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In this research, we develop a new discrete-time model approach with flexibly changeable driving dy- 

namics for pricing Asian options, with possible early exercise, and a fixed or floating strike price. These 

options are ubiquitous in financial markets but can also be recast in the framework of real options. More- 

over, we derive an accurate lower bound to the price of the European Asian options under stochastic 

volatility. We also survey theoretical aspects; more specifically, we prove that our tree method for the 

European Asian option in the binomial model is unconditionally convergent to the continuous-time equiv- 

alent. Numerical experiments confirm smooth, monotonic convergence, highly precise performance, and 

robustness with respect to changing driving dynamics and contract features. 
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. Introduction 

Tree approaches are classic all-purpose tools in fields of finance

nd operations research. For example, Muroi and Suda (2013) have

ombined with discrete Malliavin calculus to compute price sensi-

ivities. In addition, the modelling of operational problems sharing

alient features with the modelling of options with early exercise

pportunities has been highlighted via several researches; (e.g.,

ee Nadarajah, Margot, & Secomandi, 2017 and references therein).

ore specifically, Zmeškal (2010) has fused with real American

ptions, as trees are a standard practical method for appraising op-

ions with possible early exercise (see also Chockalingam & Muthu-

aman, 2015 for likely alternatives) and handling management de-

isions, and a fuzzy methodology in order to allow for vagueness

f the input parameters. De Reyck, Degraeve, and Vandenborre

2008) used decision trees to model uncertainty in projects. In gen-

ral, real options are usually evaluated on trees as they tend to be

ore understandable and transparent (see, for example, Guthrie,

009 ). Other earlier contributions include, for example, Ekvall

1996) who developed a lattice approach for valuing multivariate

ontingent claims that could handle American-type exercise. 

Asian options are among the most popular path-dependent op-

ions actively traded in financial markets, such as exchange rates,
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nterest rates and commodities, due to their appealing payoffs

ependent on the averages of underlying asset prices during a pre-

pecified time window. They can be used to hedge thinly traded

ssets over a certain period of time. Also, due to averaging, their

ayoff is less susceptible to market manipulations at maturity

ompared to plain vanilla options. More importantly, the appli-

ation of Asian options to investment and management problems

real options) receives increasing attention in the literature (see,

or example, Driouchi, Bennett, & Simpson, 2010 ) which motivates

his paper. 

More specifically, we revisit the long-standing problem of valu-

ng non-linear derivatives contingent on the arithmetic average and

rovide several advances. We can distinguish between arithmetic

verage options, with a fixed or floating strike price, and with Eu-

opean or American-type exercise. The distribution of the under-

ying arithmetic average asset price is not known. For this reason,

xact closed-form solutions for pricing arithmetic Asian options are

nexistent, however numerical methods can be employed to solve

he pricing problem. 

Papers in the literature on pricing Asian options adopt, for ex-

mple, transform techniques, analytical approximations based on

oment matching, Monte Carlo simulation and partial differential

quations (PDEs); it is beyond our scope to provide a repetitorium,

ather we refer to Fusai and Kyriakou (2016) for more details. De-

pite the overwhelming volume of the literature on Asian options,

he state of affairs for them is still quite not complete. Our aim is

o contribute to their already well-publicized success by develop-

ng reliable approaches suitable for new practices, such as model

alibration and real option applications. 

https://doi.org/10.1016/j.ejor.2019.10.026
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Pricing American options with Asian features is hard, espe-

cially under general driving dynamics. To this end, we resort to a

discrete-time model approach. Commonly, trees offer a convenient

way of visualizing simplified models of stochastic dynamics for

the underlying asset price, which makes them attractive for ped-

agogical purposes and computation of derivative prices. They are

easy to explain and implement and are described virtually in every

textbook on derivatives. 

Evaluating arithmetic average options in a discrete-time model

can be quite cumbersome as the number of alternative average

realizations grows fast with the number of time steps. Hull and

White (1993) circumvent this by pricing the option for only cer-

tain designated values of the average at each level in the lat-

tice, using linear interpolation to estimate the option price at the

other average values. Facing the same challenge, Chalasani, Jha,

and Varikooty (1998) adapt instead the lower bound of Rogers and

Shi (1995) in the binomial model and combine with interpola-

tion. Chalasani, Jha, Egriboyun, and Varikooty (1999) additionally

allow for early-exercise provision. Other contributions with early-

exercise feature are limited, for example, to floating strikes (see

Hansen & Jørgensen, 20 0 0 ) or, to lognormal price dynamics (e.g.,

see Zvan, Forsyth, & Vetzal, 1998 ), or incur notable speed-accuracy

imbalances (e.g., see Ritchken, Sankarasubramanian, & Vijh, 1993 ).

Lo, Wang, and Hsu (2008) extend the model of Chalasani et al.

(1998) by considering higher moments of the underlying asset re-

turn distribution and apply an Edgeworth binomial lattice. On the

other hand, Reynaerts, Vanmaele, Dhaene, and Deelstra (2006) ad-

here to an alternative bound-based approach by putting in less

information than Chalasani et al. (1998) , implying some loss of

accuracy but improvement of computational ease. Neave and Ye

(2003) derive bounds by combining paths and exploiting the struc-

tural information in the binomial trees to simplify computations.

Succinctly, amidst others, the aforementioned contributions rely on

path grouping and approximation techniques and bounds, which

represent their main sources of error and drawback, in addition

to model restriction for the underlying state variable. Instead, we

do pricing on a magic tree in the sense that we do not require

explicit access to paths, but rather only their distributional prop-

erties which allows us to obviate any kind of approximation and

computational challenge. Also, as access to paths is not imminent,

the computational burden is not affected despite the fact that the

tree does not recombine; furthermore, the computational effort

reduces perceptibly by exploiting state space reduction. 

The work in this paper is concerned with several overarching

themes. We propose a discrete-time model approach for Asian op-

tions of European or American exercise, with a fixed or floating

strike price, in a one or two-dimensional setting depending on

the contract type and the asset price process as we summarize in

Table 1 and we explain in the paper. Our technique is precise, sim-

ple and easily adaptable to a general class of discrete-time models

that are able to reproduce stylized properties of the asset prices

in the various markets, such as random jumps and/or stochastic

volatility, while maintaining excellent convergence properties. As

a case in point, we prove the convergence of the European Asian

option price in the binomial model of Cox, Ross, and Rubinstein

(1979) to the continuous-time equivalent, while we demonstrate

smooth, monotonic convergence by means of several numerical ex-

amples under alternative driving dynamics. 

The remainder of the paper is organized as follows. In Section 2 ,

we present our discrete-time model framework and exemplify

some specifications, with extended details given in the appendix.

In Section 3 , we propose our novel tree approach for pricing arith-

metic Asian options with different payoff structures and possi-

ble early exercise. In Sections 4 and 5 , we focus on the specific

treatment of models with stochastic volatility. Section 6 presents

the proof of the consistency of our method with a PDE approach
nd a study of the convergence of the proposed methods to the

ontinuous-time model. In Section 7 , we provide various numer-

cs that demonstrate the accuracy and scale of applicability of

ur methods. Section 8 concludes the paper. Extended option pay-

ff structures and supporting theoretical results are collected in

dditional appendices. 

. The discrete-time model 

In a N -period discrete-time model, the time period [0, T ] is

artitioned into N equal time steps of length � := T / N . The price

f the underlying asset under the risk neutral probability P at

rbitrary time n �≤ T is given by 

 n = S 0 e 
∑ n 

j=0 ξ j , (1)

here ξ 0 := 0 and { ξ j } N j=1 
is a sequence of discrete random

ariables with probability distribution 

j := 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ln x 1 p 1 (Y j−1 ) 
ln x 2 p 2 (Y j−1 ) 
. . . 

. . . 
ln x d p d (Y j−1 ) 

, (2)

d ∑ 

i =1 

p i (Y j−1 ) = 1 , 

here x 1 > x 2 > · · · > x d and { Y j } N j=1 
is a (possibly multi-

imensional) Markov process. In particular, we consider three

lasses of models: 

odel 1. ln S is an independent increment process (e.g., a discrete-

time analogue of a Lévy process), in which case the dis-

tribution of ξ j does not depend on Y j , i.e., p i (Y j−1 ) = p i 
for each j = 1 , . . . , N and i = 1 , . . . , d. This is, for example,

the case of the binomial model of Cox et al. (1979) and

the bivariate tree model of Hilliard and Schwartz (2005) ,

although various alternative lattice specifications are

encompassed, such as Jarrow and Rudd (1983) , Boyle

(1988) , Omberg (1988) , Amin (1991) and Tian (1993) . 

odel 2. S is a one-dimensional diffusion with Y j := S j for each

j = 1 , . . . , N. This class of one-dimensional diffusion mod-

els nests a variety of popular asset pricing models, such

as exponential Ornstein–Uhlenbeck, Brennan–Schwartz,

Cox–Ingersoll–Ross and the constant elasticity of volatil-

ity (CEV) models (see Cai, Li, & Shi, 2014 ). In this paper,

we consider in more details the binomial lattice model

approach of Hilliard (2014) applied to the CEV model. 

odel 3. S has stochastic variance V and Y j := ( S j , V j ). Here, we

study the two-dimensional binomial lattice of Akyıldırım,

Dolinsky, and Soner (2014) applied to the Heston model. 

In Appendix A , we put under the microscope each of the mod-

ls above separately, present class-specific constructions and nar-

ow down to model-specific cases to facilitate the exposition. 

In the above models, absence of arbitrage follows by imposing

hat the risk neutral process e −rn �S n is a martingale, where r

s the continuously compounded risk-free rate of interest. The

arameters of the discrete distribution are chosen so that the

equired moments either match exactly those of the continuous

istribution, or in the limit as �→ 0, so that the discrete-time

arkov chain converges weakly to the continuous-time stochastic

odel. We can generalize further by taking into account deter-

inistic time-inhomogeneities: the parameters describing the

ocal behaviour will now be time-dependent but non-random.

hereby, the construction (1) –(2) represents a flexible parametric

nd tractable family of models, depending on the choice of { ξ j },

hat is able to reproduce the whole range of option prices across

trikes and maturities. 
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Table 1 

Summary of our methods and models. 

Model Type 

Fixed strike Floating strike 

European 

Independent increments Section 3.1 ( Eqs. (8) and (9) ) Section 3.3 ( Eqs. (17) and (18) ) 

Variable Z ( Eq. (3) ) Variable Z ( Eq. (15 )) 

One-dimensional diffusions Section 3.1 ( Eqs. (8) and ( 9 )) Section 3.3 ( Eqs. (17) and ( 18 )) 

Variables S,Z ( Eqs. (1) and ( 3 )) Variables S,Z ( Eqs. (1) and ( 15 )) 

Stochastic volatility Section 5 Section 4 ( Eq. (23 )) 

Lower bound ( Eq. (26 )) Variables X, ν ( Eqs. (20) and ( 21 )) 

American 

Independent increments Section 3.2 ( Eq. (16 )) Section 3.3 ( Eqs. (17) and ( 18 )) 

Variables S,Z ( Eqs. (1) and ( 15 )) Variable Z ( Eq. (15 )) 

One-dimensional diffusions Section 3.2 ( Eq. (16 )) Section 3.3 ( Eqs. (17) and ( 18 )) 

Variables S,Z ( Eqs. (1) and ( 15 )) Variable Z ( Eqs. (1) and ( 15 )) 

Stochastic volatility – Section 4 ( Eq. (23) ) 

Variables X, ν ( Eqs. (20) and ( 21 )) 

3
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. Tree approach for arithmetic Asian options 

In this section, we present a tree method for pricing Asian op-

ions of European or American-style exercise, with fixed or floating

trike price. Our result covers all possible variations of this con-

ract in terms of payoff specification, option exercise and monitor-

ng frequency of the underlying, in a general and practically use-

ul model framework. We also expand to the cases of a forward

tart option and an Asian option with a fixed finite monitoring fre-

uency (details are deferred to Appendix B and Appendix C ). In

hat follows, we consider different cases separately. 

.1. European fixed strike option 

The payoff at maturity T = N� of an Asian call option with

xed strike has form ∑ N 
n =0 S n 

N + 1 

− K 

)+ 
= 

(∑ N 
n =0 S n �

T + �
− K 

)+ 
, 

here (·) + denotes the positive part function, K is the strike price

nd S n is given by (1) . Define the process Z as 

 j = 

∑ j 
n =0 

S n � − K(T + �) 

S j 
= 

Z j−1 

e ξ j 
+ �, 0 < j ≤ N, (3)

here the second equality follows from (1) . By recursive substitu-

ion, we get that 

 N = Z j 

N ∏ 

k = j+1 

e −ξk + �
N−1 ∑ 

i = j+1 

N ∏ 

k = i +1 

e −ξk + �. (4)

he (forward) price of the option is then given by 

E 

(
S N Z 

+ 
N 

)
T + �

= 

S 0 e 
rT 

T + �
Ē 

(
Z + N 

)
, (5) 

here Ē (·) is the expected value under the new measure P̄ with

he numéraire given by the underlying asset price S . 1 The Radon–

ikodym derivative is given by 

d ̄P 

dP 

∣∣∣∣
n 

= 

S n 

S 0 e r n �
, 

nd the probability distribution of ξ j under P̄ is given by 

p̄ n (Y n −1 ) = p n (Y n −1 ) 
S n 

S 0 e r n �
. 
1 For a general treatment of change of numéraire techniques, readers are referred 

o Geman, Karoui, and Rochet (1995) . 

 

p  

j  
Results (3) and (4) imply that (5) can be evaluated recursively

ackwards from maturity. To this end, we build truncated ranges

or z at each time step j , [ z L , j , z U , j ], z L , j ≤ 0 ≤ z U , j . From (5) , we set

 L,N = 0 and by reversing recursion (3) we get for the lower cut-off

oint 

 L, j−1 = 

(
z L, j − �

)
x 1 , 0 < j ≤ N, (6)

oting that z L , j < 0 for j < N , where x 1 is the largest one-period re-

urn value (see Eq. (2) ). If Z 0 ≥ 0, then from the inverse relation

3) , we have that Z j > 0 for any 0 ≤ j ≤ N and the option is eventu-

lly exercised for sure. Hence, we set z U, 0 = 0 , and from (3) we get

y forward propagation in time 

 U, j = 

z U, j−1 

x d 
+ �, 0 < j ≤ N, (7)

here x d is the smallest one-period return value yielding the up-

er cut-off range point. If Z 0 < z L ,0 , then Z N < 0 and the option ex-

ires out-of-the-money surely. Following the previous analysis, we

efine 

 ( y, z, N ) = z + , (8) 

 ( y, z, j ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

z ̄μ j + � for z > z U, j 

d ∑ 

i =1 

p̄ i (y ) c 
(
Y j+1 , 

z 
x i 

+ �, j + 1 

)
for z L, j < z < z U, j 

0 for z < z L, j 

(9) 

or 0 ≤ j < N , where μ̄ j = Ē j−1 (e −ξ j ) , { ̄p i (y ) } d 
i =1 

is the probability

istribution of ξ j under the measure P̄ and Y j+1 = Y j+1 (y, x i ) . In

odel 2 for example, where Y = S, we have that Y j+1 (y, x i ) = y x i .

he forward price of the option is then given by 

S 0 e 
rT 

T + �
c 

(
Y 0 , � − K 

S 0 
(T + �) , 0 

)
. 

Note that, in Model 1, recursion (9) does not depend on y ,

ence it reduces to a one-dimensional non-recombinant tree. In

odel 2, we have a two-dimensional tree, which is recombinant in

 (but not in Z ). In Model 3, we end up with a three-dimensional

ree, which is computationally demanding; for this, we propose

 two-dimensional alternative lattice method and a lower bound

or stochastic volatility models, whose discussion is postponed to

ections 4 and 5 . 

Back to our discussion of recursion (9) , we implement, for com-

utational convenience equally spaced grids for z at each time step

 : z j := 

{
z m, j 

}n z −1 

m =0 
, where z m, j := z L, j + mδz. Note that, in general,
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if z m , j is a grid point, it is not guaranteed that z m, j /x i + � (see

Eq. (9) ) will also be, as the tree model for Z does not recombine.

More specifically, if 

z m, j 

x 
+ � ∈ 

(
z L, j+1 + m 

x 
j+1 δz, z L, j+1 + 

(
m 

x 
j+1 + 1 

)
δz 
)
, 

x = x 1 , x 2 , . . . , x d , 

where 

m 

x 
j+1 := 

⌊
z m, j /x + � − z L, j+1 

δz 

⌋
, 

� · � denoting the floor function, then, in practice,

c 
(
y, z m, j /x + �, j + 1 

)
can be obtained by interpolation; we

opt for linear interpolation. For a twice differentiable function

c(y, z, j + 1) in z , for each value of y and j , and bounded second

derivative, 

c 

(
y, 

z m, j 

x 
+ �, j + 1 

)
= αx 

j+1 c 
(
y, z L, j+1 + m 

x 
j+1 δz, j + 1 

)
+ 

(
1 − αx 

j+1 

)
× c 

(
y, z L, j+1 + 

(
m 

x 
j+1 + 1 

)
δz, j + 1 

)
+ γ x 

j+1 , (10)

where 

αx 
j+1 := 

z L, j+1 + 

(
m 

x 
j+1 

+ 1 

)
δz − z m, j /x − �

δz 

and the error is given by 

γ x 
j+1 : = 

1 

2 

∂ 2 c(y, z ∗m 

x 
j+1 

, j + 1) 

∂z 2 

(
z m, j 

x 
+ � − z L, j+1 − m 

x 
j+1 δz 

)
×
(

z L, j+1 + (m 

x 
j+1 + 1) δz − z m, j 

x 
− �

)
for some z ∗

m 

x 
j+1 

∈ (z L, j+1 + m 

x 
j+1 

δz, z L, j+1 + (m 

x 
j+1 

+ 1) δz) . From

(9) and (10) , we get that the accumulated interpolation error at

time step j and node m is 

ε m, j := 

d ∑ 

i =1 

p̄ i (y ) 
[ 
αx i 

j+1 
ε 

m 

x i 
j+1 

, j+1 
+ (1 − αx 1 

j+1 
) ε 

m 

x i 
j+1 

+1 , j+1 

] 

+ 

d ∑ 

i =1 

p̄ i (y ) γ x i 
j+1 

. (11)

The norm of the interpolation error is given by ∥∥ε j ∥∥ := max 
y 

max 
m 

∣∣ε m, j 

∣∣. (12)

Also, ∣∣γ x 
j+1 

∣∣ ≤ M ( δz ) 
2 
, (13)

where 

M = max 
y 

max 
j 

max 
m 

∣∣∣∣∂ 2 c(y, z ∗m 

, j + 1) 

∂z 2 

∣∣∣∣. 
From (12) and (13) , recursion (11) becomes ∥∥ε j ∥∥ ≤

∥∥ε j+1 

∥∥+ M ( δz ) 
2 
, 

and, at time zero, 

‖ 

ε 0 ‖ 

≤ ‖ 

ε N ‖ 

+ NM ( δz ) 
2 = 

T M ( δz ) 
2 

�

as the terminal payoff is evaluated exactly. Hence, if ( δz ) 2 has a

larger order than �, i.e., 

δz < 

√ 

�, (14)

the norm of the accumulated interpolation error converges to zero

as �→ 0. 
.2. American fixed strike option 

An American option can be exercised before maturity. For this,

t is necessary to re-define the process Z based on weights 1 / ( j +
) for arbitrary j : 

 j = 

1 
j+1 

∑ j 
n =0 

S n 

S j 
= 

j 

j + 1 

Z j−1 

e ξ j 
+ 

1 

j + 1 

, 0 ≤ j ≤ N. (15)

he original recursion (8) –(9) is adapted for (15) and the

arly-exercise feature leading to the following recursion 

˜ 
 ( y, z, N ) := 

(
z − K 

S 

)+ 
, 

c ( y, z, j ) := 

d ∑ 

i =1 

p̄ i (y ) ˜ c 

(
Y j+1 , 

j + 1 

j + 2 

z 

x i 
+ 

1 

j + 2 

, j + 1 

)
, 0 ≤ j < N 

˜ c ( y, z, j ) := max 

(
c ( y, z, j ) , z − K 

S 

)
, 0 ≤ j < N, (16)

here in (16) the holder chooses between the continuation value

nd the exercise payoff of the option. ˜ c is the value of the option

mmediately before the exercise opportunity. At the end of the re-

ursion, the forward price of the option is given by 

 0 e 
rT c ( Y 0 , 1 , 0 ) . 

y explicit dependence of the terminal payoff on S = Y, the pric-

ng problem remains two-dimensional even under the simplest

odel 1. 

.3. Floating strike option 

For the case of an Asian option with a floating strike price, we

dhere to the definition of Z in (15) . Then, pricing the particu-

ar option of European put type with coefficient K̄ ≥ 0 amounts to

alculating 

 

[ 
S N 
(
Z N − K̄ 

)+ ] = S 0 e 
rT Ē 

[ (
Z N − K̄ 

)+ ] = S 0 e 
rT c ( 1 , 0 ) 

ecursively backwards based on 

 ( y, z, N ) = 

(
z − K̄ 

)+ 
, (17)

 ( y, z, j ) = 

d ∑ 

i =1 

p̄ i (y ) c 

(
Y j+1 , 

j + 1 

j + 2 

z 

x i 
+ 

1 

j + 2 

, j + 1 

)
, 0 ≤ j < N. 

(18)

In the case of the American-type option, the holder chooses be-

ween the continuation value and the early-exercise payoff of the

ption 

˜ 
 ( y, z, j ) = max 

(
c ( y, z, j ) , z − K̄ 

)
, 0 ≤ j < N, 

here 

 ( y, z, j ) = 

d ∑ 

i =1 

p̄ i (y ) ˜ c 

(
Y j+1 , 

j + 1 

j + 2 

z 

x i 
+ 

1 

j + 2 

, j + 1 

)
, 0 ≤ j < N,

nitialized by 

˜ 
 ( y, z, N ) = 

(
z − K̄ 

)+ 
. 

t is worth noting that, by nature of the payoff of the floating strike

sian option, S is factorized out and, by change of measure, the

ricing problem becomes one-dimensional for both European and

merican options under Model 1. 
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S  

2 The reason is that the relevant variable Z proposed by Rogers and Shi (1995) for 

this type of option, Z(t) = 

∫ t 
0 S(u ) du −KT 

S 0 
, is not positive, hence the transformation 

(20) cannot be used. The transformation is necessary, otherwise using directly the 

variables Z and V the recursion for fixed strike options performs very poorly. 
. Tree method for arithmetic Asian options and stochastic 

olatility 

The discrete-time stochastic volatility model proposed in

kyıldırım et al. (2014) combined with the method proposed in

he previous section leads to a three-dimensional tree that is

omputationally quite unmanageable. Hence, we propose a two-

imensional recombinant tree method for European and American

oating strike Asian options; the fixed strike case is treated sepa-

ately in the next section. Consider the asset price process S with

tochastic variance V defined by the stochastic differential equa-

ions (A.3) . For the sake of exemplification, we focus here on the

eston model specification (A.4) . We revisit the continuous-time

ariable Z ( t ) defined in Rogers and Shi (1995) , 

(t) = 

1 

t 

∫ t 
0 S(u ) du 

S(t) 
. (19) 

dditionally, we employ the change of variable 

 (t) = 

ln Z(t) √ 

V 0 

+ ρ
V (t) 

η
, (20) 

(t) = 

2 

η

√ 

V (t) , (21) 

hat leads to a transformed system of stochastic differential equa-

ions driven by independent Brownian motions. The dynamics of X

nd ν under the measure P̄ are described by 

X (t) = μX (X (t) , ν(t) , t) dt + σX (ν(t)) d W̄ (t) , 

dν(t) = μν(ν(t)) dt + d ̄B (t) , 

here W̄ and B̄ are independent Brownian motions and 

X (x, ν, t) := 

1 

t 
√ 

V 0 

(
e −

√ 

V 0 (x − ρη
4 ν

2 ) − 1 

)
− 1 √ 

V 0 

(
r + 

1 

2 

η2 ν2 

4 

)

+ 

ρ

η

(
k ̄v + (ρη − k ) 

η2 ν2 

4 

)
, 

σX (ν) := 

η ν
√ 

1 − ρ2 

2 

√ 

V 0 

, 

μν(ν) := 

2 k ̄v /η2 − 1 / 2 

ν
− 1 

2 

(k − ηρ) ν. 

hen, we apply a two-stage tree approach to ν and X . More specif-

cally, from Hilliard (2014) we get for ν( t ) 

n = ν0 + 

n ∑ 

j=1 

ζ j , 

here 

j := 

{ √ 

�, p j = 1 / 
(
1 + e −2 μν (ν j−1 ) 

√ 

�
)

−
√ 

�, 1 − p j 
, 

nd from Akyıldırım et al. (2014) we get for X ( t ) 

 n = X 0 + 

n ∑ 

j=1 

� j + αn �n , (22) 

here 

j := 

{√ 

�, q j (X j−1 , ν j−1 ) 

−
√ 

�, 1 − q j 
. 

he coefficients { αj } and the probabilities { q j } are chosen

y matching the first two moments of the continuous-time

istribution of the increment of X , i.e., 

Ē j−1 (� j ) = μX (X j−1 , ν j−1 , j − 1) � + o(�) , 
¯
 j−1 (�

2 
j ) = σ 2 

X (ν j−1 )� + o(�) . 

he normalization of the variable ln Z ( t ) by 
√ 

V 0 allows us to con-

rol the explosive behaviour of μX ( x ) for x → −∞ and, hence, to

uarantee that the probabilities { q j } fall in the range [0,1]. 

Moreover, we note that ζ j and ϰj are independent, hence, for

xample, the joint probability of an upward movement of both X

nd ν is given by the product q j p j . Therefore, floating strike Asian

ptions are priced through the following recursion 

(x, ν, N) = 

(
exp 

(√ 

V 0 (x − ρη

4 

ν2 ) 
)

− K̄ 

)+ 

c(x, ν, j) = q j+1 p j+1 c(x + 

√ 

�, ν + 

√ 

�, j + 1) 

+ q j+1 (1 − p j+1 ) c(x + 

√ 

�, ν −
√ 

�, j + 1) 

+ (1 − q j+1 ) p j+1 c(x −
√ 

�, ν + 

√ 

�, j + 1) 

+ (1 − q j+1 ) (1 − p j+1 ) c(x −
√ 

�, ν −
√ 

�, j + 1) , 

(23) 

or 0 ≤ j < N . Note that in (23) interpolation is not required. Finally,

he price at time zero is given by c ( X 0 , ν0 , 0). Recursion (23) can

e adapted to the early exercise feature by replacing c by its con-

inuation value. 

The method presented in this section is not applicable to fixed

trike Asian options. 2 

. Lower bound for arithmetic Asian options with stochastic 

olatility model 

In light of the limitation of the approach presented in the pre-

ious section under stochastic volatility (Model 3), in what follows

e propose a lower bound for prices of European Asian options

ith a fixed or floating strike in the stochastic volatility model

ramework shown in A.3 . 

.1. Fixed strike option 

The idea for the derivation of a price bound stems from Fusai

nd Kyriakou (2016) . More specifically, 

B (λ) ≤ E 

[
( A N − K ) 

+ ]
, (24) 

here 

 N := 

∑ N 
n =0 S n 

N + 1 

, (25) 

B (λ) := E 

[
( A N − K ) 1 { G N >λ} 

]
, (26) 

nd 

 N := 

∑ N 
n =0 ln S n 

N + 1 

. 

he replacing exercise-triggering event { G N > λ} and the actual

 A N > K } relate closely aiming to minimize the distance between

he lower bound and the true option price, while, at the same

ime, making the problem more analytically tractable compared to

he original one. 

We adopt here the asset price dynamics with variance factor

rocess V by Akyıldırım et al. (2014) , i.e., 

 n = S 0 e 
∑ n 

j=1 ξ j + αn ξn , (27)
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where 

ξ j = 

{√ 

�, p j 

−
√ 

�, 1 − p j 
. 

The coefficients { αj } and the probabilities { p j } for j = 1 , . . . , N are

given by 

α j = 

σ 2 
S (V j−1 ) − 1 

2 

, 

p j = 

exp 

(
r� + 

√ 

�α j−1 ξ j−1 

)
− exp 

(
−

√ 

�(1 + α j ) 
)

exp 

(√ 

�(1 + α j ) 
)

− exp 

(
−

√ 

�(1 + α j ) 
) . 

where σ S ( · ) is as in (A.4) . From (27) , 

G N = ln S 0 + 

N ∑ 

j=0 

(
1 − j 

N + 1 

)
ξ j + 

1 

N + 1 

N ∑ 

j=1 

α j ξ j . (28)

The lower bound (26) is given in terms of the Fourier inversion

formula (see Goldberg, 1961 , Theorem 5C) 

LB (λ) = 

e −δλ

2 π

∫ 
R 

e −iuλ�(u ; δ) du, (29)

where the constant δ > 0 ensures integrability and the Fourier

transform is given by 

�(u ; δ) 

:= 

∫ 
R 

e iuλ+ δλ
{ 

1 

N + 1 

∑ N 

n =0 
E 
[
( S n − K ) 1 { G N >λ} 

]} 
dλ

= 

S iu + δ
0 

iu + δ

{
S 0 

N + 1 

∑ N 

n =0 
E 

[
e 
∑ n 

j=0 ξ j + αn ξn + i (u −iδ) 
∑ N 

j=0 

(
1 − j−α j 

N+1 

)
ξ j 

]

− KE 

[
e 

i (u −iδ) 
∑ N 

j=0 

(
1 − j−α j 

N+1 

)
ξ j 

]}

= 

S iu + δ
0 

iu + δ

{ 
S 0 

N + 1 

∑ N 

n =0 
�(−iw 1 ,n , . . . , −iw N,n ) 

− K�(−i v 1 , . . . , −i v N ) } , (30)

where the second equality follows from expressions (1) and (28) ,

and 

�(u 1 , . . . , u N ) := E 

(
e i 

∑ N 
j=1 u j ξ j 

)
(31)

is the joint characteristic function of the random variables { ξ j } N j=1 
.

The characteristic function � can be calculated by backward recur-

sion. We define the conditional characteristic function 

ϕ n = E n 

(
e i 

∑ N 
j= n u j ξ j 

)
. 

Starting from 

ϕ N = e iu N ξN , 

we calculate for each of n = 1 , . . . , N

ϕ n −1 = E n −1 

(
e iu n −1 ξn −1 ϕ n 

)
yielding eventually � = ϕ 0 . The coefficients { v j } and { w j,n } are

given by 

v j := i (u − iδ) 
(

1 − j−α j 

N+1 

)
, 0 < j ≤ N , 

w j,n := 

{ 

1 + v j , 0 < j < n 

1 + α j + v j , j = n 

v j , n < j ≤ N 

Varying the free parameter λ in (26) leads to different lower

bounds; we denote by λ∗ the maximizer of (26) : 

λ∗ := arg max 
λ

LB (λ) . 

This satisfies the optimality condition 

∗

E ( A N | Y N = λ ) = K. (32) 
.2. Floating strike option 

The case of the floating strike Asian option is dealt with simi-

arly with an additional change of numéraire given by the underly-

ng S . In particular, 

 

[ (
A N − K̄ S N 

) + ] = S 0 e 
rT 

Ē 

[ (
A N S 

−1 
N − K̄ 

)+ ] 
, 

nd 

B (λ) = Ē 

[(
A N S 

−1 
N − K̄ 

)
1 { G N −ln S N >λ} 

]
≤ Ē 

[ (
A N S 

−1 
N − K̄ 

)+ ] 
, 

here G N is given by (28) . The lower bound is given from the

ourier transform representation (29) with 

(u ; δ) = 

1 

iu + δ

{ 
1 

N + 1 

∑ N 

n =0 
Ē 

[ 
e −

∑ N 
j= n +1 ξ j −αn ξn −i (u −iδ) 

∑ N 
j=0 

j−α j 
N+1 ξ j 

]
−K̄ ̄E 

[ 
e −i (u −iδ) 

∑ N 
j=0 

j−α j 
N+1 ξ j 

] } 
= 

1 

iu + δ

{ 
1 

N + 1 

∑ N 

n =0 
�̄(−iw 1 ,n , . . . , −iw N,n ) 

− K̄ �̄(−i v 1 , . . . , −i v N ) 
}
, 

here 

¯ (u 1 , . . . , u N ) = E 

(
e −rN�+ i ∑ N 

j=1 (u j −i ) ξ j 

)
, 

 j = −i (u − iδ) 
j−α j 

N+1 
, 0 < j ≤ N 

, 

 j,n = 

{ 

v j , 0 < j < n 

v j − α j , j = n 

v j − 1 , n < j ≤ N 

. 

We note that the lower bounds for fixed and floating strike op-

ions can be adapted to Models 1 and 2. More details can be made

vailable by the authors upon request, including an upper bound

or the error of this lower bound price approximation. 

. Relationship with continuous-time diffusion model 

In this section, we focus on the application of our tree method

or pricing a European Asian option with a fixed strike price based

n the construction in Section 3.1 in the binomial model setting

f Cox et al. (1979) (see A.1 ). In what follows, we prove that our

ethod is consistent with the PDE of Rogers and Shi (1995) . This

s important as we show that our tree method overcomes the well-

nown instability of Rogers and Shi (1995) PDE numerical schemes

hen the volatility is low (see Barraquand & Pudet, 1996 and

ubois & Leliévre, 2005 ). In fact, we prove the unconditional con-

ergence of our method later in Section 6.2 in the diffusion model

ase and we demonstrate the convergence of the method via ex-

ensive numerical tests for the other models. 

.1. Discrete-time model and PDE consistency 

Consider the PDE 

∂c 

∂t 
+ Gc = 0 , (33)

here c ( z , t ) is a sufficiently smooth function, G the differential

perator 

 := ( 1 − rz ) 
∂ 

∂z 
+ 

1 

2 

σ 2 z 2 
∂ 2 

∂z 2 
, 

nd the relevant boundary condition is 

(z, T ) = z + . 

he solution of (33) satisfies 

 

(−KT 

S 0 
, 0 

)
= 

e −rT 

S 0 
E 

[(∫ T 

0 

S(t) dt − KT 

)+ ]
, 
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hen S ( t ) is represented by the geometric Brownian motion. 

roposition 1. For any sufficiently smooth function c ( z , t ), 

lim 

→ 0 

G �c − c 

�
= 

∂c 

∂t 
+ Gc, 

here the differential operator G is defined in (33) and we addition-

lly define the operator 

 �c(z, t) = p̄ c 

(
z 

x 1 
+ �, t + �

)
+ (1 − p̄ ) c 

(
z 

x 2 
+ �, t + �

)
rom (9) . 3 

roof. From the Taylor expansion 

 

(
z 

x 
+ �, t + �

)
= c(z, t) + 

∂c(z, t) 

∂t 
� + 

∂c(z, t) 

∂z 

[ 
z 

(
1 

x 
− 1 

)
+ �

] 
+ 

1 

2 

∂ 2 c(z, t) 

∂z 2 

[
z 2 
(

1 

x 
− 1 

)2 

+ 2 z 

(
1 

x 
− 1 

)
�

]
+ o(�) , 

e obtain 

 �c(z, t) − c(z, t) 

= 

∂c(z, t) 

∂t 
� + 

∂c(z, t) 

∂z 

[ 
z ̄p 

(
1 

x 1 
− 1 

x 2 

)
+ z 

(
1 

x 2 
− 1 

)
+ �

] 
+ 

1 

2 

∂ 2 c(z, t) 

∂z 2 

[
z 2 p̄ 

(
1 

x 1 
− 1 

)2 

+ z 2 (1 − p̄ ) 
(

1 

x 2 
− 1 

)2 

+ 2 z ̄p 

(
1 

x 1 
− 1 

x 2 

)
� + 2 z 

(
1 

x 2 
− 1 

)
�
] 

+ o(�) . 

sing the expansions 

p̄ 

(
1 

x 1 
− 1 

x 2 

)
+ 

1 

x 2 
− 1 = −r� + o(�) , 

p̄ 

(
1 

x 1 
− 1 

)2 

+ (1 − p̄ ) 
(

1 

x 2 
− 1 

)2 

= σ 2 � + o(�) , 

p̄ 

(
1 

x 1 
− 1 

x 2 

)
� + 

(
1 

x 2 
− 1 

)
� = o(�) , 

e further obtain 

 �c(z, t) − c(z, t) 

= 

(
∂c(z, t) 

∂t 
+ ( 1 − rz ) 

∂c(z, t) 

∂z 
+ 

1 

2 

σ 2 z 2 
∂ 2 c(z, t) 

∂z 2 

)
� + o(�) , 

ence the proposition is proved. �

From Proposition 1 , we conclude that our discrete-time op-

ion price model approach is consistent with the PDE proposed

y Rogers and Shi (1995) . As highlighted, for example, in Dubois

nd Leliévre (2005) , applying a standard finite difference scheme

o this PDE results in instability for low volatility. On the contrary,

e prove using probabilistic arguments in the next section that,

or a fixed strike Asian option in the Cox et al. (1979) model, our

ethod is unconditionally convergent. If we take into account also

he interpolation error due to the non-recombinant tree, we recall

rom Section 3.1 the sufficient condition (14) for the error conver-

ence to zero. 

.2. Convergence of the tree method 

In this section, we prove the convergence of the actual Euro-

ean Asian option price with a fixed strike in the discrete-time
3 Compared to (9) , we have here accentuated, by slightly abusing the original 

otation, the dependence on time t . 

E

odel to the continuous-time equivalent when the underlying pro-

ess is a diffusion. The challenge when proving the convergence

esides in showing that the discrete average defined in (25) con-

erges to the continuous average defined in Eq. (35) . To prove this

onvergence, the assumptions of the Functional Limit Theorem (see

heorem 4 in Appendix D ) must be satisfied. 

heorem 2. Consider S n defined in (1) with E(ξ j ) = m � + o(�) and

ar (ξ j ) = σ 2 � + o(�) , j = 1 , 2 , . . . , n, and A N defined in (25) . As-

ume that 

up 

N 

E 

(
A 

2 
N 

)
< ∞ . (34) 

Then, 

lim 

→∞ 

E 

[
( A N − K ) 

+ ] = E 

[
( A T − K ) 

+ ]
, 

here 

A T := 

1 

T 

∫ T 

0 

S(t ) dt , (35) 

(t) := S 0 e 
mt + σW (t ) 

nd W is the standard Brownian motion. 

roof. Without loss of generality assume T = 1 , hence 0 ≤ t ≤ 1

nd � = 1 /N. Define the random function 

 N (t) = 

� Nt � ∑ 

j=1 

ξ j −
m 

N 

� Nt � . 

rom the Functional Central Limit Theorem (see Theorem 4 in

ppendix D ), 

 N (t) 
d → σW (t) 

ith respect to the Skorokhod topology on the space of càdlàg

unctions D [0, 1]. Hence, 

 

Nt � ∑ 

j=1 

ξ j 
d → mt + σW (t) . 

 n can be rewritten as 

 n = S 0 e 
∑ n 

j=1 ξ j = S 0 e 
m 

n 
N + X n (1) . 

rom the Integral Functional Convergence Theorem (see

heorem 5 in Appendix D ), we have that 4 

1 

N 

N ∑ 

n =1 

e X n (1) d → 

∫ 1 

0 

e σW (t) dt. 

or X 0 (1) = 0 , we rewrite 

 N = 

S 0 
N + 1 

N ∑ 

n =0 

e m 

n 
N + X n (1) 

= 

S 0 N 

N + 1 

( 

1 

N 

+ 

1 

N 

N ∑ 

n =1 

e m 

n 
N + X n (1) 

) 

d → 

∫ 1 

0 

S 0 e 
mt + σW (t ) dt = A 1 . 

We now prove that the pricing expectation of the discrete arith-

etic Asian option converges to that of the continuous Asian op-

ion. Indeed, 

 

[
( A N − K ) 

+ ] = E 

(
A N 1 { A N >K} 

)
− KE 

(
1 { A N >K} 

)
, 

here the second expected value can be written as 

 

(
1 { A N >K} 

)
= 1 − P ( A N < K ) 
4 Note that for each n ∈ N , n ≤ N , there exists t ∈ [0 , 1] such that n = � Nt � . 
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Table 2 

The table reports prices of European and American continuous Asian options in 

the Black–Scholes model for different volatilities σ , fixed strikes K , and coefficients 

K̄ for the floating-strike option by convergence of our tree method (refer to rele- 

vant Sections 3.1 –3.3 ) based on the binomial model with increasing monitoring fre- 

quency. Parameters used are reported in the table; additional parameters: S 0 = 100 , 

r = 0 . 09 per annum, and T = 1 year. 

Asian fixed-strike call option Asian floating-strike put option 

σ K European σ American σ K̄ European American 

0.05 90 13.3782 0.05 13.4487 0.2 0.9 7.5982 12.7314 

0.05 95 8.8088 0.05 8.8550 0.2 0.95 4.6567 8.5164 

0.05 100 4.3082 0.05 4.3255 0.2 1 2.6210 5.0668 

0.05 105 0.9583 0.05 0.9596 0.2 1.05 1.3582 2.6670 

0.05 110 0.0521 0.05 0.0522 0.2 1.1 0.6513 1.2646 

0.4 90 16.4999 0.2 15.518 0.4 0.9 11.4822 18.4072 

0.4 95 13.5106 0.2 11.032 0.4 0.95 8.9622 14.7736 

0.4 100 10.9237 0.2 7.297 0.4 1 6.8994 11.5957 

0.4 105 8.7299 0.2 4.524 0.4 1.05 5.2476 8.9162 

0.4 110 6.9034 0.2 2.637 0.4 1.1 3.9488 6.7346 

Table 3 

The table reports prices of European and American continuous Asian options in 

Merton (1976) model for different fixed strikes K and coefficients K̄ for the floating- 

strike option by convergence of our tree method (refer to relevant Sections 3.1 –

3.3 ) based on the bivariate tree of Hilliard and Schwartz (2005) with increasing 

monitoring frequency. Model parameters are from Hilliard and Schwartz (2005) 

: σ ∈ { √ 

0 . 05 , 0 . 05 } , λJ = 5 , σJ = 

√ 

0 . 05 , and μJ = −σ 2 
J / 2 ; additional parameters: 

S 0 = 40 , T = 1 year, r = 0 . 08 per annum. 

Asian fixed-strike call option Asian floating-strike put option 

σ K European σ K̄ American 

√ 

0 . 05 30 11.48036 
√ 

0 . 05 0.75 13.9893 √ 

0 . 05 35 8.0242 
√ 

0 . 05 0.875 10.0466 √ 

0 . 05 40 5.3875 
√ 

0 . 05 1 6.9119 √ 

0 . 05 45 3.5532 
√ 

0 . 05 1.125 4.6676 √ 

0 . 05 50 2.3456 
√ 

0 . 05 1.25 3.1273 

0.05 30 11.3290 0.05 0.75 13.6657 

0.05 35 7.7147 0.05 0.875 9.6323 

0.05 40 4.9377 0.05 1 6.3381 

0.05 45 3.1121 0.05 1.125 4.2263 

0.05 50 1.9748 0.05 1.25 2.8028 
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t  

s  

O  

f  

(  
by convergence in distribution. Regarding the first expected value,

define function h : R → R : h (a ) = a 1 { a>K} . The set of disconti-

nuities of h is D h = { K} and P (A 1 ∈ D h ) = 0 . Then, from the

Continuous Mapping Theorem (see Theorem 6 in Appendix D ), 

h (A N ) 
d → h (A 1 ) . 

Next, we prove that h ( A N ) is uniformly integrable. A sufficient con-

dition for the uniform integrability is that, for some ε > 0, 

sup 

N 

E 

[| h (A N ) | 1+ ε]
< ∞ . 

We fix ε = 1 and obtain 

sup 

N 

E 

[
h (A N ) 

2 
]

< sup 

N 

E 

(
A 

2 
N 

)
< ∞ , 

by assumption (see Example 3 ). Finally, from convergence of mean

(see Theorem 7 in Appendix D ), we get 

lim 

N→∞ 

E [ h (A N ) ] = E [ h (A 1 ) ] . 

�

Example 3. The assumptions of Theorem 2 are satisfied in the Cox

et al. (1979) model (see A.1 ). In fact, we have that 

E 

(
ξ j 

)
= 

(
r − σ 2 

2 

)
� + o(�) , Var 

(
ξ j 

)
= σ 2 � + o(�) , 

and 

E 

(
A 

2 
N 

)
= 

S 2 0 

(N + 1) 2 

[
1 − e 2 r 

N+1 
N 

1 − e 2 r 
1 
N 

+ 2 

(1 − e 2 r 
N+1 

N )(1 − e r 
N−1 

N ) 

(1 − e r 
1 
N )(1 − e 2 r 

1 
N ) 

]
. (36)

Hence, for each fixed N , (36) is finite. Finally, 

lim 

N→∞ 

E 

(
A 

2 
N 

)
= 

S 2 0 

2 

(1 − e 2 r )(1 − e r ) 

r 
< ∞ . 

We conclude that 

sup 

N 

E 

(
A 

2 
N 

)
< ∞ . 

7. Numerical results and analysis 

For the purposes of our numerical experiments we consider the

binomial model of Cox et al. (1979) , the bivariate tree of Hilliard

and Schwartz (2005) when the underlying process is a Merton

(1976) jump diffusion, as a possible way of including sudden and

extreme departures, the binomial tree of Hilliard (2014) to repre-

sent the CEV model and Akyıldırım et al. (2014) for the Heston

stochastic volatility model. We consider options of European and

American exercise type, fixed strike calls and floating strike puts. 

In Figs. 1–3 , we study the convergence of discrete-time model

option prices to their continuous-time equivalents with increasing

number of time steps. More specifically, in Fig. 1 , in the case of

European Asian options, we compute error patterns given by the

distances of the computed option prices using our tree method

(see Table 1 for the indicated cases) from the result of Fusai

(2004) in the lognormal model (values are reported in the top

panel of Table E.9 ). In the absence of an analogous universal

benchmark in the American Asian option case (e.g., the method-

ology of Hansen & Jørgensen, 20 0 0 does not generalize to fixed

strike options; the PDE approach of Zvan et al., 1998 is limited to

lognormal dynamics), we adhere to standard practice of computing

differences of prices from our method (see Table 1 ) following suc-

cessive time grid refinements and studying their pattern. Despite a

widely documented in the literature convergence of tree models to

Black–Scholes prices in a wavy fashion (e.g., see Broadie & Detem-

ple, 1996 and Tian, 1999 ), our method is, in general, endowed with

monotonic convergence, which is remarkably good for sufficiently
arge number of time steps. In particular, the error ratio converges

o 2 quickly enough, implying that the error is almost exactly

alved when we double the time steps, hence the convergence

an be further accelerated by Richardson extrapolation. This

owerful feature allows us to gauge the precision of the method

nd value options to the desired level of accuracy. Regardless of

he driving dynamics, a similar behaviour is embedded in the

ump diffusion and the CEV model as observed in Figs. 2 and 3 .

More results can be made available by the authors upon request,

or example, for one-dimensional diffusions.) In the absence of

 true analytical benchmark in the European option case under

ontinuous averaging in the continuous-time Merton model,

e compute this using an accurate control variate Monte Carlo

CVMC) strategy as described in Fusai and Kyriakou (2016) (results

re reported in the bottom panel of Table E.9 ). In the CEV model,

or European options, the continuous-average continuous-time

rices are calculated by Monte Carlo simulation. In both the jump

iffusion and CEV models, for the American option, we adhere to

 similar practice as in Fig. 1 . The cases presented in Figs. 1 and

 are accompanied by Tables 2 and 3 which contain converged

rices of our method enhanced by extrapolation, corresponding

o European and American Asian options with a fixed or floating

trike, in the Black–Scholes or the Merton jump diffusion model.

ur results in the former model choice match, for example, those

rom the implementation of the van Leer flux limiter of Zvan et al.

1998) and finite differences in Hansen and Jørgensen (20 0 0) . As
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Fig. 1. Plots show convergence patterns with increasing number of time steps N of our method in the binomial model for European and American Asian options with 

different fixed strikes K , coefficients K̄ for the floating-strike option (refer to relevant Sections 3.1 –3.3 ), and volatilities σ . For more information about the computation of 

error, refer to Section 7 . Parameters used are reported on the plots; additional parameters: S 0 = 100 , r = 0 . 09 per annum, and T = 1 year. 



1194 A.M. Gambaro, I. Kyriakou and G. Fusai / European Journal of Operational Research 282 (2020) 1185–1199 

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

log
2
 N

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

lo
g

10
 e

rr
or

 

K = 30
K = 35
K = 40
K = 45
K = 50

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

log
2
 N

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

lo
g

10
 e

rr
or

 

K = 30
K = 35
K = 40
K = 45
K = 50

4 5 6 7 8 9 10

log
2
 N 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

lo
g

10
 p

ric
e N

-p
ric

e 2N

4 5 6 7 8 9 10

log
2
 N 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

lo
g

10
 p

ric
e N

-p
ric

e 2N

Fig. 2. Plots show convergence patterns with increasing number of time steps N of our method in the bivariate tree model of Hilliard and Schwartz (2005) for European 

and American Asian options (refer to relevant Sections 3.1 and 3.3 ). See also notes about the error computation in Section 7 . Parameters used are reported on the plots; 

additional parameters: S 0 = 40 , T = 1 year, and r = 0 . 08 per annum. 
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Fig. 3. Plots show convergence patterns with increasing number of time steps N of our method in the binomial tree of Hilliard (2014) for the CEV model and for European 

and American Asian options (refer to relevant Sections 3.1 and 3.3 ). See also notes about the error computation in Section 7 . Parameters used are from Cai et al. (2014 , Table 

8): β = −0 . 5 , δ S 
β
0 

= 0 . 25 , S 0 = 100 , T = 1 year, and r = 0 . 05 per annum. 
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Table 4 

The table reports prices of European Asian call options with fixed strikes K in the binomial model. Comparisons are presented between our tree model (Tree) approach (9) , 

the maximum lower bound of Fusai and Kyriakou (2016) (MLB), and the methods of Chalasani et al. (1998) and Lo et al. (2008) against control variate Monte Carlo (CVMC) 

price estimates (control variate given by the MLB) with standard errors (std. err.) also reported. Absolute % relative pricing errors with respect to CVMC price estimates are 

presented as well as the average error (AAPRE). Parameters used are reported in the table; additional parameters: S 0 = 100 , T = 1 year and N = 30 time steps. CPU times 

are per option price. 

K σ r Tree Abs. rel. MLB Abs. rel. Chalasani et al. Abs. rel. Lo et al. Abs. rel. CVMC Std. err. 

err. (%) err. (%) err. (%) err. (%) CV MLB ×10 −5 

95 0.05 0.05 7.17725 0.000 7.17725 0.000 7.178 0.010 7.177 0.004 7.17725 0.002 

100 0.05 0.05 2.71194 0.000 2.71195 0.000 2.708 0.146 2.712 0.002 2.71195 0.003 

105 0.05 0.05 0.33239 0.001 0.33236 0.011 0.309 7.038 0.332 0.118 0.33239 0.037 

95 0.05 0.09 8.81080 0.000 8.81080 0.000 8.811 0.002 8.811 0.002 8.81080 0.000 

100 0.05 0.09 4.30572 0.000 4.30572 0.000 4.301 0.110 4.306 0.006 4.30572 0.003 

105 0.05 0.09 0.95674 0.002 0.95668 0.008 0.892 6.768 0.957 0.026 0.95675 0.056 

90 0.1 0.05 11.94740 0.000 11.94738 0.000 11.949 0.013 11.947 0.003 11.94739 0.028 

100 0.1 0.05 3.63480 0.001 3.63477 0.002 3.632 0.078 3.635 0.004 3.63485 0.045 

110 0.1 0.05 0.31950 0.014 0.31938 0.054 0.306 4.240 0.319 0.172 0.31955 0.164 

90 0.1 0.09 13.38507 0.000 13.38506 0.000 13.386 0.007 13.385 0.001 13.38507 0.014 

95 0.1 0.09 8.90570 0.000 8.90569 0.000 8.91 0.048 8.91 0.048 8.90570 0.030 

100 0.1 0.09 4.90875 0.001 4.90872 0.001 4.902 0.138 4.909 0.004 4.90879 0.044 

105 0.1 0.09 2.06582 0.002 2.06567 0.009 2.03 1.736 2.07 0.200 2.06586 0.151 

110 0.1 0.09 0.62077 0.004 0.62056 0.038 0.582 6.250 0.621 0.032 0.62080 0.148 

90 0.3 0.05 13.92967 0.000 13.92834 0.009 13.929 0.004 13.928 0.012 13.92961 0.887 

100 0.3 0.05 7.92504 0.001 7.92388 0.013 7.924 0.012 7.924 0.012 7.92493 0.770 

110 0.3 0.05 4.04261 0.000 4.04103 0.039 4.040 0.065 4.041 0.040 4.04262 1.144 

90 0.3 0.09 14.96211 0.000 14.96101 0.007 14.971 0.060 14.961 0.007 14.96207 0.709 

100 0.3 0.09 8.81200 0.000 8.81087 0.013 8.807 0.057 8.811 0.012 8.81202 0.681 

110 0.3 0.09 4.67376 0.003 4.67203 0.034 4.661 0.270 4.672 0.035 4.67364 1.066 

90 0.5 0.09 18.15276 0.001 18.14721 0.031 18.15 0.016 18.14 0.071 18.15287 2.964 

100 0.5 0.09 12.98962 0.000 12.98440 0.040 12.99 0.003 12.98 0.074 12.98957 2.830 

110 0.5 0.09 9.07562 0.003 9.06972 0.063 9.08 0.051 9.07 0.059 9.07540 3.202 

AAPRE 0.001 0.016 1.179 0.041 

time (seconds) 0.2 0.4 N.A. N.A. 

Table 5 

The table reports prices of European Asian call options with fixed strikes K in the binomial model. Comparisons are presented between our tree model approach (9) , MLB 

and the methods of Neave and Ye (2003) and Hull and White (1993) against CVMC price estimates. See also notes in Table 4 . Parameters used are reported in the table; 

additional parameters: S 0 = 50 , r = 0 . 1 per annum, annual volatility σ = 0 . 3 , and N = 40 time steps. CPU times are per option price. The CPU time of Neave and Ye (2003) 

method is from Nadarajah et al. (2017 , p. 213). The CPU time of the Hull and White (1993) method corresponds to our implementation of the Matlab function asianbycrr . 

K T Tree Abs. rel. MLB Abs. rel. Neave & Ye Abs. rel. Hull & White Abs. rel. CVMC Std. err. 

err. (%) err. (%) err. (%) err. (%) CV MLB ×10 −5 

40 0.5 10.75389 0.000 10.75377 0.001 10.754 0.001 10.755 0.010 10.75389 0.146 

45 0.5 6.35944 0.000 6.35921 0.004 6.360 0.009 6.363 0.056 6.35944 0.203 

50 0.5 3.00817 0.000 3.00796 0.007 3.007 0.039 3.012 0.127 3.00817 0.187 

55 0.5 1.10726 0.001 1.10690 0.033 1.104 0.295 1.108 0.066 1.10727 0.251 

60 0.5 0.31801 0.004 0.31759 0.129 0.315 0.942 0.317 0.313 0.31800 0.328 

40 1 11.54219 0.000 11.54173 0.004 11.544 0.016 11.545 0.024 11.54219 0.371 

45 1 7.61226 0.000 7.61173 0.007 7.613 0.010 7.616 0.049 7.61227 0.399 

50 1 4.52127 0.000 4.52071 0.013 4.519 0.051 4.522 0.016 4.52129 0.416 

55 1 2.42240 0.001 2.42152 0.037 2.416 0.265 2.420 0.100 2.42242 0.530 

60 1 1.18096 0.002 1.17971 0.104 1.173 0.672 1.176 0.418 1.18093 0.760 

40 1.5 12.28160 0.000 12.28079 0.007 12.283 0.011 12.285 0.028 12.28159 0.564 

45 1.5 8.66721 0.000 8.66635 0.010 8.667 0.002 8.670 0.033 8.66718 0.549 

50 1.5 5.74387 0.001 5.74290 0.018 5.740 0.068 5.743 0.016 5.74393 0.573 

55 1.5 3.59108 0.000 3.58961 0.041 3.582 0.252 3.585 0.169 3.59107 0.882 

60 1.5 2.13287 0.001 2.13075 0.101 2.121 0.558 2.124 0.417 2.13290 1.221 

40 2 12.95042 0.000 12.94929 0.009 12.952 0.012 12.953 0.020 12.95042 0.713 

45 2 9.58046 0.000 9.57926 0.013 9.580 0.005 9.582 0.016 9.58047 0.688 

50 2 6.79481 0.000 6.79339 0.021 6.789 0.085 6.792 0.041 6.79479 0.840 

55 2 4.64116 0.001 4.63908 0.045 4.630 0.241 4.633 0.176 4.64118 1.192 

60 2 3.06959 0.003 3.06659 0.101 3.053 0.543 3.057 0.413 3.06968 1.471 

AAPRE 0.001 0.035 0.204 0.125 

time (seconds) 0.2 0.4 1.0 0.2 
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lready discussed, higher precision is possible if we extrapolate

aw prices computed for a larger number of time steps. 

To verify the accuracy of our proposed tree method, in

ables 4–7 we compare our results with the maximum lower

ound (MLB) proposed in Fusai and Kyriakou (2016) and other

mportant discrete-time option price model contributions. For dif-

erent strikes, model and market parameters, monitoring frequen-

ies and contract specifications, we report option prices as well
s % relative pricing errors and the average error, obtained for

ach method against highly accurate reports from Monte Carlo

imulation using the MLB as a control variate. More specifically,

rom Table 4 , we see that, as expected, in all thirty-two param-

ter combinations our tree method is very close to the Monte

arlo price estimates (the latter are accurate to 4–6 decimals with

5% confidence): the average absolute % relative error of our tree

rices against the Monte Carlo estimates is 0.001%. The raw MLB,
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Table 6 

The table reports prices of European Asian call options with fixed strikes K in the bivariate tree model of Hilliard and 

Schwartz (2005) . Comparisons are presented between our tree model approach (9) and the MLB against CVMC price 

estimates. See also notes in Table 4 . Model parameters are from Hilliard and Schwartz (2005) : σ ∈ { √ 

0 . 05 , 0 . 1 , 0 . 05 } , 
λJ = 5 , σJ ∈ { √ 

0 . 05 , 0 . 3 } , and μJ = −σ 2 
J / 2 ; additional parameters: S 0 = 40 , T = 1 year, r = 0 . 08 per annum, and N = 200 

time steps. CPU times are per option price. 

K σ σ J Tree Abs. rel. MLB Abs. rel. CVMC Std. err. 

err. (%) err. (%) CV MLB ×10 −4 

30 
√ 

0 . 05 
√ 

0 . 05 11.47656 0.000 11.47188 0.044 11.4769 0.733 

35 
√ 

0 . 05 
√ 

0 . 05 8.01953 0.003 8.01690 0.058 8.0216 0.712 

40 
√ 

0 . 05 
√ 

0 . 05 5.38301 0.005 5.38170 0.077 5.3859 0.692 

45 
√ 

0 . 05 
√ 

0 . 05 3.54873 0.008 3.54715 0.123 3.5515 0.778 

50 
√ 

0 . 05 
√ 

0 . 05 2.34122 0.007 2.33810 0.207 2.3429 0.881 

30 0.1 0.3 12.01148 0.002 12.01157 0.018 12.0137 1.273 

35 0.1 0.3 8.81714 0.004 8.81728 0.042 8.8210 1.223 

40 0.1 0.3 6.34105 0.008 6.34126 0.073 6.3459 1.370 

45 0.1 0.3 4.58644 0.008 4.58672 0.075 4.5902 1.373 

50 0.1 0.3 3.36379 0.013 3.36415 0.116 3.3681 1.463 

30 0.05 
√ 

0 . 05 11.32546 0.000 11.32146 0.035 11.3254 0.639 

35 0.05 
√ 

0 . 05 7.71002 0.003 7.70861 0.047 7.7123 0.638 

40 0.05 
√ 

0 . 05 4.93491 0.008 4.93463 0.089 4.9390 0.646 

45 0.05 
√ 

0 . 05 3.10849 0.011 3.10870 0.100 3.1118 0.638 

50 0.05 
√ 

0 . 05 1.97045 0.011 1.96823 0.222 1.9726 0.791 

AAPRE 0.006 0.088 

time (seconds) 0.8 1.0 

Table 7 

The table reports prices of European Asian call options with fixed strikes K in the binomial model for the CEV diffusion. 

Comparisons are presented between our tree method (9) and Cai et al. (2014) against Monte Carlo (MC) price estimates. 

Parameters used are reported in the table; additional parameters: S 0 = 100 , δ S 
β
0 

= 0 . 25 , T = 1 year, r = 0 . 05 per annum 

and N = 250 time steps. CPU times are per option price. The CPU times in (Cai et al., 2014, Table 8) are reproduced here. 

K β Tree Abs. rel. Cai et al. Abs. rel. MC Std. err. 

err. (%) err. (%) 

80 −0.5 21.7162 0.024 21.7143 0.033 21.7214 0.0084 

90 −0.5 13.3322 0.015 13.3288 0.041 13.3342 0.0075 

100 −0.5 6.8584 0.004 6.8537 0.065 6.8581 0.0058 

110 −0.5 2.8640 0.061 2.8612 0.161 2.8658 0.0039 

120 −0.5 0.9559 0.433 0.9554 0.484 0.9601 0.0022 

80 −0.25 21.6731 0.032 21.6712 0.041 21.6800 0.0085 

90 −0.25 13.2726 0.026 13.2690 0.053 13.2761 0.0076 

100 −0.25 6.8536 0.006 6.8485 0.081 6.8541 0.0060 

110 −0.25 2.9327 0.023 2.9296 0.128 2.9334 0.0041 

120 −0.25 1.0413 0.261 1.0407 0.313 1.0440 0.0024 

80 0.25 21.6025 0.005 21.6017 0.009 21.6037 0.0088 

90 0.25 13.1594 0.011 13.1555 0.019 13.1580 0.0080 

100 0.25 6.8462 0.043 6.8403 0.044 6.8433 0.0064 

110 0.25 3.0755 0.046 3.0718 0.075 3.0741 0.0045 

120 0.25 1.2285 0.123 1.2284 0.134 1.2301 0.0029 

AAPRE 0.074 0.112 

time (seconds) 4.4 0.2 
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i.e., not combined with Monte Carlo simulation, slightly underper-

forms, being a lower bound price approximation, still it is suffi-

ciently accurate resulting in a lower average error of 0.014%. The

prices from Chalasani et al. (1998) and the improved Lo et al.

(2008) are less precise with average errors of 1.143% and 0.032%,

respectively. In Table 5 , we extend to comparisons with Neave and

Ye (2003) and Hull and White (1993) . As before, the tree method

performs best with a 0.001% average error, or equivalently an ob-

served overall accuracy of 4–5 decimals, whereas the MLB comes

second with an average error of 0.035%. Our proposed method

produces a price in a tenth of a second for 30–40 time steps,

whereas Monte Carlo simulation is far more computationally inten-

sive. Each reported time corresponds to one option price computed

in Matlab R2018a based on an Intel Core i7 CPU at 2.50 GHz and

16.0 GB of RAM. The generally high accuracy of our tree method

is transferred to the parametrization in Table 6 for Hilliard and

Schwartz (2005) model with average errors of 0.006% and 0.088%,

respectively, against the Monte Carlo benchmarks. We achieve a
recision of 4 decimals in around one second with 200 time steps.

n Table 7 , we compare our tree method for European fixed strike

ptions with the prices from Cai et al. (2014) for the CEV model

nd find an average error of 0.074% for the former (accuracy of 3

ecimals) versus 0.112% for the latter. The computing time of our

ethod is 4.4 seconds for 250 time steps. Cai et al. (2014) report

 computing time of 0.2 seconds per option price calculated us-

ng their small-time expansion method (with the computing time

f the coefficients of the expansion excluded). Finally, in Table 8 ,

e produce option prices within the Heston stochastic volatility

odel framework, and compare our methods, i.e., the tree method

or floating strike options and the MLB for fixed strike options

see Table 1 ), with the Monte Carlo results by Akyıldırım et al.

2014) . Our discrete-time option prices return an average error of

.42% and 0.21% for 300 time steps in 1.5 and 2.7 seconds, respec-

ively, for floating and fixed strikes. The computing times of 7.6

econds of the Monte Carlo implementations are from Akyıldırım

t al. (2014) . 
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Table 8 

The left panel of the table reports prices of European Asian put options for different coefficients K̄ for the floating-strike option in the stochastic 

volatility model. The tree method (23) is compared against Monte Carlo (MC) price estimates. The right panel reports prices of European Asian 

call options with fixed strike K in the stochastic volatility model. The maximum lower bound (26) is compared against MC price estimates. 

Parameters used are from Akyıldırım et al. (2014 , Table 8): S 0 = 50 , V 0 = 0 . 01 , k = 2 . 0 , θ = 0 . 01 , ρ = 0 . 5 , η = 0 . 1 , r = 0 . 05 per annum, T = 1 

year and N = 300 time steps. CPU times are per option price. The times of the Monte Carlo implementations are from Akyıldırım et al. (2014 , 

Table 10). 

Asian floating-strike put option Asian fixed-strike call option 

K̄ K̄ S 0 Tree Abs. err. Abs. rel. MC Std. err. K MLB Abs. err. Abs. rel. MC Std. err. 

err. (%) err. (%) 

0.88 44 4.82723 0.0175 0.36 4.84473 0.00088 44 6.9183 0.0048 0.07 6.9135 0.0113 

0.9 45 3.89742 0.01736 0.44 3.91478 0.00086 45 5.973 0.0038 0.06 5.9692 0.0113 

0.92 46 3.01976 0.01721 0.57 3.03697 0.00081 46 5.0298 0.0003 0.01 5.03 0.0112 

0.94 47 2.22003 0.01335 0.6 2.23339 0.00074 47 4.1198 0.0068 0.17 4.113 0.011 

0.96 48 1.5288 0.01366 0.89 1.54247 0.00064 48 3.2497 0.0013 0.04 3.2511 0.0105 

0.98 49 0.97629 0.00798 0.81 0.98427 0.00053 49 2.4697 0.0053 0.22 2.4644 0.0098 

1 50 0.57086 0.00013 0.02 0.57099 0.00041 50 1.797 0.0029 0.16 1.794 0.0089 

1.02 51 0.30119 0.00103 0.34 0.30017 0.00029 51 1.251 0.0045 0.36 1.2555 0.0077 

1.04 52 0.14436 0.00047 0.33 0.14389 0.0002 52 0.8437 0.0018 0.21 0.8454 0.0065 

1.06 53 0.06448 0.00025 0.39 0.06423 0.00013 53 0.5511 0.0002 0.03 0.5509 0.0053 

1.08 54 0.02585 0.00007 0.25 0.02578 0.00008 54 0.3487 0.0023 0.66 0.3464 0.0043 

1.1 55 0.01005 0.00001 0.15 0.01003 0.00005 55 0.2153 0.0004 0.19 0.2157 0.0034 

1.12 56 0.00367 0.00001 0.36 0.00366 0.00003 56 0.1301 0.0007 0.51 0.1308 0.0026 

AAPRE 0.42 0.21 

time (seconds) 1.5 7.6 2.7 7.6 
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. Conclusions 

In this paper, we propose a new discrete-time model approach

o pricing options with American features and a payoff dependent

n an arithmetic average price. The method lends itself to general

riving dynamics. 

A series of numerical tests demonstrate our fast solution mech-

nisms capable of generating monotonic and smooth convergence

rice patterns for European and American options under different

odel specifications, including tree constructions for asset price

ynamics with independent log-increments, one-dimensional dif-

usions, and stochastic volatility models. Also, by exploiting the

mooth convergence, we can easily accelerate this by extrapolation

echniques. 

Our research forms a fertile ground for further investigations.

ue to the exceptional runtime-accuracy balances of our meth-

ds, we may efficiently build richer price evolution models that

an better fit the market reality allowing, for example, time-

nhomogeneity, and apply to computing the implied parameters. In

ddition, our choice of the particular product payoff structure was

otivated in the first place by the scope in applications such as

he capacity problem studied in Driouchi et al. (2010) with flexible

xpansion decision of American type aiming to better capture the

avourable economic timing. Our method is endowed with robust-

ess and flexibility to this end, and this is where our subsequent

aper focuses the spotlight on. 
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ppendix A. Model specifications 

1. Model 1: the case of independent log-increments 

Under this model specification, the logarithm of the asset price

n S has independent increments. We consider, for illustration, the

inomial model of Cox et al. (1979) and the bivariate tree model of

illiard and Schwartz (2005) . In the first one, 

j := 

{
ln x 1 = σ

√ 

�, p 1 = 

e r�−x 2 
x 1 −x 2 

ln x 2 = −σ
√ 

�, p 2 = 1 − p 1 
. 

n the Hilliard and Schwartz (2005) model, 

j := 

{
ln x 1 ,ω , p 1 ,ω = p q s + ω+1 

ln x 2 ,ω , p 2 ,ω = (1 − p) q s + ω+1 

, (A.1) 

here 

 1 ,ω := e m �+ σ
√ 

�+ ωh , 

 2 ,ω := e m �−σ
√ 

�+ ωh , 

nd ω = 0 , ±1 , ±2 , . . . , ±s is the number of (independent) jumps

nder Poisson compounding of size h , allowed up or down on each

f the two nodes for the smooth (diffusion) factor. The probability

f the up state of the smooth factor is 

p := 

e r� − e m �−σ
√ 

�
∑ s 

ω= −s e 
ωh q s + ω+1 (

e m �+ σ
√ 

� − e m �−σ
√ 

�
)∑ s 

ω= −s e 
ωh q s + ω+1 

, 

here m := r − σ 2 / 2 − λJ (e 
μJ + σ 2 

J 
/ 2 − 1) , μJ and σ J are, respec-

ively, the jump-size mean and standard deviation, and λJ the

ump intensity. The jump probabilities q are calculated as shown

n Hilliard and Schwartz (2005 , Eq. (9)). 

2. Model 2: one-dimensional diffusion models 

In this class of models, the asset price dynamics under the risk

eutral measure P is generally given by 

S(t) = μ(S(t ) , t ) dt + σ (S(t ) , t ) dW (t ) . 

his set of models includes, for example, exponential Ornstein–

hlenbeck, Brennan–Schwartz, Cox–Ingersoll–Ross and the CEV 
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models. For illustration, we focus on the CEV model, with μ( s ,

t ) := rs and σ (s, t) := δs β+1 , δ > 0 and β ∈ R , under the measure P .

As proposed by Hilliard (2014) , in order to have a computationally

simple lattice with recombining nodes, the instantaneous volatility

must be constant. This can be achieved using the transformation 

X (t) = 

1 

−β δ S(t) β
. (A.2)

In the special case of β = 0 , X = ln S. Then, the binomial tree for X

is given by 

X n = X 0 + 

n ∑ 

j=1 

� j , 

where 

� j := 

{√ 

�, p = 1 / 
(
1 + e −2 ̃  μ(X j−1 ) 

√ 

�
)

−
√ 

�, 1 − p 
, 

and 

˜ μ(x ) = −rβx + 

1 

2 

β + 1 

β

1 

x 

is the drift of X . Finally, the distribution of the log-returns of S is 

ξ j = 

{
ln 

(
φ(X j−1 + 

√ 

�) − φ(X j−1 ) 
)
, p 

ln 

(
φ(X j−1 −

√ 

�) − φ(X j−1 ) 
)
, 1 − p 

, 

which follows by inversion of the transformation (A.2) , resulting

in 

φ(x ) := 

1 

(−β δ x ) 1 /β
. 

For more details, we refer the interested readers to Hilliard (2014) .

A3. Model 3: stochastic volatility models 

We consider an asset price process S defined by the following

stochastic differential equations under the measure P { 

dS(t) = S(t) rdt + S(t) σS (V (t )) 
(
ρ dB (t ) + 

√ 

1 − ρ2 dW (t) 
)

dV (t) = μV (V (t)) dt + σV (V (t )) dB (t ) 

(A.3)

for independent Brownian motions B and W , and general functions

σS (s, v ) , μV (v ) and σV (v ) . For example, in the Heston stochastic

volatility model 

σS (v ) := 

√ 

v , μV (v ) := k ( ̄v − v ) , σV (v ) := η
√ 

v . (A.4)

In Section 4 , we present a two-dimensional tree construction of

model (A.3) based on Akyıldırım et al. (2014) . 

Appendix B. Forward start option 

Occasionally, the underlying asset is monitored only during part

of the lifetime of the option, i.e., the averaging is based only on

prices of the underlying during a deferred time interval [ a �, N �],

0 < a < N (e.g., see Reynaerts et al., 2006 ). It is common to call this

a forward start Asian option. 

Our proposed pricing approach can be flexibly adapted to the

case of delayed averaging. First, the following modification of the

process Z in (3) is relevant 

Z j := 

1 
N−a +1 

∑ j 
n = a S n − K 

S j 
= 

Z j−1 

e ξ j 
+ 

1 

N − a + 1 

, a < j ≤ N, 

Z a := 

1 

N − a + 1 

− K 

S 
. 
a 
ence, by the tower property of expectations, the price of the

ption is given by 

 

(
S N Z 

+ 
N 

)
= S 0 e 

rT 
Ē 

[ 
c 

(
Y a , 

1 

N − a + 1 

− K 

S a 
, a 

)] 
. 

hen for 0 ≤ j < a the recursion (9) becomes 

 

(
y, 

1 

N − a + 1 

− K 

s 
, j 

)
= 

d ∑ 

i =1 

p̄ i (y ) c 
(

Y j+1 , 
1 

N − a + 1 

− K 

s x i 
, j + 1 

)
.

ppendix C. Discretely monitored Asian option 

In the case of a discretely monitored Asian option, i.e., when

he average is based on prices of the underlying monitored at cer-

ain discrete time points during part or the entire lifetime of the

ption, it is necessary to introduce another scale in the problem:

 := N/ ̃  N , b ∈ Z 

+ , where ˜ N is the number of averaging points and N

he number of time steps. By analogy, in addition to the time step

ize � = T /N, define the time interval ˜ � = b� between successive

quidistant averaging points. 

Consider 

 bn = S 0 e 
∑ bn 

j=0 ξ j = S 0 e 
∑ n 

j=0 �b, j , 

here �b ,0 := 0 and the random variables { �b, j } ˜ N 
j=1 

are i.i.d. with 

b, j := 

b j ∑ 

l= b( j−1)+1 

ξl . 

Define 

˜ 
 j = 

1 
˜ N +1 

∑ j 
n =0 

S bn − K 

S b j 

= 

˜ Z j−1 

e �b, j 
+ 

1 

˜ N + 1 

, 0 < j ≤ ˜ N . 

he option value function (9) is now given by 

 ( ̃ z , j ) = 

b ∑ 

k =0 

b! 

k !(b − k )! 
p̄ k (1 − p̄ ) b−k c 

(
˜ z 

x k 
1 
x b−k 

2 

+ 

1 

˜ N + 1 

, j + 1 

)
for ˜ z ∈ 

(
˜ z L, j , ̃  z U, j 

)
, 0 < j ≤ ˜ N . 

ppendix D. Convergence theorems 

heorem 4 (Functional Central Limit Theorem ( Billingsley, 1968 ,

heorem 16.1)) . Suppose that random variables x j are i.i.d. with mean

 and finite variance σ 2 . Define the random function X n in the space

 [0, 1] of càdlàg processes as 

 n (t) = 

1 

σ
√ 

n 

� nt � ∑ 

j=1 

x j , 

here t ∈ [0 , 1] . Then, 

 n 
d → W, 

here the convergence is understood with respect to the Skorokhod

opology on the space D [0, 1] and W is a Wiener measure on D [0, 1] .

heorem 5 (Integral Functional Convergence Theorem ( Potscher,

004 , Lemma A.1)) . Suppose that the process X n ( t ) converges with

espect to the Skorokhod topology on the space D [0, 1] to a Brown-

an motion W ( t ) on [0,1]. Also, suppose that J : R → R is continuous.

hen, 

1 

N 

N ∑ 

n =1 

J(X n (1)) 
d → 

∫ 1 

0 

J(W (t )) dt . 

heorem 6 (Continuous Mapping Theorem ( Billingsley, 1995 , Theo-

em 29.2)) . Let � be the unit interval [0,1], B consist of the Borel sets
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n [0,1], and P be Lebesgue measure on B, so that (�, B, P ) is a prob-

bility space. Suppose that X n and X are random variables with values

n R 

n defined on (�, B, P ) . Suppose that f : R 

n → R 

m is a measurable

unction and that the set of its discontinuities D f ⊂ R 

n is measurable.

f X n 
d → X and P (X ∈ D f ) = 0 , then f (X n ) 

d → f (X ) . 

heorem 7 (Convergence of mean ( Billingsley, 1968 , Theorem

.4)) . Suppose that X n and X are random variables defined on

(�, B, P ) . If X n 
d → X and X n are uniformly integrable, then 

lim 

 →∞ 

E ( X n ) = E ( X ) . 

ppendix E. Reference prices for Figs. 1, 2 and 3 

able E.9 

he top panel of the table reports reference prices of European, continuously mon-

tored Asian call options with fixed strikes K in the lognormal model computed

sing the double transform method of Fusai (2004) . Model parameters: σ ∈ {0.05,

.4}; additional parameters: S 0 = 100 , T = 1 year, and r = 0 . 09 per annum. The bot-

om panel reports option prices in the continuous-time (cts.) Merton jump diffusion

odel. The price estimates are calculated by control variate Monte Carlo (CVMC)

imulation with the maximum lower bound of Fusai and Kyriakou (2016) , corre-

ponding to the same option specification, used as control variate (CV cts. MLB),

ith standard errors (std. err.) also reported. Model parameters are from Hilliard

nd Schwartz (2005) : σ ∈ { √ 

0 . 05 , 0 . 05 } , λJ = 5 , σJ = 

√ 

0 . 05 , and μJ = −σ 2 
J / 2 ; ad-

itional parameters: S 0 = 40 , T = 1 year, r = 0 . 08 per annum, and 100 Monte Carlo

ime steps. 

K σ Fusai K σ Fusai 

90 0.4 16.49997 90 0.05 13.37821 

95 0.4 13.51071 95 0.05 8.80885 

100 0.4 10.92377 100 0.05 4.30824 

105 0.4 8.72994 105 0.05 0.95839 

110 0.4 6.90349 110 0.05 0.05214 

K σ CVMC Std. err. K σ CVMC Std. err. 

CV cts. MLB ×10 −4 CV cts. MLB ×10 −4 

30 
√ 

0 . 05 11.4808 2.392 30 0.05 11.3290 2.103 

35 
√ 

0 . 05 8.0241 2.126 35 0.05 7.7162 1.835 

40 
√ 

0 . 05 5.3866 2.100 40 0.05 4.9386 2.094 

45 
√ 

0 . 05 3.5533 2.762 45 0.05 3.1063 2.342 

50 
√ 

0 . 05 2.3458 2.861 50 0.05 1.9792 2.628 
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