
The Alternating BWT: an algorithmic

perspectiveI

Raffaele Giancarloa, Giovanni Manzinib, Antonio Restivoa, Giovanna
Rosonec, Marinella Sciortinoa

aUniversity of Palermo, Italy
bUniversity of Eastern Piedmont and IIT-CNR Pisa, Italy

cUniversity of Pisa, Italy

Abstract

The Burrows-Wheeler Transform (BWT) is a word transformation in-
troduced in 1994 for Data Compression. It has become a fundamental tool
for designing self-indexing data structures, with important applications in
several area in science and engineering. The Alternating Burrows-Wheeler
Transform (ABWT) is another transformation recently introduced in [Ges-
sel et al. 2012] and studied in the field of Combinatorics on Words. It is
analogous to the BWT, except that it uses an alternating lexicographical
order instead of the usual one. Building on results in [Giancarlo et al. 2018],
where we have shown that BWT and ABWT are part of a larger class of
reversible transformations, here we provide a combinatorial and algorithmic
study of the novel transform ABWT. We establish a deep analogy between
BWT and ABWT by proving they are the only ones in the above mentioned
class to be rank-invertible, a novel notion guaranteeing efficient invertibility.
In addition, we show that the backward-search procedure can be efficiently
generalized to the ABWT; this result implies that also the ABWT can be
used as a basis for efficient compressed full text indices. Finally, we prove
that the ABWT can be efficiently computed by using a combination of the
Difference Cover suffix sorting algorithm [Kärkkäinen et al., 2006] with a
linear time algorithm for finding the minimal cyclic rotation of a word with
respect to the alternating lexicographical order.

Keywords: Alternating Burrows-Wheeler Transform, Rank-invertibility,
Difference cover algorithm, Galois word

IPostprint version; final publication available on ScienceDirect https://doi.org/10.
1016/j.tcs.2019.11.002 c© 2019. This manuscript version is made available under the
CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0.

Postprint version; to appear on Theoretical Computer Science

https://doi.org/10.1016/j.tcs.2019.11.002
https://doi.org/10.1016/j.tcs.2019.11.002
http://creativecommons.org/licenses/by-nc-nd/4.0

1. Introduction

Michael Burrows and David Wheeler introduced in 1994 a reversible word
transformation [4], denoted by BWT , that turned out to have “myriad
virtues”. At the time of its introduction in the field of text compression,
the Burrows-Wheeler Transform was perceived as a magic box: when used
as a preprocessing step it would bring rather weak compressors to be com-
petitive in terms of compression ratio with the best ones available [14]. In
the years that followed, many studies have shown the effectiveness of BWT
and its central role in the field of Data Compression due to the fact that
it can be seen as a “booster” of the performance of memoryless compres-
sors [16, 25, 39, 19]. Moreover, it was shown in [17] that the BWT can
be used to efficiently search for occurrences of patterns inside the original
text. Such capabilities of the BWT have originated the field of Compressed
Full-text Self-indices [32, 41]. The remarkable properties of the BWT have
aroused great interest both from the theoretical and applicative points of
view [33, 34, 38, 51, 30, 7, 29, 47, 8, 20, 43, 13].

In the context of Combinatorics on Words, many studies have addressed
the characterization of the words that become the most compressible after
the application of the BWT [37, 50, 42, 44, 45, 15]. Recent studies have
focused on measuring the “clustering effect” of BWT , which is a property
related to its boosting role as preprocessing of a text compressor [36, 35].

In [9], the authors characterize the BWT as the inverse of a known bi-
jection between words and multisets of primitive necklaces [22]. From this
result, in [21] the authors introduce and study the basic properties of the
Alternating BWT , ABWT from now on. It is a transformation on words
analogous to the BWT but the cyclic rotations of the input word are sorted
by using the alternating lexicographic order instead of the usual lexicographic
order. The alternating lexicographic order is defined for infinite words as fol-
lows: the first letters are compared with the given alphabetic order, in case
of equality the second letters are compared with the opposite order, and so
on alternating the two orders for even/odd positions.

In this paper we show that the ABWT satisfies most of the properties
that make the BWT such a useful transformation. Not only the ABWT can
be computed and inverted in linear time, but also the backward-search proce-
dure, which is the basis for indexed exact string matching on the BWT , can
be efficiently generalized to the ABWT . This implies that the ABWT can
be used to build an efficient compressed full text index for the transformed
string, similarly to the BWT . Note that the variants of the original BWT
which have been introduced so far in the literature [48, 5, 10], were either
simple modifications that do not bring new theoretical insight or they were

2

significantly different but without the remarkable compression and search
properties of the original BWT (see [24, Section 2.1] for a more detailed
discussion of these variants).

The existence of the ABWT shows that the classical lexicographic or-
der is not the only order relation that one can use to obtain a reversible
transformation. Indeed, lexicographic and alternating lexicographic order
are two particular cases of a more general class of order relations considered
in [11, 46]. In a preliminary version of this paper [23] we introduce therefore
a class of reversible word transformations based on the above order relations
that includes both the original BWT and the Alternating BWT . Within this
class, we introduce the notion of rank-invertibility, a property that guaran-
tees that the transformation can be efficiently inverted using rank operations,
and we prove that BWT and ABWT are the only transformations within
this class that are rank-invertible.

We consider also the problem of efficiently computing the ABWT . We
first show how to generalize to the alternating lexicographic order the Dif-
ference Cover technique introduced in [28]. This result leads to the design
of time optimal and space efficient algorithms for the construction of the
ABWT in different models of computation when the input string ends with
a unique end-of-string symbol. Finally, we explore some combinatorial prop-
erties of the Galois words, which are minimal cyclic rotations within a con-
jugacy class, with respect to the alternating lexicographical order. We show
that the Galois rotation of a given word can be computed in linear time and,
consequently, by using the Difference Cover technique, the ABWT can be
computed in linear time even when the input string does not end with a
unique end-of-string symbol.

Motivated by the discovering of the ABWT , in [24] the authors explore a
class of string transformations that includes the one considered in this paper.
In this larger class, the cyclic rotations of the input string are sorted using an
alphabet ordering that depends on the longest common prefix of the rotations
being compared. Somewhat surprisingly some of the transformations in this
class do have the same properties of the BWT and ABWT , thus showing
that our understanding of these transformations is still incomplete.

2. Preliminaries

Let Σ = {c0, c1, . . . , cσ−1} be an ordered constant size alphabet with c0 <
c1 < . . . < cσ−1, where < denotes the standard lexicographic order. We
denote by Σ∗ the set of words over Σ. Let w = w0w1 · · ·wn−1 ∈ Σ∗ be a
finite word, we denote by |w| its length n. We use ε to denote the empty
word. We denote by |w|c the number of occurrences of a letter c in w. The

3

Parikh vector Pw of a word w is a σ-length array of integers such that for
each c ∈ Σ, Pw[c] = |w|c. Given a word x and c ∈ Σ, we write rankc(x, i) to
denote the number of occurrences of c in x[0, i].

Given a finite word w, a factor of w is written as w[i, j] = wi · · ·wj, with
0 ≤ i ≤ j ≤ n − 1. A factor of type w[0, j] is called a prefix, while a factor
of type w[i, n − 1] is called a suffix. The longest proper factor of w that
is both prefix and suffix is called border. The i-th symbol in w is denoted
by w[i]. Two words x, y ∈ Σ∗ are conjugate, if x = uv and y = vu, where
u, v ∈ Σ∗. We also say that x is a cyclic rotation of y. A word x is primitive
if all its cyclic rotations are distinct. A primitive word is a Lyndon word
if it is smaller than all of its conjugates. Conjugacy between words is an
equivalence relation over Σ∗. A word z is called a circular factor of x if it is
a factor of some conjugate of x.

Given two words of the same length x = x0x1 . . . xs−1 and y = y0y1 . . . ys−1,
we write x �lex y if and only if x = y or xi < yi, where i is the smallest
index in which the corresponding characters of the two words differ. Analo-
gously, and with the same notation as before, we write x �alt y if and only
if x = y or (a) i is even and xi < yi or (b) i is odd and xi > yi. Notice that
�lex is the standard lexicographic order relation on words while �alt is the
alternating lexicographic order relation, in which a given alphabetic order
and the opposite order are alternate for even/odd position of the words. For
instance, aba �alt aab and aab �lex aba. Standard lexicographic order and
alternating order are used in Section 3 to define two different transformations
on words. The alternating lexicographic order is defined for infinite words
as follows: the first letters are compared with the given alphabetic order, in
case of equality the second letters are compared with the opposite order, and
so on alternating the two orders for even/odd positions.

The run-length encoding of a word w, denoted by rle(w), is a sequence of
pairs (wi, li) such that wiwi+1 · · ·wi+li−1 is a maximal run of a letter wi (i.e.,
wi = wi+1 = · · · = wi+li−1, wi−1 6= wi and wi+li 6= wi), and all such maximal
runs are listed in rle(w) in the order they appear in w. We denote by ρ(w) =
| rle(w)| i.e., is the number of pairs in w, or equivalently the number of equal-
letter runs in w. Moreover we denote by ρ(w)ci the number of pairs (wj, lj)
in rle(w) where wj = ci. Notice that ρ(w) ≤ ρ(w1) + ρ(w2) + · · · + ρ(wp),
where w1w2 · · ·wp = w is any partition of w.

The zero-th order empirical entropy of the word w is defined as

H0(w) = −
σ−1∑
i=0

|w|ci
|w|

log
|w|ci
|w|

(all logarithms are taken to the base 2 and we assume 0 log 0 = 0). The value

4

|w|H0(w) is the output size of an ideal compressor that uses − log(|w|ci/|w|)
bits to encode each occurrence of symbol ci. This is the minimum size we
can achieve using a uniquely decodable code in which a fixed codeword is
assigned to each symbol.

For any length-k factor x of w, we denote by xw the sequence of characters
immediately preceding the occurrences of x in w, taken from left to right. If
x is not a factor of w the word xw is empty. The k-th order empirical entropy
of w is defined as

Hk(w) =
1

|w|
∑
x∈Σk

|xw|H0(xw).

The value |w|Hk(w) is a lower bound to the output size of any compressor
that encodes each symbol with a code that only depends on the symbol itself
and on the k preceding symbols. Since the use of a longer context helps
compression, it is not surprising that for any k ≥ 0 it is Hk+1(w) ≤ Hk(w).

3. BWT and Alternating BWT

In this section we describe two different invertible transformations on
words based on the lexicographic and alternating lexicographic order, re-
spectively. Given a primitive word w of length n in Σ∗, the Burrows-Wheeler
transform, denoted by BWT [4] and the Alternating Burrows-Wheeler trans-
form, denoted by ABWT [21] for w are defined constructively as follows:

1. Create the matrix M(w) of the cyclic rotations of w;

2. Create the matrix

(a) for BWT , Mlex(w) by sorting the rows of M(w) according to �lex;
(b) for ABWT , Malt(w) by sorting the rows of M(w) according to
�alt;

3. Return as output the pair

(a) for BWT , (bwt(w), I), where bwt(w) is the last column L in the
matrix Mlex(w)

(b) for ABWT , (abwt(w), I) where abwt(w) is the last column L in
the matrix Malt(w)

and, in both cases, the integer I giving the position of w in that matrix.

An example of the above process, together with the corresponding output,
is provided in Figure 1.

Remark 3.1. If two words are conjugate the BWT (resp. ABWT) will have
the same column L and differ only in I, whose purpose is only to distinguish
between the different members of the conjugacy class. However, I is not
necessary in order to recover the matrix M from the last column L.

5

a b r a c a
b r a c a a
r a c a a b
a c a a b r
c a a b r a
a a b r a c

M(w)

F L
↓ ↓
a a b r a c
a b r a c a

I → a c a a b r
b r a c a a
c a a b r a
r a c a a b

Mlex(w)

F L
↓ ↓

I → a c a a b r
a b r a c a
a a b r a c
b r a c a a
c a a b r a
r a c a a b

Malt(w)

Figure 1: Left: the matrix M(w) of all cyclic rotations of the word w = acaabr. Center:
the matrix Mlex(w); the pair (caraab, 2) is the output bwt(w). Right: the matrix Malt(w);
the pair (racaab, 0) is the output of ABWT (w).

The following proposition, proved in [23], states that three well known
properties of the BWT hold, in a slightly modified form, for the ABWT as
well. Here we report the proof for the sake of completeness.

Proposition 3.2. Let w be a primitive word and let (L, I) be the output of
BWT or ABWT applied to w. The following properties hold:

1. Let F denote the first column of Mlex(w) (resp. Malt(w)), then F is
obtained by lexicographically sorting the symbols of L.

2. For every i, 0 ≤ i < n, L[i] circularly precedes F [i] in the original
word, for both BWT and ABWT .

3. For each symbol a, and 1 ≤ j ≤ |w|a, the j-th occurrence of a in F
corresponds

(a) for BWT , to its j-th occurrence in L;
(b) for ABWT , to its (|w|a − j + 1)-th occurrence in L.

Proof. Properties 1, 2 and 3a for the BWT have been established in [4].
Properties 1 and 2 for the ABWT are straightforward. To prove property
3b, consider two rows i and j in Malt(w) with i < j starting with the symbol
a. Let wi and wj be the two conjugates of w in rows i and j of Malt(w).
By construction we have wi = au, wj = av and wi �alt wj. To establish
Property 3b, we need to show that row wj cyclically rotated precedes in the
�alt order row wi cyclically rotated. In other words, we need to show that

au �alt av =⇒ va �alt ua.

To prove the above implication, we notice that if the first position in which
au and av differ is odd (resp. even) then the first position in which va and

6

ua differ will be in an even (resp. odd) position. The thesis follow by the
alternate use of the standard and reverse order in �alt (see [21] for a different
proof of the same property). 2

It is well known that in the BWT the occurrences of the same symbol
appear in columns F and L in the same relative order; according to Prop-
erty 3b. In the ABWT , the occurrences in L appear in the reverse order
than in F . For example, in Figure 1 (right) we see that the a’s of acaabr in
the columns F appear in the order 1st, 3rd, and 2nd, while in column L they
are in the reverse order 2nd, 3rd, and 1st.

Proposition 3.2 is the key motivations to efficiently recover the original
string from the output of BWT or ABWT , as we will see in Section 5.

Note that, although BWT and ABWT are very similarly defined, they
are very different combinatorial tools. Combinatorial aspects that distinguish
ABWT and BWT can be found in [21, 23], which makes it interesting to
study ABWT in terms of tool characterizing families of words.

However, in [23] we experimentally tested ABWT as pre-processing of
a compression tool, by comparing its performance with a BWT -based com-
pressor. We have shown that the behaviour of the two transformations is
essentially equivalent in terms of compression. Actually, such experiments
confirm a theoretical result we proved in [23] for a larger class of transfor-
mations that can be seen as a generalization of the BWT and that includes
the ABWT as a special case. In the next section, we give a brief description
of the properties we proved in [23] for such a class of transformations, all of
which also hold for the ABWT .

4. Generalized BWTs: a synopsis

In this section we describe the class of Generalized BWTs, introduced in
[23], by reporting their main properties.

Given the alphabet Σ of size σ, in the following, we denote by ΠΣ the set
of σ! permutations of the alphabet symbols. Two important permutations
are distinguished in ΠΣ: the identity permutation Id corresponding to the
lexicographic order, and the reverse permutation Rev corresponding to the
reverse lexicographic order. We consider generalized lexicographic orders
introduced in [46] (cf. also [11]) that, for the purposes of this paper, can be
formalized as follows.

Definition 4.1. Given a k-tuple K = (π0, π1, . . . , πk−1) of elements of ΠΣ,
we denote by �K the lexicographic order such that given two words of the
same length x = x0x1 · · ·xs−1 and y = y0y1 · · · ys−1 it is x �K y if and only

7

if x = y or xi <i yi where i is the smallest index such that xi 6= yi, and <i is
the lexicographic order induced by the permutation πi mod k. Without loss of
generality, we can assume π0 = Id.

Using the above definition, a class of generalized BWT s can be defined
as follows:

Definition 4.2. Given a k-tuple K = (Id, π1, . . . , πk−1) of elements of ΠΣ,
we denote by BWTK the transformation mapping a primitive word w to the
last column L of the matrix MK(w) containing the cyclic rotations of w sorted
according to the lexicographic order �K. The output of BWTK applied to w
is the pair (bwtK(w), I), where bwtK(w) is the last column L of the matrix
and I is the row of MK(w) containing the word w.

Note that for K = (Id), BWTK is the usual BWT , while for K =
(Id,Rev), BWTK coincides with the ABWT defined in Section 3.

Remark 4.3. For most applications, it is assumed that the last symbol of
w is a unique end-of-string marker smaller than each symbol of the alphabet
Σ. Under this assumption, lexicographically sorting w’s cyclic rotations is
equivalent to building the suffix tree [31, 26] for w, which can be done in
linear time. In this setting, we can compute bwtK(w) in linear time: we do
a depth-first visit of the suffix tree in which the children of each node are
visited in the order induced by K. In other words, the children of each node
v are visited according to the order π|v| mod k where |v| is the string-depth1 of
node v. Since the suffix tree has O(|w|) nodes, for a constant alphabet the
whole procedure takes linear time.

The next result proved in [23] guarantees that the transformations BWTK
are invertible. As we specify in the next section, the inversion procedure for
ABWT is more efficient.

Theorem 4.4. For every k-tuple K = (Id, π1, . . . , πk−1) the transformation
BWTK is invertible in O(n3) time, where n = |w|.

Note that recently [24], the complexity for the inversion of a generic
transformation in BWTK has been improved to O(n2) time.

The following theorem proved in [23] shows that each transformation
BWTK produces a number of equal-letter runs that is at most the double
of the number of equal-letter runs of the input word. This fact generalizes a
result proved for BWT [36].

1The number of letters in the word obtained by concatenating the labels of the edges
in the path from the root of the suffix tree to the node v

8

Theorem 4.5. Given a k-tuple K = (Id, π1, . . . , πk−1) and a word w over a
finite alphabet Σ, then

ρ(bwtK(w)) ≤ 2ρ(w).

A key property of BWT is that it allows to reduce the problem of com-
pressing a string w up to its r-th order entropy to the problem of compress-
ing a collection of factors of bwt(wR) up to their 0-th order entropy, where
wR is the reverse of the word w. This means that a BWT -based compres-
sor combining BWT with a zero order (memoryless) compressor, is able to
achieve the same high order compression typical of more complex tools such
as Lempel-Ziv encoders. In [23], we prove that a similar result also holds for
the transformation BWTK .

Theorem 4.6. Let K be a k-tuple and u = bwtK(wR), where wR is the
reverse of the word w. For each positive integer r, there exists a factorization
of u = u1u2 . . . um such that

Hr(w) =
1

|u|

m∑
i=1

|ui|H0(ui).

More in particular, experimental results reported in [23] show that the
behavior of the transformations BWT and ABWT is essentially equivalent
in terms of size of compressed representation.

5. Rank-invertible transformations

It is well known that the key to efficiently compute the inverse of orig-
inal BWT is the existence of a easy-to-compute permutation mapping, in
the matrix Mlex(w), a row index i to the row index LF (i) containing row i
right-shifted by one position. This permutation is called LF -mapping since,
by Proposition 3.2, LF (i) is the position in the first column F of Mlex(w)
corresponding to the i-th entry in column L: in other words, F [LF (i)] is the
same symbol in w as L[i]. Again, by Proposition 3.2 we have that L[LF (i)]
is the symbol preceding L[i] in the input word w. Define LF 0(x) = x and
LF j+1(x) = LF (LF j(x)). If bwt(w) = (L, I) with |w| = n, then by con-
struction L[I] = wn−1 and we can recover w with the formula:

wn−1−j = L[LF j(I)] (1)

Note that the inversion formula (1) only depends on Properties 1 and 2 of
Proposition 3.2. Since such properties hold for every generalized transforma-
tion BWTK , (1) provides an inversion formula for every transformation in

9

that class. In other words, inverting a generalized BWT amounts to com-
puting n iterations of the LF -mapping.

By Property 3a in Proposition 3.2, the LF -mapping for the original BWT
can be expressed using the Parikh vector PL of L and a rank operation over L:

LF (i) =

c<L[i]∑
c∈Σ

PL[c] + rankL[i](L, i− 1) (2)

Note that
∑c<L[i]

c∈Σ PL[c] is simply the total number of occurrences of symbols
smaller than L[i] in L, and rankL[i](L, i− 1) is the number of occurrences of
symbol L[i] in among the first i symbols of L.

By Property 3b in Proposition 3.2, for the ABWT , the corresponding
formula is:

LF (i) =

c≤L[i]∑
c∈Σ

PL[c] − rankL[i](L, i− 1)− 1 (3)

Since the rank operation on (compressed) arrays over finite alphabet can be
computed in constant time [1] and the partial sums

∑
c<i PL[c] can be pre-

computed, the computation of the LF map for both the BWT and ABWT
takes O(1) time. This implies that, thanks to the simple structure of its
LF -mapping, also the ABWT can be inverted in linear time.

The computation of the LF map is the main operation also for the so-
called backward-search procedure which makes it possible to use (a com-
pressed version of) bwt(w) as a full text index for w [18]. The following
proposition is the key to generalize the backward search procedure to the
ABWT .

Proposition 5.1. Given a string p ∈ Σ∗, let [b, e] denote the range of rows
of Malt(w) which are prefixed by p. For any x ∈ Σ, let

b′ =

c≤x∑
c∈Σ

PL[c] − rankx(L, e− 1)− 1, e′ =

c≤x∑
c∈Σ

PL[c] − rankx(L, b).

If b′ ≤ e′, then [b′, e′] is the range of rows of Malt(w) which are prefixed by
xp if b′ > e then no rows of Malt(w) are prefixed by xp and therefore xp is
not a (circular) substring of w.

Proof. Assume first b′ ≤ e′. It is immediate that if i, j are the positions
of the first and last x’s in L[b, e], then b′ = LF (j) and e′ = LF (i) and
every other x in L[b, e] is mapped to a position between b′ and e′. The
thesis follows since all rows in Malt(w) are rotations of w. If b′ > e, then
rankx(L, e − 1) = rankx(L, b) and there are no x’s in L[e, b] and xp is not a
circular substring of w. 2

10

Proposition 5.1 implies that if we use a compressed representation of the
last columns L of Malt(w) supporting constant time rank operations, then,
for any pattern p, we can compute in O(|p|) time the range of rows of the
matrix Mlex(w) which are prefixed by p. Hence, the ABWT can be used as
a compressed index in the same way as the BWT .

The above results suggest that it is worthwhile to search for other trans-
formations in the class BWTK which share the same properties of BWT and
ABWT . Because of the important role played by the rank operation, we
introduce the notion of rank-invertibility for the class of BWTK transforma-
tions.

Definition 5.2. The transformation BWTK is rank-invertible if there exists
a function fK such that, for any word w, setting L = bwtK(w) we have

LF (i) = fK(PL, L[i], rankL[i](L, i)).

In other words, LF (i) only depends on the Parikh vector PL of L, the symbol
L[i], and the number of occurrences of L[i] in L up to position i.

Note that we pose no limit to the complexity of the function fK , we only ask
that it can be computed using only PL and the number of occurrences of L[i]
in L[0, i].

We observed that, for K = (Id,Rev), BWTK coincides with ABWT and
it is therefore rank-invertible. The main result of this section is Theorem
5.9 establishing that BWT and ABWT are the only rank-invertible trans-
formations in the class BWTK . We start our analysis considering the case
|K| = 2.

Lemma 5.3. Let Σ = {a, b, c}, and K = (Id, π), where π is a permutation
of Σ. If there exist two pairs t1 = (x, y) and t2 = (z, w) of symbols of Σ such
that

x <Id y, z <Id w and x <π y, z >π w,

then BWTK is not rank-invertible.

Proof. Consider for example the case π = (c, a, b). Two pairs satisfying
the hypothesis are t1 = (a, b) and t2 = (b, c) since according to the ordering
<π it is

a <π b and b >π c.

Consider now the two words s1 = aabcc and s2 = abacc. Both words
contain two a’s. In the first word the a’s are followed respectively by a, b
(the symbols in t1), and in s2 the a’s are followed by b, c (the symbols in t2).

11

Let F1, L1 (resp. F2, L2) denote the first and last columns of the matrix
MK associated to bwtK(s1) (resp. bwtK(s2)). By definition, each matrix is
obtained sorting the cyclic rotations of s1 and s2 according to the lexico-
graphic order ≺K where symbols in odd positions are sorted according to the
usual alphabetic order, while symbols in even positions are sorted according
to the ordering π. We show the two matrices in Figure 2, where we use
subscripts to distinguish the two a’s occurrences in s1 and s2.

The relative position of the two a’s in L1 is determined by the symbols
following them in s1, namely those in t1 = (a, b). Since these symbols are in
the first column of the cyclic rotations matrix, which is sorted according to
the usual alphabetic order, the two a’s appear in L1 in the order a1, a2. The
same is true for L2: since the pair t2 is also sorted, the two a’s appear in L2

in the order a1, a2.
The position of the two a’s in F1 is also determined by the symbols

following them in s1; but since these symbols are now in the second column,
their relative order is determined by the ordering π. Hence the two a’s appear
in F1 in the order a1, a2. In F2 the ordering of the a’s is a2, a1 since it depends
on the π-ordering of the symbols of t2 which by construction is different than
their Id-ordering.

Note that s1 and s2 have the same Parikh vector 〈2, 1, 2〉. If, by contra-
diction, BWTK were rank invertible, the function fK should give the correct
LF-mapping for both s1 and s2. This is impossible since for s1 we should
have

fK(〈2, 1, 2〉, a, 1) = 1, fK(〈2, 1, 2〉, a, 2) = 2,

while for s2 we should have

fK(〈2, 1, 2〉, a, 1) = 2, fK(〈2, 1, 2〉, a, 2) = 1.

In the general case of an arbitrary permutation π satisfying the hypothesis
of the lemma the reasoning is the same. Note that such permutations are
(a, c, b), (b, a, c), (b, c, a) and (c, a, b). Given the two pairs t1 and t2 we build
two words s1 and s2 with Parikh vector 〈2, 1, 2〉 such that in s1 (resp. s2)
the two occurrences of a are followed by the symbols in t1 (resp. t2). We
then build the rotation matrices as before, and we find that in both L1 and
L2 the two a’s are in the order a1, a2. However, in columns F1 and F2 the
two a’s are not in the same relative order since it depends on the ordering
π, and, by construction, such an order is not the same. Reasoning as before,
we get that there cannot exist a function fK giving the correct LF-mapping
for both s1 and s2. 2

12

F1 L1

↓ ↓
s1 → a1 a2 b c c

a2 b c c a1

b c c a1 a2

c c a1 a2 b
c a1 a2 b c

F2 L2

↓ ↓
a2 c c a1 b

s2 → a1 b a2 c c
b a2 c c a1

c c a1 b a2

c a1 b a2 c

Figure 2: Cyclic rotation matrices for the words s1 and s2. We use subscripts to distinguish
the two occurrences of a in each word.

Lemma 5.4. Let |Σ| ≥ 2 and K = (Id, π). Then BWTK is rank-invertible
if and only if π = Id or π = Rev.

Proof. If |Σ| = 2 the result is trivial since the only possible permutations
on binary alphabet are the identity and reverse permutation. Let us assume
|Σ| ≥ 3. We need to prove that if π 6= Id and π 6= Rev then BWTK is not
rank-invertible.

Note that any permutation π over the alphabet Σ induces a new ordering
on any triplet of symbols in Σ. For example, if Σ = {a, b, c, d, e, f} the
permutation π = (d, e, c, f, a, b) induces on the triplet {a, b, c} the ordering
πabc = (c, a, b). It is easy to prove that, if π 6= Id and π 6= Rev, then there
exists a triplet {x, y, z}, with x < y < z, such that πxyz 6= (x, y, z) and
πxyz 6= (z, y, x). That is, π restricted to {x, y, z} is different from the identity
and reverse permutation. Without loss of generality we can assume that the
triplet is {a, b, c}.

For any permutation πabc, different from (a, b, c) and (c, b, a), there exist
two pairs of symbols satisfying the hypothesis of Lemma 5.3. Hence, we can
build two words s1 and s2 which show that BWTK is not rank-invertible.
Note that the argument in the proof of Lemma 5.3 is still valid if we add
to s1 and s2 the same number of occurrences of symbols in Σ different from
a, b, c so that s1 and s2 are effectively over an alphabet of size |Σ|. 2

Lemma 5.4 establishes which BWTK transformations are rank-invertible
when |K| = 2. To study the general case |K| > 2, we start by establishing a
simple corollary.

Corollary 5.5. Let |Σ| ≥ 3 and K = (Id, π, π2, . . . , πk−1). If π 6= Id and
π 6= Rev then BWTK is not rank-invertible.

Proof. We reason as in the proof of Lemma 5.4, observing that the presence
of the permutations π2, . . . , πk−1 has no influence on the proof since the row
ordering is determined by the first two symbols of each rotation. 2

13

The following three lemmas establish necessary conditions on the struc-
ture of the tuple K for BWTK to be rank-invertible. In particular, the
following lemma shows that BWTK is not rank-invertible if K contains any-
where a triplet (Id, Id, π) with π 6= Id.

Lemma 5.6. Let |Σ| ≥ 2 and K = (π0, π1, . . . , πk−1) such that π0 = Id and,
for some 0 ≤ i ≤ k−1, (πi, π(i+1) mod k, π(i+2) mod k) = (Id, Id, π) with π 6= Id.
Then BWTK is not rank-invertible.

Proof. Note that when i = 0, the k-tupleK starts with the triplet (Id, Id, π),
when i = k − 1 the k-tuple K is (Id, π, . . . , Id). We first analyze the case
|Σ| = 2 implying that π = Rev. Let us consider the words s1 = a1b

ia2b
i+1bb

and s2 = a1b
i+1a2b

i+1b, where we use subscripts to distinguish the two differ-
ent occurrences of the symbol a. It is easy to see that, in the cyclic rotations
matrix for s1, a1 precedes a2 in both the first and the last column. Hence if
BWTK were rank-invertible we should have

fK(〈2, 2i+ 3〉, a, 1) = 1, fK(〈2, 2i+ 3〉, a, 2) = 2.

At the same time, in the cyclic rotations matrix for s2, a1 precedes a2 in the
last columns, but in the first column a2 precedes a1 since the two rotations
prefixed by a differ in the (i + 2)-th column and b <Rev a. Therefore we
should have

fK(〈2, 2i+ 3〉, a, 1) = 2, fK(〈2, 2i+ 3〉, a, 2) = 1.

Hence BWTK cannot be rank-invertible.
Let us consider the case |Σ| ≥ 3. Since π 6= Id there are two symbols, say

b and c, such that their relative order according to π is reversed, that is, b < c
and c <π b. Consider now the words s1 = a1c

iba2c
iccc and s2 = a1c

i+1ba2c
i+1c

where we use subscripts to distinguish the two different occurrences of the
symbol a. It is immediate to see that, in the cyclic rotations matrix for s1,
a1 precedes a2 in both the first and the last column. Hence if BWTK were
rank-invertible we should have

fK(〈2, 1, 2i+ 3〉, a, 1) = 1, fK(〈2, 1, 2i+ 3〉, a, 2) = 2.

At the same time, in the cyclic rotations matrix for s2, a1 precedes a2 in the
last columns, but in the first column a2 precedes a1 since the two rotations
prefixed by a differ in the (i + 3)-th column and c <π b. Hence we should
have

fK(〈2, 1, 2i+ 3〉, a, 1) = 2, fK(〈2, 1, 2i+ 3〉, a, 2) = 1

hence BWTK cannot be rank-invertible. 2

14

The following lemma shows that BWTK is not rank-invertible if K con-
tains anywhere a triplet (Id,Rev, π), with π 6= Id.

Lemma 5.7. Let |Σ| ≥ 2 and K = (π0, π1, . . . , πk−1) such that π0 = Id and,
for some 0 ≤ i < k − 2, (πi, πi+1, πi+2) = (Id,Rev, π) with π 6= Id. Then
BWTK is not rank-invertible.

Proof. As in the proof of Lemma 5.6, we can consider the words s1 =
a1b

ia2b
i+1bb and s2 = a1b

i+1a2b
i+1b in case of binary alphabet, and the words

s1 = a1c
iba2c

iccc and s2 = a1c
i+1ba2c

i+1c in the general case by assuming that
there are two symbols, say b and c, such that their relative order according
to π is reversed, that is, b < c and c <π b. Recall that we use subscripts
to distinguish the two different occurrences of the symbol a. In the cyclic
rotations matrix for s1, in the first column a2 precedes a1 while in the last
column a1 precedes a2. At the same time, in both the first and the last
column of the cyclic rotations matrix for s2, a2 precedes a1. Reasoning as in
the proof of Lemma 5.6 we get that BWTK cannot be rank-invertible. 2

The following lemma shows that BWTK is not rank-invertible if K con-
tains anywhere a triplet (Rev, Id, π), with π 6= Rev.

Lemma 5.8. Let |Σ| ≥ 2 and K = (π0, π1, . . . , πk−1) such that π0 = Id
and, for some 1 ≤ i ≤ k − 1, (πi, π(i+1) mod k, π(i+2) mod k) = (Rev, Id, π) with
π 6= Rev. Then BWTK is not rank-invertible.

Proof. We reason as in the proof of Lemma 5.7 considering again the words
s1 = abiabi+1bb and s2 = abi+1abi+1b in case of binary alphabet and the words
s1 = acibaciccc and s2 = aci+1baci+1c in the general case. 2

We are now ready to establish the main result of this section.

Theorem 5.9. If |Σ| ≥ 2, BWT and ABWT are the only transformations
BWTK which are rank invertible.

Proof. For |K| = 2, the result follows from Lemma 5.4. Let us suppose
K = (Id, π1, . . . , πk−1) with k > 2 and assume BWTK is rank invertible.
Both in the case of binary alphabet and in the general case, by Corollary
5.5, we must have π1 = Id or π1 = Rev. If π1 = Id and BWTK 6= BWT
then the k-tuple K must contain the triplet (Id, Id, π) with π 6= Id which is
impossible by Lemma 5.6. If π1 = Rev, by Lemma 5.7 π2 = Id. We have
therefore established that K has the form K = (Id,Rev, Id, π3, . . . , πk−1).
We can suppose that k > 3. In fact, if were k = 3 then, by Lemma 5.8,
K would cyclically contain the triplet (Rev, Id, Id), so BWTK would not be
rank-invertible, a contradiction. By Lemma 5.8 it is π3 = Rev. By iterating
the same reasoning we can conclude that k is even and BWTK coincides with
ABWT , concluding the proof. 2

15

6. Efficient computation of the ABWT

The bottleneck for the computation of ABWT (as well as of any transfor-
mation BWTK) of a given string w is the �alt-based (the �K-based) sorting
of its cyclic rotations. In Remark 4.3 we have observed that, if a unique
end-of-string symbol, which is smaller than any other symbol in the alpha-
bet, is appended to the input string, all transformations in the class BWTK
can be computed in linear time by first building the suffix tree for the input
string. However, for computing the BWT this strategy has never been used
in practice. The reason is that the algorithms for building the suffix tree,
although they take linear time, have a large multiplicative constant and are
not fast in practice. In addition, the suffix tree itself requires a space of about
ten/fifteen times the size of the input which is a huge amount of temporary
space that is not necessarily available (considering also that saving space is
the primary reason for using the BWT). For the above reasons the BWT
is usually computed by first building the Suffix Array [27, 40] which is the
array giving the lexicographic order of all the suffixes of the input string.

A fundamental result on Suffix Array construction is the technique in [28]
that, using the concept of difference cover, makes it possible to design efficient
Suffix Array construction algorithms for different models of computation in-
cluding RAM, External Memory, and Cache Oblivious.

In this section, we show that this technique can be adapted to compute
the ABWT within the same time bound of the BWT .

Firstly, in order to use the notion of suffix array for the computation of
ABWT we need to extend the definition of alternating lexicographic order
also for strings having different length.

Definition 6.1. Let x = x0x1 . . . xs−1 and y = y0y1 . . . yt−1 with s < t.

1. If x is not a prefix of y and i is the smallest index in which xi 6= yi
Then, if i is even x ≺alt y iff xi < yi. Otherwise, if i is odd x ≺alt y iff
xi > yi.

2. If x is a prefix of y, we say that x ≺alt y if |x| is even, y ≺alt x if |x| is
odd.

Suffix array algorithms often assume that the input string ends with a
unique end-of-string symbol smaller than any other in the alphabet Σ. Re-
mark that if we append the end-of-string symbol $ to the string w, the
≺alt-order relation between two suffixes of w$ is determined by using Defi-
nition 6.1 (case 1). Moreover, using the end-of-string symbol $ implies that
the �alt-based sorting of the cyclic rotations of input string is induced by
the ≺alt-based sorting of its suffixes. Note that this property does not hold

16

Algorithm 1 Difference cover suffix sorting.

Input: A string w of length n and a modulo-v difference cover D
Output: w’s suffixes in lexicographic order

1: Consider the (n|D|)/v suffixes w[i, n−1] starting at positions i such that
i mod v ∈ D. These suffixes are called the sampled suffixes.

2: Recursively sort the sampled suffixes
3: Sort non-sampled suffixes
4: Merge sampled and non-sampled suffixes

in general. However, it is easy to verify that, apart from the symbol $, the
output abwt(w$) may be different from abwt(w) and the number of equal
letter runs can be different (see Figure 4).

Here we assume that the input string w contains a unique end-of-string
symbol $, but, in the next section, we show how to remove this hypothesis by
using combinatorial properties of some special rotations of the input string.

To illustrate the idea behind difference cover algorithms, in the following,
given a positive integer v, we denote by [0, v) the set {0, 1, . . . , v − 1}.

Definition 6.2. A set D ⊆ [0, v) is a difference cover modulo v if every
integer in [0, v) can be expressed as a difference, modulo v, of two elements
of D, i.e.

{(i− j) mod v | i, j,∈ D} = [0, v).

For example, for v = 7 the set {0, 1, 3} is a difference cover, since 0 = 0−0,
1 = 1 − 0, 2 = 3 − 1, 3 = 3 − 0, 4 = 0 − 3 mod 7, and so on. An algorithm
by Colbourn and Ling [6] ensures that for any v a difference cover modulo v
of size at most

√
1.5v + 6 can be computed in O(

√
v) time. The suffix array

construction algorithms described in [28] are based on the general strategy
shown in Algorithm 1. Steps 3 and 4 rely heavily on the following property
of Difference covers: for any 0 ≤ i, j < n there exists k < v such that
(i + k) mod v ∈ D and (j + k) mod v ∈ D. This implies that to compare
lexicographically suffixes w[i, n− 1] and w[j, n− 1] it suffices to compare at
most v symbols since w[i + k, n − 1] and w[j + k, n − 1] are both sampled
suffixes and their relative order has been determined at Step 2.

To see how the algorithm works consider for example v = 6, D = {0, 1, 3}
and the string w = abaacabaacab$. The sampled suffixes are those start-
ing at positions 0, 1, 3, 6, 7, 9, 12. To sort them, consider the string over Σv

whose elements are the v-tuples starting at the sampled positions in the order
0, 6, 12, 1, 7, 3, 9:

R[0, 6] =
w[0,5]

abaaca
w[6,11]

baacab
w[12,18]

$$$$$$
w[1,6]

baacab
w[7,12]

aacab$
w[3,8]

acabaa
w[9,14]

cab$$$

17

(note we have added additional $’s to make sure all blocks contain v sym-
bols). The difference cover algorithm then renames each v-tuple with its
lexicographic rank. Since

$$$$$$ �lex aacab$ �lex abaaca �lex acabaa �lex baacab �lex cab$$$

the renamed string is Rbwt = [2, 4, 0, 4, 1, 3, 5]. The crucial observation is that
the suffix array forRbwt, which in our example is SA(Rbwt) = [2, 4, 0, 5, 1, 3, 6],
provides the lexicographic ordering of the sampled suffixes. Indeed R[2] =
w[12, 18] is the smallest sampled suffix, followed by R[4] = w[7, 12], followed
by R[0] = w[0, 5], and so on. The Suffix Array of Rbwt is computed with a
recursive call at Step 2, and is later used in Steps 3 and 4 to complete the
sorting of all suffixes.

To compute abwt(w) with the difference cover algorithm, we consider the
same string R but we sort the v-tuples according to the alternating lexico-
graphic order. Since

$$$$$$ �alt acabaa �alt abaaca �alt aacab$ �alt baacab �alt cab$$$

it is Rabwt = [2, 4, 0, 4, 3, 1, 5]. Next, we compute the Suffix Array of Rabwt

according to the standard lexicographic order, SA(Rabwt) = [2, 5, 0, 4, 1, 3, 6].
We now show that, since v = 6 is even, SA(Rabwt) provides the correct
alternating lexicographic order of the sampled suffixes.

To see this, assume w[i, n − 1] and w[j, n − 1] are sampled suffixes with
a common prefix of length `. Hence w[i, i + ` − 1] = w[j, j + ` − 1] while
w[i + `] 6= w[j + `]. Let Rabwt[ti] and Rabwt[tj] denote the entries in Rabwt

corresponding to w[i, i + v − 1] and w[j, j + v − 1]. By construction, the
suffixes Rabwt[ti, r] and Rabwt[tj, r] have a common prefix of b`/vc entries
(each one corresponding to a length-v block in w) followed respectively by
Rabwt[ti+b`/vc] and Rabwt[tj+b`/vc] which are different since they correspond
to the v-tuples R[ti + b`/vc] and R[tj + b`/vc] which differ since they contain
the symbols w[i+`] and w[j+`] in position (` mod v). Assuming for example
that w[i+ `] < w[j+ `], it is w[i, n−1] ≺alt w[j, n−1] depending on whether
` is odd or even. Since v is even, ` is even iff ` mod v is even, hence

w[i, n− 1] ≺alt w[j, n− 1]⇐⇒ R[ti + b`/vc] �alt R[tj + b`/vc]
⇐⇒ Rabwt[ti + b`/vc] < Rabwt[tj + b`/vc]
⇐⇒ Rabwt[ti, r] �lex Rabwt[tj, r]

which shows that the standard Suffix Array for Rabwt provides the alternating
lexicographic order of the sampled suffixes, as claimed.

18

Summing up, after building the string Rabwt, at Step 2 we compute
SA(Rabwt) using the standard Difference cover algorithm, or any other suffix
sorting algorithm. Finally, Step 3 and 4 can be easily adapted to the alter-
nating lexicographic order using its property that for any symbol c ∈ Σ and
strings α, β ∈ Σ∗ it is

cα ≺alt cβ ⇐⇒ β ≺alt α. (4)

For example, to compare w[0, 12] with w[5, 12] we notice that after w[0] =
w[5] we reach the sampled suffixes w[1, 12] and w[6, 12] corresponding to
R[3, 6] and R[1, 6]. According to SA(Rabwt) it is R[1, 6] �lex R[3, 6] which
implies w[6, 12] ≺alt w[1, 12], and by (4) w[0, 12] �lex w[5, 12]. Since from
the alternating lexicographic order of w’s suffixes abwt(w) can be computed
in linear time, the results in [28] can be translated as follows.

Theorem 6.3. Given a string w[0, n−1] ending with a unique end-of-string
symbol, we can compute abwt(w) in RAM in O(n) time, or in O(n log log n)
time but using only n + o(n) words of working space. In external memory,
using D disks with block size B and a fast memory of size M , abwt(w) can be
computed in O(n

DB
logM/B n/B) I/Os and O(n logM/B n/B) internal work.

We point out that the above results cannot be easily extended to the
generalized BWTs introduced in Section 4. The reason is that Step 3 and 4
of the modified Difference cover algorithm hinge on Property (4) that does
not hold in general for the lexicographic orders introduced by Definition 4.1.

7. Galois words and ABWT computation for arbitrary rotations

Galois words, introduced in [46], are generalization of Lyndon words for
the alternating lexicographic order. Roughly speaking, a Galois word is the
smallest cyclic rotation within its conjugacy class, with respect to �alt order.
Some characterizations of Galois words by using infinite words and some
properties of words obtained as a nonincreasing factorization in Galois words,
are studied in [11]. Although, in general, Galois and Lyndon words are
distinct within a conjugacy class, some properties that hold for Lyndon words
are preserved.

In this section, we explore some combinatorial properties of Galois words
and, in particular, we consider the issue of designing an efficient strategy to
find the Galois rotation of a given word, as posed in [11]. The problem can
be solved by two different approaches. In the first approach we show how
to find the Galois rotation directly using specific combinatorial properties
of Galois words. The second approach, suggested by one of the Reviewers

19

of this paper, is outlined in Remark 7.8 and uses similar arguments as in
Section 6, by reducing the problem to compute the Lyndon rotation of a new
word over a new alphabet obtained by encoding factors of even length.

Which ever of the two methods is used, the results of this section allow
to prove that, for the computation of the ABWT of a string w, Galois words
play a role similar to that of Lyndon words for BWT [25, 2], hence the
computation of ABWT can be linearly performed, even if no end-of-string
symbol is appended to the input.

Definition 7.1. A primitive word w is a Galois word if for each nontrivial
factorization w = uv, one has w �alt vu.

Example 7.2. The words w = ababba and v = aababb are, respectively, the
Galois word and the Lyndon word within the same conjugacy class. Another
example is w = ababaa and v = aaabab.

Firstly, we show that a string w is a Galois word if it is smaller than its
proper suffixes, with respect to ≺alt order introduced in Definition 6.1 (see
Figure 3 for an example).

The following result has been proved in [46] (Proposition 3.1). Here we
restate the proof by using our notation.

Lemma 7.3. If a Galois word w has a border u, then u has odd length.

Proof. Let u be both suffix and prefix of w. This means that w = uv′ =
v′′u. By definition, w = uv′ ≺alt uv′′. If |u| would be even, then it should
be v′ ≺alt v′′. On the other hand, w = v′′u ≺alt v′u implies that v′′ ≺alt v′, a
contradiction. 2

Lyndon words can be defined as the strings that are smaller of its proper
suffixes. Such a characterization also holds for Galois words, as shown in
the following proposition. A different proof of this result, involving infinite
words, is given in [11].

Proposition 7.4. A primitive word w is a Galois word if and only if w is
smaller than any of its suffix, with respect to ≺alt order.

Proof. Let w be a Galois word and let v a suffix of w. This means that
w = uv. If v is also prefix of w, then by Lemma 7.3 v has odd length, i.e.
w ≺alt v. If v is not a prefix of w, then there exists 0 ≤ i < |v| − 1 such
that vi 6= wi. Since w is a Galois word, uv ≺alt vu. This fact implies that
w = uv ≺alt v. Conversely, let w = uv. Since uv ≺alt v, we can distinguish

20

two cases, whether v is prefix of w or not. If v is not a prefix of w then
uv ≺alt vu. If v is a prefix of w, then the length of v is odd. Therefore if it
would be vu ≺alt uv = vu′ then u′ ≺alt u that implies u′ ≺alt uv that is a
contradiction. 2

It is known that, when Lyndon words are considered, the lexicographic
sorting of its suffixes induces the �lex-sorting of the conjugates. Such a result
is useful to compute the BWT of a string without using any end-of-string
symbol [25]. The following proposition shows that this property also holds
for Galois words. In fact, the �alt-based sorting of the cyclic rotations of a
primitive Galois word can be reduced to the ≺alt-based sorting of its suffixes.
An example of this property is reported in Figure 3.

a b a b b a
a b b a a b
a a b a b b
b b a a b a
b a a b a b
b a b b a a

Malt(ababba)

a b a b b a
a b b a
a
b b a
b a
b a b b a

Suf(ababba)

a b a b b
a b b
a a b a b b
b b
b a b b
b

Suf(aababb)

Figure 3: Left: the matrix Malt of all cyclic rotations of the word ababba. Center: the ≺alt-
sorted suffixes of the Galois word ababba. Right: the ≺alt-sorted suffixes of the Lyndon
conjugate aababb. The ≺alt-order of the last two suffixes is different from the �alt-order
of the correspondent cyclic rotations.

Proposition 7.5. Let w be a primitive Galois word and let u′, u′′, v′, v′′ be
factors of w such that w = u′v′ = u′′v′′. Then, v′u′ ≺alt v′′u′′ ⇐⇒ v′ ≺alt v′′.

Proof. Let us assume that w′ = v′u′ ≺alt w′′ = v′′u′′. There exists 0 ≤
i < |w| such that w′i 6= w′′i . Firstly, let us assume that i < min{|v′|, |v′′|}.
In this case v′ ≺alt v′′. Let us assume now that v′ is a prefix of v′′, i.e.
v′′ = v′s, for some non-empty string s. If |v′| would be odd, then v′u′ ≺alt
v′′u′′ = v′su′′ ⇒ su′′ ≺alt u′ ⇒ su′′v′ ≺alt u′v′, that is a contradiction.
So, |v′| is even and by definition v′ ≺alt v′′. Let us consider the case v′′

is a prefix of v′, i.e. v′ = v′′t, for some string t. If |v′′| would be even
then v′′tu′ = v′u′ ≺alt v′′u′′ ⇒ tu′ ≺alt u′′ ⇒ tu′v′′ ≺alt u′′v′′, that is a
contradiction. So, |v′′| is odd then, by definition, v′ ≺alt v′′.

Conversely, let us suppose that v′ ≺alt v′′. If neither v′ is prefix of v′′ nor
v′′ is prefix of v′, then v′u′ ≺alt v′′u′′. Let us suppose now that v′ is prefix of

21

Algorithm 2 FindGaloisRotation

Input: A primitive string w of length n
Output: The starting position 0 ≤ k < n of the cyclic rotation of w that is
a Galois word

1: i← 0; j ← 1; k ← 0;
2: B[0]← −1;
3: while k + j < 2n do
4: if j ≤ n then B[j]← i;

5: while i ≥ 0 and w[(k + j) mod n] 6= w[(k + i) mod n] do
6: if i mod 2 = 0 then
7: if w[(k + j) mod n] < w[(k + i) mod n] then
8: k ← k + j − i; j ← i;

9: else
10: if w[(k + j) mod n] > w[(k + i) mod n] then
11: k ← k + j − i; j ← i;

12: i← B[i];

13: i← i+ 1; j ← j + 1;

14: return k

v′′, i.e. v′′ = v′s then v′ has even length. Since w is a Galois word, u′v′ ≺alt
su′′v′ ⇒ u′ ≺alt su′′ ⇒ v′u′ ≺alt v′su′′ = v′′u′′. Let us suppose now that v′′ is
prefix of v′, i.e. v′ = v′′t then v′′ has odd length. The fact that w is a Galois
word implies that u′′v′′ ≺alt tu′v′′ ⇒ u′′ ≺alt tu′ ⇒ v′′tu′ = v′u′ ≺alt v′′u′′. 2

It is known that the unique Lyndon conjugate of a string w is one of the
elements in the non-increasing factorization of ww into Lyndon words [12].
As proved in [11], this strategy does not work for Galois words. Hence, we
propose a linear time algorithm, named FindGaloisRotation, to find, for
each primitive string w of length n, its unique cyclic rotation that is a Galois
word. Our algorithm is a variant of the one in [3, 31] to find the Lyndon
conjugate of a given string. The algorithm FindGaloisRotation uses a
border array B of length n+ 1 that stores in each position j > 0 the length
of the border of the j-length prefix of w[k, (k+ j− 1) mod n], i.e. the Galois
rotation starting at position k, and B[0] = −1. At the end of the algorithm,
B is the border array of the Galois rotation of the word.

At each iteration of the main while loop (lines 3–13), k is the starting
position of the current candidate for the smallest cyclic rotation (with respect
to �alt order), w[k, (k + j − 1) mod n] is a Galois word and B[j] = i is the
length of its border. This means that w[k, (k + i − 1) mod n] = w[(k + j −
i), (k+j−1) mod n]. So, the characters w[(k+i) mod n] and w[(k+j) mod n]

22

are compared. If those characters are equal, the length of the border is
increased. If they are distinct, different alphabet orders are used depending
on whether i is even or not, and the value of k is consequently updated. Note
that, even if k is changed, the computed value B[j + 1] is the same and the
values B[i], with i ≤ j, do not need to be re-computed.

Theorem 7.6. Given a primitive string w, its unique cyclic rotation that is
a Galois word can be computed in linear time and space.

Proof. We note that the auxiliary memory consists solely of the border
array and that the execution time depends linearly on the number of com-
parisons between the characters in w. To prove that FindGaloisRotation
requires at most 4n − 3 comparisons, we consider the quantity 2(k + j) − i
and show that it always increases after each comparison between the charac-
ters w[(k + j) mod n] and w[(k + i) mod n]. If the two characters are equal,
then both i and j are increased by one at Line 13. If the two characters are
different, then the quantity k + j remains unchanged and the value of i is
decreased. Finally, note that if n ≥ 2, the quantity 2(k + j)− i is equal to 2
for the first comparison and it is at most 2(2n− 1), so the overall number of
comparisons is at most 4n− 3 as claimed. 2

a n a n a b
a n a b a n
a b a n a n
b a n a n a
n a b a n a
n a n a b a

Malt(banana)

$ b a n a n a
a n a n a $ b
a n a $ b a n
a $ b a n a n
b a n a n a $
n a $ b a n a
n a n a $ b a

Malt(banana$)

$ a n a n a b
a n a n a b $
a n a b $ a n
a b $ a n a n
b $ a n a n a
n a b $ a n a
n a n a b $ a

Malt(ananab$)

Figure 4: Left: the matrix Malt of all cyclic rotations of the word w = banana, sorted by
using �alt-order. The output is abwt(w) = bnnaaa. Center: the matrix Malt of the word
banana$. The output is abwt(banana$) = abnn$aa. Right: the matrix Malt of the word
ananab$, where ananab is the Galois conjugate of w. The output is abwt(ananab$) =
b$nnaaa.

The next corollary shows how to use the linear computation of the Galois
rotation of a word to compute in linear time the ABWT of an input string
without using any end-of-string symbol.

Corollary 7.7. The ABWT of a generic string w can be computed in linear
time.

23

Proof. We apply FindGaloisRotation to w to find its Galois conjugate
w′. Then we apply to w′$ the algorithm described in Section 6. By using
Remark 3.1, we can deduce that abwt(w) can be obtained from abwt(w′$) by
just removing $ from the output (see Figure 4 for an example). 2

Remark 7.8. An alternative lightweight strategy to compute the Galois ro-
tation of a word consists in reducing the problem to find a Lyndon rotation
of a new word, reasoning as in Section 6. More in details, if |w| is odd, we
can split w′ = ww into blocks of two characters and create a new word w′′ of
length |w| over a new alphabet of size σ2. Each cyclic rotation of w corre-
sponds to a cyclic rotation of w′′. The order on the new alphabet is given by
the �alt-order on the new alphabet. If |w| is even, we can find the smallest
cyclic rotation that starts at an odd position and the smallest cyclic rotation
that starts at an even position, and then compare them (in linear time). In
both cases, we can consider blocks of two characters. By using an efficient
algorithm to compute Lyndon rotations [49], such a strategy can be performed
in linear time and constant space.

The previous remark shows that the problem of finding the Galois rota-
tion of a word can be reduced to compute Lyndon rotations of new words
by using lexicographic order. It would be interesting to investigate whether
similar strategies can be applied for the efficient computation of other gen-
eralized BWT s.

8. Conclusions

We have investigated the relationship between two word transformations,
namely, BWT and ABWT . Our main contribution has been to establish a
deep connection and analogy between the two. In particular, we have shown
that the ABWT , that originates from purely combinatorial considerations,
can also be used in more practical settings such as Data Compression and
Compressed Data Structures. Our results are also based on combinatorial
properties of Galois words that are of independent interest.

Acknowledgements

The authors would like to thank both referees for comments and sugges-
tions that have helped us improve the presentation of our ideas. Referee 1
provided a particularly insightful set of comments and suggestions regarding
an alternative algorithm to compute the Galois rotations of a word.

RG and GM are partially supported by INdAM-GNCS project 2019 “In-
novative methods for the solution of medical and biological big data” and

24

MIUR-PRIN project “Multicriteria Data Structures and Algorithms: from
compressed to learned indexes, and beyond” grant n. 2017WR7SHH.

GR and MS are partially supported by the project MIUR-SIR CMACBioSeq
“Combinatorial methods for analysis and compression of biological sequences”
grant n. RBSI146R5L.

References

References

[1] D. Belazzougui and G. Navarro. Optimal lower and upper bounds for
representing sequences. ACM T. Algorithms, 11(4):31:1–31:21, 2015.

[2] S. Bonomo, S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. Sorting
conjugates and suffixes of words in a multiset. International Journal of
Foundations of Computer Science, 25(08):1161–1175, 2014.

[3] K. S. Booth. Lexicographically least circular substrings. Inf. Process.
Lett., 10(4/5):240–242, 1980.

[4] M. Burrows and D. J. Wheeler. A block sorting data compression algo-
rithm. Technical report, DIGITAL System Research Center, 1994.

[5] B. Chapin and S. Tate. Higher Compression from the Burrows-Wheeler
Transform by Modified Sorting. In DCC, page 532. IEEE Computer
Society, 1998. Full version available from https://www.uncg.edu/cmp/

faculty/srtate/papers/bwtsort.pdf.

[6] C. J. Colbourn and A. C. H. Ling. Quorums from difference covers. Inf.
Process. Lett., 75(1-2):9–12, 2000.

[7] A. Cox, M. Bauer, T. Jakobi, and G. Rosone. Large-scale compression
of genomic sequence databases with the Burrows-Wheeler transform.
Bioinformatics, 28(11):1415–1419, 2012.

[8] A.J. Cox, F. Garofalo, G. Rosone, and M. Sciortino. Lightweight LCP
construction for very large collections of strings. J. Discrete Algorithms,
37:17–33, 2016.

[9] M. Crochemore, J. Désarménien, and D. Perrin. A note on the Burrows-
Wheeler transformation. Theor. Comput. Sci., 332:567–572, 2005.

[10] J. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre, M. Lonard,
and . Prieur-Gaston. A survey of string orderings and their application
to the Burrows-Wheeler transform. Theor. Comput. Sci., 2017.

25

https://www.uncg.edu/cmp/faculty/srtate/papers/bwtsort.pdf
https://www.uncg.edu/cmp/faculty/srtate/papers/bwtsort.pdf

[11] F. Dolce, A. Restivo, and C. Reutenauer. On generalized Lyndon words.
Theor. Comput. Sci., 777:232–242, 2019.

[12] J.-P. Duval. Factorizing words over an ordered alphabet. J. Algorithms,
4(4):363–381, 1983.

[13] L. Egidi, F. A. Louza, G. Manzini, and G. P. Telles. External memory
BWT and LCP computation for sequence collections with applications.
Algorithms for Molecular Biology, 14(1):6:1–6:15, 2019.

[14] P. Fenwick. The Burrows-Wheeler transform for block sorting text com-
pression: Principles and improvements. Comput. J., 39(9):731–740,
1996.

[15] S. Ferenczi and L. Q. Zamboni. Clustering Words and Interval Ex-
changes. Journal of Integer Sequences, 16(2):Article 13.2.1, 2013.

[16] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting
textual compression in optimal linear time. J. ACM, 52(4):688–713,
2005.

[17] P. Ferragina and G. Manzini. Opportunistic data structures with appli-
cations. In FOCS 2000, pages 390–398. IEEE Computer Society, 2000.

[18] P. Ferragina and G. Manzini. Indexing compressed text. J. ACM,
52:552–581, 2005.

[19] P. Ferragina, I. Nitto, and R. Venturini. On Optimally Partitioning a
Text to Improve Its Compression. Algorithmica, 61(1):51–74, 2011.

[20] T. Gagie, G. Manzini, and J. Sirén. Wheeler graphs: A framework for
BWT-based data structures. Theor. Comput. Sci., 698:67–78, 2017.

[21] I. M. Gessel, A. Restivo, and C. Reutenauer. A bijection between words
and multisets of necklaces. Eur. J. Combin., 33(7):1537 – 1546, 2012.

[22] I. M. Gessel and C. Reutenauer. Counting permutations with given cycle
structure and descent set. J. Comb. Theory A, 64(2):189–215, 1993.

[23] R. Giancarlo, G. Manzini, A. Restivo, G. Rosone, and M. Sciortino.
Block Sorting-Based Transformations on Words: Beyond the Magic
BWT. In DLT, volume 11088 of LNCS, pages 1–17. Springer Inter-
national Publishing, 2018.

26

[24] R. Giancarlo, G. Manzini, G. Rosone, and M. Sciortino. A new class
of searchable and provably highly compressible string transformations.
In CPM, volume 128 of LIPIcs, pages 12:1–12:12. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2019.

[25] R. Giancarlo, A. Restivo, and M. Sciortino. From first principles to the
Burrows and Wheeler transform and beyond, via combinatorial opti-
mization. Theor. Comput. Sci., 387:236 – 248, 2007.

[26] D. Gusfield. Algorithms on Strings, Trees, and Sequences - Computer
Science and Computational Biology. Cambridge University Press, 1997.

[27] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construc-
tion. In Automata, Languages and Programming, volume 2719 of LNCS,
pages 943–955. Springer Berlin Heidelberg, 2003.

[28] J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array
construction. J. ACM, 53:918–936, 2006.

[29] K. Kimura and A. Koike. Ultrafast SNP analysis using the Burrows-
Wheeler transform of short-read data. Bioinformatics, 31(10):1577–
1583, 2015.

[30] H. Li and R. Durbin. Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics, 26(5):589–595, 2010.

[31] M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Math-
ematics and its Applications). Cambridge University Press, New York,
NY, USA, 2005.

[32] V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu. Genome-
Scale Algorithm Design: Biological Sequence Analysis in the Era of High-
Throughput Sequencing. Cambridge University Press, 2015.

[33] S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An extension of
the Burrows-Wheeler Transform. Theor. Comput. Sci., 387(3):298–312,
2007.

[34] S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. A new com-
binatorial approach to sequence comparison. Theory Comput. Syst.,
42(3):411–429, 2008.

[35] S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. Burrows-Wheeler
Transform and Run-Length Enconding. In Combinatorics on Words

27

- 11th International Conference, WORDS 2017. Proceedings, volume
10432 of LNCS, pages 228–239. Springer, 2017.

[36] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, and L. Versari. Mea-
suring the clustering effect of BWT via RLE. Theor. Comput. Sci.,
698:79–87, 2017.

[37] S. Mantaci, A. Restivo, and M. Sciortino. Burrows-Wheeler transform
and Sturmian words. Information Processing Letters, 86:241–246, 2003.

[38] S. Mantaci, A. Restivo, and M. Sciortino. Distance measures for bio-
logical sequences: Some recent approaches. Int. J. Approx. Reasoning,
47(1):109–124, 2008.

[39] G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM,
48(3):407–430, 2001.

[40] G. Manzini and P. Ferragina. Engineering a lightweight suffix array
construction algorithm. Algorithmica, 40:33–50, 2004.

[41] G. Navarro. Compact Data Structures - A Practical Approach. Cam-
bridge University Press, 2016.

[42] I. Pak and A. Redlich. Long cycles in abc-permutations. Functional
Analysis and Other Mathematics, 2:87–92, 2008.

[43] N. Prezza, N. Pisanti, M. Sciortino, and G. Rosone. SNPs detection by
eBWT positional clustering. Algorithms for Molecular Biology, 14(1):3,
2019.

[44] A. Restivo and G. Rosone. Burrows-Wheeler transform and palindromic
richness. Theor. Comput. Sci., 410(30-32):3018 – 3026, 2009.

[45] A. Restivo and G. Rosone. Balancing and clustering of words in the
Burrows-Wheeler transform. Theor. Comput. Sci., 412(27):3019 – 3032,
2011.

[46] C. Reutenauer. Mots de Lyndon généralisés 54. Sém. Lothar. Combin.,
pages 16, B54h, 2006.

[47] G. Rosone and M. Sciortino. The Burrows-Wheeler Transform be-
tween Data Compression and Combinatorics on Words. In The Nature
of Computation. Logic, Algorithms, Applications - 9th Conference on
Computability in Europe, CiE 2013. Proceedings, volume 7921 of LNCS,
pages 353–364. Springer, 2013.

28

[48] M. Schindler. A fast block-sorting algorithm for lossless data compres-
sion. In DCC, page 469. IEEE Computer Society, 1997.

[49] Y. Shiloach. Fast canonization of circular strings. J. Algorithms,
2(2):107–121, 1981.

[50] J. Simpson and S. J. Puglisi. Words with simple Burrows-Wheeler trans-
forms. Electronic Journal of Combinatorics, 15, article R83, 2008.

[51] L. Yang, X. Zhang, and T. Wang. The Burrows-Wheeler similarity dis-
tribution between biological sequences based on Burrows-Wheeler trans-
form. Journal of Theoretical Biology, 262(4):742–749, 2010.

29

	Introduction
	Preliminaries
	BWT and Alternating BWT
	Generalized BWTs: a synopsis
	Rank-invertible transformations
	Efficient computation of the ABWT
	Galois words and ABWT computation for arbitrary rotations
	Conclusions

