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a b s t r a c t

Observations that are realizations of some continuous process are frequently found in
science, engineering, economics, and other fields. In this paper, we consider linear models
with possible random effects and where the responses are random functions in a suitable
Sobolev space. In particular, the processes cannot be observed directly. By using smoothing
procedures on the original data, both the response curves and their derivatives can be
reconstructed, both as an ensemble and separately. From these reconstructed functions,
one representative sample is obtained to estimate the vector of functional parameters.
A simulation study shows the benefits of this approach over the common method of
using information either on curves or derivatives. The main theoretical result is a strong
functional version of theGauss–Markov theorem. This ensures that the proposed functional
estimator is more efficient than the best linear unbiased estimator (BLUE) based only on
curves or derivatives.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Observations which are realizations of some continuous process are ubiquitous in many fields like science, engineering,
economics and other fields. For this reason, the interest in statistical modelling of functional data is increasing, with
applications in many areas. Reference monographs on functional data analysis are, for instance, the books of Ramsay and
Silverman [11] and Horváth and Kokoszka [7], and the book of Ferraty and Vieu [5] for the non-parametric approach. They
cover topics like data representation, smoothing and registration; regression models; classification, discrimination and
principal component analysis; derivatives and principal differential analysis; and many other.

Regression models with functional variables can cover different situations; for example, functional responses, or
functional predictors, or both. In this paper, linearmodelswith functional response andmultivariate (or univariate) regressor
are examined. We consider the case of repeated measurements, where the theoretical results remain valid in the standard
case. The focus of the work is to find the best estimation of the functional coefficients of the regressors.

The use of derivatives is very important in exploratory analysis of functional data; as well as for inference and prediction
methodologies. High quality derivative information may be determined, for instance, by reconstructing the functions with
spline smoothing procedures. Recent developments in the estimation of derivatives are contained in Sangalli et al. [12] and
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in Pigoli and Sangalli [10]. See also Baraldo et al. [3], who have obtained derivatives in the context of survival analysis, and
Hall et al. [6] who have estimated derivatives in a non-parametric model.

Curves and derivatives are reconstructed from a set of observed values. The reason for this is that the response processes
cannot be observed directly. In the literature, the usual space for functional data is L2 and the observed values are used to
reconstruct either curve functions or derivatives.

The most commonmethod to reconstruct derivatives is to build the sample of functions by using a smoothing procedure
on the data, and then to differentiate these curve functions. However, the sample of functions and the sample of derivatives
may be obtained separately. For instance, different smoothing techniques may be used to obtain the functions and the
derivatives. Another possibility is when two sets of data are available, which are suitable to estimate functions and
derivatives, respectively.

Some examples of curve and derivative data are: studying how the velocity of a car on a particular street is influenced by
some covariates, the velocitymeasured by a police radar; GPS-tracked position estimation. In chemical experiments, data on
reaction velocity and concentrationmay be collected separately. The novelty of the present work is that both information on
curves and derivatives (that are not obtained by differentiation of the curves themselves) are used to estimate the functional
coefficients.

The heuristic justification for this choice is that the data may provide different information about curve functions and
their derivatives; it is therefore always recommended touse all available information. In fact, in this paperweprove that ifwe
take into consideration both information about curves and their derivatives, we obtain the best linear unbiased estimates for
the functional coefficients. Therefore, the commonmethod of using information on either curve functions or their associated
derivatives provides always a less efficient estimate (see Theorem 3 and Remark 2). For this reason, our theoretical results
may have a relevant impact in practice.

Analogous to the Riesz Representation Theorem, we can find a representative function in H1 which incorporates
the information provided by a curve function and a derivative (which belong to L2). Hence, from the two samples of
reconstructed functions and their associated derivatives, only one representative sample is obtained and we use this
representative sample to estimate the functional parameters. Once this method is given, the consequential theoretical
results may appear as a straightforward extension of the well-known classical ones; their proof, however, requires much
more technical effort and is not a straightforward extension.

The OLS estimator (based on both curves and derivatives through their Riesz representatives in H1) is provided and
some practical considerations are drawn. In general, the OLS estimator is not a BLUE because of the possible correlation
between curves and derivatives. Therefore, a different representation of the data is provided (which takes into account this
correlation). The resulting version of the Gauss–Markov theorem is proven in the proper infinite-dimensional space (H1),
showing that our sample of representative functions carries all the relevant information on the parameters. We propose
an unbiased estimator which is linear with respect to the new sample of representatives and which minimizes a suitable
covariance matrix (called global variance). This estimator is denoted H1-functional SBLUE.

A simulation study numerically demonstrates the superiority of the H1-functional SBLUE with respect to both the
OLS estimators which are based only on curves or derivatives. This suggests that both sources of information should be
used jointly, when available. A rough way of considering information on both curves and derivatives is to make a convex
combination of the two OLS estimators. Simulation results show that theH1-functional SBLUE is more efficient, as expected.

Let us finally remark that the results in this paper provide a strong theoretical foundation to generalize the theory of
optimal design of experiments when functional observations occur (see Aletti et al. [1,2]).

The paper is organized as follows. Section 2 describes the model and proposes the OLS estimator obtained from the
Riesz representation of the data. Section 3 explains some considerations which are fundamental from a practical point of
view. Section 4 presents the construction of the H1-functional SBLUE. Finally, Section 5 is devoted to the simulation study.
Section 6 is a summary together with some final remarks. Some additional results and the proofs of theorems are deferred
to Appendix A.1.

2. Model description and Riesz representation

Let us first consider a regression model where the response y is a random function that depends linearly on a known
variable x, which is a vector (or scalar) through a functional coefficient, that needs to be estimated. In particular, we assume
that there are n units (subjects or clusters), and r ≥ 1 observations per unit at a condition xi (i = 1, . . . , n). Note that
x1, . . . xn are not necessarily different. In the context of repeated measurements, we consider the following random effect
model:

yij(t) = f(xi)⊤β(t)+ αi(t)+ εij(t) i = 1, . . . , n; j = 1, . . . , r, (1)

where: t belongs to a compact set τ ⊆ R; yij(t) denotes the response curve of the jth observation at the ith experiment;
f(xi) is a p-dimensional vector of known functions; β(t) is an unknown p-dimensional functional vector; αi(t) is a zero-
mean process which denotes the random effect due to the ith experiment and takes into account the correlation among the
r repetitions; εij(t) is a zero-mean error process. Let us note that we are interested in precise estimation of the fixed effects
β(t); herein the random effects are nuisance parameters.



56 G. Aletti et al. / Journal of Multivariate Analysis 151 (2016) 54–68

An example of model (1) can be found in Shen and Faraway [13], where an ergonomic problem is considered (in this case
there are n clusters of observations for the same individual); if r = 1 this model reduces to the functional response model
described, for instance, in Horváth and Kokoszka [7].

In a real world setting, the functions yij(t) are not directly observed. By using a smoothing procedure on the original
data, the investigator can reconstruct both the functions and their first derivatives, obtaining y(f )ij (t) and y(d)ij (t), respectively.
Hence we can assume that the model for the reconstructed functional data is

y(f )ij (t) = f(xi)⊤β(t)+ α
(f )
i (t)+ ε

(f )
ij (t)

y(d)ij (t) = f(xi)⊤β′(t)+ α
(d)
i (t)+ ε

(d)
ij (t)

i = 1, . . . , n; j = 1, . . . , r, (2)

where

1. the n couples (α(f )i (t), α
(d)
i (t)) are independent and identically distributed bivariate vectors of zero-mean processes such

that E(∥α(f )i (t)∥
2
L2(τ )

+ ∥α
(d)
i (t)∥

2
L2(τ )

) < ∞, that is, (α(f )i (t), α
(d)
i (t)) ∈ L2(Ω; L2), where L2

= L2(τ )× L2(τ );

2. the n × r couples (ε(f )ij (t), ε
(d)
ij (t)) are independent and identically distributed bivariate vectors of zero mean processes,

with E(∥ε(f )ij (t)∥
2
L2

+ ∥ε
(d)
ij (t)∥

2
L2
) < ∞.

As a consequence of the above assumptions: the data y(f )ij (t) and y(d)ij (t) can be correlated; the couples (y(f )ij (t), y
(d)
ij (t)) and

(y(f )kl (t), y
(d)
kl (t)) are independent whenever i ≠ k. The possible correlation between (y(f )ij (t), y

(d)
ij (t)) and (y

(f )
il (t), y

(d)
il (t)) is

due to the common random effect (α(f )i (t), α
(d)
i (t)).

Note that the investigator might reconstruct each function y(f )ij (t) and its derivative y(d)ij (t) separately. In this case, the
right-hand term of the second equation in (2) is not the derivative of the right-hand term of the first equation. The particular
case when y(d)ij (t) is obtained by differentiation y(f )ij (t) is the most simple situation in model (2).

Let B(t) be an estimator of β(t), formed by p random functions in the Sobolev space H1. Recall that a function g(t) is in
H1 if g(t) and its derivative g ′(t) belong to L2. Moreover, H1 is a Hilbert space with inner product

⟨g1(t), g2(t)⟩H1 = ⟨g1(t), g2(t)⟩L2 + ⟨g ′

1(t), g
′

2(t)⟩L2
= ⟨(g1(t), g ′

1(t)), (g2(t), g
′

2(t))⟩L2

=


g1(t)g2(t)dt +


g ′

1(t)g
′

2(t)dt, g1(t), g2(t) ∈ H1. (3)

Definition 1. Wedefine theH1-global covariancematrixΣB of an unbiased estimatorB(t) as the p×pmatrixwhose (l1, l2)th
element is

E⟨Bl1(t)− βl1(t), Bl2(t)− βl2(t)⟩H1 . (4)

This global notion of covariance has been used also in Menafoglio et al. [8, Definition 2], in the context of predicting
georeferenced functional data. The authors have found a BLUE estimator for the drift of their underlying process, which can
be seen as an example of the results provided in this paper.

Given a pair (y(f )(t), y(d)(t)) ∈ L2 × L2, a linear continuous operator on H1 may be defined as follows

φ(h) = ⟨y(f ), h⟩L2 + ⟨y(d), h′
⟩L2 = ⟨(y(f ), y(d)), (h, h′)⟩L2 , ∀h ∈ H1.

From the Riesz representation theorem, there exists a unique ỹ ∈ H1 such that

⟨ỹ, h⟩H1 = ⟨y(f ), h⟩L2 + ⟨y(d), h′
⟩L2 , ∀h ∈ H1. (5)

Definition 2. The unique element ỹ ∈ H1 defined in (5) is called the Riesz representative of the couple (y(f )(t), y(d)(t)) ∈ L2.

This definition will be useful to provide a nice expression for the functional OLS estimator β(t). Actually the Riesz
representative synthesizes, in some sense, in H1 the information of both y(f )(t) and y(d)(t).

Note that, since

⟨(y(f ), y(d))− (ỹ, ỹ′), (h, h′)⟩L2 = 0, ∀h ∈ H1

the Riesz representative (ỹ, ỹ′) may be seen as the projection of (y(f ), y(d)) ∈ L2 onto the immersion of H1 in L2, a linear
closed subspace.
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The functional OLS estimator for the model (2) is

β(t) = argmin
β(t)

 r
j=1

n
i=1

∥y(f )ij (t)− f(xi)⊤β(t)∥2
L2 +

r
j=1

n
i=1

∥y(d)ij (t)− f(xi)⊤β′(t)∥2
L2


= argmin

β(t)

r
j=1

n
i=1


∥y(f )ij (t)− f(xi)⊤β(t)∥2

L2 + ∥y(d)ij (t)− f(xi)⊤β′(t)∥2
L2


The quantity

∥y(f )ij (t)− f(xi)⊤β(t)∥2
L2 + ∥y(d)ij (t)− f(xi)⊤β′(t)∥2

L2

resembles

∥yij(t)− f(xi)⊤β(t)∥2
H1 ,

because y(f )ij (t) and y(d)ij (t) reconstruct yij(t) and its derivative function, respectively. The functional OLS estimator β(t)
minimizes, in this sense, the sum of the H1-norm of the unobservable residuals yij(t)− f(xi)⊤β(t).

Theorem 1. Given the model in (2),

(a) the functional OLS estimator β(t) can be computed byβ(t) = (F⊤F)−1F⊤ȳ(t), (6)

where ȳ(t) = (ȳ1(t), . . . , ȳn(t))⊤ is a vector, whose component ith is themean of the Riesz representatives of the replications:

ȳi(t) =

r
j=1

ỹij(t)

r
,

and F = [f(x1), . . . , f(xn)]⊤ is the n × p design matrix.
(b) The estimator β(t) is unbiased and its global covariance matrix is σ 2(F⊤F)−1, where σ 2

= E(∥ȳi(t)− f(xi)⊤β(t)∥2
H1).

Remark 1. Previous results may be generalized to other Sobolev spaces. The extension to Hm, m ≥ 2, is straightforward.
Moreover, in a Bayesian context, the investigator might have a different a priori consideration of y(f )ij (t) and y(d)ij (t). Thus,
different weights may be used for curves and derivatives, and the inner product given in (3) may be extended to

⟨g1(t), g2(t)⟩H = λ


τ

g1(t)g2(t)dt + (1 − λ)


τ

g ′

1(t)g
′

2(t)dt, λ ∈ [0, 1].

Letβλ(t) be the OLS estimator obtained by using this last inner product. Note that, for λ = 1/2, we obtainβ1/2(t) = β(t)
defined in Theorem 1. The behaviour of theβλ(t) is explored in Section 5 for different choices of λ.

3. Practical considerations

In a real world context, we work with a finite dimensional subspace S of H1. Let S = {w1(t), . . . , wN(t)} be a base of S.
Without loss of generality, we may assume that ⟨wh(t), wk(t)⟩H1 = δkh , where

δkh =


1 if h = k;
0 if h ≠ k;

is the Kronecker delta symbol, since a Gram–Schmidt orthonormalization proceduremay be always applied. More precisely,
given any base S̃ = {w̃1(t), . . . , w̃N(t)} in H1, the corresponding orthonormal base is given by:

for k = 1, definew1(t) = w̃1(t)/∥w̃1(t)∥H1 ,
for k ≥ 2, let ŵk(t) = w̃k(t)−

n−1
h=1⟨w̃k(t), wh(t)⟩H1wh(t), andwk(t) = ŵk(t)/∥ŵk(t)∥H1 .

With this orthonormalized base, the projection ỹ(t)S on S of the Riesz representative ỹ(t) of the couple (y(f )(t), y(d)(t))
is given by

ỹ(t)S =

N
k=1

⟨ỹ(t), wk(t)⟩H1 · wk(t)

=

N
k=1


⟨y(f )(t), wk(t)⟩L2 + ⟨y(d)(t), w′

k(t)⟩L2

wk(t), (7)
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where the last equality comes from the definition (5) of the Riesz representative. Now, if ml = (ml,1, . . . ,ml,n)
⊤ is the lth

row of (F⊤F)−1F⊤, then

⟨β̂l(t), wk(t)⟩H1 =

n
i=1

⟨ml,iȳi(t), wk(t)⟩H1

=

n
i=1

ml,i⟨ȳi(t), wk(t)⟩H1 , for any k = 1, . . . ,N,

β̂l(t)S = m⊤

l ȳ(t)S,

henceβ(t)S = (F⊤F)−1F⊤ȳ(t)S .
Let us note that, even if the Riesz representative (5) is implicitly defined, its projection on S can be easily computed by (7).

From a practical point of view, the statistician can work with the data (y(f )ij (t), y
(d)
ij (t)) projected on a finite linear subspace

S and the corresponding OLS estimatorβ(t)S is the projection on S of the OLS estimatorβ(t) given in Section 2.
It is straightforward to prove that the estimator (6) becomesβ(t) = (F⊤F)−1F⊤y(f )(t),

in two cases: when we do not take into consideration y(d), or when y(d) = (y(f ))′. Up to our knowledge, this is the most
common situation considered in the literature (see Ramsay and Silverman [11, Chapt. 13]). However, from the simulation
study of Section 5, the OLS estimatorβ is less efficient when it is based only on y(f ).

4. Strong H1-BLUE in functional linear models

Let B(t) = C(y(f )(t), y(d)(t)), where C : R ⊆ (L2)nr → (H1)p is a linear closed operator; in this case B(t) is called a linear
estimator. The domain of C , denoted by R, will be defined in (18). Theorem 2 will ensure that the dataset (y(f )(t), y(d)(t)) is
contained in R.

Definition 3. Analogous to classical settings, we define the H1-functional best linear unbiased estimator (H1-BLUE) as the
estimator with minimal (in the sense of Loewner Partial Order1) H1-global covariance matrix (4), in the class of the linear
unbiased estimators B(t) of β(t).

From the definition of Loewner Partial Order, a H1-BLUE minimizes the quantity

E
 p

i=1

αi

Bi(t)− βi(t)


,

p
i=1

αi

Bi(t)− βi(t)


H1


for any choice of (α1, . . . , αp), in the class of the linear unbiased estimators B(t) of β(t). In other words, the H1-BLUE
minimizes the H1-global variance of any linear combination of its components. A stronger request is the following.

Definition 4. We define the H1-strong functional best linear unbiased estimator (H1-SBLUE) as the estimator with minimal
global variance,

E


O(B(t)− β(t)),O(B(t)− β(t))

H1


for any choice of a (sufficiently regular) continuous linear operator O : (H1)p → H1, in the class of the linear unbiased
estimators B(t) of β(t).

4.1. H1
R-representation on the Hilbert space L2

R

Recall that, for any given (i, j), the couple (α(f )i (t)+ε
(f )
ij (t), α

(d)
i (t)+ε

(d)
ij (t)) is a processwith values inL2

= L2(τ )×L2(τ ).
Let R(s, t) =


k λk9k(s)9k(t)⊤ be the spectral representation of the covariance matrix of the process

e⊤

i (t) = (e(f )i (t), e
(d)
i (t)) =

1
r

r
j=1

(α
(f )
i (t)+ ε

(f )
ij (t), α

(d)
i (t)+ ε

(d)
ij (t)), i = 1, . . . , n (8)

which means λk > 0,


k λk < ∞ and the sequence {9k(t), k = 1, 2, . . .} are orthonormal bivariate vectors in L2.
Without loss of generality assume that theL2-closure of the linear span of {9k(t), k = 1, 2, . . .} includesH1 (see Remark 3):

1 Given two symmetric matrices A and B, A ≥ B in Loewner Partial Order if A − B is positive definite.
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L2
∩ span{9k(t), k = 1, 2, . . .} ⊇ H1. Note that R(s, t), the covariance matrix of the process ei(t), does not depend on i.

FromKarhunen–Loève Theorem (see, e.g., Perrin et al. [9]), there exists an array of zero-mean unit variance randomvariables
{ei,k; i = 1, . . . , n; k = 1, 2, . . .} such that

ei(t) =


k


λkei,k9k(t). (9)

The linearity of the covariance operator with respect to the first process, together with the symmetry in j given in the
hypothesis (1) and (2), ensures that

E

α
(f )
i (s)+ ε

(f )
ij (s), α

(d)
i (s)+ ε

(d)
ij (s)

⊤
· e⊤

i (t)


= R(s, t) =


k

λk9k(s)9k(t)⊤. (10)

Now, for i = 1, . . . , n; j = 1, . . . , r; k = 1, 2, . . . , let

Xij,k =


9k,


α
(f )
i + ε

(f )
ij , α

(d)
i + ε

(d)
ij

⊤
L2
,

and hence
α
(f )
i (s)+ ε

(f )
ij (s), α

(d)
i (s)+ ε

(d)
ij (s)

⊤
=


k

Xij,k9k(s),
1
r

r
j=1

Xij,k =


λkei,k.

The independence assumptions in the hypothesis (1) and (2) ensures that the joint law of the processes (α(f )i1
+ ε

(f )
i1j
, α

(d)
i1

+

ε
(d)
i1j
) and ei2 does not depend on j, hence

E(Xi11,k1


λk2ei2,k2) = E(Xi12,k1


λk2ei2,k2) = · · · = E(Xi1r,k1


λk2ei2,k2).

From (10), the linearity of the expectation ensures that

δ
i2
i1
δ
k2
k1
λk1 = E(


λk1ei1,k1


λk2ei2,k2) =


λk2E(Xi1j,k1ei2,k2), j = 1, . . . , r. (11)

Let us observe that the elements of L2
∩ span{9k(t), k = 1, 2, . . .} are the functions a such that a =


k⟨a,9k⟩L2 · 9k and

∥a∥2
L2 =


k⟨a,9k⟩

2
L2 < ∞. In the following definition a stronger condition is required.

Definition 5. Given the spectral representation of R(s, t), let

L2
R =


a ∈ L2

∩ span{9k(t), k = 1, 2, . . .} :

k

⟨a,9k⟩
2
L2

λk
< ∞


(12)

be a new Hilbert space, with inner product

⟨a, b⟩L2
R

=


k

⟨a,9k⟩L2⟨b,9k⟩L2

λk
. (13)

Note that ∥ · ∥L2 ≤ ∥ · ∥L2
R
/max(λk). An orthonormal base for L2

R is given by (8k)k, where 8k =
√
λk9k for any k.

Consider now the following linear closed dense subset of L2
R:

K =


b ∈ L2

R :


k

⟨9k, b⟩
2
L2

λ2k
< ∞


.

Observe that 9k ∈ K for all k. If K ∗ is the L2
R-dual space of K , the Gelfand triple K ⊂ L2

R ⊂ K ∗ implies that
L2

∩ span{9k(t), k = 1, 2, . . .} ⊆ K ∗.
Analogous to the geometric interpretation of theRiesz representation,we construct theH1

R-representation in the following
way. For any element b ∈ L2

R, we call H1
R-representative its L2

R-projection on H1, and we denote it with the symbol b(R). In
particular, for any k, let ψ (R)

k (t) be the H1
R-representative of 9k, that is, the unique element in H1

∩ L2
R such that

⟨(ψ
(R)
k , ψ

(R)
k

′

)⊤, (g, g ′)⊤⟩L2
R

= ⟨9k, (g, g ′)⊤⟩L2
R

=
⟨9k, (g, g ′)⊤⟩L2

λk
, ∀g ∈ H1

∩ L2
R.
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Note that the H1
R-representatives of the orthonormal system (8k)k of L2

R are given by φ(R)k (t) =
√
λkψ

(R)
k (t), where, by

definition of projection,

∥φ
(R)
k (t)∥H1

R
= ∥(φ

(R)
k (t), φ(R)k

′

(t))⊤∥L2
R

≤ ∥8k(t)∥L2
R

= 1. (14)

Moreover,

⟨(φ
(R)
h , φ

(R)
h

′

)⊤,8k⟩L2
R

= ⟨(φ
(R)
h , φ

(R)
h

′

)⊤, (φ
(R)
k , φ

(R)
k

′

)⊤⟩L2
R

= ⟨8h, (φ
(R)
k , φ

(R)
k

′

)⊤⟩L2
R
, (15)

and the H1
R-representation of any b ∈ L2

R can be written as

b(R) =


h

⟨b,9h⟩L2ψ
(R)
h =


h

⟨b,8h⟩L2
R
φ
(R)
h . (16)

When a ∈ L2
∩ span{9k(t), k = 1, 2, . . .}, it is again possible to define formally itsH1

R-representation in the followingway:

a(R)(t) =


k

⟨a,9k⟩L2ψ
(R)
k (t). (17)

In this case, if a(R) ∈ H1, an analogous of the standard projection can be obtained: (a(R), a(R)′) it is the unique element in K ∗

of the form (a, a′)with a ∈ H1 such that

⟨a, (h, h′)⊤⟩L2
R

= ⟨(a, a′)⊤, (h, h′)⊤⟩L2
R
, ∀(h, h′) ∈ K .

It will be useful to observe that, as a consequence, when a = (f(xi)⊤β, f(xi)⊤β′), then its H1
R-representative is f(xi)⊤β.

Lemma 1. Given ei as in (8), its H1
R-representative

e(R)i =


k


λkei,kψ

(R)
k ,

belongs to L2(Ω;H1), for any i = 1, . . . , n.

The following theorem is a direct consequence of the previous results.

Theorem 2. The following equation holds in L2(Ω;H1):

ȳ(R)i (t)(ω) = f(xi)⊤β(t)+ e(R)i (t)(ω) i = 1, . . . , n,

where each ȳ(R)i is the H1
R-representation of the mean (ȳ(f )i (t), ȳ

(d)
i (t)) of the observations given in (A.2). As a consequence, ȳ(R)i (t)

belongs to L2(Ω;H1), and hence ȳ(R)i (ω) ∈ H1 a.s.

We define

R = {y ∈

L2

∩ span{9k(t), k = 1, 2, . . .}
nr

: y(R)i ∈ H1, i = 1, . . . , n}. (18)

The vector ȳ(R)(t) =

ȳ(R)1 , ȳ(R)2 , . . . , ȳ(R)n

⊤ plays the rôle of the Riesz representative of Theorem 1 in the following SBLUE
theorem.

Theorem 3. The functional estimator

β(R)(t) = (F⊤F)−1F⊤ȳ(R)(t), (19)

for the model (2) is a H1-functional SBLUE.

Remark 2. From the proof of Theorem 3 (see Appendix A.1) we have that β(R)(t) is the best estimator among all the
estimators B(t) = C(y(f )(t), y(d)(t)) where C : R → (H1)p is any linear closed unbiased operator. Therefore,β(R)(t) is
also better than the best linear unbiased estimators based only on y(f )(t) or y(d)(t), since they are defined by some linear
unbiased operator.

Remark 3. The assumption L2
∩ span{9k(t), k = 1, 2, . . .} ⊇ H1 ensures that the each component of the unknown β(t) is

in span{9k(t), k = 1, 2, . . .}. As a consequence, we have noted that the H1
R-representative of (f(xi)⊤β, f(xi)⊤β′), is f(xi)⊤β.

If this assumption is not true, it may happen that βl ∉ span{9k(t), k = 1, 2, . . .} for some l = 1, . . . , p, and then βl would
have a nonzero projection on the orthogonal complement of span{9k(t), k = 1, 2, . . .}. Since on the orthogonal complement
we do not observe any noise, this means that we would have a deterministic subproblem, that, without loss of generality,
we can ignore.
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5. Simulations

In this section, it is explored, throughout a simulation study, when it is more convenient to use the whole information
on both reconstructed functions and derivatives with respect to the partial use of y(f )(t) (or y(d)(t)). The idea is that using
the whole information on curves and derivatives is much more convenient as the dependence between y(f )(t) and y(d)(t) is
smaller and their spread is more comparable.

In this study, for each scenario listed below, 1000 datasets are simulated frommodel (2) by a Monte Carlo method, with
n = 18, r = 3, p = 3,

β(t) =

 sin(π t)+ sin(2π t)+ sin(4π t)
− sin(π t)+ cos(π t)− sin(2π t)+ cos(2π t)− sin(4π t)+ cos(4π t)
+ sin(π t)+ cos(π t)+ sin(2π t)+ cos(2π t)+ sin(4π t)+ cos(4π t)


, t ∈ (−1, 1),

and

F⊤
=

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00 −1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00


.

In what follows, we compare the following different estimators: the SBLUEβ(R)(t) (see Section 4), the OLS estimatorsβλ(t)
(see Remark 1), and β̂

(c)
λ (t) = λβ̂

(f )
(t)+ (1−λ)β̂

(d)
(t), where β̂

(f )
(t) is the OLS estimator based on y(f )(t) and β̂

(d)
(t) is the

OLS estimator based on y(d)(t), with 0 ≤ λ ≤ 1.

Let us note that β̂
(c)
λ (t) is a compound OLS estimator; it is a rough way of taking into account both the sources of

information on y(f )(t) and y(d)(t). Of course, setting λ = 0 we ignore completely the information on the functions and
β̂
(c)
0 (t) = β̂

(d)
(t) = β0(t), vice versa setting λ = 1 means to ignore the information on the derivatives and thus

β̂
(c)
1 (t) = β̂

(f )
(t) =β1(t).

All the computations are developed using R package.
In Fig. 1 it is plotted: one dataset of curves and derivatives (black lines); the regression functions f(xi)⊤β(t)

and f(xi)⊤β′(t) (green lines); the SBLUE predictions f(xi)⊤β(R)(t) and f(xi)⊤β(R)′(t) (blue lines); the OLS predictions
f(xi)⊤β1/2(t) and f(xi)⊤β1/2

′(t) (red lines).

5.1. Dependence between functions and derivatives

We consider three different scenarios; we generate functional data y(f )ij (t) and y(d)ij (t) such that

1. (α(f )i (t), ε
(f )
ij (t)) is independent on (α

(d)
i (t), ε

(d)
ij (t));

2. (α(f )i (t), ε
(f )
ij (t)) and (α

(d)
i (t), ε

(d)
ij (t)) are mildly dependent (the degree of dependence is randomly obtained);

3. (α(f )i (t), ε
(f )
ij (t)) and (α

(d)
i (t), ε

(d)
ij (t)) are fully dependent: (α(d)i (t), ε

(d)
ij (t)) = (α

(f )
i

′

(t), ε(f )ij
′

(t)), and hence y(d)ij (t) =

y(f )ij
′

(t).

The performance of the different estimators is evaluated by comparing the H1-norm of the p-components of the
estimation errors. Fig. 2 depicts the Monte Carlo distribution of the H1-norm of the first component: ∥β̂λ,1(t)−β1(t)∥H1 for

different values ofλ (red box-plot, (6)),∥β̂
(c)
λ,1(t)−β1(t)∥H1 for different values ofλ (yellowbox-plots) and∥β(R)1 (t)−β1(t)∥H1

(blue box-plot).
From the comparison of the box-plots corresponding to λ = 0 and λ = 1 with the other cases, we observe that it is

always more convenient to use the whole information on y(f )(t) and y(d)(t) (this behaviour is more evident in scenario 1).
Among the three estimators β̂

(c)
λ (t), β̂λ(t) andβ(R)(t), the SBLUE is themost precise, as expected.When there is a one-to-one

dependence between y(f )(t) and y(d)(t), one source of information is redundant and all the functional estimators coincide
(bottom panel of Fig. 2).

5.2. Spread of functions and derivatives

Also in this case, we consider three different scenarios. Let

rll =


Σ

β̂
(f )

ll

Σ
β̂
(d)

ll

, l = 1, . . . , p,
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Fig. 1. Simulated data frommodel (2) and predicted curves. Black lines: simulated data of curves (top panel) and derivatives (bottompanel). In each ith box
(i = 1, . . . , 18) the j = 1, . . . , 3 replications are plotted. Blue lines: predictions based on SBLUE estimator. Red lines: predictions based on OLS estimator.
Green lines: theoretical curves f(xi)⊤β(t) in top panel and f(xi)⊤β′(t) in bottom panel. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

where Σ· denotes the H1-global covariance matrix defined in (4). We generate functional data y(f )ij (t) and y(d)ij (t) with a
different spread, such that

1. rll ∼= 0.25 (in this sense, y(f )ij (t) is ‘‘more concentrate’’ than y(d)ij (t));

2. rll ∼= 1 (y(f )ij (t) and y(d)ij (t) have more or less the same spread);

3. rll ∼= 4 (y(d)ij (t) is ‘‘more concentrate’’ than y(f )ij (t)).

As before, the performance of the different estimators is evaluated by comparing theH1-normof the p-components of the
estimation errors. Fig. 3 depicts the Monte Carlo distribution of the H1-norm of the first component: ∥β̂λ,1(t)−β1(t)∥H1 for
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Fig. 2. H1 norm of the first components estimation errors, for compound OLS estimators (yellow box-plots), OLS estimators (red box-plots), SBLUE
estimators (blue box-plots). Top-left panel: scenario 1, independence. Top-right panel: scenario 2, mild dependence. Bottom panel: scenario 3, full
dependence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. H1 norm of the first components estimation errors, for compound OLS estimators (yellow box-plots), OLS estimators (red box-plots), SBLUE
estimators (blue box-plots). Top-left panel: scenario 1, independence. Top-right panel: scenario 2, mild dependence. Bottom panel: scenario 3, full
dependence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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different values ofλ (red box-plot, (6)),∥β̂
(c)
λ,1(t)−β1(t)∥H1 for different values ofλ (yellowbox-plots) and∥β(R)1 (t)−β1(t)∥H1

(blue box-plot).

From the comparison of the box-plots of β̂
(c)
λ (t) and β̂λ(t) corresponding to λ = 0 and λ = 1 with the other cases, it

seems more convenient to use just the ‘‘less spread’’ information: y(f )(t) in Scenario 1 and y(d)(t) in Scenario 2. Comparing
the precision of β̂

(c)
λ (t) and β̂λ(t) with the one of theβ(R)(t), however, the SBLUE is the most precise, as expected. Hence,

we suggest the use of the whole available information through the use of the SBLUE. Of course, when one of the sources of
information has a spread near to zero then the most precise estimator is the one that uses just that piece of information andβ(R)(t) reflects this behaviour.
6. Summary

Functional data are suitably modelled in separable Hilbert spaces (see Horváth and Kokoszka [7] and Bosq [4]) and L2 is
usually sufficient to handle the majority of the techniques proposed in the literature of functional data analysis.

Insteadwe consider proper Sobolev spaces; sincewe guess that the datamayprovide information on both curve functions
and their derivatives. The classical theory for linear regression models is extended in this context by means of the sample
of Riesz representatives. Roughly speaking, the Riesz representatives are ‘‘quantities’’ which incorporate both functions and
their associated derivative information in a non trivial way. A generalization of the Riesz representatives are proposed to
take into account the possible correlation between curves and derivatives. These generalized Riesz representatives are called
just ‘‘representatives’’.

Using a sample of representatives, we prove a strong, generalized version of the well known Gauss–Markov theorem
for functional linear regression models. Despite the complexity of the problem, we obtain an elegant and simple solution
through the use of the representativeswhich belong to a Sobolev space. This result states that the proposed estimator, which
takes into account both information about curves and derivatives (throughout the representatives), is much more efficient
than the usual OLS estimator based only on one sample of functions (curves or derivatives). The superiority of the proposed
estimator is also showed in the simulation study described in Section 5.

Appendix. Proofs

Proof of Theorem 1. Part (a). We consider the sum of square residuals:

S

β(t)


=

r
j=1

n
i=1


∥y(f )ij (t)− f(xi)⊤β(t)∥2

L2 + ∥y(d)ij (t)− f(xi)⊤β′(t)∥2
L2


=

r
j=1

n
i=1


⟨y(f )ij (t)− f(xi)⊤β(t), y(f )ij (t)− f(xi)⊤β(t)⟩L2 + ⟨y(d)ij (t)− f(xi)⊤β′(t), y(d)ij (t)− f(xi)⊤β′(t)⟩L2


.

The Gâteaux derivative of S(·) at β(t) in the direction of g(t) ∈ (H1)p is

lim
h→0

S(β(t)+ hg(t))− S(β(t))
h

= 2
 r

j=1

n
i=1


⟨y(f )ij (t)− f(xi)⊤β(t), f(xi)⊤g(t)⟩L2

+ ⟨y(d)ij (t)− f(xi)⊤β′(t), f(xi)⊤g′(t)⟩L2


= 2r

⟨F⊤ȳ(f )(t)− F⊤Fβ(t), g(t)⟩(L2)p + ⟨F⊤ȳ(d)(t)− F⊤Fβ′(t), g′(t)⟩(L2)p


, (A.1)

where ȳ(f )(t) and ȳ(d)(t) are two n × 1 vectors whose ith elements are

ȳ(f )i (t) =

r
j=1

y(f )ij (t)

r
, ȳ(d)i (t) =

r
j=1

y(d)ij (t)

r
. (A.2)

Developing the right-hand side of (A.1), we have that the Gâteaux derivative is

= 2r


⟨F⊤ȳ(f )(t), g(t)⟩(L2)p + ⟨F⊤ȳ(d)(t), g′(t)⟩(L2)p


−


⟨F⊤Fβ(t), g(t)⟩(L2)p + ⟨F⊤Fβ′(t), g′(t)⟩(L2)p


= 2r


⟨F⊤ȳ(t), g(t)⟩(H1)p − ⟨F⊤Fβ(t), g(t)⟩(H1)p


, (A.3)

where ȳ(t) is a n × 1 vector whose ith element is the Riesz representative of

ȳ(f )i (t), ȳ

(d)
i (t)


.
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The Gâteaux derivative (A.3) is equal to 0 for any g(t) ∈ (H1)p if and only ifβ(t) is given by the following equation:

F⊤Fβ(t) = F⊤ȳ(t),

which proves the first statement of the theorem.
Part (b) Definition 2 and model (2) imply that, for any h(t) ∈ H1,

E(ỹij(t)), h(t)

H1 = E


⟨y(f )ij (t), h(t)⟩L2


+ E


⟨y(d)ij (t), h

′(t)⟩L2


=

f(xi)⊤β(t), h(t)


H1 ,

then E(ȳ(t)) = Fβ(t), and henceβ(t) is unbiased. Moreover,

ȳi(t)− f(xi)⊤β(t) = α̃i(t)+

r
j=1
ε̃ij(t)

r
, i = 1, . . . , n (A.4)

where α̃i(t) and ε̃ij(t) denote the Riesz representatives of (α(f )i (t), α
(d)
i (t)) and (ε(f )ij (t), ε

(d)
ij (t)), respectively. From the

hypothesis (1) and (2) in the model (2), the left-hand side quantities in (A.4) are zero-mean i.i.d. processes, for i = 1, . . . , n.
Therefore, the global covariance matrix of ȳ(t) is σ 2In, where σ 2

= E(∥ȳi(t)− f(xi)⊤β(t)∥2
H1). Hence, the global covariance

matrix ofβ(t) isΣβ = σ 2(F⊤F)−1. �

Proof of Lemma 1. We have that

E∥e(R)i ∥
2
H1 = E


h


9h,


k


λkei,k(ψ

(R)
k , ψ

(R)
k

′

)
2
L2

=


h

E

k1,k2


λk1


λk2ei,k1ei,k2⟨9h, (ψ

(R)
k1
, ψ

(R)
k1

′

)⟩L2⟨9h, (ψ
(R)
k2
, ψ

(R)
k2

′

)⟩L2

=


k,h

λk⟨9h, (ψ
(R)
k , ψ

(R)
k

′

)⟩2
L2 =


k,h

λh{⟨8h, (φ
(R)
k , φ

(R)
k

′

)⟩L2
R
}
2.

From (15), the last term is equal to


k,h λh(⟨(φ
(R)
h , φ

(R)
h

′

),8k⟩L2
R
)2. Hence,

E∥e(R)i ∥
2
H1 =


k,h

λh{⟨(φ
(R)
h , φ

(R)
h

′

),8k⟩L2
R
}
2

=


h

λh

k

{⟨(φ
(R)
h , φ

(R)
h

′

),8k⟩L2
R
}
2

=


h

λh∥(φ
(R)
h , φ

(R)
h

′

)∥2
L2

R
≤


h

λh,

where the last inequality follows from (14). Since


h λh < ∞, we get the thesis. �

A.1. Proof of Theorem 3

The estimatorβ(R)(t) is a linear map which associates an elementβ(R)(t) in (H1)p to any nr-tuple (y(f )ij (t), y
(d)
ij (t)). In

what follows, we show that it is the ‘‘best’’ among all the linear unbiased closed operators C : R → (H1)p.
The model (2) may be written in the following vectorial form:

y(f )(t) = (F ⊗ 1r)β(t)+ (α(f )(t)⊗ 1r)+ ε(f )(t)
y(d)(t) = (F ⊗ 1r)β

′(t)+ (α(d)(t)⊗ 1r)+ ε(d)(t)
(A.5)

where 1r is the column vector of length r with all components equal to 1.
In general, if

y(1)(t) =


y(1)11 (t), . . . , y

(1)
1r (t), y

(1)
21 (t), . . . , y

(1)
2r (t), . . . , y

(1)
n1 (t), . . . , y

(1)
nr (t)

⊤

and

y(2)(t) =


y(2)11 (t), . . . , y

(2)
1r (t), y

(2)
21 (t), . . . , y

(2)
2r (t), . . . , y

(2)
n1 (t), . . . , y

(2)
nr (t)

⊤

are two nr × 1 block vectors in R, we may define the following n dimensional vector

ȳ(1,2)(R)(t) =


ȳ(1,2)(R)1 (t), . . . , ȳ(1,2)(R)n (t)

⊤

, (A.6)
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where ȳ(1,2)(R)i (t) is the H1
R representation of

 r
j=1

y(1)ij (t)

r
,

r
j=1

y(2)ij (t)

r


.

Now we can introduce the following linear operator

D

y(1)(t), y(2)(t)


= C


y(1)(t), y(2)(t)


− (F⊤F)−1F⊤ ȳ(1,2)(R)(t). (A.7)

Hence,

D(y(f )(t), y(d)(t)) = C(y(f )(t), y(d)(t))− (F⊤F)−1F⊤ȳ(R)(t)

= C(y(f )(t), y(d)(t))−β(R)(t) (A.8)

and

C(y(f )(t), y(d)(t)) = D(y(f )(t), y(d)(t))+β(R)(t).
The thesis follows immediately if we prove that O(D(y(f )(t), y(d)(t))) and O(β(R)(t)) are uncorrelated.

Since both B(t) andβ(R)(t) are unbiased, E

D(y(f )(t), y(d)(t))


= 0, and thus we have to prove that

E

O(D(y(f )(t), y(d)(t))), O(β(R)(t)− β(t))


H1 = 0, (A.9)

for any choice of linear operator O : (H1)p → H1.
The proof of equality (A.9) is developed in four steps.

First step. The goal of this step is to prove that D applied to the deterministic part of the model

(F ⊗ 1r)β(t), (F ⊗ 1r)β

′(t)

is

identically null. As a consequence,

D

y(f )(t), y(d)(t)


= D


α(f )(t)⊗ 1r + ε(f )(t),α(d)(t)⊗ 1r + ε(d)(t)


. (A.10)

From the linearity of the closed operator C, and the zero-mean hypothesis (1) and (2), we have that

E

C

y(f )(t), y(d)(t)


= E


C

(F ⊗ 1r)β(t)+ (α(f )(t)⊗ 1r)+ ε(f )(t), (F ⊗ 1r)β

′(t)+ (α(d)(t)⊗ 1r)+ ε(d)(t)


= C((F ⊗ 1r)β(t), (F ⊗ 1r)β
′(t)).

Since E

C

y(f )(t), y(d)(t)


= β(t)we have that

C

(F ⊗ 1r)β(t), (F ⊗ 1r)β

′(t)


= β(t). (A.11)

In addition, from the definition (A.6) if

y(1)(t) = Fβ(t)⊗ 1r and y(2)(t) = Fβ′(t)⊗ 1r

then

ȳ(1,2)(R)(t) = Fβ(t). (A.12)

Combining (A.7), (A.11) and (A.12) gives

D((F ⊗ 1r)β(t), (F ⊗ 1r)β
′(t)) = 0, (A.13)

and hence (A.10).
Second step. Representation of the linear operator Dl.

For the linearity of the lth component of D with respect to the bivariate observations

y(1)ij (t), y

(2)
ij (t)


:

Dl


y(1)(t), y(2)(t)


=


i,j

Dl,ij


y(1)ij (t), y

(2)
ij (t)


, (A.14)

where, for any i = 1, . . . , n and j = 1, . . . , r , Dl,ij is linear. The domain of Dl,ij is contained in L2(R2). Let (φg)g be an
orthonormal base of H1

R . We express the linear operator y = Dl,ij(x) in terms of the base (9k)k for x and (φg)g for y. In fact,
R ⊆ (L2)nr and y ∈ H1

⊆ K ∗ (see (17)). Accordingly,

Dl,ij(y
(1)
ij (t), y

(2)
ij (t)) =


k,g

⟨9k, (y
(1)
ij (t), y

(2)
ij (t))

⊤
⟩L2 dk,gl,ij φg(t), (A.15)
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where

dk,gl,ij = ⟨Dl,ij(9k)(t), φg(t)⟩H1
R
.

Third step. Proof of
k

n
i=1

r
j=1

ml2,i d
k,g
l1,ij

⟨9k, (h, h′)⊤⟩L2 = 0, g, l1, l2, h ∈ H1,

whereml2 = (ml2,1, . . . ,ml2,n)
⊤ is the l2th row of (F⊤F)−1F⊤. In particular, since H1

R ⊆ H1,

n
i,j,k

ml2,i d
k,g
l1,ij

⟨9k, ml2,i(h, h
′)⊤⟩L2 = 0, g, l1, l2, h ∈ H1

R. (A.16)

Let h(l2)(t) ∈ (H1)p be the null vector except for the l2th component which is h(t) ∈ H1, and let h(t) = (F⊤F)−1h(l2)(t) ∈

(H1)p. Setting β(t) = h(t) in (A.13),

0 = Dl1((F ⊗ 1r)h(t), (F ⊗ 1r)h′(t))

= Dl1((Fh(t))⊗ 1r , (Fh′(t))⊗ 1r)

= Dl1(F(F
⊤F)−1h(l2)(t)⊗ 1r , F(F⊤F)−1h(l2)′(t)⊗ 1r)

= Dl1(h(t)ml2 ⊗ 1r , h′(t)ml2 ⊗ 1r)

=

n
i=1

r
j=1

Dl1,ij(h(t)ml2,i, h
′(t)ml2,i)

=


g


k,i,j

(⟨9k, (ml2,ih, ml2,ih
′)⊤⟩L2) dk,gl1,ij


φg(t), (A.17)

where the last equality is due to (A.15).
Fourth step. Proof of (A.9):

E

O(D(y(f )(t), y(d)(t))), O(β(R)(t)− β(t))


H1 = 0,

for any choice of linear operator O : (H1)p → H1.
From Theorem 2 and from (19),β(R)(t)− β(t) = (F⊤F)−1F⊤e(R), and hence

E

O(D(y(f )(t), y(d)(t))), O(β(R)(t)− β(t))


H1 = E


O(D(y(f )(t), y(d)(t))), O((F⊤F)−1F⊤e(R)(t))


H1

= E

O(D(α(f )(t)⊗ 1r + ε(f )(t),α(d)(t)⊗ 1r + ε(d)(t))),

O((F⊤F)−1F⊤e(R)(t))

H1
, (A.18)

where the last equality is a consequence of (A.10).
Since x ∈ (H1)p ⊆ (K ∗)p (see (17)), we express the linear operator y = O(x) in terms of the base (φg1 × φg2 × · · · ×

φgp)g1,...,gp for x and (ζh)h for y, where (ζh)h is an orthonormal base of H1. To begin with, from the linearity of the operator
O : (H1)p → H1, we have that

O(b1(t), . . . , bp(t)) =

p
l=1

O(0, . . . , 0  
l−1 times

, bl(t), 0, . . . , 0  
p−l times

).

Since bl(t) =


g⟨bl(t), φg(t)⟩H1
R
φg(t) =


g b

g
l φg(t), where bgl = ⟨bl(t), φg(t)⟩H1

R
, we have

O(b1(t), . . . , bp(t)) =


l,g

bgl O(0, . . . , 0  
l−1 times

, φg(t), 0, . . . , 0  
p−l times

).

Now, setting

Og,h
l =


O(0, . . . , 0  

l−1 times

, φg(t), 0, . . . , 0  
p−l times

), ζh(t)

H1 ,

then we have the representation of O in terms of the required bases:

O(b1(t), . . . , bp(t)) =


l,g,h

bgl Og,h
l ζh(t).
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Hence, from Eqs. (A.18), (A.14) and (A.15), the thesis (A.9) becomes

E

l,g,h


i,j,k

(⟨9k, (α
(f )
i (t)+ ε

(f )
ij (t), α

(d)
i (t)+ ε

(d)
ij (t))

⊤
⟩L2) dk,gl1,ij


Og,h
l ζh(t),

l,g,h


e(R)(t)⊤ml, φg(t)


H1
R


Og,h
l ζh(t)


H1

= 0.

From (11) and (13), since ⟨ζh1 , ζh2⟩H1 = δ
h2
h1
, the left-hand side of the last equation becomes

E

l,g,h

Og,h
l ζh(t)


i,j,k

(⟨9k, (α
(f )
i (t)+ ε

(f )
ij (t), α

(d)
i (t)+ ε

(d)
ij (t))

⊤
⟩L2) dk,gl,ij


,


l,g,h

Og,h
l ζh(t)


e(R)(t)⊤ml2 , φg(t)


H1
R


H1

= E
 
l1,l2,g1,g2,h

Og1,h
l1

Og2,h
l2


i1,j,k1

Xi1j,k1 d
k1,g1
l1,i1j


i2,k2


λk2ei2,k2 ⟨ψ

(R)
k2
(t), φg2(t)⟩H1

R
ml2,i2


=


l1,l2,g1,g2,h

Og1,h
l1

Og2,h
l2


i1,i2,j


k1,k2


λk2 dk1,g1l1,i1j

ml2,i2 E

Xi1j,k1ei2,k2


⟨ψ

(R)
k2
(t), φg2(t)⟩H1

R

=


l1,l2,g1,g2,h

Og1,h
l1

Og2,h
l2


i1,i2,j


k1,k2

δ
i2
i1
δ
k2
k1
λk1 dk1,g1l1,i1j

ml2,i2⟨ψ
(R)
k2
(t), φg2(t)⟩H1

R

=


l1,l2,g1,g2,h

Og1,h
l1

Og2,h
l2


i,j


k

dk,g1l1,ij
ml2,iλk⟨ψ

(R)
k (t), φg2(t)⟩H1

R

=


l1,l2,g1,g2,h

Og1,h
l1

Og2,h
l2


i,j


k

dk,g1l1,ij
ml2,i


λk⟨9k(t), (φg2(t), φ

′

g2(t))
⊤
⟩L2

R


=


l1,l2,g1,g2,h

Og1,h
l1

Og2,h
l2


i,j


k

dk,g1l1,ij
ml2,i⟨9k(t), (φg2(t), φ

′

g2(t))
⊤
⟩L2

= 0,

the last equality being a consequence of (A.16).
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