
Published version at: http://dx.doi.org/10.1016/j.eswa.2017.03.063

Multi-level abstraction for trace comparison and

semantic process mining

Stefania Montania, Giorgio Leonardia,∗, Manuel Strianib, Silvana Quaglinic,
Anna Cavallinid

aDISIT, Computer Science Institute, Università del Piemonte Orientale, Viale Michel
11, Alessandria, Italy

bDepartment of Computer Science, Università di Torino, Corso Svizzera 105, Torino,
Italy

cDepartment of Electrical, Computer and Biomedical Engineering, Università di Pavia,
Via Ferrata 1, Pavia, Italy

dI.R.C.C.S. Fondazione “C. Mondino”, Via Mondino 2, Pavia, Italy - on behalf of the
Stroke Unit Network (SUN) collaborating centers

Abstract

Many information systems record executed process instances in the event log,
a very rich source of information for several process management tasks, like
process mining and trace comparison. In this paper, we present a framework,
able to convert actions in the event log into higher level concepts, at different
levels of abstraction, on the basis of domain knowledge. Abstracted traces
are then provided as an input to trace comparison and semantic process
mining. Our abstraction mechanism manages non trivial situations, such
as interleaving actions or delays between two actions that abstract to the
same concept. Trace comparison resorts to a similarity metric able to take
into account abstraction phase penalties, and to deal with quantitative and
qualitative temporal constraints. As for process mining, we rely on classical
algorithms embedded in the framework ProM, made “semantic” by the ca-
pability of abstracting the actions on the basis of their conceptual meaning.
The approach has been tested in stroke care, where we adopted abstraction

∗Corresponding author. Tel. +39 0131 360158
Email addresses: stefania.montani@uniupo.it (Stefania Montani),

giorgio.leonardi@uniupo.it (Giorgio Leonardi), striani@di.unito.it (Manuel
Striani), silvana.quaglini@unipv.it (Silvana Quaglini),
anna.cavallini@mondino.it (Anna Cavallini)

Preprint submitted to Expert Systems with Applications November 22, 2016

and trace comparison to cluster event logs of different stroke units, to high-
light (in)correct behavior, abstracting from details. We also provide semantic
process discovery results, showing how the abstraction mechanism allows to
obtain more readable stroke process models.

Keywords: Abstraction, Trace comparison, Semantic process mining,
Stroke management

1. Introduction

Many commercial information systems and enterprise resource planning
tools, routinely adopted by organizations worldwide, record information about
the executed business process instances in the form of an event log (IEEE
Taskforce on Process Mining: Process Mining Manifesto). The event log
stores the sequences (traces (der Aalst, 2011) henceforth) of actions that
have been executed at the organization, typically together with some key
parameters, such as execution times.

Event logs constitute a very rich source of information for several business
process management tasks. Indeed, the experiential knowledge embedded in
traces is directly resorted to, e.g., in operational support (der Aalst, 2011)
and in agile workflow tools (Weber & Wild, 2005), which can take advantage
of trace comparison and retrieval, to make predictions about a running
process instance completion, or to provide instance adaptation support, in
response to expected situations as well as unanticipated exceptions in the op-
erating environment. Moreover, event logs are the input to process mining
(IEEE Taskforce on Process Mining: Process Mining Manifesto; der Aalst
et al., 2003; van der Aalst et al., 2004) algorithms, a family of a-posteriori
analysis techniques able to extract non-trivial knowledge from these historic
data; within process mining, process model discovery algorithms, in partic-
ular, take as input the event log and build a process model, focusing on its
control flow constructs.

All of these activities, however, provide a purely syntactical analysis,
where actions in the event log are compared and processed only referring
to their names. Action names are strings without any semantics, so that
identical actions, labeled by synonyms, will be considered as different, or
actions that are special cases of other actions will be processed as unrelated.

Upgrading trace comparison and process mining to the conceptual layer
can enhance existing algorithms towards more advanced and reliable ap-

2

proaches. Indeed, the capability of relating semantic structures such as tax-
onomies or ontologies to actions in the log can enable both trace comparison
and process mining techniques to work at different levels of abstraction
(i.e., at the level of instances and/or concepts) and, therefore, to mask irrele-
vant details, to promote reuse, and, in general, to make trace and/or process
model analysis much more flexible, and closer to the real user needs. As
a matter of fact, semantic process mining, defined as the integration of
semantic processing capabilities into classical process mining techniques, has
been proposed in the literature since the first decade of this century (see, e.g.,
(de Medeiros et al., 2008; de Medeiros & van der Aalst, 2009), and Section
4). However, while more work has been done in the field of semantic confor-
mance checking (de Medeiros et al., 2008; Grando et al., 2011), to the best of
our knowledge semantic process discovery needs to be further investigated.

In this paper, we present a semantic-based, multi-level abstraction
mechanism, able to operate on event log traces. In our approach, actions in
the log are mapped to instances of ground concepts (leaves) in a taxonomy,
so that they can be converted into higher-level concepts by navigating the
hierarchy, up to the desired level, on the basis of the user needs. The abstrac-
tion mechanism is then provided as an input to further analysis mechanisms,
namely trace comparison and process mining.

The abstraction mechanism has been designed to properly tackle non-
trivial issues that could emerge. Specifically:

• two actions having the same ancestor in the taxonomy (at the chosen
abstraction level) may be separated in the trace by a delay (i.e., a time
interval where no action takes place), or by actions that descend from
a different ancestor (interleaved actions henceforth). Our approach al-
lows to deal with these situations, by creating a single macro-action,
i.e., an abstract action that covers the whole time span of the two
actions at hand, and is labeled as the common ancestor; the macro-
action is however built only if the total delay length, or the total num-
ber/length of interleaved actions, do not overcome proper admissibility
thresholds set by the user. The delays and interleaved actions are quan-
tified and recorded, for possible use in further analyses. In particular,
we present a similarity metric where this information is accounted
for as a penalty, and affects the similarity value in abstract trace com-
parison;

• abstraction may generate different types of temporal constraints be-

3

tween pairs of macro-actions; specifically, given the possible presence
of interleaved actions, we can obtain an abstracted trace with two (or
more) overlapping or concurrent macro-actions. Our approach allows
to represent (and exploit) this information, by properly maintaining
both quantitative and qualitative temporal constraints in abstracted
traces. Once again, this temporal information can be exploited in fur-
ther analyses. In particular, the similarity metric we adopt in trace
comparison can deal with all types of temporal constraints.

The most significant and original methodological contributions of our
work thus consist in:

1. having defined a proper mechanism for abstracting event log
traces, able to manage non trivial situations (originating from the
treatment of interleaving actions or delays between two actions sharing
the same ancestor);

2. having provided a trace comparison facility, which resorts to a
similarity metric (extending the metric we presented in Montani
& Leonardi (2014)), able to take into account also the information
recorded during the abstraction phase.

On the other hand, as for process mining, we rely on classical algorithms
embedded in the open source framework ProM (van Dongen et al., 2005)1.

In addition to these methodological contributions, in the paper we also de-
scribe our experimental work in the field of stroke care, in which we adopted
multi-level abstraction and trace comparison to cluster event logs of different
stroke units, in order to highlight correct and incorrect behaviors, abstract-
ing from details, such as local resource constraints or local protocols, that
are irrelevant to verify the medical appropriateness of a macro-action. We
also provide semantic process discovery results, showing how the abstraction
mechanism allows to obtain simpler and more understandable stroke process
models.

The paper is organized as follows. Section 2 presents methodological and
technical details of the framework. Section 3 describes experimental results.
Section 4 addresses comparisons with related work. Finally, Section 5 is
devoted to conclusions and future research directions.

1It is worth noting that the abstraction mechanism could, in principle, be given as an
input to different analysis techniques as well, besides the ones described in this paper.

4

Figure 1: Framework architecture and data flow

2. Methods

This section describes methodological and technical details of our ap-
proach.

The architecture and the data flow of the framework we have developed
are shown in Figure 1, where rectangles represent computational modules,
while ovals and cylinders represent domain knowledge sources and databases,
respectively.

The first step to be executed is event log preparation, that takes as in-
put the available database (recording executed actions and additional data),
and exploits domain knowledge sources (a taxonomy and a rule base); the
event log then undergoes multi-level abstraction, which resorts to the domain
knowledge sources as well. The abstracted event log can be given as an input
to trace comparison, or to process mining, currently realized by resorting to
ProM (van Dongen et al., 2005).

The terminology we use, and the details about domain knowledge sources
and computational modules, are described in the following subsections.

2.1. Terminology

Action or ground action: an action recorded in an event log trace (corre-
sponding to a leaf concept in the taxonomy described in Section 2.2).
Delay: time interval between two ground actions logged in a trace, where
no other action takes place.
Interleaved action: a ground action that descends from a different ances-
tor in the taxonomy of actions described in Section 2.2, with respect to the
two ground actions that are currently being considered for abstraction. In

5

Figure 2: An excerpt from the stroke domain taxonomy

the trace, the interleaved action is placed between the two actions at hand.
Macro-action: partial output of the abstraction process; a macro-action
is an abstracted action that covers the whole time span of multiple ground
actions, and is labeled as their common ancestor in the taxonomy, at the
specified abstraction level. As a special case, the macro-action can abstract
a single ground action as its ancestor.
Singleton: a ground action that can not be abstracted to any macro-action,
because some precondition for the abstraction process is not verified. Pre-
conditions are formalized in the rule base described in Section 2.2.
Abstracted trace: global output of the abstraction process; an abstracted
trace is the transformation of an input trace into a new trace containing only
macro-actions or singletons.

2.2. Domain knowledge sources

In our framework, domain knowledge is provided by means of a taxonomy
and of a rule base. In the paper, all examples will refer to the domain of
stroke management.

An excerpt of our stroke management taxonomy is reported in Figure 2.
The taxonomy, which has been formalized by using the Protègè editor, has

been organized by goals. Indeed, a set of classes, representing the main goals
in stroke management, have been identified, namely: “Prevention”, “Patho-
genetic Mechanism Identification”, “Causes Identification”, “Administrative

6

Actions” and “Other”. Some of these main goals, in a parent-child relation,
are further specialized into subclasses, according to more specific goals (e.g.,
“Prevention” specializes into “Early Relapse Prevention”, “Long Term Re-
lapse Prevention”, “Brain Damage Reduction” and “In-Hospital Mortality
Reduction”), down to the ground actions, that will implement the goal itself
(e.g., “Long Term Relapse Prevention”, aiming at preventing another stroke
in the long run, specializes into several ground actions, including “Anticoag-
ulant Medicines” and “Diabetologist Counseling” - see Figure 2). Overall,
our taxonomy is composed by 136 classes, organized in a hierarchy of four
levels.

The rule base is represented as an XML file where actions are coupled
with preconditions. Precondition verification enables the abstraction process;
preconditions can be stated in AND or in OR, and might provide temporal
constraints to be respected between the occurrence of the precondition and
the starting time of the action.

An example rule is provided below. The rule refers to the action “Di-
abetologist Counseling”, and has “Diabetes” OR “Hyperglycemia” as pre-
conditions. As already observed (see Figure 2), the action “Diabetologist
Counseling” is a descendant of the more abstract “Long Term Relapse Pre-
vention” goal, stating that the goal of diabetologist counseling is the one
of preventing stroke recurrence in the long run. However, a diabetologist
counseling action correctly abstracts as long term relapse prevention only if
the patient at hand is diabetic, or experienced hyperglycemia. If this is not
the case, diabetologist counseling is not correctly identifiable as an action
for preventing long term relapse. Indeed, in this situation this action was
probably inappropriate, wasting time and human resources. The rule below
exactly states this semantics. Rules thus allow to highlight incorrect behav-
iors in the process, that will be identified as singletons by the abstraction
algorithms. Abstraction details are provided in Section 2.4.

<Rule name="rule_Diabetologist_counseling">

<preconditionsOr>

<preconditionOr>Diabetes</preconditionOr>

<preconditionOr>Hyperglycemia</preconditionOr>

</preconditionsOr>

</Rule>

7

2.3. Event log preparation

As illustrated in Figure 1, the event log preparation module takes as input
the database (containing action execution information, such as starting and
ending times, and additional data, like, e.g., patient’s demographics and clin-
ical data in the medical domain); it also takes as input the domain knowledge
sources, i.e., the taxonomy and the rule base.

In this phase, the starting/ending times of actions are used to calculate
action ordering within every trace.

The log preparation module generates an event log where traces are rep-
resented in an eXtensible Event Stream (XES) (Verbeek et al., 2011) file.
The XES format is an extension of the MXML (van Dongen & van der
Aalst, 2005) format where elements have an optional extra attribute called
modelReference. This attribute allows to link an action to a concept in an
ontology: in our case, to a leaf in the taxonomy. Proper action attributes also
allow to record precondition values, to be verified by rules in the abstraction
phase (see Section 2.4).

2.4. Multi-level abstraction of the event log

Our multi-level abstraction procedure operates as described in Algorithm
1 below. The function abs greedy takes as input an event log trace, the
domain taxonomy taxo, the rule base, and the level in the taxonomy chosen
for the abstraction (e.g., level = 1 corresponds to the choice of abstracting
the actions up to the sons of the taxonomy root). It also takes as input
three thresholds (delay th, n inter th and inter th). These threshold values
have to be set by the domain expert in order to limit the total admissible
delay time within a macro-action, the total number of interleaved actions,
and the total duration of interleaved actions, respectively. In fact, it would
be hard to justify that two ground actions share the same goal (and can
thus be abstracted to the same macro-action), if they are separated by very
long delays, or if they are interleaved by many/long different ground actions,
meant to fulfill different goals.

The function outputs an abstracted trace.
For every action i in trace, an iteration is executed (lines 3-32). First,

the preconditions of i, set in the log preparation phase, are considered. If the
set of preconditions of i is empty (because no rule involving i was provided
by domain knowledge), or if the preconditions of i are verified (verification is
performed resorting to the rule system, whose detailed description is outside
the scope of this paper; rules could state, for instance, if preconditions have to

8

be considered in AND or in OR), then a macro-action mi, initially containing
just i, and sharing its starting and ending times, is created. mi is labeled
referring to the ancestor of i at the abstraction level provided as an input.
Accumulators for this macro-action (total-delay, num-inter and total-inter,
commented below) are initialized to 0 (lines 4-10). Then, a nested cycle
is executed (lines 11-25): it considers every element j following i in the
trace, where a trace element can be an action, or a delay between a pair of
consecutive actions. Different scenarios can occur:

• if j is a delay, total − delay is updated by summing the length of j
(lines 12-14).

• if j is an action, the set of preconditions of j is empty or its pre-
conditions are verified, and j shares the same ancestor of i at the
input abstraction level, then j is incorporated into the macro-action
mi. This operation is always performed, provided that total − delay,
number− inter and total− inter do not exceed the threshold passed as
an input (lines 15-19). j is then removed from the actions in trace that
could start a new macro-action, since it has already been incorporated
into an existing one (line 18). This kind of situation is described in
Figure 3 (a).

• if j is an action, but does not share the same ancestor of i, or violates
some preconditions, then it is treated as an interleaving action. In this
case, num − inter is increased by 1, and total − inter is updated by
summing the length of j (lines 20-23). This situation, in the end, may
generate different types of temporal constraints between macro-actions,
as the ones described in Figure 3 (b) (Allen’s during (Allen, 1984)) and
Figure 3 (c) (Allen’s overlaps (Allen, 1984)).

On the other hand, if some of the preconditions of i are not verified, i
cannot be abstracted referring to its ancestor in the taxonomy. In this case
a singleton is created, i.e., a dummy macro-action mi, sharing the starting
and ending times of i, that will not aggregate with any other action (lines
26-30).

Finally, the macro-action mi is appended to abs trace, that, in the end,
will contain the list of all the macro-actions and singletons that have been
created by the procedure (line 31).

9

Figure 3: Different trace abstraction situations: (a) two actions are abstracted to a single
macro-action macro1, with a delay in between; (b) two actions are abstracted to a macro-
action macro1, with an interleaved action in between, resulting in a different macro-action
macro2 during macro1; (c) two actions are abstracted to a macro-action macro1, with an
interleaved action in between, which is later aggregated to a fourth action, resulting in a
macro-action macro2 overlapping macro1.

Complexity. The cost of abstracting a trace is O(actions ∗ elements),
where actions is the number of actions in the input trace, and elements is
the number of elements (i.e., actions + delay intervals) in the input trace.

2.5. Trace comparison

In our approach, every trace (abstracted trace) is a sequence of actions
(macro-actions, respectively), each one stored with its execution starting
and ending times. Therefore, an action is basically a symbol (plus possi-
ble execution parameters, in particular the temporal information). Starting
and ending times allow to get information about action durations, as well
as qualitative (e.g., Allen’s before, overlaps, equals etc. (Allen, 1984)) and
quantitative temporal constraints (e.g., delay length, overlap length (Lanz
et al., 2010)) between pairs of consecutive actions/macro-actions.

In order to calculate the distance between two abstracted traces, we have
extended a metric for ground trace comparison we published in Information
Systems in 2014 (Montani & Leonardi, 2014). The main features of this
metric are summarized below. The extensions needed to deal with abstracted
traces are also discussed in this section.

In the metric in Montani & Leonardi (2014), we first take into account
action types, by calculating a modified edit distance which we have called
Trace Edit Distance (Montani & Leonardi, 2014). As the classical edit
distance (Levenshtein, 1966), Trace Edit Distance tests all possible combi-
nations of editing operations that could transform one trace into the other
one. However, the cost of a substitution is not always set to 1. Indeed, as
already observed, we have organized actions in a taxonomy: we can therefore
adopt a more semantic approach, and apply Palmer’s distance (Palmer &

10

ALGORITHM 1: Multi-level abstraction algorithm

1 abs trace = abs greedy(trace, taxo, rule, level, delay th,
n inter th, inter th);

2 abs trace = ∅;
3 for every i ∈ actions in trace do
4 if ((i.precond = ∅ ∨ i.precond = verified) ∧ (i.startF lag = yes)) then
5 create : mi as ancestor(i, level);
6 mi.start = i.start;
7 mi.end = i.end;
8 total delay = 0;
9 num inter = 0;

10 total inter = 0;
11 for (every j ∈ tokens in trace) do
12 if (j is a delay) then
13 total delay = total delay + j.length;
14 else
15 if (j.precond = ∅ ∨ j.precond = verified) ∧

(ancestor(j, level)=ancestor(i, level)) then
16 if (total delay < delay th ∧ num inter <

n inter th ∧ total inter < inter th) then
17 mi.end = max(mi.end, j.end);
18 j.startFlag = no;

19 end

20 else
21 num inter = num inter + 1;
22 total inter = total inter + j.length;

23 end

24 end

25 end

26 else if (precond = ¬verified) then
27 create : mi as singleton;
28 mi.start = i.start;
29 mi.end = i.end;

30 end
31 append mi to abs trace;

32 end
33 return abs trace;

11

Wu, 1995), to impose that the closer two actions are in the taxonomy, the
less penalty we introduce for substitution. Trace Edit Distance then takes
the combination of editing operations associated to the minimal cost. Such
a choice corresponds to a specific alignment of the two traces (optimal align-
ment henceforth), in which each action in one trace has been matched to an
action in the other trace–or to a gap.

Given the optimal alignment, we can then take into account temporal
information. In particular, we compare the durations of aligned actions by
means of a metric we called Interval Distance (Montani & Leonardi, 2014).

Moreover, we take into account the temporal constraints between two
pairs of subsequent aligned actions on the traces being compared (e.g., ac-
tions A and B in trace P ; the aligned actions A′ and B′ in trace Q). We
quantify the distance between their qualitative constraints (e.g., A and B
overlap in trace P ; A′ meets B′ in trace Q), by resorting to a metric known
as Neighbors-graph Distance (Montani & Leonardi, 2014). If Neighbors-
graph Distance is 0, because the two pairs of actions share the same quali-
tative constraint (e.g., A and B overlap in trace P ; A′ and B′ also overlap
in trace Q), we compare quantitative constraints by properly applying In-
terval Distance again (e.g., by calculating Interval Distance between the two
overlap lengths).

In the metric in Montani & Leonardi (2014), these three contributions
(i.e., Trace Edit Distance, Interval Distance between durations, Neighbors-
graph Distance or Interval Distance between pairs of actions) are finally
combined as a linear combination with non-negative weights.

When working on macro-actions, however, the metric in Montani & Leonardi
(2014) needs to be extended, by considering, given the optimal macro-actions
alignment, two additional contributions:

• a penalty due to the different length of the delays incorporated into the
two aligned macro-actions;

• a penalty due to the different number, length and type of interleaved
actions in the two aligned macro-actions being compared.

Delay penalty is defined as follows:
Definition 1: Delay Penalty.
Let A and B be two macro-actions, that have been matched in the optimal
alignment. Let delayA =

∑k
i=1 length(i) be the sum of the lengths of all

the k delays that have been incorporated into A in the abstraction phase,

12

calculated by Algorithm 1 (and let delayB be analogously defined). Let
maxdelay be the maximum, over all the abstracted traces, of the sum of the
lengths of the delays incorporated in an abstracted trace. The Delay Penalty
delayp(A,B) between A and B is defined as:

delayp(A,B) =
|delayA − delayB|

maxdelay

As for interleaved actions penalty, we operate analogously to delay penalty,
by summing up the lengths of all interleaved actions that have been incor-
porated within a single macro-action in the abstraction phase.
Definition 2: Interleaving Length Penalty.
Let A and B be two macro-actions, that have been matched in the optimal
alignment. Let interA =

∑k
i=1 length(i) be the sum of the lengths of all the

k interleaved actions that have been incorporated into A in the abstraction
phase, calculated by Algorithm 1 (and let interB be analogously defined).
Let maxinter be the maximum, over all the abstracted traces, of the sum
of the lengths of the interleaved actions incorporated in an abstracted trace.
The Interleaving Length Penalty interLp(A,B) between A and B is defined
as:

interLp(A,B) =
|interA − interB|

maxinter

The extended metric working on abstracted traces includes in the linear
combination these two penalties as well.

It is worth noting that our metric, given its capability to manage both
quantitative and qualitative temporal constraints, enables to properly deal
with temporal information at all abstraction levels.

By allowing the treatment of abstraction penalties and the management
of temporal information, the extended metric is therefore able to address all
the issues we cited in the Introduction.

2.6. Process mining

In our approach, we are resorting to the well-known process mining tool
ProM, extensively described in van Dongen et al. (2005). ProM (and specif-
ically its newest version ProM 6) is a platform-independent open source

13

framework that supports a wide variety of process mining and data min-
ing techniques, and can be extended by adding new functionalities in the
form of plug-ins.

For the experimental work described in this paper, we have exploited
ProM’s Heuristic Miner (Weijters et al., 2006). Heuristic Miner (Weijters
et al., 2006) is a plug-in for process discovery, able to mine process models
from event logs. Heuristic Miner receives as input the log, and considers
the order of the actions within every single trace. It can mine the pres-
ence of short-distance and long-distance dependencies (i.e., direct or indirect
sequence of actions), and information about parallelism, with a certain de-
gree of reliability. The output of the mining process is provided as a graph,
known as the “dependency graph”, where nodes represent actions, and edges
represent control flow information. The output can be converted into other
formalisms as well.

Currently, we have chosen to rely on Heuristics Miner, because it is known
to be tolerant to noise, a problem that may affect medical event logs (e.g.,
sometimes the logging may be incomplete). Anyway, testing of other mining
algorithms available in ProM 6 is foreseen in our future work. Moreover, the
interface of our framework to ProM will allow us to test additional analysis
plug-ins in the future.

3. Results

In this section, we describe two experimental works we have conducted,
in the application domain of stroke care. In the first one (see Section 3.1), we
have studied the impact of multi-level abstraction on trace comparison; in
particular, we have designed a set of clustering experiments, to verify whether
it is possible to highlight correct behaviors and anomalies with respect to the
latest clinical practice guidelines for stroke management, abstracting from
details (such as, e.g., local resource constraints or local medical practice),
that are irrelevant to the verification of medical appropriateness of a macro-
action.

In the second work (see Section 3.2), we wished to verify whether our
support to semantic process mining, and specifically the capability of ab-
stracting the traces on the basis of their semantic goal, allowed to obtain
clearer medical process models, where unnecessary details are hidden, but
key behaviors are clear.

14

In the experiments, thresholds to be passed as input to the abstraction
algorithm (see Algorithm 1) were common to all traces in the log, and set
as follows: delay th = 300 minutes, n inter th = 3, inter th = 300 minutes.
This choice was set by our medical co-author, on the basis of medical knowl-
edge. Interestingly, we also made tests with different thresholds (making
changes of up to 10%), but results (not reported due to lack of space) did
not differ significantly.

The metric we adopted for trace comparison is the one we described in
Section 2.5, where the linear combination weights were all equal and their
sum was 1.

Experiments were run on a machine equipped with an Intel(R) Xeon(R)
CPU E5-2640v2, CPU @ 2GHz, 4GB RAM.

Results are provided in the following.

3.1. Trace comparison

As a first experimental work, we have analyzed the impact of our abstrac-
tion mechanism on trace comparison, and more precisely on the quality of
trace clustering.

The available event log was composed of more than 15000 traces, collected
at the 40 Stroke Unit Network (SUN) collaborating centers of the Lombar-
dia region, Italy. Our medical co-author belongs to one of the SUN stroke
units. Thus, she has a very deep insight into the registry data. Traces were
composed of 13 actions on average. The 40 Stroke Units (SUs) are not all
equipped with the same human and instrumental resources: in particular,
according to resource availability, they can be divided into 3 classes. Class-
3 SUs are top class centers, able to deal with particularly complex stroke
cases; class-1 SUs, on the contrary, are the more generalist centers, where
only standard cases can be managed. Class 3 counts 9 SUs, class 2 includes
25 SUs, and class 1 is composed by 6 SUs.

In our study, we first considered the traces of every single SU separately,
and compared clustering results on ground traces with respect to those on
abstracted traces. We then repeated the experiment by keeping together the
traces of the SUs classified as belonging to the same class. In these additional
experiments, once again, we compared clustering results on ground traces
with respect to those on abstracted traces.

For the sake of brevity, only two experimental results will be shown in
this section.

15

Specifically, we resorted to a hierarchical clustering technique, known as
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) (Sokal
& Michener, 1958). UPGMA is typically applied in bioinformatics, where
sequences of symbols (similar to our traces) have to be compared. The algo-
rithm operates in a bottom-up fashion. At each step, the nearest two clusters
are combined into a higher-level cluster. The distance between any two clus-
ters A and B is taken to be the average of all distances between pairs of
objects “x” in A and “y” in B, that is, the mean distance between elements
of each cluster. After the creation of a new cluster, UPGMA properly up-
dates a pairwise distance matrix it maintains. UPGMA also allows to build
the phylogenetic tree (the hierarchy) of the obtained clusters.

In all of these experiments, the hypothesis we wished to test was the fol-
lowing: “the application of the abstraction mechanism allows to obtain more
homogeneous and compact clusters (i.e., able to aggregate closer examples);
however, outliers are still clearly identifiable, and isolated in the cluster hi-
erarchy”. Homogeneity is a widely used measure of the quality of the output
of a clustering method (see e.g., (Yip et al., 2003; Sharan & Shamir, 2000;
Duda et al., 2001; Francis et al., 2004)). A classical definition of cluster
homogeneity is the following (Yip et al., 2003):

H(C) =

∑
x,y∈C(1− dist(x, y))(|C|

2

)
where |C| is the number of elements in cluster C, and 1 − dist(x, y) is

the similarity between any two elements x and y in C. Note that, in the
case of one-trace clusters, homogeneity is set to 1 (see e.g., (Francis et al.,
2004)). The higher the homogeneity value, the better the quality of clustering
results. The average of the homogeneity H of the individual clusters can be
calculated on (some of) the clusters obtained through the method at hand,
in order to assess clustering quality.

We computed the average of cluster homogeneity values level by level in
the hierarchies.

First, we worked on single SUs. As an example, we report on the results
of applying UPGMA to the 240 traces of SUcl2, a class-2 SU. The obtained
cluster hierarchy height was 19 when working on ground traces, and 21 when
working on abstracted ones. Figure 4 shows a comparison of the average
homogeneity values, computed by level in the cluster hierarchies, on ground

16

Figure 4: Comparison between average homogeneity values, computed level by level in the
two cluster hierarchies obtained by UPGMA on ground traces and on abstracted traces,
on a specific class-2 SU

vs. abstracted traces. As it can be observed, homogeneity on abstracted
traces was higher then the one calculated on ground traces.

It is also interesting to study the management of outliers, i.e., in our ap-
plication domain, traces that could correspond to the treatment of atypical
patients, or to medical errors. These traces record rather uncommon actions,
and/or present uncommon temporal constraints among their actions. For in-
stance, in SUcl2, trace 105 is very peculiar: it describes the management
of a patient suffering from several inter-current complications (diabetes, hy-
pertension, venticular arrythmia, venous thrombosis), who required many
extra-tests and many specialist counseling sessions, interleaved to more stan-
dard actions.

Ideally, these anomalous traces should remain isolated as a one-trace clus-
ter for many UPGMA iterations, and be merged to other nodes in the hier-
archy as late as possible, i.e., close to the root (level 0).

Indeed, when working on ground traces, outliers of SUcl2 were merged
very late to the hierarchy. As shown in figure 5, 8 particularly significant
outliers (according to our medical co-author), were merged between level
6 and level 1. Trace 105 was merged at level 5. Very interestingly, this
capability of “isolating” outliers was preserved when working on abstracted
traces. Indeed, the 8 outlying traces considered above were merged between
level 6 and level 1 in the abstracted traces hierarchy as well - with minor
variations with respect to the ground trace hierarchy; specifically, trace 105
was merged at level 4, highlighting its anomaly even better then in the ground
trace case.

We then repeated the experiment on all the SUs, divided by level. As
an example, we present the results on class-3 SUs. For the test shown in
this paper, we randomly sampled 33 to 34 traces for each one of the 9 SUs
in class-3 group, thus obtaining a working dataset of 300 traces. We then

17

Figure 5: Identification of outliers (in rectangles) in cluster hierarchies. Only the upper
hierarchy levels are shown

18

Figure 6: Comparison between average homogeneity values, computed level by level in the
two cluster hierarchies obtained by UPGMA on ground traces and on abstracted traces,
on 300 traces randomly chosen from class-3 SUs

applied UPGMA to the 300 ground and abstracted traces. The obtained
cluster hierarchy height was 22 when working on ground traces, and 20 when
working on abstracted ones. Figure 6 shows a comparison of the average
of cluster homogeneity values, computed by level in the cluster hierarchies.
As it can be observed, homogeneity on abstracted traces was always higher
then the one calculated on ground traces, where the difference could be up
to 0.2 (in a [0 1] range) in some levels of the hierarchies. The capability of
isolating outliers was preserved in this experiment as well. Referring to 5
particularly significant outliers (again, according to our medical co-author),
they were merged between level 5 and level 3 in the ground traces hierarchy,
and between level 4 and level 3 in the abstracted traces hierarchy.

In conclusion, our hypothesis was verified by the experiments, since the
application of the abstraction mechanism allowed to obtain more homoge-
neous clusters, still clearly isolating outlying traces.

3.2. Semantic process mining

As a second experimental work, we have tested whether our capability to
abstract the event log traces on the basis of their semantic goal allowed to
obtained process models where unnecessary details are hidden, but key be-
haviors are clear. Indeed, if this hypothesis holds, in our application domain
it becomes easier to compare process models of different SUs, highlighting
the presence/absence of common paths, regardless of minor action changes
(e.g., different ground actions that share the same goal) or irrelevant differ-
ent action ordering or interleaving (e.g., sets of ground actions, all sharing a
common goal, that could be executed in any order).

Figure 7 compares the process models of two different SUs (SU1 and SU2),
mined by resorting to Heuristic Miner (Weijters et al., 2006), operating on
ground traces. Figure 8, on the other hand, compares the process models of

19

Figure 7: Comparison between two process models, mined by resorting to Heuristic Miner,
operating on ground traces. The figure is not intended to be readable, but only to give an
idea of how complex the models can be

the same SUs as Figure 7, again mined by resorting to Heuristic Miner, but
operating on traces abstracted at the second level of the taxonomy in Figure
2 (where the root is considered as level 0).

Generally speaking, a visual inspection of the two graphs in Figure 7 is
very difficult. Indeed, these two ground processes are “spaghetti-like” (der
Aalst, 2011), and the extremely large number of nodes and edges makes it
hard to identify commonalities in the two models. The abstract models in
Figure 8, on the other hand, are much more compact, and it is possible for
a medical expert to analyze them. In particular, the two graphs are not
identical, but in both of them it is easy to a identify a path containing some
macro-actions, which corresponds to the treatment of a typical stroke pa-
tient, namely: “Causes Identification” (which does not further specialize in
subclasses according to the taxonomy in Figure 2), “Cardio-Embolic Mech-
anism” (subclass of “Pathogenetic Mechanism Identification”), “Early Re-
lapse Prevention”, “Long Term Relapse Prevention”, “In-Hospital Mortality
Reduction” (all subclasses of “Prevention”), “Dismissal” (subclass of “Ad-
ministrative Actions”). The macro-actions at hand are highlighted in bold
in the figure. The (different) interleaving of a few additional actions between
the six steps is just due to minor changes in the two hospital practices.

20

The model for SU1 at the top in Figure 8 also shows a larger number of
paths, while the model for SU2 at the bottom has fewer treatment options.
This is a very reasonable outcome, since SU1 is a class-3 SU, where differ-
ent kinds of patients, including atypical ones, can be managed, thanks to
the availability of different skills and instrumental resources. On the other
hand, SU2 is a class-2 SU, i.e., a more generalist one, where very specific
human knowledge or technical resources are missing. As a consequence, its
process model is more homogeneous, since atypical patients are not admitted
here. For instance, one path shows that SU1 can perform extracranical vessel
inspection, which is typically absent in a less specialized SU. On the other
hand, SU2 performs a neuroprotection intervention, which is not prescribed
anymore by the most recent guidelines: this is an indication that SU2 person-
nel may have less up-to-date knowledge. Very interestingly, our abstraction
mechanism, while hiding irrelevant details, allows to still appreciate these
differences.

4. Related work

The use of semantics in business process management, with the aim of op-
erating at different levels of abstractions in process discovery and/or analysis,
is a relatively young area of research, where much is still unexplored.

One of the first contributions in this field was proposed in Casati & Shan
(2002), which introduces a process data warehouse, where taxonomies are
exploited to add semantics to process execution data, in order to provide
more intelligent reports. The work in Grigori et al. (2004) extends the one in
Casati & Shan (2002), presenting a complete architecture that allows business
analysts to perform multidimensional analysis and classify process instances,
according to flat taxonomies (i.e., taxonomies without subsumption relations
between concepts). The work in Sell et al. (2005) develops in a similar
context, and extends OLAP tools with semantics (exploiting ontologies rather
than (flat) taxonomies). Hepp et al. (Hepp et al., 2005) propose a framework
able to merge semantic web, semantic web services, and business process
management techniques to build semantic business process management, and
use ontologies to provide machine-processable semantics in business processes
(Hepp & Roman, 2007).

Semantic business process management is further developed in the SU-
PER project (Pedrinaci et al., 2008), within which several ontologies are cre-
ated, such as the process mining ontology and the event ontology (Pedrinaci

21

Figure 8: Comparison between the two process models of the same SUs as Figure 7, mined
by resorting to Heuristic Miner, but operating on abstracted traces

22

& Domingue, 2007); these ontologies define core terminologies of business
process management, usable by machines for task automation. However, the
authors do not present any concrete implementations of semantic process
mining or analysis.

Ontologies, references from elements in logs to concepts in ontologies, and
ontology reasoners (able to derive, e.g., concept equivalence), are described as
the three essential building blocks for semantic process mining and analysis
in de Medeiros et al. (2008). This paper also shows how to use these building
blocks to extend ProM’s LTL Checker (van der Aalst et al., 2005) to perform
semantic auditing of logs.

The work in de Medeiros et al. (2007) focuses on the use of semantics in
business process monitoring, an activity that allows to detect or predict pro-
cess deviations and special situations, to diagnose their causes, and possibly
to resolve problems by applying corrective actions. Detection, diagnosis and
resolution present interesting challenges that, on the authors’ opinion, can
strongly benefit from knowledge-based techniques.

In de Medeiros et al. (2007); de Medeiros & van der Aalst (2009) the
idea to explicitly relate (or annotate) elements in the event log with the
concepts they represent, linking these elements to concepts in ontologies, is
also addressed.

In Okoye et al. (2015) the authors show through experiments how data
from learning processes can be extracted, semantically prepared (by anno-
tating the log referencing ontology concepts), and transformed into mining
executable formats for improved analysis.

In de Medeiros & van der Aalst (2009) an example of process discovery
at different levels of abstractions is presented. It is however a very simple
example, where a couple of ground actions are abstracted according to their
common ancestor. However, neither the management of interleaved actions
or delays, nor the correct identification of temporal constraints generated
when aggregating different macro-actions are addressed.

Moreover, most of the papers cited above (including (Hepp et al., 2005;
Kharbili et al., 2008; de Medeiros et al., 2007, 2008; de Medeiros & van der
Aalst, 2009)) present theoretical frameworks, and not yet a detailed technical
architecture nor a concrete implementation of all their ideas.

In Bose & van der Aalst (2009) the authors characterize the manifestation
of commonly used process model constructs in the event log and adopt pat-
tern definitions that capture these manifestations, and propose a means to
form abstractions over these patterns. In particular, the approach identifies

23

loops in traces, and replaces the repeated occurrences of the manifestation
of the loop by an abstracted entity that encodes the notion of a loop. It
also identifies common functionalities in the traces and replaces them with
abstract entities. This work, however, does not make use of semantic infor-
mation.

Another interesting approach to abstraction in process models is the one
in Smirnov et al. (2012). The authors propose abstraction to generate more
readable high-level views on business process models. They are able to dis-
cover sets of related actions, where each set corresponds to a coarse-grained
task in an abstract process model. Specifically, abstraction resorts to a clus-
tering technique, where action properties (such as, e.g., roles and resources)
are exploited to aggregate the different actions into the common task. The
authors adopt the enhanced Topic Vector Space Model to reflect the semantic
relations between action property values: in this way, the distance between
two different, but related values, can be lower that 1.

Differently from our approach, however, the abstraction solution described
in Smirnov et al. (2012) is not applied to traces - and therefore cannot be
adopted for trace comparison. Moreover, it requires that all action properties
are available and logged - which, unfortunately, is often not the case, for in-
stance in medicine, where logging may be incomplete in practice. Moreover,
clustering does not take into account temporal relations between actions, in
the sense that it may also aggregate actions executed at temporally distant
phases of the model control flow; on the other hand, our approach, by op-
erating on traces, which log the temporal sequence of action executions and
their temporal constraints, strongly relies on temporal information, main-
tains it, and allows to exploit it in further analyses, such as abstracted trace
comparison.

Thus, the work in Smirnov et al. (2012) adopts a significantly differ-
ent technique to process model abstraction with respect to our proposal;
nonetheless, it is certainly a relevant related work, and it would be inter-
esting to compare abstraction results obtained through that method to our
medical logs, in order to evaluate pros and cons of the two methodologies.

Referring to medical applications, the work in Grando et al. (2011) pro-
poses an approach, based on semantic process mining, to verify the compli-
ance of a Computer Interpretable Guideline with medical recommendations.
In this case, semantic process mining refers to conformance checking rather
than to process discovery (as it is also the case in de Medeiros et al. (2008)).
These works are thus only loosely related to our contribution.

24

As regards trace comparison, as already observed, in this paper we have
extended a metric we published in Montani & Leonardi (2014), able to exploit
domain knowledge in action comparison, and to manage all types of temporal
constraints. Other metrics for trace comparison have been proposed in the
literature. In particular, (Kapetanakis et al., 2010) combines a contribution
related to action similarity, and a contribution related to delays between ac-
tions. As regards the temporal component, it relies on an interval distance
definition which is quite similar to ours. Differently from what we do, how-
ever, no search for the optimal action alignment is performed. The distance
function in Kapetanakis et al. (2010) does not exploit action duration, and
does not rely on semantic information about actions, as we do. Finally, it
does not deal with different types of qualitative temporal constraints. An-
other interesting contribution is Combi et al. (2009), which addresses the
problem of defining a similarity measure able to treat temporal information,
and is specifically designed for clinical workflow traces. Interestingly, the
authors consider qualitative temporal constraints between matched pairs of
actions, resorting to the Neighbors-graph Distance, as we do. However, in
Combi et al. (2009) the alignment problem is strongly simplified, as they only
match actions with the same name. In this sense, our approach is also much
more semantically oriented. Several metrics for comparing process models,
instead of traces, also exist. Most of them are based on proper extensions of
the edit distance as well (Minor et al., 2008; Bergmann & Gil, 2014; Mon-
tani et al., 2015a; Dijkman et al., 2009; LaRosa et al., 2013), and, in some
cases, allow for a semantic comparison among model actions (Bergmann &
Gil, 2014; Montani et al., 2015a). However, given the very different structure
of a process model (which is a graph) with respect to a trace, these works
are only loosely related to our contribution.

In conclusion, in the current research panorama, our work appears to be
very innovative, for several reasons:

• many approaches, presenting very interesting and sometimes ambitious
ideas, just provide theoretical frameworks, while concrete implementa-
tions of algorithms and complete architectures of systems are often
missing;

• in semantic process mining, more work has been done in the field of
conformance checking (also in medical applications), while process dis-
covery still deserves attention (also because many approaches are still
at the theoretical level, as commented above);

25

• as regards trace abstraction, it is often proposed as a very powerful
means to obtain better process discovery and analysis results, but tech-
nical details of the abstraction mechanism are usually not provided, or
are illustrated through very simple examples, where the issues we pre-
sented in the Introduction (related to the management of interleaved
actions or delays, and to the correct identification of temporal con-
straints generated when aggregating different macro-actions) do not
emerge;

• as regards trace comparison, to the best of our knowledge, our previ-
ously published metric (Montani & Leonardi, 2014), enhanced to deal
with abstracted traces, still represents one of the most complete con-
tributions to properly account for both non temporal and temporal
information, and to perform a semantic comparison between actions.

5. Conclusions

In this paper, we have presented a framework for multi-level abstraction
of event log traces. In our architecture, abstracted traces are then provided
as an input to different analysis techniques – namely, trace comparison and
semantic process mining in the current implementation. Our trace com-
parison facility relies on a metric that extends our previous contribution in
Montani & Leonardi (2014): such a distance is able to manage both temporal
and non temporal information in traces, and has been properly extended to
work on abstracted traces as well. Semantic process mining relies on ProM
algorithms; indeed, the overall integration of our approach within ProM is
foreseen in our future work.

Experimental results on trace comparison (and more specifically on trace
clustering) in the field of stroke management have shown that it is easier
to identify common behaviors in abstracted traces, with respect to ground
traces: in fact, cluster homogeneity, when operating on abstracted traces,
reaches higher values. At the same time, outliers (i.e., anomalies and in-
correct behaviors) are still clearly visible in abstracted traces as well (and
clearly detected by the clustering method we used). Further experiments
have proved that the capability of abstracting the event log traces on the
basis of their semantic goal allows to mine clearer process models, where
unnecessary details are hidden, but key behaviors are clear. In the future,
we plan to conduct further experiments, e.g., by comparing different pro-
cess models (of different SUs) obtained from abstracted traces. Comparison

26

will resort to knowledge-intensive process similarity metrics, such as the one
we described in Montani et al. (2015b). We will also extensively test the
approach in different application domains.

From a methodological viewpoint, we plan to extend our approach in dif-
ferent directions. First, we will consider different knowledge structures, such
as ontologies, or multiple taxonomies, able to provide abstraction informa-
tion from different viewpoints (e.g., not only the viewpoint of action goals -
as it happens in the single taxonomy we are currently adopting - but also the
one of roles and responsibilities of the involved actors, when available). As a
consequence, the similarity metric will need proper extensions or adjustments
(e.g., by considering the work in Hwang et al. (2012) in the case of multi-
ple taxonomies). The modularity of our approach will make this extensions
relatively easy. Second, we will consider more complex rules, e.g., having as
an antecedent the execution of some action registered in the log. This will
allow us to control the abstraction process on the basis of the context, i.e., of
the already executed actions. Temporal constraints (e.g., the delay since the
completion of the already executed action) will also be taken into account
in these rules. We believe that such improvements will make our framework
more complete and much more useful in practice.

References

van der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow mining:
Discovering process models from event logs. IEEE Trans. Knowl. Data
Eng., 16 , 1128–1142.

van der Aalst, W. M. P., de Beer, H. T., & van Dongen, B. F. (2005). Process
mining and verification of properties: An approach based on temporal
logic. In R. Meersman, Z. Tari, M. Hacid, J. Mylopoulos, B. Pernici,
Ö. Babaoglu, H. Jacobsen, J. P. Loyall, M. Kifer, & S. Spaccapietra (Eds.),
On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, OTM Confederated International Conferences CoopIS, DOA,
and ODBASE 2005, Agia Napa, Cyprus, October 31 - November 4, 2005,
Proceedings, Part I (pp. 130–147). Springer volume 3760 of Lecture Notes
in Computer Science.

der Aalst, W. V. (2011). Process Mining. Discovery, Conformance and En-
hancement of Business Processes . Springer.

27

der Aalst, W. V., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., &
Weijters, A. (2003). Workflow mining: a survey of issues and approaches.
Data and Knowledge Engineering , 47 , 237–267.

Allen, J. (1984). Towards a general theory of action and time. Artificial
Intelligence, 23 , 123–154.

Bergmann, R., & Gil, Y. (2014). Similarity assessment and efficient retrieval
of semantic workflows. Information Systems , 40 , 115–127.

Bose, R. P. J. C., & van der Aalst, W. (2009). Abstractions in process mining:
A taxonomy of patterns. In U. Dayal, J. Eder, J. Koehler, & H. A. Reijers
(Eds.), Business Process Management, 7th International Conference, BPM
2009, Ulm, Germany, September 8-10, 2009. Proceedings (pp. 159–175).
volume 5701 of Lecture Notes in Computer Science.

Casati, F., & Shan, M. (2002). Semantic analysis of business process execu-
tions. In C. S. Jensen, K. G. Jeffery, J. Pokorný, S. Saltenis, E. Bertino,
K. Böhm, & M. Jarke (Eds.), Advances in Database Technology - EDBT
2002, 8th International Conference on Extending Database Technology,
Prague, Czech Republic, March 25-27, Proceedings (pp. 287–296). Springer
volume 2287 of Lecture Notes in Computer Science.

Combi, C., Gozzi, M., Oliboni, B., Juarez, J., & Marin, R. (2009). Temporal
similarity measures for querying clinical workflows. Artificial Intelligence
in Medicine, 46 , 37–54.

Dijkman, R., Dumas, M., & Garca-Banuelos, R. (2009). Graph matching al-
gorithms for business process model similarity search. In U. Dayal, J. Eder,
J. Koehler, & H. Reijers (Eds.), Proc. International Conference on Busi-
ness Process Management (pp. 48–63). volume 5701 of Lecture Notes in
Computer Science.

van Dongen, B., & van der Aalst, W. (2005). A meta model for process min-
ing data. In M. Missikoff, & A. D. Nicola (Eds.), EMOI - INTEROP’05,
Enterprise Modelling and Ontologies for Interoperability, Proceedings of
the Open Interop Workshop on Enterprise Modelling and Ontologies for
Interoperability, Co-located with CAiSE’05 Conference, Porto (Portugal),
13th-14th June 2005 . CEUR-WS.org volume 160 of CEUR Workshop Pro-
ceedings .

28

van Dongen, B., De Medeiros, A. A., Verbeek, H., Weijters, A., & der Aalst,
W. V. (2005). The proM framework: a new era in process mining tool
support. In G. Ciardo, & P. Darondeau (Eds.), Knowledge Mangement
and its Integrative Elements (pp. 444–454). Springer, Berlin.

Duda, R., Hart, P., & Stork, D. (2001). Pattern classication. Wiley-
Interscience, New York.

Francis, P., Leon, D., Minch, M., & Podgurski, A. (2004). Tree-based meth-
ods for classifying software failures. In Int. Symp. on Software Reliability
Engineering (pp. 451–462). IEEE Computer Society.

Grando, M. A., Schonenberg, M. H., & van der Aalst, W. M. P. (2011).
Semantic process mining for the verification of medical recommendations.
In V. Traver, A. L. N. Fred, J. Filipe, & H. Gamboa (Eds.), HEALTHINF
2011 - Proceedings of the International Conference on Health Informatics,
Rome, Italy, 26-29 January, 2011 (pp. 5–16). SciTePress.

Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., & Shan, M.
(2004). Business process intelligence. Computers in Industry , 53 , 321–343.

Hepp, M., Leymann, F., Domingue, J., Wahler, A., & Fensel, D. (2005).
Semantic business process management: A vision towards using semantic
web services for business process management. In F. C. M. Lau, H. Lei,
X. Meng, & M. Wang (Eds.), 2005 IEEE International Conference on e-
Business Engineering (ICEBE 2005), 18-21 October 2005, Beijing, China
(pp. 535–540). IEEE Computer Society.

Hepp, M., & Roman, D. (2007). An ontology framework for semantic
business process management. In A. Oberweis, C. Weinhardt, H. Gim-
pel, A. Koschmider, V. Pankratius, & B. Schnizler (Eds.), eOrganisa-
tion: Service-, Prozess-, Market-Engineering: 8. Internationale Tagung
Wirtschaftsinformatik - Band 1, WI 2007, Karlsruhe, Germany, February
28 - March 2, 2007 (pp. 423–440). Universitaetsverlag Karlsruhe.

Hwang, S. J., Grauman, K., & Sha, F. (2012). Semantic kernel forests from
multiple taxonomies. In P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges,
L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information

29

Processing Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States. (pp. 1727–1735).

IEEE Taskforce on Process Mining: Process Mining Manifesto (). http :
//www.win.tue.nl/ieeetfpm. IEEE Taskforce on Process Mining: Process
Mining Manifesto (last accessed on 4/11/2013).

Kapetanakis, S., Petridis, M., Knight, B., Ma, J., & Bacon, L. (2010). A
case based reasoning approach for the monitoring of business workflows.
In I. Bichindaritz, & S. Montani (Eds.), Proc. International Conference on
Case Based Reasoning (ICCBR) (pp. 390–405). Springer, Berlin volume
6176 of Lecture Notes in Computer Science.

Kharbili, M. E., Stein, S., & Pulvermüller, E. (2008). Policy-based semantic
compliance checking for business process management. MobIS Workshops ,
420 , 178–192.

Lanz, A., Weber, B., & Reichert, M. (2010). Workflow time patterns for
process-aware information systems. In Proc. BMMDS/EMMSAD (pp. 94–
107).

LaRosa, M., Dumas, M., Uba, R., & Dijkman, R. (2013). Business process
model merging: An approach to business process consolidation. ACM
Trans. Softw. Eng. Methodol., 22 , 11.

Levenshtein, A. (1966). Binary codes capable of correcting deletions, inser-
tions and reversals. Soviet Physics Doklady , 10 , 707–710.

de Medeiros, A. K. A., & van der Aalst, W. M. P. (2009). Process mining
towards semantics. In T. S. Dillon, E. Chang, R. Meersman, & K. P.
Sycara (Eds.), Advances in Web Semantics I - Ontologies, Web Services
and Applied Semantic Web (pp. 35–80). Springer volume 4891 of Lecture
Notes in Computer Science.

de Medeiros, A. K. A., van der Aalst, W. M. P., & Pedrinaci, C. (2008). Se-
mantic process mining tools: Core building blocks. In W. Golden, T. Ac-
ton, K. Conboy, H. van der Heijden, & V. K. Tuunainen (Eds.), 16th Eu-
ropean Conference on Information Systems, ECIS 2008, Galway, Ireland,
2008 (pp. 1953–1964).

30

de Medeiros, A. K. A., Pedrinaci, C., van der Aalst, W. M. P., Domingue,
J., Song, M., Rozinat, A., Norton, B., & Cabral, L. (2007). An outlook
on semantic business process mining and monitoring. In R. Meersman,
Z. Tari, & P. Herrero (Eds.), On the Move to Meaningful Internet Systems
2007: OTM 2007 Workshops, OTM Confederated International Work-
shops and Posters, AWeSOMe, CAMS, OTM Academy Doctoral Consor-
tium, MONET, OnToContent, ORM, PerSys, PPN, RDDS, SSWS, and
SWWS 2007, Vilamoura, Portugal, November 25-30, 2007, Proceedings,
Part II (pp. 1244–1255). Springer volume 4806 of Lecture Notes in Com-
puter Science.

Minor, M., Tartakovski, A., Schmalen, D., & Bergmann, R. (2008). Agile
workflow technology and case-based change reuse for long-term processes.
International Journal of Intelligent Information Technologies , 4 , 80–98.

Montani, S., & Leonardi, G. (2014). Retrieval and clustering for supporting
business process adjustment and analysis. Information Systems , 40 , 128–
141.

Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., & Micieli, G. (2015a).
A knowledge-intensive approach to process similarity calculation. Expert
Syst. Appl., 42 , 4207–4215.

Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., & Micieli, G. (2015b).
A knowledge-intensive approach to process similarity calculation. Expert
Syst. Appl., 42 , 4207–4215.

Okoye, K., Tawil, A. H., Naeem, U., & Lamine, E. (2015). Semantic process
mining towards discovery and enhancement of learning model analysis.
In 17th IEEE International Conference on High Performance Computing
and Communications, HPCC 2015, 7th IEEE International Symposium on
Cyberspace Safety and Security, CSS 2015, and 12th IEEE International
Conference on Embedded Software and Systems, ICESS 2015, New York,
NY, USA, August 24-26, 2015 (pp. 363–370). IEEE.

Palmer, M., & Wu, Z. (1995). Verb Semantics for English-Chinese Transla-
tion. Machine Translation, 10 , 59–92.

Pedrinaci, C., & Domingue, J. (2007). Towards an ontology for process
monitoring and mining. In M. Hepp, K. Hinkelmann, D. Karagiannis,

31

R. Klein, & N. Stojanovic (Eds.), Proceedings of the Workshop on Semantic
Business Process and Product Lifecycle Management SBPM 2007, held
in conjunction with the 3rd European Semantic Web Conference (ESWC
2007), Innsbruck, Austria, June 7, 2007 . volume 251 of CEUR Workshop
Proceedings .

Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D.,
& Leymann, F. (2008). Semantic business process management: Scaling
up the management of business processes. In Proceedings of the 2th IEEE
International Conference on Semantic Computing (ICSC 2008), August
4-7, 2008, Santa Clara, California, USA (pp. 546–553). IEEE Computer
Society.

Sell, D., Cabral, L., Motta, E., Domingue, J., & dos Santos Pacheco, R. C.
(2005). Adding semantics to business intelligence. In 16th International
Workshop on Database and Expert Systems Applications (DEXA 2005),
22-26 August 2005, Copenhagen, Denmark (pp. 543–547). IEEE Computer
Society.

Sharan, R., & Shamir, R. (2000). CLICK: A clustering algorithm for gene ex-
pression analysis. In Proc. International Conference on Intelligent Systems
for Molecular Biology (p. 260268).

Smirnov, S., Reijers, H. A., & Weske, M. (2012). From fine-grained to ab-
stract process models: A semantic approach. Inf. Syst., 37 , 784–797.

Sokal, R., & Michener, C. (1958). A statistical method for evaluating system-
atic relationships. University of Kansas Science Bulletin, 38 , 1409–1438.

Verbeek, H. M. W., Buijs, J. C. A. M., van Dongen, B. F., & van der Aalst,
W. M. P. (2011). Xes, xesame, and prom 6. In P. Soffer, & E. Proper
(Eds.), Information Systems Evolution: CAiSE Forum 2010, Hammamet,
Tunisia, June 7-9, 2010, Selected Extended Papers (pp. 60–75). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Weber, B., & Wild, W. (2005). Towards the agile management of business
processes. In K. D. Althoff, A. Dengel, R. Bergmann, M. Nick, & T. Roth-
Berghofer (Eds.), Professional knowledge management WM 2005, LNCS
3782 (pp. 409–419). Washington DC: Springer, Berlin.

32

Weijters, A., der Aalst, W. V., & de Medeiros, A. A. (2006). Process Mining
with the Heuristic Miner Algorithm, WP 166 . Eindhoven University of
Technology, Eindhoven.

Yip, A., Chan, T., & Mathew, T. (2003). A Scale Dependent Model for Clus-
tering by Optimization of Homogeneity and Separation, CAM Technical
Report 03-37 . Department of Mathematics, University of California, Los
Angeles.

33

