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Exploring the total positivity of yields correlations
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We test the plausibility of the total positivity assumption of interest rates changes recently introduced
in order to justify the presence of shift, slope and curvature for yield curves. To this aim, we introduce
and discuss a test of total positivity of order k for covariance and correlation matrices. The explicit
expressions of the test statistics are given for Gaussian samples and an extension to a distribution-free
framework is made via a bootstrap method. After exploring with simulation the robustness of such
tests, we show using real data how it is realistic to assume that correlation matrices of interest rates
changes are totally positive of order two. Conclusions on total positivity of order three are more
controversial.

Keywords: Bootstrap; Multiple tests; Schoenmakers & Coffey matrices; Partial correlations; Total
positivity; Yield curve

JEL Classification: G12, C12

1. Introduction

The literature on correlation models of interest rates has paid
a lot of attention to factor models where the movements of the
yield curve are explained in terms of few unobservable latent
variables (see e.g. Vasicek 1977, Ho et al. 1986, Hull and White
1990, Rebonato 2002). Empirical evidence (see e.g. Willner
1996, Golub and Tilman 1997, Longstaff et al. 1999) showed
that changes in the shape of the yield curve are substantially
imputable to three factors: the first one changing the interest
rates of all maturities by almost identical amounts, the second
one varying short-term interest rates in an opposite way with
respect to long-term interest rates and the third one presenting
the main effects on medium-term interest rates. Applying prin-
cipal component analysis (PCA) to the yield curve expressed
as a random vector in order to find these factors, it was noted
(see Steeley 1990, Litterman and Scheinkman 1991) that the
variability of the first three principal components explains most
(more than 90%) of the total variability. The corresponding
loadings vectors have been, respectively, termed as shift, slope
and curvature (SSC from now on) because of the peculiar
shape of their entries, characterized by a determined number
of changes of sign and monotonicity.
Despite some criticism (see Lekkos 2000), the presence of SSC
nowadays is considered (see e.g. Martellini et al. 2003) a basic
feature that a correlation model for interest rates should enjoy
jointly to some other ‘standard’ properties as positivity and
decreasingness with respect to the difference in maturities of
the correlation coefficients.

∗Corresponding author. Email: ernesto.salinelli@unipmn.it

The works of Lord and Pelsser (Lord and Pelsser 2007)
and Salinelli and Sgarra (Salinelli and Sgarra 2006, Salinelli
and Sgarra 2007, Salinelli and Sgarra 2011) besides having
introduced a formal definition of SSC (see also Forzani and
Tolmasky 2003, Martellini et al. 2003) have faced the problem
of justifying the presence of SSC in terms of some properties
of the correlations of interest rates. In particular, these authors
have formally justified the number of sign changes of SSC
assuming the total positivity and/or oscillatory behavior up
to order three (see Gantmacher and Krein 1961, Karlin 1968,
Fallat and Johnson 2011) of the correlation matrix of rates.
Roughly speaking, this corresponds to assuming the positivity
of minors up to order three of the correlation matrix or of one
of its appropriate powers. In the mentioned papers, the total
positivity and the oscillatoriness assumptions have been related
to the above-mentioned properties of correlations coefficients,
and it has been proved that some of the most important models
of interest rates satisfy them. Nevertheless, to our knowledge,
no investigation on their empirical plausibility has been per-
formed up to now.
In order to fill this gap, in this work, we test the significance of
the total positivity hypothesis on a real data-set. To this aim, we
introduce a statistical test for total positivity consisting in the
simultaneous comparison of standardized minors of the sample
correlation matrix with suitable critical values. The derivation
of the test statistics and its distribution is based principally on
the results appearing in Drton et al. (2008), where the first and
second moments of minors of a covariance matrix are studied.
Since this construction requires a Gaussianity assumption on
data that is generally not verified by interest rates, we have
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606 A. Goia and E. Salinelli

also considered a distribution-free approach based on a boot-
strap methodology. A simulation study has been conducted to
assay the robustness of these test procedures under different
assumptions on the distribution of the population, inspired
by the statistical characteristics of the real data which have
motivated the work. We apply our test to two different real
data-sets in order to avoid possible effects due to the way in
which the data are generated. The obtained results show how
total positivity of order 2 occurs, whereas the conclusion on the
assumption of total positivity of order 3 appears more complex.
We briefly discuss the economic consequences of these results.

The outline of the paper is the following: in section 2, we
recall the main definitions and results concerning the total
positivity assumption on correlation matrices; next, in section
3, we introduce a total positivity test and discuss its robustness.
In section 4, we apply our test to real data, obtaining our
results on the total positivity assumptions and discussing them.
Some possible directions for future research are sketched in
section 5.

2. Yields correlation, PCA and total positivity

In this section, we briefly recall the notion of total positivity,
how it has been related to some well-known properties of
correlations between interest rates changes and how it was used
in order to justify the presence of SSC. For details, we refer the
reader to Lord and Pelsser (2007), Salinelli and Sgarra (2006),
Salinelli and Sgarra (2007) and Salinelli and Sgarra (2011).

Let X be the random vector of standardized spot rates chan-
ges on a given maturity spectrum: for a discussion on this
choice, we refer to Lardic et al. (2003). The first three principal
components of X obtained by applying PCA (see e.g. Jolliffe
2004) explain more than 90% of the total variability of X and
the corresponding loadings, the eigenvectors of the correlation
matrix R of X, have the particular shape illustrated in figure B3
below. Approximately, the shift has equal elements of the same
sign with an humped shape, with elements first increasing and
then decreasing; the slope has elements of opposite sign with
similar magnitude at the opposite end of the maturity spectrum;
the curvature has elements with the same signs at the opposite
end of the maturity spectrum and of opposite sign in the middle.

As usual, we talk about the first three eigenvectors of a
matrix, by meaning that they correspond to the first three eigen-
values assumed simple and sorted in descending order. To
formally capture the behaviours described above, we recall that
(see Gantmacher 1964) a vector v ∈ R

n has a minimum S− (v)

and a maximum S+ (v) number of sign variations computed by
discarding the zero elements or considering them both positive
or negative, respectively. If S+ (v) = S− (v), this common
value is defined as the number of sign variations of v. If �v ∈
R

n−1 is defined by (�v)i = vi+1 −vi for i = 1, . . . , n −1, the
following definition resumes the ones introduced in Salinelli
and Sgarra (2006) and Salinelli and Sgarra (2011) in terms
of changes of sign of the vectors v and �v. We will refer
to correlation matrices, even if the definition also applies to
covariance ones.

Definition 2.1 Let R be a n × n, n ≥ 3, correlation matrix
having its first three eigenvalues simple, whose corresponding

eigenvectors v1, v2 and v3 have, by convention, Non-negative
first element. We define:
v1 weak shift if S− (v1) = 0, shift if it is weak shift and
S− (�v1) = 1 where the first non-zero element of �v1 is
positive, pure shift if it is constant;
v2 weak slope if S− (v2) = 1, slope if it is weak slope and
S− (�v2) = 0;
v3 weak curvature if S− (v3) = 2, curvature if it is weak
curvature and S− (�v3) = 1.

The previous definition specifies the difference between two
aspects of SSC: the weak form refers only to the number of
the sign variations of the eigenvector elements (zero, one and
two, respectively), the strict form requires information on the
monotonicity changes too. Notice that the weak form of SSC
coincides with the definition of level, slope and curvature given
in Lord and Pelsser (2007).

In the empirical literature, both concrete cases of SSC and
SSC in a weak form can be found. For example, in Martellini
et al. (2003) (figures 3.16 and 3.17, p. 80), Golub and Tilman
(1997) (Exhibit 5 p. 78), there are WSSC due to the presence
of ‘initial’ and/or ‘final’ humps. Instead, in Lord and Pelsser
(2007) (figures 1 and 2, p. 111), there are examples of SSC in
a strict sense, whereas in Lardic et al. (2003), one finds both
the cases. Anyway (see Martellini et al. 2003) ‘every empirical
investigation shows that the variance of the term structure of
interest rates is explained to more than 90% using only the
three first components’ and ‘... these three factors have nice
interpretations as being related, respectively, to parallel move-
ment, slope oscillations and curvature of the term structure.’

The previous analysis makes clear how the presence of SSC,
possibly in weak form, represents nowadays a standard prop-
erty that a correlation model of interest rates has to present
alongside the ‘classic’requirements on correlationsρi j , namely:

(i) correlations are positive;
(ii) correlations decrease with respect to the difference in

maturities:

1 ≤ i < j < s ≤ p ⇒ ρi j > ρis (1)

1 ≤ i < s < j ≤ p ⇒ ρi j < ρs j . (2)

We recall that in Salinelli and Sgarra (2011) it was showed that
in a two-factor model, the presence of shift and slope implies
properties (1) and (2).

An obvious but important question is whether the presence
of SSC should be considered a property per se, or it is a
consequence of (i) and (ii) and/or possibly of other properties
not known yet.
Answering the question in the case of the first eigenvector of the
correlation matrix R = [

ρi j
]

is easy: the presence of the weak
shift, by (i), follows from the celebrated Perron–Frobenius
Theorem. The existence of weak slope and weak curvature has
instead been justified recurring to a mathematical assumption
described in the following definition (see Karlin 1968, Fallat
and Johnson 2011).

Definition 2.2 Given a p × p matrix A, the mth compound
matrix of A, denoted by A[m], with m ∈ N and m ≤ p, is
the

( p
m

)
-square matrix of the m minors of A. Then, for k ∈

{1, 2, . . . p}, the matrix A is called:
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Total positivity of yields correlations 607

• strictly totally positive of order k, denoted by STPk , if
A[m] is positive for all m = 1, . . . , k;

• totally positive of order k, denoted by TPk , if A[m] is
non-negative for all m = 1, . . . , k;

• oscillatory of order k, denoted by OSk , if A is TPk and
there exists a positive integer q such that Aq is STPk .

It is possible to show (see Schriever 1982) that if A is a TPk

(k ≤ p) p× p matrix, then A is OSk if (i) ai j > 0 for |i − j | ≤
1, and its principal minors of order ≤ k with consecutive
lines are positive. These properties can be considered always
satisfied by a correlation matrix of interest rates, hence it is
sufficient to focus on the assumption of total positivity.
The importance of the matrices defined above is clarified by
the following result (see Schriever 1982).

Theorem 2.3 Assume A is a p × p positive definite, symmet-
ric matrix with eigenvalues λ1 ≥ λ2 · · · ≥ λp > 0. If A is
OSk, then λ1 > λ2 · · · > λk > λk+1 ≥ · · · ≥ λp > 0, i.e. at
least the first k eigenvalues are simple and for s ∈ {1, . . . , k}
the s-th eigenvector has exactly s − 1 changes of sign.

By the previous theorem and the above considerations, we
conclude that if R is TP2, then its (first eigenvector is weak shift
and its) second eigenvector is weak slope. If R isTP3, then it has
shift, slope and curvature in a weak form (the converse is not
true, as illustrated in Salinelli and Sgarra (2011), example 6).
Summing up, TP2 and TP3 are sufficient (but not necessary)
conditions for the existence of SS and SSC in a weak form,
respectively.

It is interesting to note that TP2 correlation matrices whose
elements are less than 1 satisfy the monotonicity properties (1)
and (2) as showed in Salinelli and Sgarra (2006) (see theorem
16 and remark 17).

We conclude this section by illustrating some examples of
correlation structures of yields satisfying some request of def-
inition 2.2.

Example 2.4 A first model is the classical exponential one (see
Rebonato 2002), where the correlation ρi j between maturities
t j and ti is given by

ρi, j = exp
{−β

∣∣t j − ti
∣∣} β > 0. (3)

It is evident that correlations satisfy properties (i) and (ii). A
further characteristic is the homogeneity with respect to time:
interest rates with the same maturity differences exhibit the
same correlation. By setting ρ = e−β , and identifying in-
dices and maturities, one obtains the Toepliz correlation matrix
(known in the numerical literature as the Kac-Murdok-Szegö
matrix)

R =

⎡
⎢⎢⎢⎢⎢⎣

1 ρ ρ2 · · · ρ p−1

ρ 1 ρ · · · ρ p−2

ρ2 ρ 1 · · · ρ p−3

...
...

...
. . .

...

ρ p−1 ρ p−2 ρ p−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ . (4)

In Salinelli and Sgarra (2006), it was proved the oscillatory
property of R and in Salinelli and Sgarra (2007), some results
on the existence of shift and slope were given.

A more general model also presenting time homogeneity
but describing a correlation structure with very fast decay in

maturity differences is

ρi j = exp
{−β |i − j |q}

β ∈ R+, q ∈ N\ {0} . (5)

In this case, the corresponding correlation matrix is TP, hence
it has SSC in a weak sense.
The following model (see Rebonato 2002)

ρi, j = exp
{−β

∣∣ jγ − iγ
∣∣} β ∈ R+, γ ∈ (0, 1). (6)

has correlations satisfying (i) and (ii), but breaks the time-
homogeneous behaviour. Furthermore, correlations increase
descending on the diagonals. It represents a particular case of
the so-called Schoenmakers–Coffey (see Schoenmakers and
Coffey 2003) defined by

ρi, j = min
{
bi , b j

}
max

{
bi , b j

} (7)

where the sequence {bi } is strictly positive, strictly increasing
and log-concave, that is the sequence {bi/bi+1} is strictly in-
creasing. In Lord and Pelsser (2007), theorem 4 and corollary
4, p. 123, the oscillatoriness property of these matrices was
stated.

Notice that model (4) represents a special case ({bi/bi+1} is
constant) of the Schoenmakers–Coffey structure, whereas (5)
does not.

3. A testing procedure for total positivity

In this section, we address the problem of defining a method
for detecting the total positivity of covariance or correlation
matrices. Because a pure exploratory study, based only on
the identification of the non-positive minors of the sample
covariance or correlation matrices, would suffer of lack of gen-
erality since it is valid only for the observed data, an inferential
approach for large samples has to be introduced in order to
extend the results to the underlying population. Therefore, in
what follows, we introduce and study a multiple testing pro-
cedure whose statistics are derived both under the assumption
of Gaussian populations and in a distribution-free framework.

3.1. A Simes’ test procedure

Consider a p-dimensional random vector X = (
X1, . . . , X p

)T

with covariance matrix �, and denote by �[m], with m ∈
{1, . . . , p}, its m-th compound matrix (see definition 2.2)
whose entries are denoted by σ

[m]
i j (clearly, �1 = �). Since �

is symmetric and positive semi-definite, its compound matrices
�[m] are symmetric with non-negative main diagonal elements.
Thanks to these aspects, testing total positivity of order k for
�, with k = 1, . . . , p, for a chosen significant level α ∈ (0, 1),
is equivalent to testing the following multiple null hypothesis:

H : σ
[m]
i, j ≥ 0 for 1 ≤ i < j ≤

(
p

m

)
, with m = 1, . . . , k

against the alternative:

A : there exist a couple (i, j) such that σ
[m]
i, j < 0, for some m.

In the following, we denote by H [m]
i j the marginal null hypothe-

sis σ
[m]
i j ≥ 0 for fixed i , j and m. In such a general framework,
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608 A. Goia and E. Salinelli

the number of tests that have to be performed to test TPk is
equal to hk = 1

2

∑k
m=1

( p
m

) (( p
m

) − 1
)
.

Remark 1 When studying the yield curve, since correlations
(and covariances) are strictly positive, it is useless to test TP1.
Consequently, the number of tests for the TPk hypothesis, with
k = 2, . . . , p, reduces to: hk = 1

2

∑k
m=2

( p
m

) (( p
m

) − 1
)
.

Let
{
Xi = (

X1,i , . . . , X p,i
)T

, i = 1, . . . , n
}

be a sample

of i.i.d. observations from X. Denote by �̂ the sample covari-
ance matrix and �̂[m] its empirical m-th compound matrix with
elements σ̂

[m]
i j , consistent estimators of σ

[m]
i j . We define the

h -dimensional set of test statistics
{

Z [m]
i, j : 1 ≤ i < j ≤ ( p

m

)
,

m = 1, . . . , k
}

, where

Z [m]
i, j = σ̂

[m]
i, j − σ

[m]
i, j√

V ar
(
σ̂

[m]
i, j

) (8)

is the standardized sample version of σ̂
[m]
i, j . If X ∼Np (0, �),

the explicit expressions of the denominators in (8) can be
obtained from the results appearing in Drton and Goia (2012)
and Drton et al. (2008, section 5), where the first and second
moments of the minors of a Wishart matrix are studied. For
the sake of completeness, such expressions are recapped in
the appendix 1: since in these formulas the minors of � appear
explicitly, they have to be estimated. We use the correspondent
minors of the empirical covariance matrix �̂.

Under the null hypothesis H [m]
i, j (i.e. when σ

[m]
i, j = 0), a direct

application of the δ-method allows to conclude that the statis-
tic Z [m]

i, j is asymptotically distributed as a standard Gaussian
distribution (see the arguments in the proof of proposition 4
in Drton et al. (2007)), hence the corresponding p-value P [m]

i j
can be calculated.

Since hk increases rapidly with p and k, the use of the clas-
sical Bonferroni method, consisting in rejecting H if at least
one of the p-values P [m]

i, j is less than α/hk , could conduce to a
too conservative test procedure for practical purposes: hence,
we prefer to employ the Simes approach (see Simes 1986). Its
decision rule is based on the ordered p-values P [m]

i, j (1) ≤ · · · ≤
P [m]

i, j (hk), and it rejects H when P [m]
i, j (l) ≤ αl/hk for at least

one l. Such method has the same critical values of the so-called
‘false discovery rate controlling procedure’ of Benjamini and
Hochberg (see Benjamini and Hochberg 1995).

The test procedure illustrated above can be easily
extended to correlation matrices R. Indeed, as pointed out
in Drton et al. (2008, section 6), the ratio between a sample
minor and its standard deviation is the same when one uses the
sample covariance �̂ or sample correlation matrix R̂. Hence,
denoting by ρ

[m]
i j and ρ̂

[m]
i j the entries of R[m] and R̂[m] (the

m-th compounds of R and R̂ respectively), the test statistics is
defined as:

Z [m]
i, j = ρ̂

[m]
i j − ρ

[m]
i j√

V ar
(
ρ̂

[m]
i j

) (9)

where the denominators are obtained by substituting �̂ with
the empirical correlation matrix R̂ into the formulas in the
appendix 1, and ρ

[m]
i j = 0 under the null hypothesis.

In order to complete the presentation of the test procedure,
we observe that the expressions of the test statistics have been
derived under the assumption of Gaussian population. In some
empirical analysis this assumption is unreasonable. This is the
case of the application which motivated our study (see the
discussion in section 4). To extend the range of applicability
of our test, one can use the bootstrapping methodology (see,
for instance, Efron and Tibshirani 1986, Efron and Tibshirani
1993) to estimate the variances of empirical minors σ̂

[m]
i, j (or

ρ̂
[m]
i j ). We consider the case of a covariance matrix �: the

adaptation to correlation matrices is immediate. In brief, a large
number B of bootstrap samples, obtained through the draws
of n elements with replacement from the observed sample
{Xi , i = 1, . . . , n}, is done. Hence, for each bootstrap sample,
the empirical covariance matrix is estimated, and its minors
σ̃

[m]
i, j (b) are computed. So V ar

(
σ̂

[m]
i, j

)
in (8) is estimated by:

1

B − 1

B∑
b=1

(
σ̃

[m]
i, j (b) − σ

[m]
i, j

)2

where σ
[m]
i j = ∑B

b=1 σ̃
[m]
i j (b) /B. Since the derived test statis-

tics are, under the null hypothesis, asymptotically pivotal with
Gaussian standard distribution, the p-values can be easily com-
puted.

3.2. Exploring finite sample properties of the test

We conducted several simulation experiments to investigate
the finite sample properties of the test for the total positivity of
order two and three for correlation matrices by means of the
estimation of the power for different population distributions,
correlation structures and sample sizes. More in detail, we draw
i.i.d. samples of size n = 200, 500 and 1000 from random
vectors of dimension p = 9 (this choice is motivated by the
size of the matrices involved in the application to the real
data) having Gaussian and Student t with 5 and 10 degrees
of freedom distributions, with various TP correlation matrices
suitably perturbed in order to control the number of negative
minors of order two and three (ρ[2]

i j and ρ
[3]
i j , in the above

notation).
Since the study of yield correlation matrices is the main focus

of this paper, to generate the correlation matrices, we adopted
the ones of Schoenmakers–Coffey (7). In our experiments,
correlation structures were defined according to the following
models:

• power model: bi = iδ , 0 < δ < 1,
• logarithmic model: bi = log (i + β), β > 1,

where the coefficients δ and β and were chosen to reproduce
some ‘realistic’ correlation structures of yield curves, namely
presenting positive correlations that decrease with respect to
the difference in maturities (see (1) and (2)). For each of the
treated cases, the power has been estimated over 1000 Monte
Carlo replications, as the proportion of times that the null
hypothesis H was rejected using the Simes’ test procedure at
the nominal level α = 5%. Since the entries of Schoenmakers–
Coffey matrices are strictly positive, we tested only TP2 and
TP3 according to remark 1. As the two models do not lead to
substantially different results, in the following, we illustrate in
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Total positivity of yields correlations 609

Table 1. Number of negative minors of order two ρ
[2]
i j and the smallest ρ

[2]
i j (×10−2) varying p1.

#
{
ρ

[2]
i j < 0

}
Power model

p1 Q (i < j) ε = 0.4 ε = 0.6 ε = 0.8

1 1 28 −0.61 −0.92 −1.23
2 3 57 −0.71 −1.07 −1.43
3 6 71 −0.85 −1.27 −1.70
4 10 65 −1.04 −1.56 −2.08
5 15 45 −1.32 −1.99 −2.65
6 21 23 −1.79 −2.69 −3.59
7 28 7 −2.71 −4.07 −5.43

detail only the power case, deferring the logarithmic one to the
appendix 2.

3.2.1. Testing TP2. We first analyse the test for the TP2
assumption. The Schoenmakers–Coffey correlation matrices
were generated according to the power model with δ = 0.2.
Such matrices were perturbed by acting on the elements of the
north-east (and, for symmetry, south-west) triangular subma-
trices as follows: let p1 be an integer satisfying 1 ≤ p1 < p;
the perturbed terms ρ̃i, j = ρ̃ j,i were obtained from the original
matrix by

ρ̃i, j = ρ̃ j,i = ερi, j−1 + (1 − ε) ρi, j

where i = 1, . . . , p1, j = p − p1 + i, . . . , p, and 0 < ε <

1. Hence, the number of perturbed terms in the north-west
triangular submatrices is Q = Q(p1) = ∑p1

j=1 j . With a good
choice of ε, such a technique produces correlation matrices
having the monotonicity by row and column properties that
are not TP2. In the simulations, we used p1 = 1, . . . , 7, and
ε = 0.4, 0.6 and 0.8.

Using the previous specifications, the number of strictly
negative minors of order two ρ

[2]
i j that have to be considered in

the test (that is, the ones with i < j) increases with p1 when
p1 ≤ 4 and then decreases. On the other hand, the value of the
smallest minor ρ

[2]
i j decreases with Q, thus producing a more

and more clear departure from the initial TP2 situation. These
behaviours can be appreciated by reading table 1 where the
smallest minors ρ

[2]
i j are reported for the various experimental

conditions considered. All the perturbed matrices exhibit SSC.
The power comparisons when we use the test statistic (9)

exploiting the expression of the variance derived explicitly
under condition of Gaussianity are presented in figure 1. The
panels display the estimated level and power against the num-
ber Q of perturbed terms: the case Q = 0, corresponding to
the use of the not perturbed matrices, gives the estimation of
the level of the test.

We can deduce from the graphs how the test produces good
performances in the case of samples drawn from Gaussian
populations or from a distribution which deviates slightly from
Gaussianity (i.e. the Student t with 10 df): as expected, the es-
timated power is monotonic with respect to Q (this is coherent
with the behaviour illustrated in table 1), increases with n and
ε. In such cases, the test appears rather conservative, namely
the estimated level is smaller than the nominal one: this fact is

not surprising since we are dealing with multiple comparisons
(see section 3.1).

When we work with a distribution having fat tails (i.e. the
Student t with 5 df), the test appears very liberal: the estimated
level is systematically greater than the nominal one and so the
performances of the test are only apparently better than in the
other two cases. This distortion is not even attenuated when
the sample size n is large; therefore, the test does not appear
robust to large deviations from Gaussianity.
To remedy the distort effects due to the use, when the popula-
tion is not Gaussian, of an expression of the variance
V ar

(
ρ̂

[m]
i, j

)
in (9) derived under Gaussianity assumptions, we

estimate such variance by the bootstrap method proposed in
section 3.1, using B = 1000 bootstrap samples. The behaviour
of the estimated level and power in this case is shown in
figure 2.

By inspecting the graphs, we note immediately that the
bootstrap version of the test is robust to any deviation from
Gaussianity of the population and that the performances are
relatively good when n is large enough with respect to the
magnitude of the perturbation. In particular, we observe that the
estimated level (corresponding to Q = 0) is similar in all cases:
the test appears rather uniformly conservative with respect
to the population distributions, sample sizes and correlation
structures.About the behaviour of the power with respect to the
number of perturbed terms, the graphs display, as it is desirable,
monotonicity. As claimed before, we use the asymptotic null
distribution of the test statistic: notice that when the samples
come from a Gaussian population, the test produces better
results than in the other cases, but the differences decrease
for large sample sizes, as it is reasonable to expect.

In conclusion, the Monte Carlo experiment suggests that
the test for the TP2 assumption based on the statistic derived
for Gaussian population gives good performances for rela-
tively large sample sizes, but it is not robust to deviation from
Gaussianity. A robust version is provided when one uses the
bootstrap approximation of the test statistic. The comments
about the behaviour of the test when one varies the sample
size n and the perturbation term ε remain valid for different
choices of δ.

3.2.2. Testing TP3. To analyse the test for TP3, we used
the Schoenmakers–Coffey correlation matrices based on the
power model with δ = 0.25. To obtain correlation matrices
that are TP2 but not TP3, we perturbed the square submatrices

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ov
ar

a]
 a

t 0
8:

29
 2

1 
Se

pt
em

be
r 

20
17

 



610 A. Goia and E. Salinelli

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

20
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

50
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

10
00

 −
 P

ow
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

20
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power
G

au
ss

ia
n

St
ud

en
t t

(5
)

St
ud

en
t t

(1
0)

n 
= 

50
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

10
00

 −
 P

ow
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

20
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

50
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20

0.00.20.40.60.81.0 0.00.20.40.60.81.0 0.00.20.40.60.81.0

0.00.20.40.60.81.0 0.00.20.40.60.81.0 0.00.20.40.60.81.0

0.00.20.40.60.81.0 0.00.20.40.60.81.0 0.00.20.40.60.81.0

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

10
00

 −
 P

ow
er

 M
od

el

Fi
gu

re
1.

E
st

im
at

ed
po

w
er

of
T

P 2
te

st
fo

r
Po

w
er

Sc
ho

en
m

ak
er

s–
C

of
fe

y
co

rr
el

at
io

n
m

at
ri

ce
s

w
ith

n
=

20
0,

50
0

an
d

10
00

an
d

ε
=

0.
4,

0.
6

an
d

0.
8.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ov
ar

a]
 a

t 0
8:

29
 2

1 
Se

pt
em

be
r 

20
17

 



Total positivity of yields correlations 611

0
5

10
15

20

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

20
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

50
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

10
00

 −
 P

ow
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

20
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

50
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20
N

um
be

r o
f P

er
tu

rb
ed

 T
er

m
s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

10
00

 −
 P

ow
er

 M
od

el

0
5

10
15

20

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

20
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

50
0 

− 
Po

w
er

 M
od

el

0
5

10
15

20

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

10
00

 −
 P

ow
er

 M
od

el

Fi
gu

re
2.

E
st

im
at

ed
po

w
er

of
T

P 2
te

st
fo

r
Po

w
er

Sc
ho

en
m

ak
er

s–
C

of
fe

y
co

rr
el

at
io

n
m

at
ri

ce
s

w
ith

n
=

20
0,

50
0

an
d

10
00

an
d

ε
=

0.
4,

0.
6

an
d

0.
8

w
ith

th
e

st
an

da
rd

er
ro

r
es

tim
at

ed
by

bo
ot

st
ra

p.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ov
ar

a]
 a

t 0
8:

29
 2

1 
Se

pt
em

be
r 

20
17

 



612 A. Goia and E. Salinelli

0
1

2
3

4
5

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

20
0 

− 
Po

w
er

 M
od

el

0
1

2
3

4
5

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

50
0 

− 
Po

w
er

 M
od

el

0
1

2
3

4
5

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

10
00

 −
 P

ow
er

 M
od

el

0
1

2
3

4
5

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

20
0 

− 
Po

w
er

 M
od

el

0
1

2
3

4
5

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

50
0 

− 
Po

w
er

 M
od

el

0
1

2
3

4
5

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

n 
= 

10
00

 −
 P

ow
er

 M
od

el

Fi
gu

re
3.

E
st

im
at

ed
po

w
er

of
T

P 3
te

st
fo

r
Po

w
er

Sc
ho

en
m

ak
er

s–
C

of
fe

y
co

rr
el

at
io

n
m

at
ri

ce
s

w
ith

n
=

20
0,

50
0

an
d

10
00

an
d

ε
=

0.
97

an
d

0.
95

,u
si

ng
th

e
va

ri
an

ce
co

m
pu

te
d

fo
r

G
au

ss
ia

n
po

pu
la

tio
n.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ov
ar

a]
 a

t 0
8:

29
 2

1 
Se

pt
em

be
r 

20
17

 



Total positivity of yields correlations 613

0
2

4
6

8
0

2
4

6
8

0
2

4
6

8

0
2

4
6

8
0

2
4

6
8

0
2

4
6

8

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

0.00.20.40.60.81.0

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

Po
w

er
 M

od
el

 −
 n

 =
 2

00
 −

 ε
 =

 0
.9

7

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

Po
w

er
 M

od
el

 −
 n

 =
 5

00
 −

 ε
 =

 0
.9

7

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

Po
w

er
 M

od
el

 −
 n

 =
 1

00
0 

− 
ε 

= 
0.

97

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

Po
w

er
 M

od
el

 −
 n

 =
 2

00
 −

 ε
 =

 0
.9

5

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

Po
w

er
 M

od
el

 −
 n

 =
 5

00
 −

 ε
 =

 0
.9

5

N
um

be
r o

f P
er

tu
rb

ed
 T

er
m

s

Estimated Power

G
au

ss
ia

n
St

ud
en

t t
(5

)
St

ud
en

t t
(1

0)

Po
w

er
 M

od
el

 −
 n

 =
 1

00
0 

− 
ε 

= 
0.

95

Fi
gu

re
4.

E
st

im
at

ed
po

w
er

of
T

P 3
te

st
fo

r
Po

w
er

Sc
ho

en
m

ak
er

s–
C

of
fe

y
co

rr
el

at
io

n
m

at
ri

ce
s

w
ith

n
=

20
0,

50
0

an
d

10
00

an
d

ε
=

0.
97

an
d

0.
95

,u
si

ng
th

e
bo

ot
st

ra
p

es
tim

at
ed

va
ri

an
ce

.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ov
ar

a]
 a

t 0
8:

29
 2

1 
Se

pt
em

be
r 

20
17

 



614 A. Goia and E. Salinelli

Table 2. Augmented Dickey–Fuller and Phillips–Perron test statistics computed on the BFV dataset.

Maturities 1Y 2Y 3Y 4Y 5Y 7Y 8Y 9Y 10Y

Augmented Dickey–Fuller test statistics
France −9.62 −10.68 −11.05 −11.27 −11.40 −11.41 −11.29 −11.18 −11.26
Germany −9.57 −10.58 −10.87 −11.15 −11.26 −11.25 −11.22 −11.15 −11.29
Italy −9.63 −10.86 −11.11 −11.44 −11.50 −11.24 −11.43 −11.33 −11.28
UK −9.23 −10.34 −10.90 −11.05 −11.10 −10.99 −10.97 −11.19 −11.44

Phillips–Perron test statistics
France −1249.1 −1247.6 −1251.5 −1265.9 −1260.5 −1251.8 −1253.4 −1251.4 −1239.7
Germany −1213.6 −1250.4 −1250.0 −1246.4 −1267.4 −1251.5 −1235.3 −1220.1 −1240.9
Italy −1233.2 −1240.0 −1218.0 −1195.4 −1184.2 −1177.8 −1142.3 −1114.5 −1119.9
UK −1137.8 −1103.8 −1110.0 −1137.7 −1172.7 −1224.2 −1231.6 −1228.7 −1231.4

in the north-east (and, for symmetry, south-west) corner of the
original TP matrices, by multiplying each of their elements by
a suitable ε, with 0 < ε < 1:

ρ̃i, j = ρ̃ j,i = ερi, j (10)

where i = 1, . . . , p1, j = p − p1 + 1, . . . , p, with p1 integer
such that 1 ≤ p1 < p. Since it is rather complex to obtain
correlation matrices which are TP2 but not TP3, we limit our
simulations study only to few cases and we use p1 = 1, 2, 3
and ε = 0.95 and 0.97 (corresponding to a large and small
deviation from TP3 structure, respectively).

Differently from the one introduced in section 3.2.1, pertur-
bation (10) produces very different effects on the compound
matrices, while preserving SSC. More in detail, if one considers
ε = 0.95 and 0.97, when p1 increases from 1 to 3, the number
of negative minors of order three ρ

[3]
i j (with i < j) becomes

378, 580 and then 279, and the value of the smallest of them
decreases for increasing p1. The behaviours of the estimated
power, obtained when we use the test statistic with variance
derived under Gaussianity assumptions, are plotted against the
number of perturbed terms (i.e. p2

1) in figure 3.
As in the TP2 case, the non-robustness of the test in case of

substantial deviations from Gaussianity emerges. When we use
the bootstrap estimation of the variance, we obtain the trends
for estimated powers shown in figure 4, from which emerges
the goodness of this approach.

4. Analysis of the case study

In this section, we perform a numerical study in order to support
the effectiveness of the total positivity assumption of the yield
correlation matrices by the empirical evidence. We consider
two different data-sets in order to verify that our results are
independent of the methodology used to generate the data since
it is known that it may affect the presence of SSC (see Lekkos
2000, Alexander and Lvov 2003, Lardic et al. 2003, Lord and
Pelsser 2007).

The first data-set used in the analysis consists of Bloomberg
Fair Value (BFV) curves for sovereign bonds in four European
countries (France, Germany, Italy and the UK) from 3rd Jan-
uary 2004 to 29th December 2008, for a total of 1305 daily
yield curves. These last are derived over 15 maturities ranging
from 3 months to 30 years. More in detail, the maturity spectra

are: short-term (3 and 6 months), medium-term (from 1 year to
5 years and from 7 to 10 years), and long-term (15, 20, 25 and
30 years) spectra. The data are zero-coupon curves generated
by a proprietary optimization model mainly based on the use of
piece-wise linear functions and bootstrapping; for more details
see Lee (2007).

The second data-set consists in Euro Swap data in the same
period and for the same maturities of the previous case. In
such a market, swaps are quoted on a daily basis, and therefore
no interpolation is in principle is required: no effect due to
interpolation should act. As the results illustrated below are
substantially the same in the two cases, we will show explicitly
only those for the first data-set.

For what concerns the methodological choices on which we
based the data processing, we referred to the large literature
about practical aspects of PCAon yields curves, in particular to
the conclusions of Lardic et al. (2003), summarized in the fol-
lowing. First, we use daily data which guarantee more accurate
results than monthly ones. Second, we work on the rate changes
instead of the levels in order to have the stationarity of the
marginal (univariate) time series. To confirm this, we applied
to the available rate changes the classical Augmented Dickey–
Fuller and Phillips–Perron tests for the null hypothesis of the
presence of a unit root against the alternative of stationarity in
time series (the values of the test statistics are collected in table
2): both tests lead us to systematically reject the null hypothesis
of a unit root at the nominal level 5% (the analysed series
p-value is about 0.01 for each maturity). Finally, we compute
the correlation matrix from the data of the medium-term matu-
rity spectrum: as claimed in the cited paper, this choice allows
to obtain the maximum variance explained by the first three
factors and prevent the influence of the more volatile short-
term rates.

4.1. Analysis of the whole period

We begin our empirical study considering the entire set of
observations, from 2004 to 2008. The implementation of the
PCA on yield curves produces, as was to be expected, some
loadings having the typical patterns described in section 2:
looking at the plots in figure 5, we can recognize the shift,
the slope and the curvature factors, respectively. Moreover,
these three factors explain approximately the 99% of the total
variance for all the countries as we can deduce by table 3.
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Figure 5. Sensitivities with respect to the first three factors for France, Germany, Italy the and UK.

Table 3. Cumulative percentage of variance explained by the first three factors (BFV data).

Country Factor 1(%) Factor 2(%) Factor 3(%)

France 90.9 97.3 99.3
Germany 90.6 97.0 99.1
Italy 88.6 96.4 98.5
UK 91.8 97.9 99.3

Table 4. Multivariate skewness and kurtosis indices on the BFV dataset.

Country b1,9 b�
1,9 b2,9 b�

2,9

France 21.55 4690.4 552.83 582.77
Germany 40.68 8853.9 509.31 526.89
Italy 90.40 19677.6 648.23 705.28
UK 32.99 7180.6 403.18 390.61

Table 5. The ordered first small six p-values for TP2 test and the corresponding reference values αl/360, l = 1, 2, . . . , 6.

Ordered p-values

Reference values 0.00008 0.00016 0.00024 0.00032 0.00040 0.00048
France 0.307 0.352 0.359 0.369 0.489 0.500
Germany 0.007 0.020 0.046 0.093 0.113 0.161
Italy 0.155 0.273 0.422 0.494 0.511 0.542
UK 0.608 0.660 0.819 0.850 0.860 0.861

Having found the characteristic shapes for the first three
loadings, we focus on verifying the compatibility between our
first data-set and the total positivity assumptions.

Before applying the test procedure, we carry out an analysis
to verify if the Gaussianity of the data could be assumed: this
is very important in order to decide if is reasonable to use
the explicit formulas of the test statistics or their bootstrap
version. To this aim, we compute the Mardia’s multivariate
skewness and kurtosis indices b1,p and b2,p (here p = 9), and
we perform the goodness-of-tests based on these statistics (see
Mardia 1970). The results from the data are reported in table
4: they say us that the assumption of Gaussianity cannot be
accepted because b1,9 and the difference b2,9 − 99 are widely
significant (the p-values are very close to zero in all the cases).
These results lead us to prefer the bootstrap approach.

We test total positivity of order m = 2 and m = 3 for the
9 × 9 empirical correlation matrices at the level α = 5%. The

variances of the empirical minors are evaluated through the
bootstrap procedure illustrated in section 3 with B = 2000
replications. Because of the strict positivity of the correlation
matrices, we only consider the minors of order two and three
in our test (except for the principal minors).

First, we consider the case m = 2: for all the countries,
we accept the null hypothesis of total positivity. Indeed all
the estimated ordered p-values are considerably larger than
the reference values of the test αl/h2, with l = 1, 2, . . . , h2,
h2 = 630, as one can appreciate reading table 5, where the first
six ordered p-values and the corresponding reference values
are reported.

Combining this result with the fact that all the terms of the
empirical correlation matrices of yield curves are significantly
greater than zero, in the light of definition 2.2, we can con-
clude that the empirical evidence supports the assumption of
oscillatory of order 2 of the correlation matrices.
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616 A. Goia and E. Salinelli

For m = 3 and all treated countries, the test procedure leads
to rejecting the null hypothesis of total positivity of order 3
at the level 5%. This result is supported, in all the cases, by
the number of minors that are significantly negative: 47 for
France, 252 for Germany, 57 for Italy and 157 for the UK,
over 4116 tested minors. Figure 6 visualizes p-value levels in
the 3-rd compound matrices for France and the UK: the cells
show, by varying the intensity in a scale of grey, the p-value
of the corresponding minors, ordered in the lexicographical
way. White areas identify regions where assigned p-values are
close to zero corresponding to significantly negative minors.
For symmetry reasons, only the upper triangular part has been
visualized.

It seems that smallest values are concentrated in some re-
gion of the compound matrices, that is, they can be related to
terms having maturities in a specific part of the spectrum. As a
consequence, a specific reduction of the analysed spectrum
by deleting some maturities on the edge could lead to the
acceptance the TP3 hypothesis. Then, we repeated the test
considering correlation matrices of size p×p, with p = 4, 5, 6,
that refer to spectra segments from 1 to 4 year, from 1 to 5
year and 1 to 7 year, respectively. The number of significantly
negative minors for all cases, reported in table 6, shows that,
in general, only a drastic reduction of the maturity spectrum
can allow to accept the TP3 assumption. This conclusion holds
true also by taking similar windows of maturities shifted ahead.
However, when the TP3 assumption is rejected, the percentage
of significantly negative minors over tested ones is confined
between 1 and 6%, similarly to what happens by considering
the whole spectrum.

To conclude this section, we sum up the main results ob-
tained on Euro Swap data. As claimed before, the analysis
conducted lead to substantially similar conclusions to the ones
obtained on spot rates: also in this case, the Gaussianity of data
has to be rejected and the application of the bootstrap version of
our test leads to the acceptance of the TP2 hypothesis, whereas
for the TP3 assumption, the test procedure is in favour of the
alternative hypothesis (with 115 minors significantly negative
over 4116). Also for Swap data, only a drastic contraction of
the maturities spectrum could lead to accept TP3.

4.2. Analysis of sub-periods

To complete the analysis, we investigate what happens when
we use samples defined over sub-periods instead of the whole
temporal window. To do this, we employ ‘rolling-samples’with
partial overlaps over time. More in detail, let rt =(
r1,t , . . . , r9,t

)T be the observed rate changes at time t , we
consider k samples of n consecutive observations each one
having index t = ( j − 1) �+ 1, . . . , ( j − 1) �+ n, with j =
1, . . . , k and where � is the number of overlapped observations
(1 ≤ � ≤ n). Since the simulations in section 3.2 show that the
TP2 and TP3 tests work well only for relatively large sample
sizes, in our study, we used n = 500 to guarantee reliable
results and � = 200 to avoid too a wide overlap: thus, we obt-
ained k = 5 sub-samples from the original one, having indices
t = 1, . . . , 500, the first one, t = 201, . . . , 700, the second
one and so on.

Table 6. Number of significant negative minors of order 3 varying
the maturity spectrum.

Maturity spectrum 1Y–4Y 1–5Y 1Y–7Y

# tested minors 21 90 295

France 0 1 7
Germany 0 3 27
Italy 0 0 0
UK 0 1 7

For all the sub-periods, we performed the Gaussianity tests
based on Mardia’s multivariate skewness and kurtosis indices
(see statistics in table 7) that allow to reject the hypothesis
of Gaussianity. Then, we applied the bootstrap version of the
tests for TP2 and TP3 hypothesis: if the hypothesis TP2 can be
accepted for all the sub-samples, the TP3 is rejected for some
sub-periods but can be accepted for others (see table 7 where
the number of significant negative minors of order 3 for each
country and each period is reported).

The same analysis has been repeated for Swap data. Also
in this case, Gaussianity has to be rejected and results of the
tests for TP2 and TP3 confirm the above conclusions: TP2 can
be accepted for all the sub-periods, whereas TP3 is not found
only in sub-sample 2 (that is, when indices are: 201–700).

4.3. Discussion

The above study leads us to conclude that totally positive
of order 2 correlations between spot (or swap) rates should
be considered a standard hypothesis to require to any model
of the yield curve. A first consequence is the indirect con-
firmation of the presence of the slope in a weak sense. A
further consequence of our result is the possibility to give an
indirect answer to the following conjecture presented in Lord
and Pelsser (2007): a quasi-correlation matrix R with strictly
positive entries displays shift and slope, if it satisfies (1), (2)
and ρi,i+ j ≤ ρi+1,i+ j+1, i.e. the correlations increase when
we move from north-west to south-east. Indeed, this conjecture
was introduced in an attempt to find a condition that, referring
only to the classical properties of the correlations between
rates, would guarantee the presence of shift and slope (in a weak
sense). Our empirical analysis shows instead that TP2 is not an
‘ad hoc’ theoretical assumption but rather a fact, thus making it
unnecessary to look for an answer to the conjecture. However,
the conjecture could still be relevant if it is interpreted in the
sense that it might make it easier to analyse the properties of
matrices by focusing on the three mentioned properties, but
dropping the requirement that the matrix we are dealing with
is a proper correlation matrix.

As for the concrete meaning of the TP2 hypothesis, following
Lord and Pelsser, since correlations of interest rates changes
are positive, the TP2 condition can be expressed as

ρ jl − ρ jk

ρ jl
≥ ρil − ρik

ρil
∀i ≤ j and k ≤ l

equivalent to

ρ jl − ρ jk

k − l
· l

ρ jl
≥ ρil − ρik

k − l

l

ρil
.
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Figure 6. Evaluated p-values for TP3 test in the 3rd compound matrices for France and the UK.

Table 7. Main results for sub-periods: multivariate skewness and kurtosis indices, and number of significantly negative minors of order 3
(�0 stays for ‘significantly less than zero’).

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Indices 1–500 201–700 401–900 601–1100 801–1300

France b1,9 30.4 18.8 30.7 45.4 25.9
b2,9 265.4 237.6 290.8 326.7 370.3

#
{
σ̂

(3)
i j � 0

}
19 101 174 18 0

Germany b1,9 29.8 22.3 27.6 70.2 39.3
b2,9 279.3 272.0 256.6 366.6 322.4

#
{
σ̂

(3)
i j � 0

}
139 64 163 172 72

Italy b1,9 170.3 68.7 49.8 51.1 56.4
b2,9 471.5 376.2 400.7 346.4 371.7

#
{
σ̂

(3)
i j � 0

}
299 257 142 0 0

UK b1,9 19.2 31.4 27.1 119.5 53.2
b2,9 259.5 304.7 297.7 448.5 337.0

#
{
σ̂

(3)
i j � 0

}
295 189 232 12 0

This means that the partial (discrete) elasticity of the corre-
lation starting from l up to k decreases when tenors increase,
representing a condition on the slopes of the correlation curves.
A further consideration is possible in terms of partial correla-
tion coefficients of the first order. We recall that, given three
square integrable random variables X1, X2 and X3, the first
order partial coefficient of X1 and X2 given X3 is defined by

ρX1 X2.X3 = ρX1 X2 − ρX1 X3 · ρX2 X3√(
1 − ρ2

X1 X3

) (
1 − ρ2

X2 X3

) .

The coefficients ρX1 X3.X2 and ρX2 X3.X1 are defined in the same
way. It is possible to show (see theorem A1 in the appendix 3)
that when the random variables Xi represent the change in
interest rates corresponding to different maturities, properties
(1) and (2) give the positivity of ρX1 X2.X3 when the maturity
associated to X3 is the shortest or the longest, while the TP2

property gives the non-positivity of ρX1 X2.X3 when the matu-
rity associated to X3 is intermediate between those associated
with X1 and X2.
About the TP3 hypothesis, the provided results seem to suggest
that when one considers some short periods of observations,
the estimated correlation matrices could be compatible with
the TP3 assumption, while this does not happen when one
takes data over a relatively long time interval. Hence, one
can conjecture that the daily rate changes are drawn from a
mixture of distributions having correlation structures compat-
ible with TP3 structure which, however, changes over time.
Thus, taking a large set of data that refers to a long period, the
resultant estimated correlation matrix does not preserve the TP3
characteristics which, however, can be found in sub-samples
related to shorter time windows. We observe that, however, an
interpretation of the TP3 in the same spirit showed for TP2 is
not available to our knowledge. This fact surely can represent
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618 A. Goia and E. Salinelli

an obstacle to financially interpreting any empirical evidence.
In the case where additional empirical evidence would lead
to reject the TP3 hypothesis, its replacement with an (weaker)
alternative assumption does not seem available today in the
theoretical literature. In our opinion, only a supplement of
theoretical investigation could give some new insights. These
aspects need a deep study which goes beyond the aim of this
paper. A last consideration: the robustness of our results on the
TP2 property suggests that this latter should be possessed by
every ‘good’ model of interest rates. Evidently, this reasoning
could not be applied to the TP3 one.

5. Conclusions

In this paper, we have explored the empirical plausibility of
the TP2 and TP3 assumptions for correlation matrices of in-
terest rates, introduced recently from a theoretical standpoint
to justify some spectral properties of these matrices. We have
proposed a total positivity test for covariance and/or correlation
matrices of random vectors. We have shown how to extend via
bootstrap the original result holding for Gaussian population
to a distribution-free framework, also performing a brief ro-
bustness analysis via simulation. Using our test on real data,
we concluded that the TP2 hypothesis has to be systematically
accepted, while for the TP3 assumption, the results signal a
more complex situation which seems to depend on the one
hand, on the analysed spectra segment and, on the other, on the
temporal window in which the data lie. This opens the way to
a deeper future investigation of the TP3 assumption.

The possible extensions of our work are several. On one side,
it would be interesting to look for further empirical evidence,
possibly based on different and larger data-sets, of our results.
Moreover, it seems to be interesting to perform a complete
theoretical study of the properties of our TP test both in the
Gaussian case and for more general situations, as suggested by
the simulations presented.Adeeper mathematical investigation
devoted to optimize the number of minors involved in the
TP test might reduce or eliminate dependencies between the
marginal tests. Finally, it could be useful to extend our TP
test to the functional statistic framework where the empirical
problem treated here finds its natural analogue.
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Appendix 1. Moments of minors of Wishart matrices

Consider a p-dimensional random vector X ∼Np (0, �), with p ≥
2m (m ≥ 1 integer), with positive definite covariance matrix �. Let
X = (

Xi j
) ∈ R

p×n be a matrix whose columns are independent ran-
dom vectors distributed according to Np (0, �). Then S = XX T is
distributed according to the Wishart distribution with scale parameter
� and n degrees of freedom.

In Drton et al. (2008) the first and second moments of the minors of
S are studied. The minors are specified by two subsets I, J ⊆ [p] =
{1, . . . , p} of equal cardinality |I | = |J | = m. We denote with{

p

m

}
= {I ⊆ [p] : |I | = m} , m ∈ [p]

the set constituted by all the subsets of [p] of size m.
In Drton and Goia (2012) and Drton et al. (2008), the authors prove

the following results (we adopt the shorthand notation SI×I = SI I
and SI×J = SI J ):

• Let I, J ∈ { p
m
}

and n ≥ m, then

E

[
S[m]

]
= n!

(n − m)!�
[m].

• If I ∈ { p
m
}
, then

V ar [det (SI I )] = n!
(n − m)!

{
(n + 2)!

(n + 2 − m)! − n!
(n − m)!

}
× det (�I I )

2 .

• Let I, J ∈ { p
m
}

be two disjoint subsets. Then the off-diagonal
minor det (SI J ) has variance

V ar [det (SI J )]

= n!
(n − m)! det (�I J )2

{
(n + 2)!

(n + 2 − m)! − n!
(n − m)!

}

+ n!
(n − m)! det

(
�I J×I J

)

×
[ m−1∑

k=0

(m − k)! (n + 2)!
(n + 2 − k)! (−1)k

tr

{(
�I J � I J

)[k]
} ]

where �I J×I J is the (I ∪ J ) × (I ∪ J )-submatrix of � and
� I J denotes the I × J -submatrix of the inverse of �I J×I J .

• Let I, J ∈ { p
m
}

have intersection C := I ∩ J of cardinality
|C | = c. Define I = I \ C , J = J \ C and I J = I ∪ J . Then
the minor det (SI J ) has variance

V ar [det (SI J )]

= det(�I J )2 n!
(n − m)!

[
(n + 2)!

(n + 2 − m)! − n!
(n − m)!

]

+ det(�CC )2 det(�̄ Ī J̄× Ī J̄ )
(n + 2)!

(n + 2 − c)! · n!
(n − m)!

×
[ m−c−1∑

k=0

(m − c − k)!(n + 2 − c)!
(n + 2 − c − k)! (−1)k

tr

{(
�̄ Ī J̄ �̄ Ī J̄

)[k]
}]

,

where � = �([r ]\C)×([r ]\C) − �([r ]\C)×C�−1
C×C

�C×([r ]\C).

Appendix 2. Simulation study: the logarithmic model

In the following, we collect the results of the simulation study con-
ducted over the same experimental conditions of section 3.2, when the
correlation structures are defined according to the logarithmic model
bi = log (i + β), β > 1, with β = 5.

We consider first the test for TP2 assumption. The smallest minors
ρ

[2]
i j for the various experimental conditions considered are showed

in table A1.
The power comparisons, when we use the test statistic (9) exploit-

ing the expression of the variance derived explicitly under condition
of Gaussianity, are presented in figure B1.

Comparing these plots with those of section 3.2 (see figure 1),
it emerges that the behaviour of the test looks moderately related
to the model which defines the correlation structure: the increase of
the power with Q in the so-called ‘power model’ case is slightly
slower than in the ‘logarithmic’one, and that occurs because to perturb
the ‘power model’ generates a more rapid departure from the TP2
structure (see table A1). The behaviour of the estimated level and
power in the bootstrap case is shown in figure B2.

For what concerns the TP3 case, we observe that when one perturbs
the matrices generated according to the ‘logarithmic model’, an in-
crease of p1 does not produce a substantial departure from the initial
TP3 condition: if from one hand, the number of considered negative
minors ρ

[3]
i j exhibits a behaviour similar to the ‘power case’, on the

other, their values tend to have an average decreasing with p1 but, at
same time, their dispersion becomes smaller (and the minimum values
increase). Figures B3 and B4 illustrate the power results in both the
Gaussian and bootstrap cases. By a comparison with figures 3 and 4
in section 3.2, one can observe the greater sensitivity to the behaviour
of the minors of order three in the ‘logarithmic’ case compared to the
‘exponential’ one.

Appendix 3. TP2 and partial correlation

Theorem A1 The first order partial correlation coefficients

ρi1i2.i3 = ρi1i2 − ρi1i3 · ρi2i3√(
1 − ρ2

i1i3

) (
1 − ρ2

i2i3

)
of a TP2 correlation matrix R = [

ρi j
]
i, j=1,...,p with ρi j ∈ (0, 1)

for i �= j , are positive if i1 < i2 < i3 or i3 < i1 < i2, negative for
i1 < i3 < i2.

Proof Since R is TP2 and ρi j ∈ (0, 1), then (1) and (2) hold true.
If i1 < i2 < i3, then (1) implies ρi1i2 − ρi1i3 > 0 and since ρi2i3 ∈
(0, 1), we obtain ρi1i2.i3 > 0. The same conclusion is true when i3 <
i1 < i2 because (2) gives ρi1i2 −ρi2i3 > 0 and ρi1i3 ∈ (0, 1). Finally,
if i1 < i3 < i2, then (1) and (2) give, respectively, ρi1i2 − ρi1i3 < 0
and ρi1i2 − ρi2i3 < 0, hence the sign of ρi1i2.i3 is not predictable.
However, since in this case,

ρi1i2 − ρi1i3 · ρi2i3 = − det

(
ρi1i3 ρi1i2
1 ρi2i3

)
the TP2 assumption gives ρi1i2.i3 ≤ 0.
Notice that this last inequality would be strict if R were STP2. �
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Table A1. Number of negative minors of order two ρ
[2]
i j and the smallest ρ

[2]
i j (×10−2) varying p1.

#
{
ρ

[2]
i j < 0

}
Logarithmic model

p1 Q (i < j) ε = 0.4 ε = 0.6 ε = 0.8

1 1 28 −0.79 −1.18 −1.57
2 3 57 −0.90 −1.35 −1.80
3 6 71 −1.05 −1.57 −2.09
4 10 65 −1.24 −1.86 −2.47
5 15 45 −1.49 −2.24 −2.99
6 21 23 −1.85 −2.77 −3.70
7 28 7 −2.37 −3.55 −4.73
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