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a b s t r a c t

Lorenz curves are widely used in economic studies (inequality, poverty, differentiation,
etc.). From a model point of view, such curves can be seen as constrained functional
data for which functional principal component analysis (FPCA) could be defined. Although
statistically consistent, performing FPCA using the original data can lead to a suboptimal
analysis from amathematical and interpretation point of view. In fact, the family of Lorenz
curves lacks very basic (e.g., vectorial) structures and, hence, must be treated with ad hoc
methods. This work aims to provide a rigorousmathematical framework via an embedding
approach to define a coherent FPCA for Lorenz curves. This approach is used to explore a
functional dataset from the Bank of Italy income survey.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In order to study the probability law of a random variable X , one can consider different real functions (provided their
well-posedness), each one highlighting different aspects: the cumulative distribution function F and the corresponding
density f or the quantile function, the quantile-density function, and the density-quantile function, respectively defined,
for all p ∈ (0, 1), by Q (p) = inf{x : F (x) ≥ p}, q(p) = Q ′(p) = 1/f {Q (p)} and f {Q (p)}.

An important aspect connected with the study of a distribution and that plays a key role in applied sciences (economics,
biology, chemistry, etc.), is the notion of ‘‘concentration’’. Roughly speaking, it is the propension of a non-negative random
variable X to redistribute over the individuals within the population. One of the goals in studying concentration is to
characterize different settings ranging from the maximal concentration (one individual owns the total mass) and the
equidistribution (the mass is distributed equally among all individuals).

In such a framework, a very useful tool is the so-called Lorenz Curve (LC) that was introduced in [27] to represent the
concentration of wealth. Formally, given a non-negative random variable X with finitemeanµ, its LC L(p) is defined, see [19],
by

L : [0, 1] → R : p ↦→ L(p) =
1
µ

∫ p

0
Q (t)dt.

It is easy to see that L(0) = 0, whereas L(1) = 1 as
∫
Q (t)dt = µ. Moreover, since Q (p) is non-negative and increasing, L(p)

is increasing and convex.
Because X ≥ 0, the quantity

∫ p
0 Q (t)dt may be interpreted as the mass of X held by the first 100× p% of the individuals

of a population ordered by increasing values of X , i.e., E[X 1{X≤Q (p)}], where 1A is the indicator function of the set A, whereas
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Fig. 1. Lorenz Curves of groups of individuals for class of age during the period 1987–2014.

µ represents the total mass of X . Therefore, L(p) describes and measures how a positive quantity X concentrates within
the population. From a mathematical point of view, the LC determines the probability distribution of X up to a scale
factor transformation and uniquely characterizes the distribution whenever the latter has a known compact support; see,
e.g., [24,35]. Among all LCs, the egalitarian line L(p) = p plays an important role: it corresponds to a perfectly equal
distribution in which each individual owns the same quantity or when X is a degenerate random variable that equalsµ. Any
other LC lies below the equidistribution line that, hence, is used as a basis for comparisonwhich leads to define concentration
indexes measuring inequality within the population.

Estimators of L(p) from samples drawn from X and their theoretical properties have been widely studied; see, e.g.,
[9–11,21,25,39].

Consider now the problem of comparing different distributions in terms of concentration: for instance to study the
concentration of incomes over years, countries, regions, groups defined from social–economical stratification criteria, and
so on. In all these situations, one deals with a set of estimated LCs, each one referred to a specific group. By way of example,
the LCs computed from data gathered with the Survey on Household Income and Wealth of the Bank of Italy (see Section 4
for details) are represented in Fig. 1. Each curve graphs the concentration of personal income for individuals grouped for age
range (up to 30 years old, 31–40, 41–50, 51–65 and over 65) and year of survey (from 1987 to 2014, biennial).

To manage that comparison problem, researchers focused on the construction of some hierarchies based on LCs. There
exists a wide literature defining different kinds of orderings ranging from the use of synthetic indexes, like the Gini index,
to stochastic orderings; see, e.g., [1,34] and references therein. The scientific debate on this topic, especially in the economic
and econometric community, is still open, as testified by recent publications; see, e.g., the monographs [4,8] and references
therein.

In this paper, the above mentioned problem is tackled for the first time, to our knowledge, using techniques from
functional data analysis, which are designed for the analysis of data that are curves or more complicated objects such as
images, surfaces, etc. To have an idea, although incomplete, of thewide variety ofmathematicalmodels, statistical techniques
and feasible applications in such framework, see the collection of papers [3,5], the Special Issue [20], the survey [12] and the
monographs [6,18,22,33].

To proceed in this direction, one needs a rigorous formal framework to fully exploit the functional nature of the data
and to interpret the results meaningfully. A first difficulty stems from the fact that the considered functional data are not
curves directly observed over a suitable grid, as it usually occurs in the classical functional literature, but a set of LCs, each
one estimated from a sample of real random variables related to a specific level (a country, a region, and so on). This induces
the necessity to manage a double stochasticity in the definition of the functional objects, a first one related to the sampling
among the levels and a second one within each level.

Once the functional framework is rigorously defined, suitable statistical functional techniques can be used to identify
structural properties and highlight differences among LCs. In particular, we focus on functional principal component analysis
(FPCA), a technique which generalizes the well-known principal component analysis from finite- to infinite-dimensional
spaces, and allows to reduce the dimensionality and to visualize the most important modes of variation of the data; see,
e.g., [33]. This methodology requires that the data belong to a vector space, but the family of LCs cannot be straightforwardly
endowed with a vector space structure since curves are non-negative, bounded, increasing and convex functions mapping
[0, 1] to itself. Hence, as we show in this paper, a naive direct application of FPCA is suboptimal because it could produce
incoherent interpretations.
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In order to overcome this drawback, we propose to embed bijectively the family of LCs in a Hilbert space where FPCA
results can be coherently interpreted. The bijection is derived in two steps. In the first step, each LC is seen as the unique
solution of a boundary value problemwhose physical interpretation allows to read the second derivative of each LC as a local
inequality weight. In the second step, that second derivative is mapped to a Hilbert space through the negative centered log-
ratio transformation. Although the latter map is often used in the compositional data literature, here we show that we deal
with data that cannot be classified as compositional and, hence, the negative centered log-ratio transformation plays only a
technical role. Besides the theoretical and algorithm aspects, we also study the consistency of the mode of variation of the
FPCA obtained both in the naive and the embedding approaches.

To complete the analysis, the proposed method is applied to the study of the evolution of concentration of income of
Italians from 1987 to 2014 using micro-data from the Survey on Household Income and Wealth of the Bank of Italy. After
introducing three different stratification criteria (geographical, generational and sectorial), themethod allows to analyze the
positioning and the dynamic of each group, introduced by stratification, over time in the factorial plane.

Given the range of topics covered, this work can be thought as a new step forward in the study of samples of densities
(see, e.g., [14,15,23,26,30,32]) and/or their derived objects such as level sets [16], quantile synchronized density [38] and
hazard functions [32].

The outline of the paper is as follows. In Section 2, we introduce the mathematical setting. In Section 3, the naive
FPCA approach on samples of LCs and the embedding one are introduced; their theoretical and algorithm aspects are then
discussed. Finally, in Section 4 the methodology is applied to a real dataset. Proofs of the theoretical results are collected in
the Appendix.

2. Lorenz curves as a functional data

This section introduces themathematical aspects related to LCs as functional data. Consider a populationX formed by real
and positive random variables X having probability density functions sharing the same compact support [0, 1] and define
the family of LCs

Lor = {L : [0, 1] → [0, 1] : L(0) = 0, L(1) = 1, L ∈ C2
[0, 1], L′(p) > 0 and L′′(p) > 0 for p ∈ (0, 1)}.

Because Lor is a subset of L2
[0,1], i.e., the Hilbert space of square integrable real functions on [0, 1] with the inner product

⟨g, h⟩ =
∫
g(t)h(t)dt and the induced norm ∥g∥2 = ⟨g, g⟩, Lor can be endowed with BLor , the σ -algebra induced by ∥ · ∥ on

L2
[0,1]. On the population X we define the random LC as the map

L : (X ,BX )→ (Lor,BLor ) : X ↦→ L(X) = L(·),

where BX = {A ⊆ X : L(A) ∈ BLor} is the σ -algebra induced by L, so that it is measurable. From now on and for the sake of
simplicity, we will use L instead of L.

By considering L as a random element in L2
[0,1], it is possible to define its mean curve and the covariance operator as

follows. For all p ∈ [0, 1] and v ∈ L2
[0,1],

ℓ(p) = E{L(p)}, Σ(v) = E{⟨L− ℓ, v⟩(L− ℓ)}.

Consider now the empirical counterpart, and suppose we deal with a sample X1, . . . , Xn of elements drawn from X . To
each Xi is associated an LC Li which, in practice, is estimated from a sample drawn from Xi of size ni, denoted X1

i , . . . , X
ni
i .

This can be done by introducing the empirical LC for the ith sample, defined for all p ∈ [0, 1], by

L̂i(p) =
1

X i

∫ p

0
Q̂i(t)dt, (1)

where X i is the empirical mean and Q̂i denotes the ith empirical quantile function associated to X1
i , . . . , X

ni
i . Consistency

results for each empirical LC are available whenever Xi is absolutely continuous; see, e.g., [11]. Finally one has a sample of
n functional data L̂1(p), . . . , L̂n(p). For computational purposes, each empirical LC can be evaluated over a common selected
grid of points over [0, 1].

From estimator (1) one can define the empirical versions of the Lorenz mean curve ℓ and the covariance operator Σ by
letting, for each p ∈ [0, 1] and v ∈ L2

[0,1],

ℓ̂n(p) =
1
n

n∑
i=1

L̂i(p), Σ̂n(v) =
1
n

n∑
i=1

⟨̂Li − ℓ̂n, v⟩(̂Li − ℓ̂n).

Summarizing, this setting allows tomodel those situations in which ameasurement (such as the income) concentrates in
different regions or levels. In these cases, researchers deal with different empirical LCs, each one related to a different level.
From a theoretical point of view, this means that one has to handle a double stochasticity: one related to the randomness
of the distribution (between the levels) and the other linked to the sample variability (within the levels). In other words,
a random unobserved distribution is associated to each individual (the level or the region) and, from such distribution, a
sample is drawn to get the corresponding empirical LC.
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3. Functional principal component analysis for Lorenz curves

In the previous section, LCs and their empirical counterparts are defined to fit the ‘‘classical’’ functional data analysis
framework in which random functions are observed over a grid of deterministic points. We are now ready to tackle the
problem of reasonably applying the FPCA to empirical LCs. In Section 3.1 we discuss how a naive use of FPCA could produce
some incoherences. In Section 3.2 we present the embedding that is the starting point to perform FPCA whose results are
coherent, interpretable and statistically consistent as shown in Section 3.3.

3.1. Problems using a naive approach

Since Lor ⊂ L2
[0,1], the latter seems a good candidate to implement FPCA in a naive way. Consider the eigenvalues

λ1, λ2, . . . and eigenfunctions ξ1, ξ2, . . . of the covariance operatorΣ . From them it is possible to approximate L bymeans of
a truncated version of the Karhunen–Loève decomposition of integer order q ≥ 1; see Theorem 1.5 in [6]. For all p ∈ [0, 1],

Lq(p) = ℓ(p)+
q∑

j=1

θjξj(p), (2)

where θj = ⟨L− ℓ, ξj⟩ is the so-called jth principal component of L, satisfying E(θj) = 0, E(θ2j ) = λj and E(θjθh) = 0 if j ̸= h.
Because the eigenfunctions ξ1, ξ2, . . . can also be seen as the result of a variance maximization iterative procedure, they are
commonly used to visualize the most important modes of variation of the random curve as perturbations of the mean. In
practice, the jth modes of variation, defined, for all p ∈ [0, 1] and real k ≥ 0, by

ωj (p, k) = ℓ± k(λj)1/2 ξj (p) ,

are interpreted as the effects of adding and subtracting a suitable multiple of each non standardized eigenfunction
√
λj ξj.

The constant k is usually chosen subjectively to better appreciate how the different ξjs affect the mean.
From the estimator (1) one can define the empirical versions of objects introduced above. In particular, once estimates

(̂λ1,n, ξ̂1,n), . . . , (̂λn,n, ξ̂n,n) of the eigenelements (λ1, ξ1), (λ2, ξ2), . . . are derived from the eigendecomposition of the empir-
ical covariance operator Σ̂n, one can obtain the empirical version L̂qi,n of (2), the empirical PCs θ̂i,j,n = ⟨̂Li − ℓ̂n, ξ̂j,n⟩, and the
empirical jth modes of variation, given, for all p ∈ [0, 1] and k ≥ 0, by

ω̂j,n (p, k) = ℓ̂n(p)± k̂ξj,n(p)(̂λj,n)1/2.

For practical purposes, as empirical LCs are computed over a grid of finite points over [0, 1], all the calculations are made
replacing integrals by summations.

As a matter of completeness, it is useful to analyze the behavior of the estimated jth modes of variation when the sizes n
and ni diverge. To do this and to manage the double stochasticity, we assume that a family {F (x, γ )} of random cumulative
distribution function is associated to the population X . The randomness depends on the real random vector γ and the
following conditions are assumed:

(A1) F (γ , ·) and F−1(γ , ·) are a.s. continuous on [0,∞) and (0, 1) respectively.
(A2) There exists a positive constantΛ independent on γ , such that

∫
∞

0 x2dF (·, x) ≤ Λ <∞ a.s.
(A3) There exist δ > 0 and two positive constants c1 and c2 such that c1n2δ

≤ ni ≤ c2n2δ as n→∞.

In this framework we derive the following consistency result whose proof can be found in Appendix A.3.

Proposition 1. Under Assumptions (A1)–(A3), for a fixed integer j ∈ N = {1, 2, . . .} and real k ≥ 0, one has ω̂j,n(p, k)→ ωj(p, k)
in probability, as n→∞.

At this stage, it is worth noticing that the Karhunen–Loève decomposition leads to approximations Lq and L̂qi,n, andmodes
of variations ωj(p, k) and ω̂j,n(p, k) that are functions in L2

[0,1] but not necessarily in Lor , as illustrated in the following
example.

Example 1. Consider L(p) = Upa + (1 − U)pb, p ∈ [0, 1], with 1 ≤ a < b, and U uniformly distributed on [0, 1]. The
covariance operator has a unique eigenvalue λ = 1/12 with associated eigenfunction ξ = |pa− pb|. Direct calculations lead
to

ω (p, k) = (pa + pb)/2± k(pa − pb)/
√
12,

which is a L2
[0,1] function belonging to Lor only for 0 ≤ k <

√
3. This is visualized in Fig. 2 where we have graphed a set

of curves from L with a = 1, b = 6 and selected values of U ∈ {0, 0.1, . . . , 1} (left panel), and the corresponding modes of
variation when k = 1 and k = 2 (right panel). It is evident that theω(p, 1)s are elements of Lor whereas theω(p, 2)s are not.

Hence, the idea of using FPCA naively in Lor , though it produces consistent estimates, suffers from drawbacks that
practically restrict its applicability and its interpretability. This is a consequence of the fact that Lor is not a vector subspace
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Fig. 2. Left panel: a set of LCs with a = 1, b = 6 and U ∈ {0, 0.1, . . . , 1}. Right panel: the mean curve and the egalitarian line (solid lines), the modes of
variation when k = 1 (dashed lines) and k = 2 (dotted lines).

of L2
[0,1], as can be verified straightforwardly. Thus, in what follows we consider a bijective continuous embedding for LCs

that allows to represent them in a structured space and to apply FPCA to the transformed functions. It turns out that such
embedding spontaneously induces a Hilbert space structure on Lor .

3.2. An embedding approach

When one deals with a dataset of constrained functions (e.g., positive, and/or monotone, and so on), a typical approach to
provide structured spaces, is to consider some transformations of the original data. In particular, it can be useful to express
them as solutions of differential equations which often are related to physical interpretation; see [33].

The features of LCs suggest to draw inspiration from the so-called ‘‘hanging cable’’. Interpreting an LC L as a cable whose
extremes are fixed at positions (0, 0) and (1, 1) with linear density mass given by the second derivative L′′, the aim is to find
the shape which minimizes its potential energy. In this perspective, L is the unique solution of the boundary value problem
(BVP) {

u′′(p) = L′′(p) if p ∈ (0, 1),
u(0) = 0, u(1) = 1.

As shown in Appendix A.1, such a solution can be expressed, for all p ∈ [0, 1], as

L(p) = p+ (p− 1)
∫ p

0
zL′′(z)dz + p

∫ 1

p
(z − 1)L′′(z)dz. (3)

The above representation provides a characterization of the LCs by means of their second derivative. This is summarized in
the following commutative diagram:

Lor
D2
→

←−
BVP

D2Lor,

where D2Lor = {L′′ : L ∈ Lor}, D2 denotes the second derivative operator and BVP is the operator which, applied to
an element in D2Lor , associates its BVP solution according to (3). It is worth noting that L′′ can be seen as the non-linear
warped version of the probability density function f (x) given, for all p ∈ (0, 1), by

L′′(p) = 1/µf {Q (p)} = s(p)/µ, (4)

where f {Q (p)} is called density-quantile (see [31]), and its reciprocal s(p) is known as the sparsity function; see [36].
Because s(p), and consequently L′′(p), measures the extent of sparseness of the data around the p-quantile, from the
concentration point of view, L′′(p) can be also interpreted as a local measure of inequality of individuals close to the p-
quantile. Summarizing, the physical interpretation of the hanging cable problem, togetherwith (4), provides a new economic
interpretation of L′′(p) as the local inequality weight at the p-quantile.

The properties and the interpretation above move the attention to D2Lor , which is still not a vector space, as it contains
only non-negative functions. Nevertheless it is an important tool in developing further analysis. In fact, consider L2

c = {g :
g ∈ L2

[0,1],
∫
g = 0}, the Hilbert space of centered L2

[0,1]-functions, and the negative centered log-ratio transformation

nclr : D2Lor → L2
c : h ↦→ − ln(h)+

∫ 1

0
ln{h(t)}dt. (5)



E.G. Bongiorno and A. Goia / Journal of Multivariate Analysis 170 (2019) 10–24 15

The latter embeds D2Lor in L2
c and its inverse function is

nclr−1 : L2
c → D2Lor : g ↦→ exp(−g)/κg ,

where κg =
∫ 1
0

∫ p
0 exp{−g(z)}dzdp. Hence, as shown in Appendix A.2, the following commutative diagram holds:

D2Lor
nclr
→

←−
nclr−1

L2
c . (6)

Combining the above maps, we get the bijective transformation ψ(L) = nclr(L′′) that associates each LC (having a square
integrable log-second derivative) to an element of the Hilbert space L2

c . Its inverse is given by

ψ−1(g) = BVP{exp (−g) /κg} (7)

for any centered square integrable function g . For the sake of readability, technical aspects concerning the invertibility of ψ
are discussed in Appendix A.2.

It is worth noting that the nclr transformation is often employed in the literature which generalizes compositional data
(see [2]) to the continuous case in order towork in a proper Hilbert space. For instance, in [23] the authors consider the family
of probability density functions; each one is a representative of the equivalence class containing all its positive multiples.
One may thus wonder whether L′′ can be considered as a continuous compositional data, i.e., if any positive multiple of L′′
leads to the same LC by means of (3). In general it is not true: for instance, take the LC L(p) = p(p + 1)/2 whose second
derivative is L′′(p) = 1 for all p ∈ (0, 1) and consider cL′′, with c > 2; Eq. (3) gives a function which is not even an LC
because it is negative for p ∈ (0, 1 − 2/c). The main difference between the compositional framework and our setting is
related to the inversion of the nclr . Indeed, in the compositional setting, the inverse function is C exp(−g), where the positive
constant C can be chosen arbitrarily, whereas in our setting, the constant must be κg to guarantee the invertibility of ψ; see
Appendix A.2.

To conclude this section, we provide some comments on the assumption that the considered random variables X have
pdfswith common support [0, 1]. Since each LC identifies the underlying pdf up to a scale factor, the proposed FPCA approach
still holds if one takes [0, b], with 0 < b < ∞, instead of [0, 1]. In contrast, if one takes [a, b], with 0 < a < b < ∞, then
ψ is no longer bijective. One possible solution is to work on the family of LCs obtained from X − a keeping in mind that,
although the LCs of X and X − a are different, they are related by an affine transformation whose known coefficients depend
on a and the mean of X .

3.3. Computational aspects and consistency results

Consider the problem of estimating FPCA by using the embedding approach discussed above. Given a sample of empirical
LCs L̂1(p), . . . , L̂n(p), as in Section 2, one has to evaluate the second derivatives. Since each L̂i(p) is linear piecewise, to work
directly on it does not make sense: one possible solution is to obtain a smoothed version L̃i(p) from which to derive L̃′′i (p).
Various approaches are feasible for algorithmic purposes: for instance, one can use B-splines [13], constrained penalized
splines [29], a suitable kernel smoothing approach [37], or local polynomial smoothing [17].

Once a sample of smooth curves L̃′′1(p), . . . , L̃
′′
n(p) is available, each curve can be transformed by using the nclr map (5) to

obtain, for each i ∈ {1, . . . , n},

Ψ̂i(p) = − ln{̃L′′i (p)} +
∫ 1

0
ln{̃L′′i (p)}dp,

where the integral is evaluated numerically.
Given Ψ̂1(p), . . . , Ψ̂n(p), the empirical mean ψ̂n, the covariance operator Σ̂Ψ ,n and its eigenelements (̂αj,n, ν̂j,n) are

computed. This allows to obtain a truncated reconstruction of order q, viz.

Ψ̂i,q(p) = ψ̂n(p)+
q∑

j=1

⟨̂νj,n, Ψ̂i⟩̂νj,n,

and the jth modes of variation,

m̂j,n(k, p) = ψ̂n(p)± k̂νj,n(p)(̂αj,n)1/2.

As usual in FPCA, the fraction of explained variance is computed from the eigenvalues α̂j,n.
To obtain the reconstructions of order q of Li and the jthmodes of variation inLor[0,1], we apply the inverse transformation

(7) to Ψ̂i,q(p) and m̂j,n(k, p), respectively:

L̂i,q(p) = p+
p− 1
κΨ

∫ p

0
ze−Ψ̂i,q(z)dz +

p
κΨ

∫ 1

p
(z − 1)e−Ψ̂i,q(z)dz,

M̂ j(k, p) = p+
p− 1
κm

∫ p

0
ze−m̂j,n(k,z)dz +

p
κm

∫ 1

p
(z − 1)e−m̂j,n(k,z)dz,
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Table 1
Some synthesis indicators for each age group during the time: Means and standard deviations of personal income (divided by 1000), and sample sizes.

Survey <30 31–40 41–50 51–65 >65

Year Mean Std. Size Mean Std. Size Mean Std. Size Mean Std. Size Mean Std. Size

1987 16.1 9.2 2004 22.9 13.6 2269 25.8 18.9 2248 22.5 19.3 3272 14.2 11.6 2468
1989 17.3 8.9 2525 24.5 14.7 2515 28.1 20.6 2561 24.0 20.0 3742 15.3 13.1 2465
1991 16.2 10.8 2159 23.0 13.8 2494 26.8 17.0 2596 23.3 18.5 3838 15.5 11.8 2777
1993 13.5 10.1 2070 21.5 15.7 2464 25.3 20.7 2500 23.2 21.9 3934 15.6 14.0 3305
1995 12.1 8.4 2135 20.0 15.2 2481 23.5 18.4 2650 23.0 25.2 3891 16.0 14.7 3341
1998 12.4 10.0 1785 20.8 17.0 2275 25.2 18.6 2404 24.4 25.1 3470 18.2 24.4 2682
2000 12.1 8.3 1896 20.7 18.0 2442 23.7 18.3 2655 24.2 22.4 3976 17.3 18.0 3333
2002 12.9 11.5 1592 20.0 14.1 2180 23.7 19.3 2559 23.5 21.1 3963 17.4 14.5 3724
2004 13.0 11.9 1524 20.7 25.5 2119 24.1 30.6 2495 24.0 22.9 3941 17.9 14.8 3827
2006 12.8 9.3 1355 20.6 28.2 1930 24.4 21.6 2494 24.4 23.4 3784 18.8 15.1 3851
2008 11.7 8.3 1344 18.0 10.9 1838 22.7 17.6 2545 24.3 21.2 3872 19.4 16.6 4074
2010 11.0 7.7 1230 17.6 11.3 1611 22.5 17.5 2622 24.5 20.3 4069 19.8 18.4 4152
2012 9.9 6.6 1042 16.0 9.7 1516 19.8 14.5 2462 22.5 18.4 4212 19.3 17.2 4377
2014 9.9 8.2 949 15.2 9.8 1271 19.5 15.2 2156 21.8 17.2 4190 18.9 13.9 4907

with

κΨ =

∫ 1

0

∫ p

0
exp{−Ψ̂i,q(z)}dzdp, κm =

∫ 1

0

∫ p

0
exp{−m̂j,n(k, z)}dzdp.

The integrals are computed as above.
To conclude this section, we present themain consistency results on the jthmodes of variation for a given positive integer

j when the smoothed curves L̃i are obtained by means of B-splines with τi equispaced knots and τi = o(ni). In addition to
assumptions (A1)–(A3) as in Section 3.1, we also consider

(A4) The pdf f belongs to F = {f : suppf = [0, 1], f > 0,
∫
f = 1,

∫
f ln4f <∞}.

Proposition 2. Under Assumptions (A1)–(A4), for a fixed integer j ≥ 1 and real k ≥ 0, one has, as n→∞, m̂j,n(k, p)→ mj(k, p)
and M̂j,n(k, p) → Mj(k, p) in probability, where mj(k, p) and Mj(k, p) are the theoretical jth modes of variation when LCs are
observed integrally and not over samples.

The proof of Proposition 2 can be found in Appendix A.4.

4. Application to real data

Since 1965, the Bank of Italy conducts the Survey on Household Income and Wealth. From 1987 it is biennial and the
collected data are comparable over time. The survey supplies information on income, saving, consumption expenditure and
real wealth of Italian households, as well as anagraphic and labor aspects. The total sample size, in the most recent surveys,
is about 8000 households, corresponding to about 20000 individuals.

Starting from the data of personal income in Italy from 1987 to 2014, appropriately adjusted for inflation, we estimated
the LCs for specific groups of individuals. Among the available stratification criteria in the survey (geographical, socio-
economic, cultural), we considered a demographic variable, the age of each income earner, which seems interesting in
studying the generational gap. For this variable, five age-classes are available: 30 years old or less, 31–40, 41–50, 51–65,
and over 65. With this choice, matching age group and survey year, we had a sample of n = 70 empirical LCs plotted in
Fig. 1. Other details about the groups are collected in Table 1, where we report the mean and the standard deviation of
income (for readability, they are divided by 1000) and the sample size.

In order to apply the methodology illustrated in Section 3.2, we need to estimate the second derivatives. Here we used
a local polynomial smoothing approach, that, from our experience on data, seems to produce good results. In particular, we
fitted a cubic polynomial with bandwidths computed according to the plug-in selector described in [17]. The shape of these
functions is depicted in Fig. 3.

By performing FPCA on the set of transformed data Ψ̂i, we estimated the PCs. The fractions of cumulative explained
variance by the first three PCs are 0.553, 0.812, 0.884, respectively. In the left panel of Fig. 4 the first three eigenfunctions
of the empirical covariance operator in the transformed space are depicted. To illustrate how the first two eigenfunctions
affect the shape of the LCs, we exhibit in the mid and right panels of Fig. 4 the estimated modes of variation (in the original
space) M̂j,n(k, p) with j ∈ {1, 2} and k = ±3 (the dotted lines) and the theoretical LC obtained when k = 0 (the continuous
line), that we denote M̂n(0, p).

From the graphics, it transpires that the first eigenfunction takes its highest values close to zero, and relatively high values
close to 1, whereas the values have opposite signs in the central part of the graphic. This suggests that the first eigenfunction
describes the relationship between the weight of inequalities in correspondence to the extreme quantiles (in particular,



E.G. Bongiorno and A. Goia / Journal of Multivariate Analysis 170 (2019) 10–24 17

Fig. 3. Inequality weight functions (left) and transformed LC by means of ψ (right), of groups of individuals for class of age during the period 1987–2014.

Fig. 4. Left panel: First three eigenfunctions obtained performing FPCA in H. Mid and right panels: First and second modes of variation (the solid lines
correspond to k = 0, the dashed lines correspond to k = ±3).

left-quantiles) and the central ones. Thus, the scores of the first PC emphasize how the correspondent LCs behave near zero.
In particular, the first PC opposes the LCs having almost horizontal tangent in a right-neighborhood of zero to those with a
positive one. In other words, it seems that the first PC allows to distinguish groups where the first 10% of the individuals are
very poor from the others, and this can be better appreciated by observing the shapes of the first modes of variation. As for
the second eigenfunction, it seems to describe the curvature of LCs mainly due to a change of sign around p = 20%, and the
level of the global concentration, i.e., the distance from the egalitarian line, in particular in correspondence of the central
quantiles.

To complete the analysis, we present the factorial plane based on the first two PCs. In Fig. 5, we depict the track-plots
associated to each age group.With respect to the first PC, themost significant result is a contrast between the group of under
30s and the other ones: the first ones exhibit a high inequality weight in the poorest part of the population and this aspect
appears to have gotten worse over time. If we match this fact with the dynamic of the mean of income from 1987, and also
consider the trend with respect to the second PC, it appears that the under 30s are becoming poorer (on average) with an
ever stronger concentration at the expense of the poorest part of the population. A similar behavior, but with a moderate
trend, can be found for people aged 41–50; also in these cases, one witnesses an (albeit less dramatic) impoverishment of
the individuals and an increment of concentration. In fact, the tracks tend to converge toward the origin for the first PC, and
this is a signal that the tangent of LCs close to zero becomes horizontal over time.

For what concerns the oldest part of the population, the most relevant movement is the vertical one (i.e., with respect
the second PC). In these cases, the lines tend to converge toward the origin of the second PC: if the average of income
appears rather steady over time (even tendentiously growing for the over 65), the LCs, which in the past denoted a better
situation than the one described by M̂n(0, p), tends more and more to look like the latter, denoting a worsening of the status
of individuals in these groups.
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Fig. 5. Track-plots in the factorial plane of the first two PCs for different groups age.
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Appendix. Proofs

A.1. BVP solution

Consider the following BVP{
u′′(p) = f (p) if p ∈ (0, 1),
u(0) = 0 if u(1) = 1,

and its general solution

u(p) = c1 + c2p+
∫ p

0

∫ z

0
f (t)dtdz.

The boundary conditions lead to c1 = 0 and c2 = 1 −
∫ 1
0

∫ z
0 f (t)dtdz. By integration by parts, the latter can be rewritten as

c2 = 1+
∫ 1
0 (z − 1)f (z)dz. Hence one has

u(p) = p
{
1+

∫ 1

0
(z − 1)f (z)dz

}
+

∫ p

0

∫ z

0
f (t)dtdz

which, integrated by parts, leads to

u(p) = p+ p
∫ 1

0
(z − 1)f (z)dz +

∫ p

0
(p− z)f (z)dz

and, by straightforward calculation, to

u(p) = p+ (p− 1)
∫ p

0
zf (z)dz + p

∫ 1

p
(z − 1)f (z)dz.

A.2. About the bijection ψ

We prove that the functionψ is bijective and, as a by product, that the diagram (6) commutes. Thanks to standard results
on bijective functions (see Chapter 1 in [28]), it is enough to show that ψ−1{ψ(L)} = L and ψ{ψ−1(g)} = g for any g ∈ L2

c
and L ∈ {L ∈ Lor, ln L′′ ∈ L2

[0,1]}.
Concerning the first equality, by Eq. (7), one has

ψ−1{ψ(L)} = BVP
[
exp {−ψ(L)}

κψ(L)

]
,

where κψ(L) =
∫ 1
0

∫ p
0 exp[−ψ{L(z)}]dzdp. Expliciting ψ(L) = ln L′′ −

∫
ln L′′ and simplifying, one gets

ψ−1{ψ(L)} = BVP

{
L′′∫ 1

0

∫ p
0 L′′(z)dzdp

}
which equals L because∫ 1

0

∫ p

0
L′′(z)dzdp = L(1)− L(0)− Q (0) = 1,

thanks to the definition of L, the fact that L′(p) = Q (p)/µ and Q (0) = 0. Note that all the densities share [0, b] as a common
support.

Concerning the second equality, by definition of ψ and ψ−1, one has

ψ{ψ−1(g)} = − ln
[
D2
{ψ−1(g)}

]
+

∫ 1

0
ln

[
D2
[ψ−1{g(p)}]

]
dp

= − ln
[
D2

[
BVP

{
exp (−g)
κg

}]]
+

∫ 1

0
ln

(
D2

[
BVP

[
exp {−g(p)}

κg

]])
dp.

Recalling that D2
{BVP(g)} = g , the result follows directly. □
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A.3. Proof of Proposition 1

To prove that, as n → ∞, ω̂j,n(k, p) → ωj(k, p) in probability for a fixed j and given k (we will drop k in the following
expression), first observe that

∥ω̂j,n − ωj∥ ≤ ∥ωj,n − ωj∥ + ∥ω̂j,n − ωj,n∥. (A.1)

The result is obtained by showing that the two terms on the right-hand side of (A.1) tend to zero in probability as n→∞.

First term. For the first summand on the right-hand side of (A.1), definitions and triangular inequalities lead to

∥ωj,n − ωj∥ = ∥ℓn ± kξj,n(λj,n)1/2 − {ℓ± kξj(λj)1/2}∥

≤ ∥ℓn − ℓ∥ + k{(λj,n)1/2∥ξj,n − ξj∥ + ∥ξj∥ × |(λj,n)1/2 − (λj)1/2|}, (A.2)

where, to avoid identification problems, we have supposed that ⟨ξj,n, ξ⟩ is positive, i.e., ξj,n and ξj point in the same direction.
For the first summand in (A.2), the Strong Law of Large Numbers guarantees that for any p ∈ (0, 1) and n → ∞,

ℓn(p)→ ℓ(p) in probability, and, since ℓn and ℓ are bounded, then ∥ℓn−ℓ∥2 → 0 in probability. Now consider the remaining
terms in (A.2), viz.

k{(λj,n)1/2 ∥ξj,n − ξj∥ + ∥ξj∥ × |(λj,n)1/2 − (λj)1/2|}.

From now on, denote by C a universal positive constant. Using the fact that ∥ξj∥ = 1, λ1,n ≥ λj,n, E(∥ℓ∥4) <∞ (given by
the boundedness of LCs), standard consistency results for the eigenelements (λj,n, λj,n) of the empirical covariance operator
(see, e.g., Chapter 4 in [6]) apply and

|(λj,n)1/2 − (λj)1/2| ≤ C ∥Σn −ΣL∥∞ , ∥ξj,n − ξj∥ ≤
2
√
2

min(λj−1 − λj, λj − λj+1)
∥Σn −ΣL∥∞ .

Hence,

k{(λj,n)1/2 ∥ξj,n − ξj∥ + ∥ξj∥ × |(λj,n)1/2 − (λj)1/2|} ≤ kC ∥Σn −ΣL∥∞

and the right-hand side tends to 0 in probability as n→∞.

Second term. Consider now the second summand in (A.1), i.e., ∥ω̂j,n − ωj,n∥. As before, for fixed k and j, one has

∥ω̂j,n − ωj,n∥ ≤ ∥̂ℓn − ℓn∥ + k{(̂λj,n)1/2∥̂ξj,n − ξj,n∥ + ∥̂ξj,n∥ × |(̂λj,n)1/2 − (λj,n)1/2|} (A.3)

and

∥̂ℓn − ℓn∥
2
=

∫ 1

0

{
1
n

n∑
i=1

L̂i(p)−
1
n

n∑
i=1

Li(p)

}2

dp ≤
1
n

n∑
i=1

∥̂Li − Li∥2.

In order to study the asymptotic behavior of ∥̂Li− Li∥, we fix γ = γ0 (the dependence on γ0 will appear when necessary)
and assume (A1)–(A3). For each i, when ni →∞, the theorem on p. 114 in [11] states that there exists a positive and finite
constant depending on γ0, namely c(γ0), such that

sup
p∈[0,1]

|(̂Li − Li)(α0, p)| ≤ c(γ0)
√
(ln ln ni)/ni a.s.

Using the same arguments as in the proof of Lemma 2.3 in [11], and thanks to Assumption (A2), we have c(γ0) ≤∫
∞

0 x2dF (γ0, x) ≤ Λ and

∥̂Li − Li∥ ≤ Λ
√
(ln ln ni)/ni a.s.

The latter, together with (A3), gives

∥̂Li − Li∥ ≤ c
√
(ln ln ni)/n2δ a.s. (A.4)

and

1
n

n∑
i=1

∥̂Li − Li∥ → 0 a.s., (A.5)

which guarantees that the first term in (A.3) vanishes as n→∞.
Consider now the remaining terms in (A.3), i.e.,

(̂λj,n)1/2∥̂ξj,n − ξj,n∥ + ∥̂ξj,n∥ × |(̂λj,n)1/2 − (λj,n)1/2|.
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Given that (̂λj,n)1/2 ≤ (̂λ1,n)1/2 a.s. and ∥̂ξj,n∥ = 1,

(̂λj,n)1/2∥̂ξj,n − ξj,n∥ + ∥̂ξj,n∥ × |(̂λj,n)1/2 − (λj,n)1/2| ≤ C ∥Σ̂n −Σn∥∞,

where

∥Σ̂n −Σn∥∞ = sup
∥v∥=1

1
n

n∑
i=1

{⟨̂Li − ℓ̂n, v⟩(̂Li − ℓ̂n)− ⟨Li − ℓn, v⟩(Li − ℓn)}

 .
Note that

⟨̂Li − ℓ̂n, v⟩(̂Li − ℓ̂n)− ⟨Li − ℓn, v⟩(Li − ℓn) = ⟨̂Li − ℓ̂n, v⟩(̂Li − Li)+ ⟨̂Li − ℓ̂n, v⟩(ℓn − ℓ̂n)+
+ ⟨̂Li − Li, v⟩(Li − ℓn)+ ⟨ℓn − ℓ̂n, v⟩(Li − ℓn).

The second and the fourth term sum to zero (due to the fact that the sumof the deviations from themean is zero). Applying
the triangular and Cauchy–Schwarz inequalities, and using the fact that ∥v∥ = 1, we get

∥Σ̂n −Σn∥∞ ≤
C
n

n∑
i=1

(∥̂Li − ℓ̂n∥ × ∥̂Li − Li∥ + ∥Li − ℓn∥ × ∥̂Li − Li∥) ≤
C
n

n∑
i=1

∥̂Li − Li∥ a.s., (A.6)

where the last inequality holds because ∥̂Li− ℓ̂n∥ and ∥Li−ℓn∥ are almost surely bounded. Thank to (A.5), we get the desired
conclusion. □

A.4. Proof of Proposition 2

We have to prove that for a fixed integer j ∈ N and 0 ≤ k <∞, when n→∞, one has

m̂j,n(k, p)→ mj(k, p) in probability (A.7)

and

M̂j,n(k, p)→ Mj(k, p) in probability, (A.8)

which is equivalent to proving that, as n→∞,

ψ−1(m̂j,n) = M̂j,n(k, p)→ ψ−1(mj,n) = Mj(k, p) in probability.

Given that ψ−1(g) = BVP{exp(−g)/κg} is continuous with respect to g , (A.8) is a consequence of (A.7) and thus we only
prove (A.7).

For a given k, by the triangular inequality, we have (dropping the dependence on k)

∥m̂j,n −mj∥ ≤ ∥mj,n −mj∥ + ∥m̂j,n −mj,n∥. (A.9)

The result is obtained by showing that the two terms on the right-hand side of (A.9) converge to zero in probability, as
n→∞.

First term. For the first summand in (A.9), one has

∥mj,n −mj∥ = ∥ψn ± kνj,n(αj,n)1/2 − {ψ ± kνj(αj)1/2}∥

≤ ∥ψn − ψ∥ + k{(αj,n)1/2∥νj,n − νj∥ + ∥νj∥ × |(αj,n)1/2 −
√
αj|}, (A.10)

where, to avoid identification problems, we take νj,n such that ⟨νj,n, νj⟩ is positive.
Concerning the first summand in (A.10), the Strong Law of Large Numbers guarantees that for any p ∈ (0, 1), ψn(p) →

ψ(p) in probability as n→∞. Thanks to Assumption (A4), ψn ∈ L2
[0,1] (see technical Lemma 3, presented at the end of this

proof to improve readability) and thus, when n→∞, ∥ψn − ψ∥
2
→ 0 in probability.

Consider now the remaining terms of (A.10), viz.

k{(αj,n)1/2 ∥νj,n − νj∥ + ∥νj∥ × |(αj,n)1/2 − (αj)1/2|}.

From now on, denote by C a universal positive constant. Using the fact that ∥νj∥ = 1, and α1,n ≥ αj,n together with standard
consistency results for the eigenelements (αj,n, νj,n) of the empirical covariance operator (see Chapter 4 in [6]), we have

|(αj,n)1/2 − (αj)1/2| ≤ C∥ΣΨ ,n −ΣΨ ∥∞, ∥νj,n − νj∥ ≤
2
√
2

min(αj−1 − αj, αj − αj+1)
∥ΣΨ ,n −ΣΨ ∥∞,

and, if E(∥Ψ ∥4) <∞, as n→∞,

|(αj,n)1/2 − (αj)1/2| → 0 and ∥νj,n − νj∥ → 0 in probability.
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Hence, to prove the boundedness of the fourth moment, note that

E(∥Ψ ∥4) = E

⎡⎣[∫ 1

0

{
ln L′′(p)−

∫ 1

0
ln L′′ (t) dt

}2

dp

]2
⎤⎦

≤ 4 E

⎡⎣[∫ 1

0
ln2L′′ (p) dp+

{∫ 1

0
ln L′′ (t) dt

}2]2
⎤⎦

≤ 16 E
{∫ 1

0
ln4L′′ (p) dp

}
= 16 E

[∫ 1

0

[
ln

1
µf {Q (p)}

]4

dp

]

≤ 64ln4µ+ 64 E
[∫ 1

0
ln4f {Q (p)} dp

]
= C + E

[∫ 1

0
ln4
{f (x)} f (x) dx

]
<∞,

where we have combined the definition, the Cauchy–Schwarz and Jensen inequalities, the substitution x = F−1(p) and
Assumption (A4).

Second term. For the second summand of (A.9), one has

∥m̂j,n −mj,n∥ = ∥ψ̂n + k̂νj,n (̂αj,n)1/2 − {ψn + kνj,n(αj,n)1/2}∥

≤ ∥ψ̂n − ψn∥ + k{(̂αj,n)1/2 ∥̂νj,n − νj,n∥ + ∥νj,n∥ × |(̂αj,n)1/2 − (αj,n)1/2|}. (A.11)

Consider ∥ψ̂n−ψn∥. By the Cauchy–Schwarz inequality, the boundedness of the second derivatives and Lipschitz arguments,
one can write

∥ψ̂n − ψn∥
2
≤

4
n

n∑
i=1

∥ ln L̃′′i − ln L′′i ∥
2
≤

C
n

n∑
i=1

∥̃L′′i − L′′i ∥
2.

Because L̃i is a smoothed version of L̂i, then proving that ∥̃L′′i − L′′i ∥ → 0 in probability, as ni(n) → ∞, guarantees that
∥ψ̂n − ψn∥ → 0 as n→∞.

Let Bi1, . . . , Bir be a B-spline basis of degree ν ≥ 2 and τi equispaced knots, ri = ν + τi. Then

L̃′′i (p) =
ri∑

j=1

s̃ijB′′ij(p),

where

s̃i = b̃⊤i C̃
−1
i , C̃−1i =

1
ni

ni∑
j=1

Bi(pj)B⊤i (pj), b̃i =
1
ni

ni∑
j=1

Bi(pj )̂Li(pj)

and Bi(p) being the B-spline vector. Moreover, denote by L
′′

i the smoothed version of L′′i , i.e.,

L
′′

i (p) =
ri∑

j=1

sijB′′ij(p),

where si = b
⊤

i C̃
−1
i and bi =

∑ni
j=1Bi(pj)Li(pj)/ni and consider the bound

∥̃L′′i − L′′i ∥ ≤ ∥̃L
′′

i − L
′′

i ∥ + ∥L
′′

i − L′′i ∥. (A.12)

Concerning the first summand on the right-hand side of (A.12), note that

∥̃L′′i − L
′′

i ∥
2
≤ ∥̃bi − bi∥

2
× ∥̃C−1i ∥

2
× ∥Gi∥

2,

where [Gi]ℓm =
∫
B′′iℓ(p)B

′′

im(p)dp. In view of the definitions of b̃i and bi, and given (A.4), one has

∥̃bi − bi∥
2
≤ C ∥̂Li − Li∥2/τi ≤ (Cn−2δi ln ln ni)/τi.

Using standard results on B-splines for functions observed on a regular discretization grid (see, e.g., Lemma 6.2 in [7]),
∥̃C−1i ∥

2
= O(τ−2i ) and ∥G∥2 = O(τ 3i ). Hence, when ni →∞,

∥̃L′′i − L
′′

i ∥
2
= O(n−2δi ln ln ni) a.s. (A.13)
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For the second summand on the right-hand side of (A.12), choosing τi = o(ni) and due to Lemma 6.2 in [7], one has

∥L
′′

i − L′′i ∥
2
= O(τ−4i ). (A.14)

Thus the bounds (A.13) and (A.14) guarantee that as n→∞, ∥ψ̂n − ψn∥ → 0 in probability.
Consider now the remaining terms in (A.11):

(̂αj,n)1/2 ∥̂νj,n − νj,n∥ ≤ (̂α1,n)1/2∥̂νj,n − νj,n∥ ≤ C ∥Σ̂Ψ̂ ,n −ΣΨ ,n∥∞,

∥νj,n∥ × |(̂αj,n)1/2 − (αj,n)1/2| ≤ C ∥Σ̂Ψ ,n −ΣΨ ,n∥∞,

where

Σ̂Ψ ,n[·] =
1
n

n∑
i=1

⟨Ψ̂i − ψ̃n, ·⟩(Ψ̂i − ψ̃n), ΣΨ ,n[·] =
1
n

n∑
i=1

⟨Ψi − ψ̂n, ·⟩(Ψi − ψ̂n).

Analogously to what was done to derive (A.6), one gets

∥Σ̂Ψ ,n −ΣΨ ,n∥∞ ≤
C
n

n∑
i=1

(∥Ψ̂i − ψ̂n∥ × ∥Ψ̂i − Ψi∥ + ∥Ψi − ψn∥ × ∥Ψ̂i − Ψi∥) ≤
C
n

n∑
i=1

∥Ψ̂i − Ψi∥ a.s.

Since the fourthmoment ofΨ is bounded, by using B-spline and similar arguments as above, one has ∥Ψ̂i−Ψi∥ tends to zero
in probability as n→∞ and thus

∥Σ̂Ψ ,n −ΣΨ ,n∥∞ → 0 in probability.

Lemma 3. If (A4) holds, then ψn ∈ L2
[0,1].

Proof. By definition of ψn(p) and applying the Cauchy–Schwarz inequality, we get

∥ψn∥
2
=

∫ 1

0

{
1
n

n∑
i=1

Ψi(p)

}2

dp ≤
1
n2

n∑
i=1

n
∫ 1

0
Ψi(p)2dp =

1
n

n∑
i=1

ln L′′i (p)−
∫ 1

0
ln L′′i (t) dt

2

≤
2
n

n∑
i=1

[
∥ ln L′′i (p)∥

2
+

{∫ 1

0
ln L′′i (t) dt

}2]
.

Thanks to Jensen’s inequality,{∫ 1

0
ln L′′i (t) dt

}2

≤

∫ 1

0

{
ln L′′i (t)

}2dt

and, thanks to (4),

∥ψn∥
2
≤

4
n

n∑
i=1

∫ 1

0

{
ln L′′i (t)

}2dt =
4
n

n∑
i=1

∫ 1

0

[
ln

1
µifi {Qi (p)}

]2

dp

=
4
n

n∑
i=1

ln2µi +
4
n

n∑
i=1

∫ 1

0
ln2fi {Qi(p)} dp.

For each i ∈ {1, . . . , n}, substitute x = F−1i (p) to get

∥ψn∥
2
≤ C +

4
n

n∑
i=1

∫ 1

0
fi (x) ln2fi(x)dx

which is finite, thanks to (A4). This concludes the proof. □
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