models where unnecessary details are hidden, but key be-

haviors are clear. Indeed, if this hypothesis holds, in our application domain

it becomes easier to compare process models of different SUs, highlighting

the presence/absence of common paths, regardless of minor action changes

(e.g., different ground actions that share the same goal) or irrelevant differ-

ent action ordering or interleaving (e.g., sets of ground actions, all sharing a

common goal, that could be executed in any order).

In particular, we mined the process models of all the available SUs, both

operating on ground traces, and on traces abstracted at different levels, with

respect to the ontology in Figure 4.

As an example, Figure 10 compares the process models of two different

SUs (SU1 and SU2), mined by resorting to Heuristic Miner [24], operating

on ground traces. Figure 11 compares the process models of the same SUs

as Figure 10, again mined by resorting to Heuristic Miner, but operating on

traces abstracted at level 1 of the ontology in Figure 4, i.e., referring to the

most general medical goals. Figure 12, instead, compares the process models

of the same SUs operating on traces abstracted at level 2 of the ontology.

Generally speaking, a visual inspection of the two graphs in Figure 10
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Figure 10: Comparison between two process models, mined by resorting to Heuristic
Miner, operating on ground traces. The figure is not intended to be readable, but only to
give an idea of how complex the models can be
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Figure 11: Comparison between the two process models of the same SUs as Figure 10,
mined operating on traces abstracted at level 1

is very difficult. Indeed, these two ground processes are “spaghetti-like” [1],

and the extremely large number of nodes and edges makes it hard to identify

commonalities in the two models. The abstracted models in Figures 11 and

12, on the other hand, are much more compact, and it is possible for a medical

expert to analyze them.

In particular, the two graphs in Figure 11 show exactly the same macro-

actions, which indeed represent the main goals/steps of the treatment of a

typical stroke patient (see also Figure 4). Only minor variations in task

parallelization (e.g., “Prevention” is in parallel to “Pathogenetic Mechanism

Identification” in SU1, while the two tasks are executed in sequence in SU2)

can be observed, due to (mostly irrelevant) differences in local best practices.
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Some more significant differences can be observed in Figure 125 where, in

addition to control flow changes, the “Recanalization Therapy” action can

be observed in SU2 (highlighted in bold). This is a very reasonable outcome,

since SU2 is a well equipped SU, where various kinds of patients, including

atypical ones, can be managed, thanks to the availability of different skills

and instrumental resources. On the other hand at SU1 some very specific

human knowledge and technical resources are missing. As a consequence,

the invasive and complex recanalization therapy is not performed here.

We also report on the process discovery results on a third SU, which

is a more generalist and less equipped SU both with respect to SU1, and

with respect to SU2. In this case, as it can be observed in Figure 13, the

“Recanalization Therapy” is still missing; moreover, the “Intra-cranial Vessel

Inspection”, which requires some advanced skills and proper resources as well,

is missing too.

Finally, Table 1 reports our results on the calculation of fitness [1] on

the process models mined for our 40 SUs, at different levels of abstraction.

Fitness evaluates whether a process model is able to reproduce all execution

sequences that are in the event log. If the log can be replayed correctly,

fitness evaluates to 1. In the worst case, it evaluates to 06.

5Note that some medical goals do not conceptually specialize to more specific subgoals;
for instance “Administrative Actions” at level 1 specializes to a single subgoal which is
still called “Administrative Actions” at level 2, since no further discrimination is required.

6More formally, fitness of a log L on a model N represented as a Petri Net is [1]:

fitness(L,N) = 1
2 (1−

∑
σ∈L L(σ)×mN,σ∑
σ∈L L(σ)×cN,σ

) + 1
2 (1−

∑
σ∈L L(σ)×rN,σ∑
σ∈L L(σ)×pN,σ

)

where pN,σ denotes the number of produced tokens when replaying a trace σ on N;
similarly, cN,σ , mN,σ , rN,σ are the number of consumed, missing and remaining tokens
(respectively) when replaying σ on N.

∑
σ∈L L(σ)×mN,σ is total number of missing tokens

when replaying the entire event log, because L(σ) is the frequency of trace σ and mN,σ is

38



Start

CardioEmbolic_Mechanism

Cause_Identification

Coagulation_Screening

In-Hospital_Disability_Reduction

Early_Relapse_Prevention

Other

Parenchima_Examination

Long_Term_Relapse_PreventionNeuroProtection

Administrative_Actions

Intracranial_Vessel_Inspection

End

Start

Cause_Identification

Coagulation_Screening

Other Early_Relapse_Prevention

CardioEmbolic_Mechanism

Long_Term_Relapse_PreventionRecanalization_therapies Intracranial_Vessel_Inspection

Parenchima_Examination

In-Hospital_Disability_Reduction

Administrative_Actions

End

NeuroProtection

SU1

SU2

Figure 12: Comparison between the two process models of the same SUs as Figure 10,
mined operating on traces abstracted at level 2
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Figure 13: Process model of a third SU, less equipped with respect to SU1 and SU2, mined
operating on traces abstracted at level 2

Table 1: Average fitness values calculated on the mined process models, when operating
at different levels of abstraction

Ground Abs. level 2 Abs. level 1
0.54 0.78 0.89

Fitness calculation is available in ProM.

As it can be observed from the table, the more the traces are abstracted,

the more the average fitness value increases in the corresponding models

obtained by the mining algorithm. In particular, as regards SU1 presented

in detail above, fitness passed from 0.47396724 (process mined on ground

traces), to 0.82176177 (process mined on traces abstracted at level 2), to

0.9062092 (process mined on traces abstracted at level 1). Similarly, for SU2

fitness passed from 0.4985412 (process mined on ground traces), to 0.6786843

the number of missing tokens for a single instance of σ.
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(process mined on traces abstracted at level 2), to 0.8952279 (process mined

on traces abstracted at level 1).

In conclusion, our abstraction mechanism, while hiding irrelevant details,

allows to still appreciate relevant differences between models, such as, e.g.,

the presence/absence of relevant actions, as in the case of recanalization.

Moreover, very interestingly, abstraction proves to be a means to significantly

increase the quality of the mined models, measured in terms of fitness, a well

known and largely adopted quantitative indicator.

While we do not have a direct measure of the quality of abstraction (there

is no specific indicator of how good the abstracted event log is), we could test

the impact of abstraction threshold change (see Algorithm 1) on the quality

of process discovery, by measuring, once again, fitness values.

Table 2 reports on the effects of abstraction threshold variation. The first

two columns show the fitness values of three different SUs, measured when

the process models are mined working on abstracted traces (at level 1 and 2

respectively), having set the abstraction thresholds to the values indicated by

the domain expert. Columns 3 and 4 show the corresponding fitness values,

having altered the thresholds of +10%. As it can be observed, threshold

changes had a minimal impact on fitness values: they often did not change

at all; in other cases, the change involved the third or fourth decimal place.

Very similar results were obtained after a change of -10%.

For the sake of completeness, we also provide some results about com-

putational performance of the various steps of the framework. Abstraction

on a log of 481 traces, as an example, took 1230.346 seconds. Process dis-

covery on ground traces took 2.062 seconds, while it took only 0.489 seconds
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Table 2: Impact of abstraction threshold change on fitness values, calculated on three
mined process models, operating at different levels of abstraction

Expert lev.1 Expert lev.2 Change lev.1 Change lev.2
SUa 0.9044 0.7821 0.9043 0.7820
SUb 0.9552 0.8104 0.9532 0.8104
SUc 0.8759 0.7268 0.8759 0.7268

when working on traces abstracted at level 1. Clustering on ground traces

took 633.209 seconds, while it took 540.087 seconds when operating on traces

abstracted at level 1.

So, abstraction is the most costly step, but it is an off-line procedure: as

such, it is not time-critical. Moreover, the other steps become more efficient

when run on abstracted traces.

6. Related works and discussion

The use of semantics in business process management, with the aim of op-

erating at different levels of abstractions in process discovery and/or analysis,

is a relatively young area of research, where much is still unexplored.

One of the first contributions in this field was proposed in [30], which

introduces a process data warehouse, where taxonomies are exploited to add

semantics to process execution data, in order to provide more intelligent

reports. The work in [31] extends the one in [30], presenting a complete ar-

chitecture that allows business analysts to perform multidimensional analysis

and classify process instances, according to flat taxonomies (i.e., taxonomies

without subsumption relations between concepts). The work in [32] devel-

ops in a similar context, and extends OLAP tools with semantics (exploiting

ontologies rather than (flat) taxonomies). Hepp et al. [33] propose a frame-
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work able to merge semantic web, semantic web services, and business process

management techniques to build semantic business process management, and

use ontologies to provide machine-processable semantics in business processes

[34].

Semantic business process management is further developed in the SU-

PER project [35], within which several ontologies are created, such as the

process mining ontology and the event ontology [36]; these ontologies define

core terminologies of business process management, usable by machines for

task automation. However, the authors do not present any concrete imple-

mentations of semantic process mining or analysis.

Ontologies, references from elements in logs to concepts in ontologies, and

ontology reasoners (able to derive, e.g., concept equivalence), are described as

the three essential building blocks for semantic process mining and analysis

in [7]. This paper also shows how to use these building blocks to extend

ProM’s LTL Checker [37] to perform semantic auditing of logs. The work in

[38] focuses on the use of semantics in business process monitoring, an activity

that allows to detect or predict process deviations and special situations, to

diagnose their causes, and possibly to resolve problems by applying corrective

actions. Detection, diagnosis and resolution present interesting challenges

that, on the authors’ opinion, can strongly benefit from knowledge-based

techniques. In [38, 8] the idea to explicitly relate (or annotate) elements

in the event log with the concepts they represent, linking these elements to

concepts in ontologies, is also addressed.

In [8] an example of process discovery at different levels of abstractions

is presented. It is however a very simple example, where a couple of ground
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actions are abstracted according to their common ancestor. Neither the

management of interleaved actions or delays, nor the correct identification

of temporal constraints generated when aggregating different macro-actions

are addressed. Moreover, most of the papers cited above (including [33, 39,

38, 7, 8]) present theoretical frameworks, and not yet a detailed technical

architecture nor a concrete implementation of all their ideas.

In [40] the authors characterize the manifestation of commonly used pro-

cess model constructs in the event log and adopt pattern definitions that

capture these manifestations, and propose a means to form abstractions over

these patterns. In particular, the approach identifies loops in traces, and

replaces the repeated occurrences of the manifestation of the loop by an ab-

stracted entity that encodes the notion of a loop. It also identifies common

functionalities in the traces and replaces them with abstract entities. The

work in [41] operates similarly, and abstracts composite actions and loops

from sets of multiple/repeated simpler actions. These works, however, do

not make use of semantic information.

A more recent work [42] introduces a methodology that combines do-

main and company-specific ontologies and databases to obtain multiple lev-

els of abstraction for process mining and analysis. In this paper data in

databases become instances of concepts at the bottom level of the taxonomy

tree structure. If consecutive tasks in the discovered model abstract as the

same concepts, those tasks are aggregated. However, also in this work we

could not find any clear description of the abstraction algorithm, and neither

the management of interleaved actions or delays, nor the correct identification

of temporal constraints generated when aggregating different macro-actions
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were properly addressed.

Another interesting approach to abstraction in process models is the one

in [6]. The authors propose abstraction to generate more readable high-level

views on business process models. They are able to discover sets of related

actions, where each set corresponds to a coarse-grained task in an abstract

process model. Specifically, abstraction resorts to a clustering technique,

where action properties (such as, e.g., roles and resources) are exploited to

aggregate the different actions into the common task. The authors adopt the

enhanced Topic Vector Space Model to reflect the semantic relations between

action property values: in this way, the distance between two different, but

related values, can be lower that 1. Differently from our approach, however,

the abstraction solution described in [6] is not applied to traces - and there-

fore cannot be adopted for trace comparison. Moreover, it requires that all

action properties are available and logged - which, unfortunately, is often

not the case, for instance in medicine, where logging may be incomplete in

practice. Moreover, clustering does not take into account temporal relations

between actions, in the sense that it may also aggregate actions executed

at temporally distant phases of the model control flow; on the other hand,

our approach, by operating on traces, which log the temporal sequence of

action executions and their temporal constraints, strongly relies on temporal

information, maintains it, and allows to exploit it in further analyses, such

as abstracted trace comparison. Thus, the work in [6] adopts a significantly

different technique to process model abstraction with respect to our proposal;

nonetheless, it is certainly a relevant related work, and it would be interesting

to compare abstraction results obtained through that method to our medical

45



logs, in order to evaluate pros and cons of the two methodologies.

Some approaches to process mining and workflow analysis exist that were

specifically designed to medical applications. While most of them rely on

classical business process management literature for process representation

and discovery [43, 44, 45] others adopt different solutions, such as the use

of probabilistic models [46, 47] or sequential pattern mining and statistical

techniques [48]. Among the classical approaches, it is worth mentioning [45].

This work adopts process mining techniques to learn surgical process models

both from manually recorded traces of executed steps, and from sensor data.

Interestingly, sensor data need abstraction before being employed. Unfortu-

nately, the abstraction technique is not described in the paper. Considering

probabilistic approaches, on the other hand, in [47] the authors introduce

pMinerR, a library focused on dealing with process discovery and confor-

mance checking in the medical domain, embedded into R, one of the most

common software environment for data analysis. pMineR exploits some as-

pects taken from the computer interpretable clinical guidelines field, in par-

ticular in terms of human-readability. To this end, it exploits Markov Models

for process model representation, which are usually well-known and easy to

understand for medical user.

The work in [48], instead, combines sequential pattern mining with statis-

tical temporal analysis to characterize the transitions between events in pa-

tient workflows. Pattern mining produces a set of sequences of events/actions

that depict the services delivered to patients; such sequences are then en-

riched using both temporal and clinical information. Using this information

it is possible to better characterize the groups of patients who were cared
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according to different workflows, and subsequently better assess the clinical

relevance of the extracted patterns. The contribution in [48] is relevant for

comparison to our work, as it addresses the topic of abstraction, at least to

some extent. In particular, where there exists a trace with two subsequent

identical actions, the user may consider to aggregate them into a single longer

action that has the same starting time as the first occurrence and the same

ending time as the second occurrence of the action itself. As shown by

this example, however, the abstraction mechanism is syntactic and rather

straightforward, with respect to the complexity of our semantic approach,

which therefore appears to be an innovative contribution for the medical

field.

Always referring specifically to medical applications, the work in [9] pro-

poses an approach, based on semantic process mining, to verify the compli-

ance of a Computer Interpretable Guideline with medical recommendations.

In this case, however, semantic process mining refers to conformance check-

ing rather than to process discovery (as it is also the case in [7]). This work

is thus only loosely related to our contribution.

As regards trace comparison, as already observed, in this paper we have

extended a metric we published in [17], able to exploit domain knowledge in

action comparison, and to manage all types of temporal constraints. Other

metrics for trace comparison have been proposed in the literature. In par-

ticular, [49] combines a contribution related to action similarity, and a con-

tribution related to delays between actions. As regards the temporal com-

ponent, it relies on an interval distance definition which is quite similar to

ours. Differently from what we do, however, no search for the optimal ac-
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tion alignment is performed. The distance function in [49] does not exploit

action duration, and does not rely on semantic information about actions,

as we do. Finally, it does not deal with different types of qualitative tempo-

ral constraints. Another interesting contribution is [50], which addresses the

problem of defining a similarity measure able to treat temporal information,

and is specifically designed for clinical workflow traces. Interestingly, the

authors consider qualitative temporal constraints between matched pairs of

actions, resorting to the Neighbors-graph Distance, as we do. However, in

[50] the alignment problem is strongly simplified, as they only match actions

with the same name. In this sense, our approach is also much more seman-

tically oriented. Several metrics for comparing process models, instead of

traces, also exist. Most of them are based on proper extensions of the edit

distance as well and, in some cases, allow for a semantic comparison among

model actions (see, e.g., [51, 52]). However, given the very different structure

of a process model (which is a graph) with respect to a trace, these works

are only loosely related to our contribution.

In summary, in the current research panorama, our work appears to be

very innovative, for several reasons:

� many approaches, presenting very interesting and sometimes ambitious

ideas, just provide theoretical frameworks, while concrete implementa-

tions of algorithms and complete architectures of systems are often

missing;

� in semantic process mining, more work has been done in the field of

conformance checking (also in medical applications), while process dis-

covery still deserves attention (also because many approaches are still
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at the theoretical level, as commented above);

� as regards trace abstraction, it is often proposed as a very powerful

means to obtain better process discovery and analysis results, but tech-

nical details of the abstraction mechanism are usually not provided, or

are illustrated through very simple examples, where the issues we pre-

sented in Section 4.2 (related to the management of interleaved actions

or delays, and to the correct identification of temporal constraints gen-

erated when aggregating different macro-actions) do not emerge;

� as regards trace comparison, to the best of our knowledge, our previ-

ously published metric [17], enhanced to deal with abstracted traces,

still represents one of the most complete contributions to properly ac-

count for both non temporal and temporal information, and to perform

a semantic comparison between actions.

7. Conclusions

In this paper, we have presented a framework for semantic multi-level

abstraction of event log traces. In our architecture, abstracted traces are

then provided as an input to different analysis techniques – namely, trace

comparison and process discovery in the current implementation7. The most

significant and original methodological contributions of our work consist in:

1. having defined a proper mechanism for abstracting event log

traces, able to manage non trivial situations (originating from the

7It is worth noting that the abstraction mechanism could, in principle, be given as an
input to different analysis techniques as well, besides the ones described in this paper.
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treatment of interleaved actions or delays between two actions sharing

the same goal);

2. having provided a trace comparison facility, which resorts to a

similarity metric (extending the metric we presented in [17]), able to

take into account also the information recorded during the abstraction

phase.

On the other hand, as for process discovery, we currently rely on classical

algorithms embedded in the open source framework ProM [23]; indeed, the

overall integration of our approach within ProM is foreseen in our future

work.

Experimental results on trace comparison (and more specifically on trace

clustering) in the field of stroke management have shown that it is easier

to identify common behaviors in abstracted traces, with respect to ground

traces: in fact, cluster homogeneity, when operating on abstracted traces,

reaches higher values. At the same time, outliers (i.e., anomalies and in-

correct behaviors) are still clearly visible in abstracted traces as well (and

clearly detected by the clustering method we used). Process discovery exper-

iments have proved that the capability of abstracting the event log traces on

the basis of their semantic goal allows to mine clearer process models, where

unnecessary details are hidden, but key behaviors are clear. In the future,

we plan to conduct further experiments, e.g., by comparing different process

models (of different SUs) obtained from abstracted traces. Comparison will

resort to knowledge-intensive process similarity metrics, such as the one we

described in [53]. Moreover, we plan to compare abstraction results obtained

through our approach to the ones provided by the approach in [6], in order
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to evaluate pros and cons of the two techniques on real medical logs.

From a methodological viewpoint, we plan to extend our approach, in

particular as regards the expressiveness of the rule base. Specifically, we

would like to introduce temporal constraints in rule antecedents, to better

define the context of execution of an action, and thus to find its correct goal

in the case of multiple “aimsTo” relations. For instance, the execution of a

specific action before the action to be abstracted could trigger a rule only

if it took place within 24 hours. Moreover, rules could be made “fuzzy”:

referring to the previous example, a time delay of 25 hours may be accepted

as well. The use of such fuzzy thresholds in the rules would make knowledge

acquisition simpler, and would limit the number of rules to be acquired, thus

mitigating the risk of defining a too big rule base, that could impact the

computational performance of the system.

Moreover, as observed, the actions exploited to implement medical goals

are being mapped to SNOMED concepts. Mapping is not complete yet. Cur-

rently, we basically associate SNOMED codes to the actions, and, through

the codes, we get a pointer to one of the largest medical knowledge vocab-

ularies. As a next step, we will check the semantic coherence between our

ontology and SNOMED axioms.

On the other hand, since not all the medical goals needed in our appli-

cation are reported in SNOMED (and the “has-intent” SNOMED relation

covers only partially our needs), we could not map all terms at higher ontol-

ogy levels to SNOMED codes, and we often had to define the goal/subgoal

and “aimsTo” relations from scratch. Possible analyses for a tighter integra-

tion will be conducted in the future.
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Moreover, we will investigate if the various attributes reported in SNOMED

(like, e.g., the type of substances administered to a patient, or the morpho-

logical part of the body involved) may be used to abstract actions along dif-

ferent dimensions (other than the goal), which could be of interest in some

new medical project.

Finally, we wish to extensively test the overall approach in different ap-

plication domains.

As regards the two last points, it is however worth noting that our frame-

work, and in particular the abstraction mechanism, are general, but strongly

knowledge-based. Therefore:

� our work can be applied to different domains (i.e., other than stroke),

but this change requires the preliminary acquisition of the correspond-

ing knowledge sources (i.e., ontology and rules) in the new domain;

� abstraction can be made according to a different dimension (e.g., con-

sumed resources, or morphological part of the body involved), but this

change requires the preliminary acquisition of the corresponding knowl-

edge sources according to the new perspective (e.g., an ontology as-

sessing what resources are consumed by what actions - if not available

through SNOMED).

Therefore, these adaptations might be quite time consuming. Never-

theless, we believe that such improvements will make our framework more

complete and flexible, and that these further tests will testify its usefulness

in practice.
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