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Abstract— Representing and managing temporal knowledge, in the form of temporal constraints, is a crucial task in many areas, including 
knowledge representation, planning, and scheduling. The current literature in the area is moving from the treatment of “crisp” temporal con-
straints to fuzzy or probabilistic constraints, to account for preferences and\or uncertainty. Given a set of temporal constraints, the evaluation 
of the tightest implied constraints is a fundamental task, which is essential also to provide reliable query-answering facilities.  However, while 
such tasks have been widely addressed for “crisp” temporal constraints, they have not attracted enough attention in the “non-crisp” context 
yet. We overcome such a limitation, by (i) extending quantitative temporal constraints to cope with preferences, (ii) defining a temporal rea-
soning algorithm which evaluates the tightest temporal constraints, and (iii) providing suitable query-answering facilities based on it.  
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1 INTRODUCTION

epresenting and managing temporal knowledge is an es-
sential task in many areas, including planning, schedul-

ing, human–machine interaction, natural language under-
standing, diagnosis, and robotics. Different approaches have 
been developed, ranging from general-purpose approaches, 
like Hidden Markov Models, Bayesian Networks, or logical 
approaches, to more specific approaches focusing on con-
straint satisfaction problems, and on temporal constraints 
(see, e.g., the surveys in [1]–[3].). The latter approaches 
(which are the focus of this paper) can be distinguished on 
the basis of whether they focus on the qualitative or quanti-
tative temporal constraints. Among the approaches of the 
first kind, Allen’s Interval Algebra [4] and the Point Algebra 
[5] deal with a qualitative representation of temporal 
knowledge relative to intervals and points respectively (e.g., 
“A is before B”). Quantitative approaches, such as [6], [7], 
deal with metric temporal statements (e.g., “the starting time 
of B is between 10 and 20 minutes after the ending point of 
A”). Also, hybrid approaches have been proposed, integrat-
ing qualitative and metric information in a single model [8], 
[9]. Such approaches also propose temporal reasoning algo-
rithms that propagate such constraints, to check their con-
sistency, and\or to find a scenario (i.e., a solution: an instan-
tiation of all events such that all constraints are satisfied), or 
to make explicit the tightest implied constraints.   
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Example 1. To simplify the discussion, we consider the 
Simple Temporal Problem  (STP) quantitative temporal con-
straints [6]. Let t1, t2 and t3 be time points, and let KB be the 
following set of constraints, representing the minimum and 
maximum distances between pairs of points: KB={t1[8,10]t2, 
t2[10,11]t3, t1[15,20]t3}. KB is consistent, and {t1=0, t2=8, 
t3=18} is a scenario (solution) of KB. The tightest con-
straints implied by KB (the so called minimal network [6]) 
are KB’={t1[8,10]t2, t2[10,11]t3, t1[18,20]t3} (in particular, 
the minimum distance between t1 and t3 must be 18). ■ 

While in several task (e.g., in scheduling) the goal is to find 
a scenario, in others, such as decision support, the tightest 
constraints must be determined, to provide users with a 
compact representation of all the possible solutions they can 
adopt (since the choice of a specific solution has to be left to 
the users). This is the case, e.g., when supporting physicians 
in the execution of clinical guidelines, such as the one in 
Figure 1. In such contexts, also query answering is im-
portant, to give users a way to explore the space of solutions.  

Example 2. Given KB, the user might ask:  
(Q1) May I execute t3 16 after t1?  
(Q2) If I have performed t1 at 20, when (in which range of 
time) should I perform t2 and t3? ■ 

The literature shows that temporal reasoning and query 
answering are closely related tasks: correct query answering 
can be provided only if temporal reasoning evaluates the 
tightest temporal constraints. Indeed, computing the tightest 
constraints is a fundamental task, to which a lot of efforts 
have been devoted in the literature [1]–[3], [5], [6].   

Example 3. Given KB, suppose that the reasoning pro-
cess is not complete, so that not all the tightest constraints 
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are obtained. E.g., suppose that KB” ={t1[8,10]t2, t2[10,11]t3, 
t1[16,20]t3} is obtained. Given KB”, the answer to a user’s 
query Q1 is YES, which is a wrong answer. Thus, only the 
availability of the tightest constraints can grant the correct-
ness (and, thus, the reliability) of the answers to the user. ■ 

In all the approaches to temporal constraints mentioned 
so far, temporal constraints are “crisp”, in the sense that they 
represent a set of "equally possible" temporal rela-
tions\constraints between two time units. All of these pro-
posals rely on the framework of Constraint Satisfaction 
Problem (CSP), in that they face the relevant reasoning tasks 
by representing the temporal objects as variables with tem-
poral domains, and the available temporal knowledge as a 
set of constraints between these variables. Unfortunately, 
these temporal constraint-based reasoning approaches inherit 
from CSP a number of fundamental limitations, mainly re-
lated to a lack of flexibility and a limited representation of 
uncertainty [10]. Specifically, many problems lead to a large 
set of possible solutions, but often there may be preferences 
among them, while standard CSP approaches would consid-
er each of them as “equally possible”.  

A paradigmatic example are temporal constraints in med-
ical treatments. In the Clinical Guideline in Figure 1 (which 
is a simplified version of part of the guideline provided by 
the British National Institute for Health and Care Excellence 
– NICE), the execution times t1, t2, t3, t4 of the clinical ac-
tions are constrained as described in Example 4. 

 

Figure 1 Simplified Clinical Guideline for the treatment of 
hip fracture.  

Example 4. t2 must be executed within 12 (with preference 
2), 24 (with preference 4), 36 (with preference 2) or 48 (with 
preference 1) hours after t1; t3 must be executed within 12 
(with preference 4) and 24 (with preference 1) hours after t2; 
t4 must be executed within 24, 48 or 72 hours (with prefer-
ences 4, 2, 1 respectively).  

To deal with such issues, a huge stream of research has 
extended the CSP formalism in a fuzzy direction, by replac-
ing classical “crisp”  constraints with soft “not-crisp”  con-
straints modeled by fuzzy relations. Restricting the attention 
to CSP approaches only, a number of temporal reasoning 
approaches based on the Fuzzy Constraint Satisfaction Prob-
lem [10] has been devised. Concerning qualitative con-
straints, Ryabov et al. [11] attach a probability to each of 
Allen's basic interval relations. Using the operations of in-
version, composition, and addition, defined for this probabil-
istic representation, they present a path consistency algo-
rithm for temporal reasoning. A similar probabilistic ap-
proach has been proposed more recently by Mouhoub and 
Liu [12], as an adaptation of the general probabilistic CSP 
framework. On the same line of research, Badaloni and 
Giacomin [13] extend Allen’s interval-based framework to 

associate a preference degree to relations between intervals. 
Other approaches based on the Fuzzy Constraint Satisfaction 
Problem have been devised, in order to handle quantitative 
temporal information in terms of points (or times of events) 
and in terms of fuzzy metric constraints between them.  Bar-
ro et al. [14] introduce a model for the representation and 
handling of fuzzy temporal references. Khatib et al. [15] ex-
tend constraint-based temporal reasoning (and, in particular, 
the STP and the TCSP framework [6]) to allow for reason-
ing about temporal preferences, basing their approach on C-
semiring properties. Mouhoub and Sukpan [16] have de-
vised an hybrid framework managing both quantitative and 
qualitative temporal constraints with preferences, in which 
temporal intervals are considered, and temporal reasoning is 
used to find a solution (scenario) optimizing preferences. 

Despite most of the above “non-crisp” approaches focus 
on temporal reasoning, in the form of propagation of tem-
poral constraints, none of them grants that the output is the 
tightest set of constraints (given the input ones). This is a 
major limitation: as discussed in example 3 above, it implies 
that such approaches cannot grant the correctness when deal-
ing with queries like the ones in Example 2. Indeed, quite 
surprisingly, such a type of query answering is not explicitly 
addressed by any approach to “non-crisp” temporal con-
straints in the literature. 

In this work, we aim at providing a non-crisp extension 
to quantitative constraints, supporting the possibility of ex-
pressing alternative distances between time points, and of 
associating a preference to each alternative, to grant flexibil-
ity and expressiveness in the representation of quantitative 
temporal constraints. Second, and more important, we aim at 
supporting temporal reasoning and query answering facili-
ties on KBs of such constraints. To achieve such a goal, and 
to grant for the absolute reliability of query answering, we 
propose a temporal reasoning algorithm which we prove that 
computes the tightest constraints (i.e., the all-to-all shortest 
paths between time points). 

In Section 2, we introduce our representation of quantita-
tive temporal constraints with preferences. In Section 3, 
which is the core of the paper, we describe our temporal rea-
soning algorithm, which is an instantiation of Cormen et 
al.’s Compute-Summary general algorithm [17] to compute 
the tightest constraints between each pair of time points. 
Section 4 briefly mention some query answering facilities 
provided by our approach. Finally, Section 5 contains con-
clusions and future work. 

2 QUANTITATIVE TEMPORAL NETWORKS WITH 
PREFERENCES 

In this work, we extend quantitative temporal constraints to 
support the possibility of associating preferences to alterna-
tive constraints. As most approaches focusing on quantita-
tive constraints (see [1]–[3]), we base our approach on the 
notion of distance between time points. A preference is as-
sociated to each distance. 

Definition. Quantitative Temporal Label with Prefer-
ences (QTLP) Let  
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• let ti,tj ∈ R be time points 
• let p1, …, pn ∈ R be preferences 
• let d1, … ,dn ∈ Z be distances (between points) 

A Quantitative Temporal Label with Preferences (QTLP) is 
a list <(d1,p1),…,(dn,pn)>, or the distinguished label ⊥, de-
noting the non-existent constraint (in which no distance is 
possible, and the preference is zero). Henceforth L denotes 
the domain of quantitative temporal labels with preferences. 

Definition. Quantitative Temporal Constraint with Pref-
erences (QTCP) and Quantitative Temporal Network 
with Preferences (QTNP). A QTCP is a constraint of the 
form ti C tj where C∈L, and ti,tj ∈ R are time points. A 
QTNP is an oriented graph G=<V,E> with a labelling func-
tion λ, where V is a set P={t1,…,tn} of time points, E ⊆ P×P, 
and λ: E →	L. ■ 

The meaning of a QTCP constraint ti <(d1,p1),…,(dn,pn)> t j  
is that the distance tj-ti between tj and ti is d1 with preference 
p1, or … or dn with preference pn. A Quantitative Temporal 
Network with Preferences (QTNP) is a set of QTCPs. 

The QTNP modelling Example 4 in the introduction can be 
graphically modelled as shown in Figure 2, where we use 
12-hour units as basic granularity. For simplicity, in the pa-
per we use preferences which are natural numbers, but no-
tice that our approach also supports real number preferences. 

Figure 2. QTPN for Example 4: graphical representation. 

3 AN ALGORITHM TO EVALUATE THE TIGHTEST 
CONSTRAINS ON TQNPS 

3.1 General strategy 

Temporal reasoning on a QTNP can be performed by an al-
gorithm propagating the constraints to obtain the tightest 
equivalent QTNP, i.e., a QTNP which has exactly the same 
solutions of the original one, and in which (i) the minimum 
and maximum implied distances between each pair of points 
(as in the “minimal network” for the “crisp” case [6]) and 
(ii) the preferences for each distance are made explicit. In-
stead of inventing a new algorithm and then proving that it 
computes the tightest constraints, we adopt a different strat-
egy. We exploit the general algorithm Compute-
Summaries(λ,V,E,⊕,⊙,�,�) in [17]. Compute-Summaries is 
indeed a highly parametric all-to-all shortest path algorithm 
to solve different problems concerning oriented paths in a 
graph. Such an algorithm takes in input a graph (V,E), a la-
belling function λ:E →	 L operating on the edges of the 
graph, an “extension” operator ⊙, a “resume” operator ⊕, 
the identity for ⊙ (indicated by �), and the identity for ⊕ 
(indicated by �). It is a dynamic algorithm, which, in case 
⊙,⊕,�, and �  are defined in such a way that (L,⊕,⊙,�,�) 
is a C-semiring (see Section 3.4), evaluates the all-to-all 
shortest paths (i.e., the tightest labels for each path) [17]. 
Thus, our idea is to define the extension ⊙P	and resume ⊕P 

operators (and their identities) for our problem in such a way 
that the structure (L,⊕P,⊙P,�,�) is a C-semiring. Then, we 
adopt a specific instance of Compute-Summaries, by instan-
tiating its parameters with our operators. In such a way, we 
achieve an algorithm that computes the shortest paths (i.e., 
the tightest labels), as desired. 

3.2 The Compute-Summaries algorithm  

We adopt the notation in [17]: (i) 1,2,…,n indicate the verti-
ces in V, where n=|V|; (ii)  Lij

  denotes the application of the 
resume operator ⊕	 to all the paths from i to j in the graph 
(V,E) (i.e., Lij = ⊕i-p→jλ(p)); (iii)  Lij

k denotes the application 
of the resume operator ⊕	 to all the paths from i to j in the 
graph (V,E) traversing the nodes 1,…,k only (i.e., Lij

k = 
⊕p∈Q λ(p), where Q is the set of all paths in (V,E) connect-
ing i to j and traversing only nodes in {1,…,k}). 

Compute-Summaries(λ,V,E,⊕,⊙,�,�) algorithm  
1. n ←←←← |V| 
2. for i←←←←1 to n  
3.  do for j←←←←1 to n 
4.   do if j====i				 then Lij

0 ←←←←	�	⊕	λ(i,j)  
5.              else Lij

0 ←←←←	λ(i,j) 
6. for k←←←←1 to n  
7. do for i←←←←1 to n 
8.  do for j←←←←1 to n do 
9.     Lij

k ←←←← Lij
k-1 ⊕(Lik

k-1 ⊙		Lkj
k-1) 

Figure 3. Compute-Summaries algorithm  

Complexity. The complexity of Compute-Summaries is 
Θ(T⊕,T⊙)3, where denote the time required to evaluate T⊕, 
and T⊙  respectively [17].  

3.3 Definition of the extension and resume 
operators 

Now, we define our resume and extension operators. For the 
sake of simplicity, we adopt the following notation. 

Notation. Given two QTLPs c1 and c2, we indicate with p1d 
and p2d the preference of the distance d in the first and in the 
second QTLP respectively.  

In our approach, the operator resume ⊕P	is used to “merge” 
two constraints <(d11,p11),…,(d1n,p1n)> and <(d21,p21),…, 
(d2m,p2m)>  concerning  the same pair of time points.  The 
set union between the two input sets of distances is comput-
ed, and, for each distance in the union, its preference is:  

(i) its input preference, if it only appears in one of the 
two constraints, or  

(ii)  the sum of its preferences in the first and in the sec-
ond constraint, if it appears in both constraints.  

Definition. Resume(⊕⊕⊕⊕PPPP). Given two PTQLs 
<(d11,p11),…,(d1n,p1n)> and <(d21,p21),…,(d2m,p2m)>  their 
resume is defined as follows: 

• let D1={d11,…,d1n}, D2={d21,…,d2m}, and  
D’= D1 ∪∪∪∪ D2={d’ 1,…,d’k},  

• let pd’ be defined as follows: 
(i) pd’ = (p1d1u+p2d2v) if ∃d1u∈D1, ∃d2v∈D2 

such that  d’=d1u=d2v,  
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(ii)  pd’ = p1d1u if ∃d1u∈D1 such that d’=d1u ∧  

¬∃d2v∈D2 such that d’=d2v 
(iii)  pd’ = p1d2v if ∃d2v∈D2 such that d’=d2v ∧  

¬∃d1u∈D1 such that d’=d1u 

<(d11,p11),…,(d1n,p1n)>  ⊕⊕⊕⊕PPPP  <(d21,p21),…,(d2m,p2m)>  =  
<(d’1, p

d’1),…, (d’k, p
d’k)> ■ 

Example 5. As an example, let us consider the resume of the 
constraint between t1 and t2 of Example 4 and the new con-
straint t1<(2,2),(3,1),(4,1),(5,1)>t2. <(1,2),(2,4),(3,2),(4,1)> 
⊕P <(2,2),(3,1),(4,1),(5,1)> = <(1,2),(2,6),(3,3),(4,2),(5,1)> 
■ 

The extension operator ⊙P is used to infer the constraint be-
tween two time points ti and tj, given the constraint between 
ti and tk and the constraint between tk and tj. The output dis-
tances are evaluated as the pairwise sum of the input dis-
tances. For each output distance d’, its preference pd’ is ob-
tained by summing up the product p1d1u*p2d2v of the prefer-
ences of each pair of distances d1u (from the first input con-
straint) d2v (from the second constraint) such that 
d1u+d2v=d’ . More formally: 

Definition. Extension (⊙⊙⊙⊙P). Given two QTLPs 
<(d11,p11),…,(d1n,p1n)>  and <(d21,p21),…,(d2m,p2m)>, their 
extension is defined as follows: 

• let {d’ 1,…,d’r} = {d’\ d’=d1 s+d2t ∧ 
d1s∈{d11,…,d1n} ∧ d2t∈{d21,…,d2m}}, and  

• let pd’ = Σd1u+d2v=d’ (p1d1u*p2d2v), then 

<(d11,p11),…,(d1n,p1n)> ⊙⊙⊙⊙P  <(d21,p21),…,(d2m,p2m)>  =   

<( d’1, p
d’1), …, (d’r, p

d’ r)>  ■  

Example 6. As an example, let us consider the composition 
of the constraints between t1 and t2 and between t2 and t3 in 
Example 4: <(1,2),(2,4),(3,2),(4,1)> ⊙⊙⊙⊙P  <(1,4), (2,1)> = 
<(2,8), (3,18), (4,12), (5,6), (6,1)> ■ 

Definition. Identities for  ⊙⊙⊙⊙P and ⊕⊕⊕⊕PPPP. The identity �  for 
⊙P is <(0,1)> since, given any c∈L, c ⊙P <(0,1)> = <(0,1)> 
⊙P c = c. The identity �  for ⊕P is ⊥	since, given any c∈L, 
c ⊕P ⊥	= ⊥	⊕P c = c. By definition, ⊥	is also the annihilator 
for ⊙P: since it represent the non-existing constraint, for all 
c∈L, c ⊙P ⊥	= ⊥	⊙P c = ⊥. 

3.4 C-semiring properties 

 (L,⊕P,⊙P,	⊥,	��0,1��) is a C-semiring. 

Definition. Monoid. A monoid is a triple (A,⊗,�) where  
1� ⊗ is a closed binary operator on the set A: for each 

a,b∈A, a⊗b∈A  
2� ⊗ is associative: for each a,b,c∈A, a⊗�b⊗c) = 

(a⊗b)⊗c. 
3� � is an identity element for ⊗: for each a∈A, a ⊗ 

� = � ⊗	a = a. ■ 

A monoid is commutative if ⊗is commutative: for each 
a,b∈A, a⊗b=b⊗a. 

Definition. C-semiring. A C-semiring is a 5-tuple R= 
(A,⊕,⊗,0,1) such that 

1) (A,⊕,0) is a commutative monoid. 
2) (A,⊗,1) is a monoid. 
3) ⊗distributes over ⊕: for all a,b,c∈A, (a⊕b)⊗c= 

(a⊗c)⊕(b⊗c). 
4) 0 is anannihilator for⊗: for all a∈A, 0⊗a=a⊗0 =0■ 
Property. (L,⊕P,⊙P,	⊥,	��0,1��) is a C-semiring. 

Proof (sketch). By definition, both ⊕P and  ⊙P are closed 
over L. ⊕P is associative, since it performs the union (which 
is associative) of the distances and, as regards the prefer-
ences, it maintains the original preferences or sum up them 
(which is  also an associative operation) in case a distance 
appears in both constraints. Such operations are also com-
mutative. By definition, ⊥	 is the identity for ⊕P. Thus, 
(L,⊕P,	 ⊥�	 is a commutative monoid.	 	 ⊙P is associative, 
since it performs the pairwise sum (which is associative) of 
the distances and, as regards the preferences, is sum up their 
products (which are also associative operations). ��0,1�� is 
the identity for ⊙P. Thus, (L,⊙P,	��0,1��) is a monoid.	⊙P 
distributes over ⊕P: concerning the distances, this is due to 
the fact that pairwise sum distributes over union. Concerning 
the preferences, preferences in the union are the input ones, 
except in case a distance appears in both labels. In such cas-
es, the preferences are summed. However, product (per-
formed by the extension operator) distributes over sum. ■ 

If (L,⊙P,	��0,1��) is a C-semiring, Cormen et al.’s algo-
rithm evaluates the all-to-all shortest paths on a graph, by 
evaluating new labels (λ function) for the edges trough a re-
sume (⊕) and an extension (⊙) operators [17]. Intuitively 
speaking, the fact that resume and extension have the prop-
erties of C-semirings grants that the result is independent of 
the ordering in which such operations are applied:  

(1) associativity grants independence of the application 
ordering considering a single operator, while  

(2) the distributivity of the extension operator with re-
spect to the resume one grants that, given two con-
straints c1 and c2 between two points t1 and  t2, and a 
constraint c3 between t2 and t3, one gets the same re-
sults (2.1) by first resuming c1 and c2, and then by 
composing through the extension operator the result 
with c3 to evaluate the constraint between t1 and t3, or 
(2.2) by first composing c1 and c3 and c2 and c3 
through the extension operator, to determine two new 
constraints between c1 and c3, and then resuming the 
results. 

Notably, the identity �  for ⊕ intuitively represents the non-
existing constraint, while the identity �  for ⊙ intuitively 
correspond to the distance between a point and itself. 

4 QUERY ANSWERING FACILITIES 

Given a KB of QTCPs, temporal reasoning evaluates the 
tightest temporal constraints between each pair of time 
points. This is like an implicit representation of the “possible 
solutions” to the problem. Thus, it is very important to pro-
vide users with supports for querying the resulting set of 
constraints (see, e.g., Example 2). Part of the BNF grammar 
of our query language is reported in Figure 4. 

<Query> ::= <HypQ> | <StandardQ> 
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<HypQ>  ::= <StandardQ> IF <QTNP> 
<StandardQ>  ::= {<BaseQList>} | IP <Op> <Pref> |  

   GP <Op> <Pref> | {<BoolQ>} 
<BaseQList> ::= <Point> ? <Point> |  

  <Point> ? <Point> , <BaseQList> 
<BoolQ> ::= <SBTQ> | <CBTQ>  

Fig 4. Query language (BNF grammar). 

• Hypothetical queries (<HypQ>) are standard que-
ries <StandardQ> that have to be answered with the assump-
tion that some additional temporal constraints (such a set of 
QTCPs is a Quantitative Temporal Network with Prefer-
ences, indicated by <QTNP>) hold.  

Example 7. “<StandardQ> IF {t1<(1,2),(2,4)>t2}” asks the 
query <StandardQ> in the hypothesis that t2 is executed 
within 12 (1 unit) or 24 hours (2 units) after t1. ■ 

Such queries are answered by first (provisionally) adding the 
new QTCPs to the set of constraints, and then applying our 
instantiation of Cormen et al.’s algorithm to obtain the new 
tightest constraints. A warning is given in case the new con-
straints are not consistent with the previous ones. Then, 
<StandardQ> is answered (as detailed below) in the new set 
of constraints. Notice also that Resume (⊕⊕⊕⊕PPPP) must be used in 
order to add the new hypothetical constraints. 

We distinguish among four types of standard queries. 

• Basic extraction queries (<BaseQList>) ask for the 
temporal distances (and their preferences) between a list of 
pairs of time points. Such queries are trivially answered by 
reading the temporal constraints from the minimal network. 

• Individual preference (IP) queries provide as output 
the constraints in a QTNP obtained by removing (from each 
constraint) all those pairs (d,p) such that p <Op> <Pref>  
does not hold, where <Op> is a comparison operator (i.e., 
one of <, ≤, =, ≥, >), and <Pref> is a preference value.  Emp-
ty QTCPs are removed from the output.  

Example 8.  In Example 4, one may want to obtain only the 
constraints with preference greater or equal to 4. The corre-
sponding IP query is “IP ≥ 4”. ■ 

• Global preference (GP) queries are similar to indi-
vidual preference queries, but, after the removal, the result-
ing constraints are propagated, using our algorithm.  

• Boolean (<BoolQ>) queries can be simple (SBTQ) 
or composed (CBTQ). Such queries ask about the validity of 
one (SBTQ) or more (CBTQ) constraints between pair of 
points, and return a boolean value. 

An SBTQ ti<(d1 Op p1)>tj (e.g., “t1<(3 ≥ 2)>t2”) is 
simply answered by considering in the tightest constraints 
relating ti and tj and checking whether the distance between 
ti and tj may be d1, and whether its preference satisfies the 
condition imposed by the Op operator. 

Answering a CBTQ query (e.g., “{t1<(3, ≥ 1)>t2,  
t1<(5 ≥ 2)>t3}) requires four steps. 

(1) each SBTQ is checked independently of the others. If 
at least one of them is not satisfied, a negative answer is 
provided. Otherwise, steps 2,3, and 4 are performed. 
(2) For each SBTQ ti <(d1 Op p1)> tj the corresponding 
QTCP relating ti and tj is modified by removing all the 
distances except d1. 
(3) The resulting constraints are then propagated via (our 
instantiation of) the Cormen et al.’s algorithm.  
(4) The answer is YES if the resulting set of constraint is 
consistent, NO otherwise. 

 

5 COMPARISONS AND CONCLUSIONS 

The literature about temporal constraint is moving from the 
treatment of “crisp” temporal constraint to fuzzy or proba-
bilistic constraints, to account for preferences and\or uncer-
tainty.  However, until now, no approach to “non-crisp” 
temporal constraints has focused on the evaluation of the 
tightest temporal constraints, and on query answering. 

In the wide literature in the area (see the introductory sec-
tion), some other approaches are based on C-semirings (e.g., 
[15], [18]). The approach by Kathib et al. [15] is the closest 
to our one.  Khatib et al. consider quantitative temporal con-
straints (and, specifically, STP and TCSP constraints [6]) 
and extend them by associating preferences to distances. In-
deed, Kathib et al. define their resume and extension (using 
a different terminology) operations between preferences on-
ly in such a way that they form a C-semiring. On the other 
hand, they adopt standard STP/TCSP [15] composition and 
intersection operators to propagate distances. As a conse-
quence, their overall operations for determining the labels (λ 
function) of the graph’s edges (i.e., the whole operations 
which provide as output the labels, i.e., both their prefer-
ences and distances) do not form a C-semiring. For in-
stance, it is easy to show that in Katib et al.’s approach, in 
the evaluation of edges’s labels, the distributivity of the ex-
tension operator with respect to the resume operator does 
not hold. Thus, Katib et al.’s constraint propagation ap-
proach is not ordering-independent (see point (2) at the end 
of Section 3.4), so that it does not always provide the tight-
est constraints between each pair of time points. 

Our approach provides a main advance with respect to the 
state of the art: it is the first approach to the propagation of 
“not-crisp” temporal constraints that aims at  

(i) giving to users reliable query-answering facilities 
(ii)  providing the evaluation of the tightest constraints be-

tween temporal entities.  

To achieve (ii), we defined our resume and extension opera-
tor in such a way that they form a C-semiring structure, so 
that we can exploit the properties of Cormen et al.’s all-to-
all shortest path algorithm [17]. Notably, if one neglects the 
initialization phase (lines 1–5), the Compute-Summaries al-
gorithm is a generalization of Floyd-Warshall’s algorithm 
(in which min and addition are generalized by the resume 
and the extension operators respectively), which is widely 
used to compute the minimal network (i.e., the tightest con-
straints) for STP temporal constraints. In this sense, we can 
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say that we extend classical approaches to “crisp” quantita-
tive (STP) temporal constraints to consider also preferences. 
This consideration suggests a possible evolution. Recently, 
several algorithms have been devised in order to optimize 
Floyd-Warshall’s algorithm in the evaluation of STP mini-
mal networks (consider, for instance,  delta-STP [19] or P3C 
[20]). In our future work, we aim at investigating whether 
such optimizations can be used also in our context, in which 
also preferences have to be taken into account. Moreover, 
the work in [16] presents several interesting advances with 
respect to the state of the art, including the capability of cop-
ing with four different types of preferences: numeric and 
symbolic temporal preferences, composite preferences and 
conditional preferences. In our future work, we aim at inves-
tigating whether our approach could be extended to provide 
such an additional expressiveness.  

Finally, we want to conclude by highlighting that, although 
the approach we propose is totally domain and task inde-
pendent, we aim at applying it mainly within our GLARE 
project [21], a long-term project (started in 1997) with one 
of the major hospitals in Italy,  aiming at providing physi-
cians with decision support through the management of clin-
ical guidelines. 
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