
This copy represents the peer reviewed and accepted version of paper:
Cosimo Anglano, Rossano Gaeta, Marco Grangetto " Exploiting Rateless
Codes in Cloud Storage Systems," published in
IEEE Transactions on Parallel and Distributed Systems (Volume:26 , Issue: 5),
2015.
DOI: 10.1109/TPDS.2014.2321745
The published version is available at
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6810144

© 2015 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.”

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Exploiting Rateless Codes in Cloud Storage
Systems

Cosimo Anglano, Rossano Gaeta, and Marco Grangetto, Senior Member, IEEE

Abstract—Block-Level Cloud Storage (BLCS) offers to users and applications the access to persistent block storage devices (virtual
disks) that can be directly accessed and used as if they were raw physical disks. In this paper we devise ENIGMA, an architecture for the
back-end of BLCS systems able to provide adequate levels of access and transfer performance, availability, integrity, and confidentiality,
for the data it stores. ENIGMA exploits LT rateless codes to store fragments of sectors on storage nodes organized in clusters.
We quantitatively evaluate how the various ENIGMA system parameters affect the performance, availability, integrity, and confidentiality
of virtual disks. These evaluations are carried out by using both analytical modeling (for availability, integrity, and confidentiality) and
discrete event simulation (for performance), and by considering a set of realistic operational scenarios. Our results indicate that it is
possible to simultaneously achieve all the objectives set forth for BLCS systems by using ENIGMA, and that a careful choice of the
various system parameters is crucial to achieve a good compromise among them. Moreover, they also show that LT coding-based
BLCS systems outperform traditional BLCS systems in all the aspects mentioned before.

Index Terms—Cloud storage, rateless codes, availability, confidentiality, integrity, performance.

✦

1 INTRODUCTION
Block-Level Cloud Storage (BLCS) [1] is a storage paradigm
offering to users and applications the access to persistent
block storage devices (named virtual disks (VD)) that
can be directly accessed and used as if they were raw
physical disks. BLCS systems offer various advantages
over alternative data storage solutions (e.g. distributed
file systems), namely: (a) they support cloud applications
that require access to persistent raw block devices (e.g.,
DBMSes), (b) they are natively supported by any off-the-
shelf operating system, and (c) the optimizations they
provide are transparently available to any off-the-shelf
file system used to format them.
In order to be usable in practical settings, a BLCS must

provide adequate levels of performance (i.e. low access
times, high transfer throughput and number of I/O op-
erations per second), availability (i.e., the probability that
each sector is available when it is requested), integrity
(i.e., the ability of ensuring data trustworthiness [2]),
and confidentiality (i.e. the ability of concealing data to
unauthorized users [2]).
The typical architecture of a BLCS system features

a front-end, providing users/applications with a set of
abstract disk operations, and a back-end, that implements
these operations over a set of physical storage resources.
Traditional back-ends are typically implemented by ag-
gregating a pool of volume servers, and by provisioning
each VD on a single server.

• Rossano Gaeta and Marco Grangetto are with Università degli Studi
di Torino, Dipartimento di Informatica, Torino, Italia. Cosimo Anglano
is with Università degli Studi del Piemonte Orientale, DiSIT-Computer
Science Institute, Alessandria, Italia.
E-mail: {first.last}@di.unito.it {first.last}@di.unipmn.it

This solution, however, is affected by performance and
availability problems, since storage servers are a single
point of failure, and may easily become a bottleneck.
In this paper we investigate how a family of codes,

known as Luby Transform (LT) codes [3], can be used as
the enabling technology for BLCS systems able to solve
the problems mentioned above. In coding-based storage
system, the data units are first split into k equal size
information fragments. These are subsequently encoded
into n equally sized coded fragments (n ≥ k) such that
a suitably-chosen subset of them suffices to reconstruct
the sector. Finally, the coded fragments are spread across
a set of independent physical nodes.
LT codes are rateless, that is the ratio k/n (the rate

of the code) is not fixed at design-time, but can be
instead adjusted at run time. Compared to alternative
coding schemes (e.g., Reed-Solomon [4]) LT codes are
better suited to the needs of a BLCS system because of
their much lower complexity, and their ability to adjust
redundancy at run time.
Thanks to these properties, the usage of LT codes in

the back-end of a BLCS system provides many benefits.
In particular, in this paper we show that:

• low sector access time and high transfer throughput
can be achieved by exploiting the simultaneous
fetch of sector fragments from independent storage
resources, thus exploiting the availability of many
independent network paths;

• there is no single point of failure, as the coded frag-
ments are stored on various independent storage
resources, and lost fragments (caused by a failed
resource) can be regenerated on-the-fly without the
constraint of recreating exactly the lost data;

• suitable levels of confidentiality can be achieved
by keeping secret the random generation process

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

and the addresses of the storage resources where
fragments are stored.

We carry out our investigation by discussing the de-
sign of ENIGMA, a distributed storage infrastructure
based on LT codes, that encompasses various mecha-
nisms enabling it to obtain suitable levels of perfor-
mance, availability, integrity, and confidentiality and
that, as such, can be effectively used as the back-end
of a BLCS system.
Using coding for cloud storage is not a new idea [5],

and several works have studied in depth solutions to
achieve each one of the goals of BLCS systems (i.e.,
adequate performance, availability, integrity, and confi-
dentiality). However, to the best of our knowledge, none
of the existing works attempts to achieve all these goals
at the same time.
Simultaneously achieving all these goals, however, is

not trivial, as they typically conflict with each other.
For instance, as shown later, higher levels of availability
require larger values of n, while higher levels of per-
formance require lower values of n. Therefore, several
trade-offs emerge when all these objectives must be
simultaneously achieved.
To understand and evaluate these trade-offs, we

quantitatively evaluate how the system parameters of
ENIGMA affect the performance, availability, integrity
and confidentiality of virtual disks. These evaluations
are carried out by using both analytical modeling (for
availability, integrity, and confidentiality) and discrete-
event simulation (for performance), and by considering a
set of realistic operational scenarios. Our results indicate
that it is possible to simultaneously achieve all the
objectives set forth for BLCS systems using ENIGMA,
and that a careful choice of the various system param-
eters is crucial to achieve a good compromise among
them. Moreover, they also show that coding-based BLCS
systems outperform traditional BLCS systems in all the
aspects mentioned before.

Our contributions
To summarize, the contributions of this paper 1 are as
follows:

1) we devise an architecture of a back-end for a BLCS
system that is able to achieve suitable levels of per-
formance, availability, integrity and confidentiality
thanks to the efficient use of LT codes;

2) we evaluate the performance of this system with
realistic workloads (consisting of real disk ac-
cess traces collected on production, enterprise-level
storage system), and we compare them against a
realistic model of a traditional BLCS system;

3) we devise various analytical models of availability
and integrity of virtual disks.

This paper is organized as follows. In Sec. 2 we
describe related works, while in Sec. 3 we present the

1. A preliminary version of ENIGMA has been presented in [6].

encoding method we use in ENIGMA. In Sec. 4 we
present the architecture and the operation of ENIGMA.
In Sec. 5 we devise suitable analytical models that ex-
press availability, integrity, and confidentiality in terms
of its main design parameters, and we use them to study
how the various system parameters affect the availabil-
ity, integrity, and confidentiality of virtual disks. In Sec. 6
we study their performance by means of discrete-event
simulation. Finally, in Sec. 7 we conclude the paper and
outline future work.

2 RELATED WORK

Block-level cloud storage systems have been actively in-
vestigated in the recent past, and various solutions have
been proposed (e.g., Amazon EBS [7], Eucalyptus Block-
Based Storage Abstraction [8], Open Nebula [9], Virtual
Block Store [10], VBS-Lustre [11],and Orthus [12]). The
back-ends of these systems, however, is based on volume
servers, and therefore suffer from the performance and
availability problems mentioned in the Introduction. In
contrast, as discussed in subsequent sections of this
paper, ENIGMA is able to suitably address the issues
affecting the above systems
Furthermore, the systems mentioned above do not

adopt an holistic approach to the simultaneous provision
of adequate levels of data availability, integrity, and
confidentiality. This implies that exogenous mechanisms
must be adopted, but these solutions are often satisfac-
tory only in part. For instance, whole-sector replication
provides much lower availability levels than coding-
based solutions at a much higher storage cost. Fur-
thermore, state-of-the-art confidentiality mechanisms for
cloud storage are based on encryption [13], [14], [15] that
are computationally expensive (and, thus, are rarely used
in real-world settings [16]), while the solution provided
by ENIGMA incurs in a much lower computational cost.
Finally, state-of-the-art integrity mechanisms focus on
just checking the integrity of data, while ENIGMA is able
to tolerate the modification of sector fragments.
The usage of coding techniques for distributed storage

has been already explored in the literature (see [5] for a
survey). The emphasis of these works, however, is placed
on the problem of reconstructing fragments stored on
nodes that permanently leave the storage infrastructure.
In [17] rateless codes have been used to devise the file

based cloud storage system (as opposed to our BLCS).
This work states that LT codes can be exploited to
achieve high availability and security and mainly deals
with data integrity and data repair. Moreover, they pro-
pose to use multiple LT encoding and decoding checks
to avoid LT decoding failures. This process involves only
coding vectors and represents a one-time preprocess
whose result could be reused. Nevertheless, the number
of required encoding and decoding checks is equal to

(n
k

)

therefore the data outsourcing operation may become
rather complex as the values of n and k increase.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

3 LT CODES FOR CLOUD STORAGE
3.1 Preliminaries
As mentioned in the introduction, in this paper we will
rely on Luby Transform (LT) codes [3] for sector en-
coding. LT codes are a family of asymptotically optimal
rateless codes over the binary Galois field GF(2), i.e. the
coding process is based on the simple exclusive or (XOR)
operation. As opposed to traditional erasure codes, it is
not required to fix the rate a priori. Given a chunk of
data, these are fragmented into k symbols (or blocks) of
equal length. The symbol length can be fixed as desired,
e.g. compliant with the transport payload being used for
transport, real-time constraints, etc., and does not impact
on the theoretical features of the code. The encoding
process works in 3 steps:

• randomly choose the degree d of the encoding sym-
bol according to the so called degree distribution;

• uniformly select at random d distinct input symbols
• compute the encoded symbol as the XOR of the d

selected symbols.

The encoding process is rateless in that an arbitrary se-
quence of coded symbols can be randomly constructed.
The coding process is clearly driven by a pseudo-random
generator initialized with a given seed. The seed can be
used also on the receiver side as a mean to repeat the
generation of the degree d and of the selected input sym-
bols in order to run the decoding algorithm. The decod-
ing performance of rateless codes is evaluated in terms
of decoding overhead, i.e. the amount of coded symbols
required in excess of k to decode the input symbols. LT
codes have been shown to be asymptotically optimal for
large block size k. Such performance is a direct conse-
quence of the used degree distribution, known as Robust
Soliton distribution (RSD), that achieves both simple
decoding and vanishing overhead. The RSD depends on
k and two additional parameters, usually denoted as c
and δ (see [3] for their precise definition), that we omit
from discussion for conciseness. In the context of this
paper the coded symbols will be stored and retrieved
in groups of x, parameter that we term grouping factor.
Moreover, the maximum number of coded symbols to be
stored is fixed to the value of n ≥ k. In our settings the
LT decoding performance can be analyzed introducing
the decoding distribution εn,k,x(i), with i = k, k + 1, . . .,
that represents the probability to accomplish decoding
from exactly i coded symbols, when n symbols are stored
in group of x. One can also introduce the cumulative
decoding distribution σn,k,x(i) =

∑i
j=k εn,k,x(j) that is

the probability of decoding with less or equal than i
coded symbols. In the rest of this paper we define the
average decoding overhead as ϵ̄n,k,x = 1

k

∑∞
i=k(i−k)εn,k,x(i),

i.e., as the average number of extra fragments required
to decode the input symbols over k. The previous distri-
butions and the average overhead depend on the value
of k, n, x and on the two RSD parameters c and δ.
The asymptotic property of LT codes guarantees that
limk→∞ ϵ̄n,k,x = 0.

Finally, it is worth noting that if one limits the max-
imum number of LT coded symbols to be stored to a
fixed value n, this implies that decoding can fail with
a probability pf (n) =

∑∞
j=n+1 εn,k,x(j) = 1 − σn,k,x(n).

This is due to the fact that LT coded symbols are
generated randomly and decoding is guaranteed only in
probability. A countermeasure to this event is proposed
in Sec. 3.2, where a modified encoder yielding pf(n) = 0
is presented.
It is worth noticing that LT codes provide several ad-

vantages over other rateless schemes, e.g. Raptor codes
[18], namely: (a) they are non systematic and as such
no original sector fragments are disclosed to the storage
resources, hence they guarantee higher confidentiality
levels; (b) they permit simpler repair protocols [19]; (c)
the modified version of the encoder we propose (see next
section) has similar overhead and computational cost for
small values of k.

3.2 ENIGMA LT coding strategy
The practical application of LT codes to ENIGMA clearly
requires to choose suitable values for k and n. If one
wishes to keep the coding overhead low, then k must be
chosen as large as possible. Unfortunately, in ENIGMA
large values of k are undesirable since: (a) they adversely
affect the network communication overhead, given the
constraints on reasonable sector sizes (see definition of
psize in Sect. 4), (b) they yield higher encoding and
decoding computational costs.
Hence, we are forced to use limited values of k (and n)

that not only make the coding overhead larger, but also
(and even worse) yield a significantly higher decoding
failure probability pf (n).
To deal with the above issues we enhance the stan-

dard LT encoding and decoding mechanisms to achieve
affordable coding overhead and zero decoding failure
probability under typical storage settings, i.e. allowed
sector size. LT codes have been originally proposed as
asymptotically optimal codes with a simple Belief Prop-
agation (BP) decoder [3], i.e. based on the solution of
the underlying linear system with recursive cancellation
of the degree 1 equations. For small values of k both
the average decoding overhead and the decoding failure
probability, make BP decoder useless in our scenario.
This is shown in Tab. 1 where ϵ̄n,k,x and pf (2k) have
been experimentally estimated in the case of LT codes
with RSD parameters c = 0.05, δ = 0.01 for k ≤ 48:
an average overhead ϵ̄n,k,x larger than 0.6, i.e. 60% of k,
clearly rules out the BP decoder in our setting.
Therefore we resort to another decoder, known as On-

the-Fly Gaussian Elimination (OFG) [20], that is able to
improve the decoding performance for limited value of
k without impacting dramatically in terms of compu-
tational cost. Indeed, in Tab. 1 it can be shown that
OFG yields an average decoding overhead of less than
0.05. Unfortunately the standard LT encoding process
still does not allow one to exclude the decoding failure
event, even if its probability vanishes increasing k.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

TABLE 1
Decoding overhead ϵ̄n,k,x of LT codes with belief

propagation decoder (BP), OFG decoder, and ENIGMA
LT codes.

k
LT w. BP LT w. OFG LT ENIGMA

ϵ̄n,k,x pf (2k) ϵ̄n,k,x pf (2k) ϵ̄n,k,x pf (2k)
8 1.062 3.93 10−1 0.591 1.50 10−1 0.206 0
16 0.879 2.98 10−1 0.131 5.36 10−4 0.119 0
32 0.712 1.49 10−1 0.071 < 10−9 0.065 0
48 0.621 7.83 10−2 0.049 < 10−9 0.045 0

Since a storage system cannot afford such a proba-
bilistic decoding failure, since data availability is crucial,
we also modify the LT encoder so as to guarantee that
pf (n) = 0, i.e. that any sector can be recovered if all its
fragments can be retrieved from the storage nodes. In
other words, we want to exclude a read failure when
all the storage nodes are assumed to be reliable. Such
goal has been achieved by exploiting the incremental
decoding property of the adopted OFG decoder. In fact,
OFG has the advantage of being a sequential decoder
and it is able to incrementally consume and decode the
received coded fragments. This is achieved by maintain-
ing a k × k decoding matrix that represents the set of
collected linearly independent equations.
OFG can be used to incrementally filter the coded

fragments to guarantee that pf (n) = 0. This is achieved
by imposing an additional constraint on the decodability
of the fragments: ideally we want every coded fragment
to be innovative, i.e., the corresponding equation shall
not be linearly dependent on the previously generated
equations. To this end, we use a standard LT encoder
cascaded with the OFG incremental decoder; each new
coded fragment is fed to the OFG stage that checks
whether it is innovative or not. This goal is achieved
exploiting the mechanism used by OFG to build the
decoding matrix without any additional modification; in
particular, the j-th equation is marked as innovative if
it can be used to fill a new row of the OFG decoding
matrix [20]. Clearly, a set of k innovative fragments (that
we term as decoding set) is progressively obtained by this
process. Then, to create redundant coded fragments, the
OFG is reset and the process is re-initiated up to the
generation of the desired number of coded fragments.
If n is not multiple of k this amounts to interrupt the
generation of the last decoding set.
It is worth pointing out that, since the coded fragments

will be stored and retrieved from storage nodes ran-
domly (in group of x), i.e. picking up coded fragments
from different decoding sets, there is no guarantee to
successfully decode from every subset of k coded frag-
ments. The corresponding decoding distribution σn,k,x

can be used to analyze the OFG decoding overhead
of the modified LT encoding; the modified encoding
process guarantees by construction that σn,k,x(n) = 1,
i.e. pf(n) = 0. To illustrate our results, in Tab. 1 the
modified ENIGMA LT codes are compared in terms
failures and overhead versus standard LT codes. The

results are obtained by performing 1,000 encoding trials
with x = 1. In each trial, 100,000 decoding attempts
are performed using different random orderings of the
n fragments to emulate their random arrival from the
storage nodes. It can be noted that the proposed process
eliminates failure while slightly improving also in terms
of average decoding overhead.
Finally, we must note that the devised solution re-

quires running a standard LT encoder and the OFG
algorithm in parallel adding some computational cost.
For instance, when k = 32 standard and modified LT
codes with OFG decoder take on average 0.054 and
0.248 ms per sector (measured on an Intel i7 processor),
respectively. Moreover, as will be discussed in Sec. 4
ENIGMA employs caching to tolerate network latency
and therefore the encoding of a sector is required only
when it must be expunged from the cache.

4 SYSTEM ARCHITECTURE AND OPERATIONS
In this section, we describe the architecture of ENIGMA
(Sec. 4.1) and the sector read and write protocols
(Sec. 4.2).

4.1 Architecture
ENIGMA provides access to an arbitrary set of VDs, each
one consisting into a set of consecutively-numerated
sectors. Its architecture, schematically shown in Fig. 1,
consists of a set of NS storage nodes and a set of NP

proxies.

Fig. 1. System architecture

Each proxy provides a set of clients with the access
to a set of VDs, and uses the storage nodes to store
the corresponding sectors after having encoded them as
discussed in Sec. 3.2. Each VD is exclusively managed by
a single proxy, that maintains all the meta-data informa-
tion needed to properly operate it. The number of VDs
(and, consequently, of clients) that can be supported by
a single proxy is not limited by architectural features,
but instead depends only on the amount of physical
resources of the machine where it runs. To enhance read
and write performance, each proxy exploits caching (a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

vanilla LRU cache is used), operation overlapping, and
suitable sector read/write protocols. In this paper, we
assume that proxies are perfectly reliable, trusted, and
secure.
Storage nodes are a set of hosts that use their local

storage to store fragments of virtual sectors. We assume
that storage nodes are characterized by their machine
availability p (0 ≤ p ≤ 1), a measure of the probability
that the fragments sent to the requesting proxy are
actually received (for instance, these fragments might not
be delivered because of a temporary network problem
or machine unavailability). We assume that fragment
unavailability is only transient (i.e., a node that leaves
the system eventually rejoins it), so it is not necessary to
perform any reconstruction of missing fragments 2.
For scalability purposes, and in order to achieve a

good load balancing, storage nodes are arranged into a
two-level hierarchical structure consisting of NC equally-
sized clusters, each one includes SC storage nodes (each
storage node belongs to a single cluster). Each cluster
is managed by a cluster head, that is responsible for
orchestrating, across the nodes of the corresponding
cluster, the execution of the operations issued by proxies.
More specifically, it receives the read/write requests for
the sectors stored in the cluster, and dispatches them to
the storage nodes belonging to its cluster.
We assume that nodes are assigned to clusters at

random, without following any specific criterion related
to their identity or connectivity, and that cluster heads
are perfectly reliable, trusted, and secure.
All the fragments of a given sector si (whose address

is i) are stored on storage nodes belonging to the same
cluster, that are chosen as follows:

1) cluster selection: si is assigned (by the corresponding
proxy) to cluster C(si) = i mod NC ; this corre-
sponds to a round-robin assignment that balances
the load among cluster heads.

2) storage nodes selection: C(si) head chooses at ran-
dom, a set of m storage nodes of its cluster, and
spreads the fragments of si over them. Note that
different sectors may correspond to different sub-
sets of storage nodes of the same cluster.
The mapping between si and the corresponding
set of storage nodes is stored locally on the cluster
head. To reduce space requirements, mappings are
not explicitly stored into a table, but are instead
recalculated each time a sector is referenced by
an operation. More precisely, the identifiers of the
m storage nodes corresponding to fragments of si
are computed as a sequence of m pseudo-random
numbers whose generator uses i as seed. We stress
that this operation takes very little time on a mod-
ern processor (for instance, just about 20µsec. on
an Intel i7 processor).

2. In case of permanent failure of a storage node, one of the various
proposals for efficiently repairing lost fragments, e.g., [19], [21], could
be used to devise a customized version of a regenerating code to
support replacement of missing fragments.

As anticipated in Sec. 3, the fragments of each sector are
stored and retrieved in groups of x, whereby each group
is stored on a different storage node. Thus, we have that
m = ⌈n/x⌉. The value of x is set when the virtual disk
is created, and is kept fixed during the lifetime of that
disk; different virtual disks may choose a different value
of x. To simplify notation, and without loss of generality,
in the following we assume that n is an integer multiple
of x (i.e., n mod x = 0), so that we can drop the ceiling
operator.
The use of the grouping factor allows us to control the

number and the size of the messages exchanged between
the proxy and the storage nodes for each operation (see
Sec. 4.2). In this way it is possible to avoid using many
small messages that, as shown in Sec. 6, adversely affect
performance.
In particular, denoting as DV the sector size of a VD,

we have that the size of each fragment is fs = DV /k, so
each message sent by a storage node to the proxy carries
psize = x ·DV /k bytes as payload. Thus, for given values
of DV and k, a proper choice of x allows one to reduce
the number of messages and to increase their payload to
a size resulting in efficient usage of network resources.
As will be shown later, the value of x affects the per-

formance, availability and integrity of data that can be
attained by ENIGMA. We will explore the relationships
among these quantities in Sect.6 and in Appendix A of
the supplement.

4.2 Read and Write Protocols
The read and write protocols specify how the read and
write operations issued by the proxy are carried out by
ENIGMA.
The read and write operations are implemented as

follows, where we denote as si the sector referenced by
the operation:

• write: the proxy encodes si using the LT coding
procedure described in Sect. 3.2, and sends the
resulting n coded fragments fi,j , j = 1, . . . , n to
the cluster head of the corresponding cluster C(si),
that in turn forwards them to a suitable set of
storage nodes (chosen as discussed in Sec. 4.1). Each
storage node directly notifies the requesting proxy,
that considers as completed the operation as soon
as the first decoding set has been successfully stored
(recall that the ENIGMA LT encoder organizes the
coded fragments into independent decoding sets),
that in turn notifies the requesting client.
Each coded fragment fi,j is sent along with a header,
allowing the proxy to recover the sector index i and
the coding index j, respectively. Given the index j,
the proxy is the only entity that knows the value of
the seed used to run the pseudo-random generation
process, whose knowledge allows to repeat the se-
lection of the degree d and of set of the combined
original fragments. In the following we refer to the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

seed value as coding key. Only the proxy knows the
coding key and is able to to decode a sector.

• read: the proxy sends a read request to the cluster
head of the corresponding cluster C(si), that in turn
forwards the request to each of the n/x storage
nodes that store the coded fragments. Each one of
the involved storage nodes reacts to that message
by directly sending to the proxy the x fragments of
si that it holds. The proxy processes the received
fragments and progressively decodes si using the
OFG algorithm. When the proxy is able to decode
si, it notifies to the requesting client the completion
of the read operation, and discards all the fragments
received after the sector has been fully decoded.

5 SYSTEM PROPERTIES
In this section we characterize the levels of availabil-
ity, confidentiality, and integrity attained by ENIGMA
virtual disks, and we devise suitable analytical models
that express these properties in terms of the system
parameters. More specifically, we devise models for the
properties of a single cluster, given that all clusters in
an ENIGMA instantiation are identical to each other.
Appendix A in the supplement complements this section
by discussing numerical results based on these models.
Furthermore models of ENIGMA storage and communi-
cation overheads are presented.

5.1 Sector Availability
In ENIGMA, the unavailability of sector fragments
caused by the unavailability of the storage nodes holding
them is dealt with by choosing suitable values for k and
n, so that it is possible to reconstruct each original sector
(i.e., its original k fragments) even in face of these events.
In order to choose these values, we develop an analyti-

cal model of the availability α of each sector, expressed as
the probability of retrieving enough fragments to allow
correct decoding of a sector stored in a cluster, that
relates this quantity to the various design parameters
of ENIGMA (namely k, n, and x) and the availability p
of individual storage nodes. Our model can be used to
determine the values of k, n, and x that allow ENIGMA
to obtain a desired α value.
Recalling that all the fragments of a given sector

are stored on the storage nodes belonging to a single
cluster, the availability of that sector can be expressed as
function of the properties of the corresponding cluster.
We denote as gn,x,p(r) the probability that r out of

n fragments are gathered by the proxy when all n
fragments are requested to decode a sector. As discussed
in Sec. 4, these fragments are placed on n/x storage
nodes (all belonging to the same cluster). Without loss of
generality and for the sake of simplicity in the following
we assume that n is an integer multiple of x, i.e.,
n mod x = 0. Recalling that the x fragments requested
to each storage node are obtained by the proxy with
probability p (and none of them with probability 1− p),

and that n mod x = 0, we have that gn,x,p(r) follows a
binomial probability distribution when r is an integer
multiple of x, i.e.,

gn,x,p(r) =

{

(n/x
r/x

)

pr/x(1 − p)(n−r)/x if r mod x = 0

0 if r mod x ̸= 0.

The probability of decoding a sector by using exactly r
fragments is given by the product gn,x,p(r)σn,k,x(r). We
can then define the availability αn,x,p(k) of a sector as the
probability of retrieving enough coded blocks to allow
decoding for any possible value of r, i.e.:

αn,x,p(k) =
n
∑

r=k

gn,x,p(r)σn,k,x(r). (1)

By using Eq. 1, it is possible to determine suitable val-
ues for k, n, and x, as well as to evaluate data availability
for specific values of the above design parameters. For
the complete evaluation please refer to the supplement.
Here we limit ourselves to remark that our results
indicate that, to ensure high availability, x should be
chosen as small as possible. Furthermore, the proposed
encoding strategy improves availability for large values
of x.
It is worth noting that our fragment placement policy

corresponds to a simple and intuitive symmetric alloca-
tion with maximal spreading using the terminology of
[22]. Results in [22] are obtained under the hypothesis
of optimal coding schemes, i.e., coding schemes where
decoding is guaranteed whenever the ratio between the
amount of retrieved coded fragments and k is ≥ 1.
This assumption is equivalent to assume that the code
overhead is identically equal to 0. Unfortunately, this
assumption is not satisfied in ENIGMA where rateless
codes only allow for probabilistic decoding according to
the code overhead distribution described by εn,k,x(j).
Nevertheless, the symmetric allocation with maximal
spreading is proved to be asymptotically optimal, i.e.,
to maximize the sector availability when the number
of storage nodes increases, in the case of independent
probabilistic access to each storage node with proba-
bility p if p > k

n . Furthermore, [22] shows that for
p ≥ 4

3⌊n/k⌋ (the values of p we consider for ENIGMA in
Appendix A satisfy this constraint) symmetric allocation
with maximal spreading is indeed one of the optimal
solutions. It follows that the fragment allocation policy
we used in ENIGMA yields close to optimal solution to
the fragment allocation problem, at least for the values
of p we consider in our paper.

5.2 Data Confidentiality
Storing data on third-party resources potentially exposes
them to unauthorized accesses, while preventing the
owner of those data to enforce specific access policies.
Thus, it is necessary to ensure the confidentiality of data,
that entails to make sure that they are not disclosed to
unauthorized users.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

In the following, we discuss how we obtain confiden-
tiality in face of a threat model in which an attacker is
able to break only storage nodes while we assume that
proxies are trusted entities that cannot be compromised.
In ENIGMA confidentiality is achieved by disclosing

only coded information, whereas the coding key (i.e.
the seed of the random generator used for random
LT encoding) is safely stored by the proxy only. This
implies that the coding vector for each sector si (see
Sec. 4.2) is private information of the owner of the data.
Therefore, by keeping the coding key secret, and by
limiting the number of fragments stored on each node,
ENIGMA is able to resist to different types of attacks to
confidentiality, that we discuss in detail in Appendix A
of the supplement.
Our scheme is inspired by [23] where dispersal of

information is proposed as an efficient mean for achiev-
ing suitable level of data security. More precisely, in
[23] it is shown that linear coding can be exploited to
achieve security as long as an attacker has access to
less than k fragments. On the other hand, if an attacker
collects enough fragments to decode the sector, security
is obtained by making information reconstruction com-
putationally hard, since an attacker cannot access the
coding key as long as it is kept secret.
It follows that our scheme provides the so called

computational security relying on the external and safe
storage of the coding key. Higher security levels could
be achieved by encrypting the coding key. Since in the
long term keys can be compromised [24] a further im-
provement could be to adopt schemes where no external
key is required as in [25], [26]. Of course, the entire
disk could be encrypted before storing it on ENIGMA to
achieve further security levels at the expense of a higher
computational cost.
It must be noted that an attacker that succeeds in re-

constructing a single disk sector still has a complex work
ahead in order to obtain the entire logical file the stolen
sector belongs to. Indeed, a mechanism should be set up
to infer which other disk sectors compose the logical file
and what is their offset in the file. Finally, the cluster
storing each of them must be known to the attacker.
This last problem can be made harder for an attacker by
replacing the round-robin based cluster selection policy
described in Sec. 4.1 by a random based one. Please refer
to Appendix A of the supplement for the quantitative
evaluation of the confidentiality achieved by ENIGMA.
The results discussed there show that fragment dispersal
and secrecy of the coding key provide computational
security. Moreover, it is shown that dispersal is more
effective for low values of x.

5.3 Data Integrity
In addition to the risks for confidentiality, data stored on
virtual disks are exposed to integrity attacks, whereby
a set of malicious nodes purposely corrupt some of
the fragments they store. In particular, we assume that

NM out of SC storage nodes of a cluster are malicious
and deliberately modify the content of a fragment. In
the attempt of eluding or delaying their identification,
malicious storage nodes alter the content of a fragment
on a probabilistic basis: when a fragment has to be
transmitted to a requesting proxy its content is modified
by flipping a coin whose weight is denoted as ppoll. We
name this attacks as pollution attack, as data are corrupted
by “polluting” them.
In this section we derive an analytical model that

allows us to compute the ability of ENIGMA to resist to
pollution attacks, quantified as the availability of sectors
(i.e., the probability of correctly reconstruct them) in
presence of purposely corrupted fragments.
We denote as sSC ,NM ,n,x(r) the probability that r frag-

ments are placed on malicious storage nodes (0 ≤ r/x ≤
NM). We observe that if r is an integer multiple of x then
sSC ,NM ,n,x(r) follows a hyper-geometric distribution:

sSC ,NM ,n,x(r) =

⎧

⎨

⎩

(NM
r/x)(

SC−NM
(n−r)/x)

(SC
n/x)

if r mod x = 0

0 if r mod x ̸= 0.

We can still define the availability of a sector as the
probability of retrieving enough fragments to allow de-
coding when malicious storage nodes play into action.
This generalized quantity is computed as in Eq. 2 whose
meaning is the following: assume that

• nm fragments are placed on malicious storage nodes
and that n − nm fragments are placed on hon-
est storage nodes (this happens with probability
sSC ,Nm,n,x(nm));

• 0 ≤ rm ≤ nm fragments are retrieved frommalicious
storage nodes whose availability is p (gnm,x,p(rm));

• 0 ≤ rh ≤ n−nm fragments are retrieved from honest
storage nodes whose availability is p (gn−nm,x,p(rh)).

A clean sector is decoded by using d fragments if:

• the overhead is equal to d − k when placing x
fragments on each storage node: this happens with
probability εn,k,x(d), and

• if m out of d fragments that are hosted by malicious
storage nodes are left unmodified: this happens
with probability H(rm, rh, d,m)(1 − ppoll)m where

H(rm, rh, d,m) =
(rmm)(rh

d−m)
(rm+rh

d)
is the hyper-geometric

probability distribution.

Clearly, all values for m and d must be considered and
all the above reasoning must be iterated over all possible
assignments of nm fragments to NM malicious storage
nodes and over all possible values for rm and rh.
Accurate and efficient algorithms to spot and identify

malicious storage nodes can be considered [27]. If we
assume that it is possible to identify malicious storage
nodes, we can envisage a recover mechanism for in-
consistent sectors. To this end, we consider only the rh
fragments retrieved from honest storage nodes and try
decoding from those. In this case we compute a recovery
probability for inconsistent sectors as in Eq. 3.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

cSC ,NM ,n,x,p(k)=
n
∑

nm=0

nm
∑

rm=0

n−nm
∑

rh=0

sSC ,Nm,n,x(nm)gnm,x,p(rm)gn−nm,x,p(rh)
rm+rh
∑

d=k

εn,k,x(d)
rm
∑

m=0

(rm
m

)(rh
d−m

)

(

rm+rh
d

) (1− ppoll)
m(2)

rSC ,NM ,n,x,p(k)=
n
∑

nm=1

sSC ,Nm,n,x(nm)

1− sSC ,Nm,n,x(0)

n−nm
∑

rh=k

gn−nm,x,p(rh)σn,k,x(rh). (3)

Please refer to Appendix A of the supplement for the
quantitative evaluation of the the resistance of ENIGMA
to pollution attacks for specific values of its design pa-
rameters. The results discussed there can be summarized
by saying that small values of the grouping factor x
worsen the effect of a pollution attack but ensure high
recovery probability.

6 PERFORMANCE EVALUATION
To assess the usability of ENIGMA in practical settings
we compared the performance it attains against that
achieved by a baseline system representing a typical back-
end for a BLCS system that uses whole-sector replication
to ensure availability. Furthermore, we studied the im-
pact on ENIGMA performance of its system parameters.
Because of space constraints in this section we only
discuss the comparison against the baseline system and
we briefly comment on the impact on performance of
its system parameters. For this study, we use a discrete-
event simulator, that we developed for this purpose, able
to simulate both ENIGMA and the baseline systems. In
the rest of this section, we describe the simulation sce-
narios used for our experiments, and then we report the
corresponding results. Appendix B in the supplement
complements this section by discussing the simulation
models used in the experiments, as well as by providing
the complete discussion of the impact on performance
of ENIGMA system parameters.

6.1 Simulation scenarios
The simulation scenarios considered in our experiments
are obtained by instantiating the system parameters as
well as the parameters of the simulation models de-
scribed in the supplement. To ease readability, we list
these parameters, together with their explanations and
corresponding values, in Tab. 2.
In the experiments we use as workload a set of real-

world disk traces [28], that can be downloaded from
the SNIA IOTTA Repository, and that have been collected
on various storage production servers at Microsoft Cor-
poration 3. These traces represent disk access patterns
of various types, featuring a mix of read and write
operations that involve sequences of consecutive sectors.
The actual proportions of read/write in a given trace, as
well as the number of consecutive sectors they target,

3. In particular, we use the MSN-CFS, RAD-AS, RAD-BE, DAP-DS,
and DAP-PS traces

TABLE 2
Simulation parameters and values

Parameter Meaning Values
NP number of proxies 16
NS number of storage nodes 8192
NC number of clusters 64, 128, 256
SC size of each cluster 128, 64, 32
p availability of storage nodes i 1
DV sector size 8192 bytes
k original sector fragments 32
n encoded sector fragments 64, 128
x grouping factor 1, 2, 4, 8, 16,

32, 64, 128

vary across these traces. Space constraints prevent us
from fully discussing them here (the interested reader
may refer to [29] for a thorough discussion).

6.2 Results
In our experiments we use the following metrics to
quantify performance:

• the mean response time of individual disk requests;
• the total number of I/O operations per second (IOPS)

completed by the whole storage infrastructure.

Because of space limitations, here we discuss only
the results corresponding to the configuration using
NC = 64 clusters, and to a single trace 4. The results for
the other traces and system configurations are, however,
very similar to the ones we report here.

6.2.1 Comparison with the baseline system
To determine whether ENIGMA offers performance
comparable to that of a traditional back-end for BLCS
systems, we carry out a set of experiments in which
we compare its performance against those attained by
the baseline system (please refer to Appendix B for the
description of the corresponding simulation model).
Given that a critical factor affecting performance of the

baseline system is the processing speed of the servers
it uses, we consider various scenarios in which we
progressively increase the number C of requests that
each one of these servers can concurrently process; in
particular, we run experiments for C = 1, 10, 100, 1000.
In contrast, the results for the ENIGMA scenarios have
been obtained by setting C = 1 on each cluster heads.
Finally, we consider a scenario in which baseline

clients do not use a local cache (as in the iSCSI protocol),

4. In particular, we consider the requests targeting disk 0 of the MSN-
CFS trace.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

and one in which such a cache is instead present (as in
the Fiber Channel protocol) and, in this case, we set its
size to 10GB (a value higher than that used by most real
storage systems). Because of space constraints, we show
only the results for the baseline system using the cache,
as this configuration results in the best performance for
this system.
In Fig. 2 we compare the mean response time and the

IOPS values obtained by the the baseline system for the
various values of C against those attained by ENIGMA
for different values of k, n and x and with a cache of 1
GB for each proxy.
As can be seen from Fig. 2, ENIGMA performs much

better than the baseline system for C = 1, 10, and slightly
better for C = 100, 1000 – both in terms of the mean
response time and of the IOPS value – for those values
of n and x that do not congest the downstream chan-
nel. Under congestion, however, ENIGMA still performs
better than the baseline system for C = 1, 10 (although
response times are very high).
The poor performance of the baseline system are due

to the congestion of the input queue of storage servers,
where disk operations wait a long amount of time before
being served. Congestion is due to the fact that all the
requests for a given disk target the same storage server
(in contrast, in ENIGMA they are distributed across
all the cluster heads). The usage of a very large cache
in the baseline system is of little help, as its efficacy
depends – as already discussed – on the amount of
locality exhibited by the traces, a feature not offered by
the traces considered in this work. We remark, however,
that we use real-world traces collected on enterprise-
level storage systems and, as such, can be considered
representative of a large family of disk workloads.
As a final consideration, we point out that using 64

cluster heads (each one with C = 1) roughly corresponds
(in terms of computing power) to setting C = 64 in
the baseline system. However, even in this case the
performance of the baseline system is much worse than
those attained by ENIGMA.
Remark: ENIGMA achieves much better performance than

an equivalent-cost (in terms of computing power) baseline
system. To achieve similar performance, a baseline system
must use a much larger amount of resources (thus exhibiting
a larger cost).

6.2.2 Impact of system parameters
To assess how the system parameters of ENIGMA affect
its performance, we perform various simulation exper-
iments in which in turn we vary the value of n, the
size of the proxy cache, and the proxy placement in the
network.
Our results, that are fully discussed in Appendix B,

can be summarized as follows:

• to achieve good performance, larger values of x
should be used, and the larger the value of n, the
larger must be the value of x;

• larger caches result in performance improvements
only for larger values of x, while they provide
limited benefit for smaller ones;

• the position of proxies on the network has a limited
effect on performance.

7 CONCLUSIONS
In this paper we devised a suitable architecture for the
back-end of BLCS systems that achieves adequate levels
of access and transfer performance, availability, integrity,
and confidentiality, for the data it stores. We exploited
LT rateless codes and showed how beneficial they are to
all system properties we considered. In particular:

• the rateless property allows to blindly spread coded
fragments to storage nodes in a cluster with the level
of redundancy achieving the desired availability.
Moreover, we devised a particular encoding strategy
that for small block sizes (k ≤ 32) guarantees zero
decoding failure probability and improves availabil-
ity for large values of the grouping factor x.

• confidentiality is obtained by keeping the cod-
ing key secret, i.e., we assume that proxies are
trusted and cannot be compromised. Furthermore,
the lower the values of x the higher the confiden-
tiality.

• rateless codes allow for detection of polluted sectors
and accurate and fast identification of malicious
storage nodes [27]. Furthermore, we show that af-
ter identification high recovery probability can be
achieved especially for low values of x.

As for the performance, we showed that much better
performance than an equivalent-cost baseline system can
be achieved even when caches are small and indepen-
dently of the position of proxies in the network.
The future development foreseen for the current work

are a thorough evaluation of the malicious storage nodes
identification technique presented in [27] to assess accu-
racy, robustness, and reactivity. Furthermore, a prototype
implementation on PlanetLAB is planned for the whole
architecture.

REFERENCES
[1] H. Dewan and R. Hansdah, “A survey of cloud storage facilities,”

in IEEE SERVICES, jul 2011, pp. 224 –231.
[2] M. Bishop, Introduction to Computer Security. Addison-Wesley,

2005.
[3] M. Luby, “LT codes,” in IEEE FOCS, Nov. 2002, pp. 271–280.
[4] I. S. Reed and S. Gustave, “Polynomial codes over certain finite

fields,” Journal of the Society for Industrial & Applied Mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[5] A.G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A Survey
on Network Codes for Distributed Storage,” Proc. of IEEE, vol. 99,
no. 3, Mar. 2011.

[6] M. Zola, V. Bioglio, C. Anglano, R. Gaeta, M. Grangetto, and
M. Sereno, “Enigma: Distributed virtual disks for cloud comput-
ing,” in IEEE IPDPSW, May 2011.

[7] “Amazon Elastic Compute Cloud (Amazon EC2).” [Online].
Available: http://aws.amazon.com/ec2

[8] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-source
Cloud-computing System,” in IEEE CCGRID, Shangai, China,
May 2009.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 4 8 16 32 64 128 256 512

Re
sp

on
se

 ti
m

e
(s

ec
.)

Value of x

C=1

C=10

C=100
C=1000

(n=64,read)
(n=128,read)

(n=64,write)
(n=128,write)

(a)

 0

 100

 200

 300

 400

 500

1 2 4 8 16 32 64 128 256 512

IO
PS

Value of x

C=1

C=10,100,1000

n=64 n=128 max

(b)

Fig. 2. Comparison with the baseline system: (a) mean response time, (b) IOPS.

[9] “OpenNebula: The Open Source Toolkit for Cloud Computing.”
[Online]. Available: http://www.opennebula.org

[10] X. Gao, M. Lowe, and M. Pierce, “Supporting Cloud Computing
with the Virtual Block Store System,” in IEEE e-Science, December
2009.

[11] X. Gao, Y. Ma, M. Pierce, M. Lowe, and G. Fox, “Building a
Distributed Block Storage System for Cloud Infrastructure,” in
Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, Dec. 2010, pp. 312 –318.

[12] L. Zhou, Y.-C. Wang, J.-L. Zhang, J. Wan, and Y.-J. Ren, “Optimize
Block-Level Cloud Storage System with Load-Balance Strategy,”
in IEEE IPDPSW, May 2012.

[13] “Encryption as a Service from Certes Networks.”
[Online]. Available: http://www.certesnetworks.com/products/
encryption-as-a-service.html

[14] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in FC.
Springer-Verlag, 2010.

[15] S. Zarandioon, D. Yao, and V. Ganapathy, “K2c: Cryptographic
cloud storage with lazy revocation and anonymous access,”
in Security and Privacy in Communication Networks, ser. Lecture
Notes of the Inst. for Computer Sciences, Social Informatics and
Telecommunications Engineering. Springer Berlin Heidelberg,
2012, vol. 96, pp. 59–76.

[16] K. Bailey, “Addressing the Growth and Complexity of Informa-
tion Security Concerns,” International Data Corporation (IDC),
Tech. Rep., Feb. 2013.

[17] N. Cao, S. Yu, Z. Yang, W. Lou, and Y. Hou, “LT codes-based
secure and reliable cloud storage service,” in IEEE INFOCOM,
2012, pp. 693–701.

[18] A. Shokrollahi, “Raptor codes,” IEEE Trans. on Information Theory,
vol. 52, no. 6, pp. 2551–2567, 2006.

[19] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran, “Network Coding for Distributed Storage Systems,” IEEE
Trans. Inf. Theory, vol. 56, no. 9, Sept. 2010.

[20] V. Bioglio, R. Gaeta, M. Grangetto, and M. Sereno, “On the fly
gaussian elimination for lt codes,” IEEE Communication Letters,
vol. 13, pp. 953–955, 2009.

[21] A. Megasthenis and A. Dimakis, “Repairable Fountain Codes,” in
IEEE ISIT. IEEE, 2012.

[22] D. Leong, A. Dimakis, and T. Ho, “Distributed storage alloca-
tions,” IEEE Transactions on Information Theory, vol. 58, no. 7, pp.
4733–4752, 2012.

[23] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” J. ACM, vol. 36, no. 2, pp. 335–348,
1989.

[24] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti, “Pot-
shards a secure, recoverable, long-term archival storage system,”
Trans. Storage, vol. 5, no. 2, pp. 1–35, 2009.

[25] H. Krawczyk, “Secret sharing made short,” in Proceedings of the

13th Annual International Cryptology Conference on Advances in
Cryptology, ser. CRYPTO 1993, 1994, pp. 136–146.

[26] J. Resch and J. S. Plank, “AONT-RS: Blending security and
performance in dispersed storage systems,” in Proc. of USENIX
FAST 11, San Jose, USA, 2011.

[27] R. Gaeta and M. Grangetto, “Identification of malicious nodes in
peer-to-peer streaming: A belief propagation based technique,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 10,
pp. 1994–2003, 2013.

[28] “SNIA - Storage Networking Industry Association: IOTTA
Repository Homes.” [Online]. Available: http://iotta.snia.org/

[29] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Char-
acterization of storage workload traces from production windows
servers,” in IEEE IISWC, sept 2008, pp. 119 –128.

[30] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler, “An analysis of latent sector errors in disk drives,”
in ACM SIGMETRICS, 2007, pp. 289–300.

[31] V. Bioglio, M. Grangetto, R. Gaeta, and M. Sereno, “An optimal
partial decoding algorithm for rateless codes,” in IEEE ISIT, 2011,
pp. 2731–2735.

[32] “The DiskSim Simulation Environmet (Version 4.0).” [Online].
Available: http://www.pdl.cmu.edu/DiskSim

[33] “Internet Delay Space Synthesizer.” [Online]. Available: http:
//www.cs.rice.edu/∼bozhang/ds2/

[34] B. Zhang, T. S. E. Ng, A. Nandi, R. H. Riedi, P. Druschel, and
G. Wang, “Measurement-based analysis, modeling, and synthesis
of the Internet delay space,” IEEE/ACM Trans. on Networking,
vol. 18, no. 1, pp. 229–242, Feb. 2010.

[35] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Char-
acterization of storage workload traces from production Windows
Servers,” in IISWC, October 2008, pp. 119–128.

Cosimo Anglano Cosimo Anglano received his
Laurea Ph.D. degrees in Computer Science from
the University of Torino, Italy, in 1990 and 1994,
respectively. He is currently an associate pro-
fessor of Computer Science at the University of
Piemonte Orientale ”A. Avogadro”, Alessandria,
Italy. His current research interests include re-
source management algorithms for cloud com-
puting, distributed storage systems, and digital
forensics.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Rossano Gaeta Rossano Gaeta received his
Laurea and Ph.D. degrees in Computer Science
from the University of Torino, Italy, in 1992 and
1997, respectively. He is currently Associate
Professor at the Computer Science Department,
University of Torino. He has been recipient of
the Best Paper award at the 14-th IEEE/ACM
International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS 2006) and at the
26th International Symposium on Computer Per-

formance, Modeling, Measurements, and Evaluation (PERFORMANCE
2007). His current research interests include the design and evaluation
of peer-to- peer computing systems and the analysis of compressive
sensing and coding techniques in distributed applications.

Marco Grangetto M. Grangetto (S99-M03-
SM09) received his Electrical Engineering de-
gree and Ph.D. degree from the Politecnico di
Torino, Italy, in 1999 and 2003, respectively. He
is currently Associate Professor at the Computer
Science Department, University of Torino. His
research interests are in the fields of multimedia
signal processing and networking. In particular,
his expertise includes wavelets, image and video
coding, data compression, video error conceal-
ment, error resilient video coding unequal er-

ror protection, and joint source channel coding. Prof. Grangetto was
awarded the Premio Optime by Unione Industriale di Torino in Septem-
ber 2000, and a Fulbright grant in 2001 for a research period with
the Department of Electrical and Computer Engineering, University of
California at San Diego. He has participated in the ISO standardization
activities on Part 11 of the JPEG 2000 standard. He has been a
member of the Technical Program Committee for several international
conferences, including the IEEE ICME, ICIP, ICASSP, and ISCAS.

