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Abstract: We discuss the main features of Generalized Continuous Time Bayesian Networks
(GCTBN) as a reliability formalism: we resort to a specific case study taken from the
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formalisms. From the modeling point of view, GTCBN can represent dependencies involving
system components, together with the possibility of a continuous time evaluation of the model.
From the analysis point of view, any task ascribable to a posterior probability computation
can be implemented, such as the computation of system unreliability, importance (sensitivity)
indices, system state prediction and diagnosis.
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1. INTRODUCTION

In reliability analysis, Bayesian Networks (BN) (Langseth
and Portinale (2007)) are an interesting trade-off between
combinatorial models (e.g. Fault Trees, Reliability Block
Diagrams, etc.) and state space-based models (e.g. Markov
Chains, Petri Nets, etc.) (Sahner et al. (1996)). Standard
BN are however static models representing a snapshot of
the system at a given time point. When time is taken into
account, the main choice concerns whether to consider it
as a discrete or a continuous dimension. In the first case,
Dynamic Bayesian Networks (DBN) (Murphy (2002))
have become a natural choice; in the second case, Contin-
uous Time Bayesian Networks (CTBN) (Nodelman et al.
(2002)) have started to be investigated. In Codetta and
Portinale (2013) Generalized Continuous Time Bayesian
Networks (GCTBN) are proposed by allowing the pres-
ence of nodes which have no explicit temporal evolution;
their values are “immediately” determined, depending on
the values of other nodes. This allows us to model processes
having both a continuous-time temporal dimension and a
static dimension (logical/probabilistic aspects).

In this paper we show how GCTBN (Sec. 2) can be
suitably used to compute dependability measures like
system unreliability, importance indices, and diagnostic
measures. We show that GCTBN can be adopted to model
dependencies among components, like those introduced in
Dynamic Fault Trees (DFT) (Dugan et al. (1992)). Also
in this case, it is very important to distinguish, at the
modeling level, between delayed and immediate entities.
Furthermore, other kinds of dependencies can be captured
through GCTBN. We resort to a specific case study and we
discuss: modeling choices (Sec. 3), analysis results (Sec. 4),
and advantages with respect to DBN (Sec. 5).

2. FORMAL DEFINITIONS

2.1 Dynamic Fault Trees

Fault Trees (FT) (Sahner et al. (1996)) represent how the
failure propagates from the components (basic events) to
the system (top event); Boolean gates (AND, OR, k out
of n (k:n), etc.) are used to this end. DFT augment FT
with dynamic gates; in the DFT model of the case study
(Sec. 3.1) we use the following ones.

Functional Dependency gate (FDEP): given a trigger
event T and a set of dependent events D1, . . . ,Dn, when
T occurs, D1, . . . ,Dn are immediately forced to occur.

Cold Spare gate (CSP): given a set of spares S1, . . . , Sn

able to replace a main component M when it fails, the
output event occurs if M has failed and there are no spares
available to replace it. A spare can be in three states
(dormant, working, failed) and its failure rate changes
depending on its current state: λ if working, 0 if dormant.

2.2 Dynamic Bayesian Networks

Given a set of time-dependent state variables X1, . . . ,Xn,
and given a BN N defined on such variables, a DBN is
essentially a replication of N over two time slices t − ∆
and t (being ∆ the so called time discretization step), with
the addition of a set of arcs representing the transition
model. Let Xt

i denote the copy of variable Xi at time slice
t, the transition model is defined through a distribution
P [Xt

i |X
t−∆
i , Y t−∆, Y t] where Y t−∆ is any set of variables

at slice t − ∆ different from Xi (possibly the empty set),
and Y t is any set of variables at slice t different from Xi

(possibly the empty set).

An edge connecting a variable Xt−∆
i in the slice t − ∆

to the same variable Xt
i in the slice t, is called temporal
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arc. The dependency of a certain node on its parent nodes
(possibly including its historical copy) is quantified in its
Conditional Probability Table (CPT).

2.3 Generalized Continuous Time Bayesian Networks

Given a set of discrete variables V = {X1, . . . ,Xn}
partitioned into the sets D (delayed variables) and I
(immediate variables), a GCTBN is a pair 〈P 0

V , G〉 where

P 0
V is an initial probability distribution over D;

G is a directed graph whose nodes are X1, . . . ,Xn (with
Pa(Xi) denoting the parents of Xi in G) such that

• there is no directed cycle in G composed only by
nodes in the set I;

• for each node X ∈ I a CPT P [X|Pa(X)] is defined
(as in standard BN and DBN);

• for each node X ∈ D a Conditional Intensity Matrix
(CIM) QX|Pa(X) is defined (as in CTBN). The CIM
of a variable X provides the transition rates for each
possible couple of values of X.

Delayed nodes represent variables with a continuous time
evolution; they are ruled by exponential transition rates
conditioned by the values of parent variables (that may
be either delayed or immediate). Each delayed node has a
CIM. Immediate nodes instead, are introduced in order
to capture variables whose evolution is not ruled by
transition rates, but is conditionally determined, at a given
time point, by other variables in the model. Therefore
immediate nodes are treated as usual chance nodes in a
BN: each immediate node has a standard CPT.

Stochastic process. The evolution of a system modeled
through a GCTBN occurs as follows: the initial state
is given by the assignment of the initial values of the
variables, according to P 0

V . Given the current system
state (represented by the joint assignment of the model
variables, both delayed and immediate), a value transition
of a delayed variable Dk will occur, after an exponentially
distributed delay, by producing a new state called a
“vanishing state”. Given the new vanishing state, a new
assignment is determined to any immediate variable Ij

such that Dk belongs to the set of the “Closest” Delayed
Ancestors (CDA) of Ij (composed by any delayed variable
Di such that a path from Di to Ij exists and contains
no intermediate delayed nodes). The assignment to Ij is
consistent with the CPT of Ij . The resulting state, called a
“tangible state”, is the new actual state of the system, from
which the evolution can proceed with a new transition of
value by a delayed variable.

2.4 Inference tasks

The analysis (inference) of a DBN or GCTBN model
computes the probability at a given time point, of a set
of variables of interest, conditioned on the evidence which
is a set of time stamped observations. Two inference tasks
can be performed.

Prediction consists in computing the posterior probability
at time t of a set of queried variables Q ⊆ (D ∪ I), given
a stream of observations et1 , . . . , etk

from time t1 to time
tk with t1 < . . . < tk ≤ t. Every evidence etj consists of a

(possibly different) set of instantiated variables. A special
case called Monitoring occurs when the last evidence time
point and the query time are the same.

Smoothing consists in computing the probability at time t
of a set of queried variables Q ⊆ (D ∪ I), given a stream
of observations et1 , . . . , etk

from time t1 to time tk with
t < t1 < . . . < tk.

3. A DEMONSTRATIVE CASE STUDY

We take into consideration the case study called Hypo-
thetical Sprinkler System (HSS) (Bobbio et al. (2008)),
composed of three sensors, two pumps, and one digital con-
troller (Fig. 1). The sensors send signals to the controller,
and when temperature readings at two of the sensors are
above threshold, the controller activates one of the pumps.

3.1 DFT model

The failure mode of the system can be modeled in a
preliminary way using the DFT in Fig. 2. Each compo-
nent is represented by a basic event characterized by the
failure rate (Tab. 1) according to the negative exponential
distribution ruling the random time to failure. A pump
cannot work if its support stream (valve and filter) is
down; this is captured by the FDEP gates. The pumps
are two: the backup pump (“cold” spare (Sec. 2.1)) is
activated only if the primary pump fails; the CSP gate
is used to model this relationship, and its output event is
PumpFault. The 2:3 gate over the sensors has SensorFault
as output event. The system failure (top event) occurs
when the sensor subsystem fails (event SensorFault), or
the digital controller fails (basic event DigCon), or the
pump subsystem fails (event PumpFault).

The present paper focuses on GCTBN. However the DFT
can be converted into DBN (Portinale et al. (2007)), as
shown in Fig. 3.

3.2 GCTBN model

The same failure mode can be modelled by the GCTBN
in Fig. 4: its structure is inspired to the structure of
the DFT in Fig. 2. All the variables of the GCTBN are
binary: the values 0 and 1 represent the working state and
the failed state respectively. The components change their
state (from working to failed) after a random period of
time; therefore in the GCTBN they are represented by
delayed variables (double-circled nodes) corresponding to
the basic events of the DFT.

The initial probability (Sec. 2.3) of all the delayed variables
establishes that the value 0 (working state) has probability
1 at time 0. All the delayed variables, with the exception
of Pump2, have no parent nodes. So, their CIM contain
independent transition rates: the rate from 0 to 1 is the
failure rate of the component (Tab. 1); the rate from 1 to
0 is null because the components are not repairable.

Two immediate variables (circle nodes) represent the state
of the subsystems. In particular, SensorFault is influenced
by the delayed variables Sensor1, Sensor2, Sensor3, and
is equal to 1 if at least two sensors are failed; in the other
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Fig. 1. The block scheme of HSS (Bobbio et al. (2008))

Table 1. The component failure rates (λ)

Component λ Component λ

Sensor 10−4 h−1 Pump 10−6 h−1

VF 10−5 h−1 DigCon 10−6 h−1

Fig. 2. DFT model of HSS (Bobbio et al. (2008))

cases, SensorFault is equal to 0. This is set in the CPT of
SensorFault and corresponds to the 2:3 gate in the DFT.

The immediate variable Pump1Fault indicates whether the
primary pump is functioning or not, and is influenced by
the causes of malfunctioning: Pump1 (the failure of the
pump) or VF1 (the failure of the valve/filter). Pump2Fault
has the same role with respect to the secondary pump.

The delayed variable Pump2 concerns the state of the
backup pump which is activated in case of malfunctioning
of the primary pump; so, Pump2 depends on Pump1Fault.
As a consequence, the rates inside the CIM of Pump2
depend on the value of Pump1Fault, as reported in Tab. 2.
Pump2 is a “cold” spare (Sec. 2.1): if Pump1Fault is equal
to 0, then the transition rate of Pump2 from 0 to 1 is null;
if instead Pump1Fault is equal to 1, the rate of Pump2
from 0 to 1 is the failure rate of the pump (Tab. 1). The
transition rate from 1 to 0 is null in both cases because
Pump2 is not repairable.

The immediate variable PumpFault is equal to 1 when
both Pump1Fault and Pump2Fault are equal to 1. In all
the other cases, PumpFault is equal to 0, as specified
in its CPT. Finally, the immediate variable SystemFault
corresponds to the top event of the DFT, and its CPT
realizes the OR gate.

4. ANALYSIS OF THE CASE STUDY

We can perform relevant evaluations in a reliability setting
by exploiting an inference engine for GCTBN (Codetta
and Portinale (2013)), developed inside the Draw-Net
modeling software tool (Codetta et al. (2006)).

Fig. 3. DBN model of HSS (Bobbio et al. (2008))

Fig. 4. GCTBN model of HSS

Table 2. CIM of the variable Pump2

0 → 1 1 → 0

Pump1Fault rate Pump1Fault rate

0 0 0 0
1 10−6 h−1 1 0

Table 3. System unreliability (no evidence)

time DBN GCTBN
(h) (Bobbio et al. (2008)) Pr{SystemFault=1}
200 0.001365 0.001365
400 0.004908 0.004908
600 0.010414 0.010414
800 0.017682 0.017683

1000 0.026529 0.026530

4.1 Unreliability analysis

In order to compute the system unreliability (the prob-
ability to be failed at a given time), it is sufficient to
query the variable SystemFault in the GCTBN (Fig. 4),
at the desired time points, given no evidence. The system
unreliability has been evaluated up to 1000 h (Tab. 3).
In Bobbio et al. (2008) the same measure is computed by
analyzing the DBN (Fig. 3) by means of the software tool
Radyban (Portinale et al. (2007)). There is an almost
complete agreement among the results (Tab. 3). In partic-
ular, the DBN is a discrete time model (Sec. 2.2), and a
time discretization step ∆=1 h is assumed.

Differently from standard (D)FT analysis, it is possible to
query in a contemporary way, any other variable in the
model: Tab. 4 reports the unreliability of the three sub-
systems, obtained by querying the variables SensorFault,
DigCon, and PumpFault.
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systems, obtained by querying the variables SensorFault,
DigCon, and PumpFault.
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Table 4. Subsystem unreliability (no evidence)

time Sensor set Controller Pump set
(h) Pr{SensorFault=1} Pr{DigCon=1} Pr{PumpFault=1}

200 0.001161 0.000200 0.000005
400 0.004492 0.000400 0.000018
600 0.009779 0.000600 0.000041
800 0.016824 0.000800 0.000073

1000 0.025444 0.001000 0.000114

Table 5. The system unreliability conditioned
on σ1 (monitoring task)

time DBN GCTBN
(h) (Bobbio et al. (2008)) Pr{SystemFault=1 | σ1}
100 0.000200 0.000200
200 0.000402 0.000401
300 0.000604 0.000604
400 0.000808 0.000807
500 0.058733 0.058750

600 − 1000 1.000000 1.000000

GCTBN offer the possibility of performing computations
conditioned on the observation of some system parameters.
Let us suppose that Sensor2 and Sensor3 can be monitored
in HSS. Let St

i be the observation that the i-th sensor is
down at time t, and let S

t

i be the observation that the
i-th sensor is up at t. We get the following stream of
observations:

σ1 = {S100

2 ; S
200

3 ; S
300

2 ; S
400

3 ;S500
2 ;S600

3 } (1)

In order to compute the system unreliability conditioned
on σ1, we have to associate the evidence with the variables
Sensor2 and Sensor3; then, the GCTBN monitoring task
from time 100 h to 1000 h is performed, still querying
SystemFault. The results are shown in Tab. 5, together
with the corresponding values returned by DBN analy-
sis (Bobbio et al. (2008)); we can notice that GCTBN and
DBN still provide coherent results. This holds also in the
case of smoothing: at time 100 h, the unreliability given
by both GCTBN and DBN inference is equal to 0.000101.

The monitoring unreliability is larger than the smoothing
unreliability, since the smoothing procedure takes into
account the future information about the operative state of
the sensors. At time t=100 h, the monitoring unreliability
is the probability of having a system failure, given that
we know that Sensor2 is operational at t. The smoothing
unreliability instead, at t=100 h provides the probability
that the whole system is down at t, knowing not only
the sensors history until t, but also the following sensors
history. From σ1 we know that at times 100 h, 200 h, and
300 h, Sensor2 and Sensor3 are still operational. So, at
100 h the smoothing task knows for sure that also Sensor3
is operative. As a consequence, the probability of system
failure is reduced.

4.2 Diagnosis

Another possibility consists in performing a diagnosis
over the status of the components, given a stream of
observations. Let us consider to gather information about
the global state of the system, and suppose to get the
following stream of observations (where SF stands for
SystemFault):

σ2 = {SF
200

; SF
400

;SF 600} (2)

Table 6. Component failure probability condi-
tioned on σ2 (monitoring)

time DBN monitoring (Bobbio et al. (2008))
(h) Sensor DigCon VF Pump1 Pump2

100 0.009950 0.000100 0.000999 0.001099 0.000999
200 0.019047 0.000000 0.001994 0.002193 0.001994
300 0.028808 0.000010 0.002991 0.003290 0.002991
400 0.036359 0.000000 0.003975 0.004372 0.003974
500 0.045948 0.000010 0.004971 0.005467 0.004971
600 0.645037 0.036144 0.009686 0.010651 0.010060
700 0.648568 0.036241 0.010676 0.011739 0.011050
800 0.652065 0.036337 0.011664 0.012826 0.012039

1000 0.658955 0.036529 0.013639 0.014995 0.014015

time GCTBN monitoring
(h) Sensor1 DigCon VF1 Pump1F. Pump2F.

100 0.009950 0.000100 0.001000 0.001099 0.001000
200 0.019047 0.000000 0.001994 0.002193 0.001994
300 0.028808 0.000100 0.002992 0.003290 0.002992
400 0.036389 0.000000 0.003973 0.004368 0.003973
500 0.045977 0.000100 0.004969 0.005463 0.004969
600 0.648770 0.037545 0.011449 0.012562 0.011823
700 0.652265 0.037641 0.012437 0.013647 0.012812
800 0.655725 0.037737 0.013424 0.014732 0.013800

1000 0.662542 0.037930 0.015395 0.016897 0.015773

Table 7. Component failure probability condi-
tioned on σ2 (smoothing)

time DBN smoothing (Bobbio et al. (2008))
(h) Sensor DigCon VF Pump1 Pump2

100 0.065745 0.000000 0.001384 0.001522 0.001384
200 0.130836 0.000000 0.002767 0.003044 0.002767

time GCTBN smoothing
(h) Sensor1 DigCon VF1 Pump1F. Pump2F.

100 0.067859 0.000000 0.001398 0.001539 0.001400
200 0.134236 0.000000 0.002799 0.003083 0.002801

This means that the system has failed in the interval
(400, 600]. We can ask for the failure probability of the
components, given σ2. To this end, we associate σ2 with
SystemFault, and we query the variables modeling the
components. In particular, the pumps have been evaluated
with respect to the variables Pump1Fault and Pump2Fault
representing the operational or malfunctioning condition
according to the state of the pumps and the state of their
support streams (Sec. 3.2). Results returned by GCTBN
inference are reported in Tab. 6 (monitoring) and in Tab. 7
(smoothing), where we notice that they are quite similar
to those obtained by means of DBN analysis (Bobbio et al.
(2008)). The differences are due to the different temporal
dimensions; in particular, the discrete time in DBN may
lead to some approximation (Sec. 5).

By analyzing the smoothing results (Tab. 7), we can notice
that the digital controller (DigCon) cannot be failed at
times 100 h and 200 h; this is consistent with the fact that a
failure of such a component will cause a system failure (see
the DFT in Fig. 2) and that we have observed the system
being operational until time 400 h. This is not reported
in the monitoring analysis (Tab. 6), where DigCon can
be assumed operational only at the times when we gather
the information about the system being up (i.e. 200 h and
400 h); for the other times before 400 h, the monitoring
analysis predicts a possibility of failure for DigCon.
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Table 8. Importance indices of components

Component Fussell-Vesely index (FVI) Birnbaum index (BI)

Sensor1 0.653487 0.172053
DigCon 0.037693 0.974497
Pump1Fault 0.015096 0.010141
Pump2Fault 0.014094 0.011125
VF1 0.013721 0.010181
VF2 0.013909 0.010676

4.3 Importance indices

Two relevant importance (sensitivity) indices adopted
in reliability analysis are the Fussell-Vesely Importance
(FVI) and the Birnbaum Importance (BI) (Meng (2000)).
They are aimed at determining the importance of each
component in the event of a system failure. FVI of a
generic component C is defined as the probability of C
being failed, given that the system is failed. BI of C
instead, measures the change in the system unreliability,
given that C is down (SF stands for SystemFault):

FV I(C) = Pr(C = 1|SF = 1) (3)

BI(C) = Pr(SF = 1|C = 1) − Pr(SF = 1|C = 0) (4)

Both indices are a simple matter of posterior probability
computation for a GCTBN. Tab. 8 shows FVI and BI
of the components in the case study, computed at time
1000 h. We can notice that FVI clearly suggests the sensor
as the most relevant component w.r.t. the occurrence of
the system failure: actually the sensor has the highest
failure rate (Tab. 1), and the system is tolerant to the
failure of only one sensor, as modelled by the 2:3 gate in
the DFT model (Fig. 2). On the other hand, BI points out
that the controller is the most important from the point of
view of the change of unreliability; indeed, the controller
is a direct cause of the system failure.

4.4 Repair and unavailability

Since components are represented in a GCTBN as delayed
variables, a repairable component can be modeled by in-
troducing a suitable repair rate in the CIM of the corre-
sponding variable. As an example, now we suppose that in
HSS the following components are repairable: two of the
three sensors, the digital controller, the primary pump,
and its support stream. The repair rate is µ=0.01 h−1

for every component. In the GCTBN model, µ becomes
the transition rate from the value 1 (failed) to the value
0 (working) for the following variables: Sensor1, Sensor2,
DigCon, Pump1, and VF1.

Tab. 9 shows the subsystem and the system unavailability
(probability to be down at a certain time) from 100 h to
1000 h, assuming that no evidence is observed. We can
notice an evident reduction of the probability to be down,
with respect to the results obtained without repair (Tab. 3
and Tab. 4). Using GCTBN we can compute the steady-
state unavailability (unavailability at an infinite time)
which indicates whether the (sub)system is dependable in
the long run. The results are still reported in Tab. 9.

GCTBN can be exploited to model more sophisticated
repair policies like those involving a subsystem instead of
a single component (Portinale et al. (2010)).

Table 9. Unavailability (no evidence)

time (h) Sensor set Controller Pump set System

200 0.000411 0.000086 0.000002 0.000499
400 0.000850 0.000098 0.000004 0.000952
600 0.001199 0.000100 0.000006 0.001305
800 0.001569 0.000100 0.000009 0.001677

1000 0.001928 0.000100 0.000011 0.002039
∞ 0.019704 0.000100 0.001099 0.020879

5. COMPARING GCTBN AND DBN

We compare the DBN and the GCTBN formalism from
several points of view, with the goal of showing the
advantages of GCTBN modeling and analysis.

5.1 Modeling

The introduction of time evolving parts is clearly possible
in DBN, where the two instances of the variables hav-
ing a temporal evolution are connected by temporal arcs
(Sec. 2.2). This leads to a duplication of the nodes concern-
ing such variables. An example is shown in Fig. 3 where the
nodes representing the states of the components (Sensor1,
Sensor2, Sensor3, DigCon, Pump1, Pump2, VF1, VF2) are
present in both time slices (t−∆ and t). GCTBN instead,
provide a more compact representation because variables
are never replicated, as shown in Fig. 4.

The design of a DBN model requires to set all the entries
of the CPT of each node. The entries are as many as
the possible combinations of the node values and the
parent node values, including the historical copies. In
GCTBN, delayed nodes (having a temporal evolution)
do not depend on their historical copies, so the number
of entries in their CIM is reduced with respect to the
corresponding CPT in the DBN.

The CIM entries are simply set to transition rates, such
as failure or repair rates. In a DBN instead, in the time
slice t, the CPT entries of a time-evolving variable are
probabilities to be pre-computed during the model design
according to the failure or repair rate of the component
and the time discretization step.

5.2 Temporal dimension

DBN is a discrete time formalism, so a time discretization
step (∆) must be set. When the inference is performed,
all the intervening time steps from 0 to the query time,
have to be dealt with, even if no evidence is available at a
certain time step. Therefore ∆ rules the computing time
and the precision of the results; it is worth noting that
a trade-off exists: if a looser approximation is sufficient,
a quicker DBN inference can be obtained, by choosing a
relatively large ∆; if instead we apply a smaller ∆, then the
DBN is closer to a continuous time model, the accuracy
of the results is improved, but the computing time grows.
However there is not always an obvious discrete time unit:
when the process is characterized by several components
evolving at different rates, the finer granularity dictates
the rules for the discretization (Portinale et al. (2007)).
Moreover, variables can be observed or queried only at
specific time steps according to ∆.

GCTBN has no need for time discretization; as a conse-
quence, the model designer has not to choose a proper
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4.3 Importance indices

Two relevant importance (sensitivity) indices adopted
in reliability analysis are the Fussell-Vesely Importance
(FVI) and the Birnbaum Importance (BI) (Meng (2000)).
They are aimed at determining the importance of each
component in the event of a system failure. FVI of a
generic component C is defined as the probability of C
being failed, given that the system is failed. BI of C
instead, measures the change in the system unreliability,
given that C is down (SF stands for SystemFault):

FV I(C) = Pr(C = 1|SF = 1) (3)

BI(C) = Pr(SF = 1|C = 1) − Pr(SF = 1|C = 0) (4)

Both indices are a simple matter of posterior probability
computation for a GCTBN. Tab. 8 shows FVI and BI
of the components in the case study, computed at time
1000 h. We can notice that FVI clearly suggests the sensor
as the most relevant component w.r.t. the occurrence of
the system failure: actually the sensor has the highest
failure rate (Tab. 1), and the system is tolerant to the
failure of only one sensor, as modelled by the 2:3 gate in
the DFT model (Fig. 2). On the other hand, BI points out
that the controller is the most important from the point of
view of the change of unreliability; indeed, the controller
is a direct cause of the system failure.

4.4 Repair and unavailability

Since components are represented in a GCTBN as delayed
variables, a repairable component can be modeled by in-
troducing a suitable repair rate in the CIM of the corre-
sponding variable. As an example, now we suppose that in
HSS the following components are repairable: two of the
three sensors, the digital controller, the primary pump,
and its support stream. The repair rate is µ=0.01 h−1

for every component. In the GCTBN model, µ becomes
the transition rate from the value 1 (failed) to the value
0 (working) for the following variables: Sensor1, Sensor2,
DigCon, Pump1, and VF1.

Tab. 9 shows the subsystem and the system unavailability
(probability to be down at a certain time) from 100 h to
1000 h, assuming that no evidence is observed. We can
notice an evident reduction of the probability to be down,
with respect to the results obtained without repair (Tab. 3
and Tab. 4). Using GCTBN we can compute the steady-
state unavailability (unavailability at an infinite time)
which indicates whether the (sub)system is dependable in
the long run. The results are still reported in Tab. 9.

GCTBN can be exploited to model more sophisticated
repair policies like those involving a subsystem instead of
a single component (Portinale et al. (2010)).

Table 9. Unavailability (no evidence)

time (h) Sensor set Controller Pump set System

200 0.000411 0.000086 0.000002 0.000499
400 0.000850 0.000098 0.000004 0.000952
600 0.001199 0.000100 0.000006 0.001305
800 0.001569 0.000100 0.000009 0.001677

1000 0.001928 0.000100 0.000011 0.002039
∞ 0.019704 0.000100 0.001099 0.020879

5. COMPARING GCTBN AND DBN

We compare the DBN and the GCTBN formalism from
several points of view, with the goal of showing the
advantages of GCTBN modeling and analysis.

5.1 Modeling

The introduction of time evolving parts is clearly possible
in DBN, where the two instances of the variables hav-
ing a temporal evolution are connected by temporal arcs
(Sec. 2.2). This leads to a duplication of the nodes concern-
ing such variables. An example is shown in Fig. 3 where the
nodes representing the states of the components (Sensor1,
Sensor2, Sensor3, DigCon, Pump1, Pump2, VF1, VF2) are
present in both time slices (t−∆ and t). GCTBN instead,
provide a more compact representation because variables
are never replicated, as shown in Fig. 4.

The design of a DBN model requires to set all the entries
of the CPT of each node. The entries are as many as
the possible combinations of the node values and the
parent node values, including the historical copies. In
GCTBN, delayed nodes (having a temporal evolution)
do not depend on their historical copies, so the number
of entries in their CIM is reduced with respect to the
corresponding CPT in the DBN.

The CIM entries are simply set to transition rates, such
as failure or repair rates. In a DBN instead, in the time
slice t, the CPT entries of a time-evolving variable are
probabilities to be pre-computed during the model design
according to the failure or repair rate of the component
and the time discretization step.

5.2 Temporal dimension

DBN is a discrete time formalism, so a time discretization
step (∆) must be set. When the inference is performed,
all the intervening time steps from 0 to the query time,
have to be dealt with, even if no evidence is available at a
certain time step. Therefore ∆ rules the computing time
and the precision of the results; it is worth noting that
a trade-off exists: if a looser approximation is sufficient,
a quicker DBN inference can be obtained, by choosing a
relatively large ∆; if instead we apply a smaller ∆, then the
DBN is closer to a continuous time model, the accuracy
of the results is improved, but the computing time grows.
However there is not always an obvious discrete time unit:
when the process is characterized by several components
evolving at different rates, the finer granularity dictates
the rules for the discretization (Portinale et al. (2007)).
Moreover, variables can be observed or queried only at
specific time steps according to ∆.

GCTBN has no need for time discretization; as a conse-
quence, the model designer has not to choose a proper
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value of ∆, and the results are not affected by approxi-
mation. As documented in Codetta and Portinale (2013),
both inference tasks (Sec. 2.4) for GCTBN require to
perform the analysis of the model only at specific times:
when new evidence is gathered, and when variables are
queried; observations and queries can refer to any time.
Another advantage of using GCTBN is the possibility to
perform the steady-state analysis of the model; this means
evaluating the model at an infinite time, and makes sense
when the system is repairable (Sec. 4.4).

5.3 Inference algorithms

Different algorithms, either exact or approximate, can be
exploited in order to implement the DBN inference. The
Murphy’s algorithm (1.5JT) (Murphy (2002)) is particu-
larly popular and consists of generating and analyzing the
classical BN inference data-structure called Junction Tree
(JT) where each node (also called a cluster) corresponds
to a set of nodes in the original DBN. The computing time
using 1.5JT depends essentially on the following aspects:
the query time (because the model has to be evaluated
at each time step), ∆ (it determines the number of time
steps), the distribution of the DBN nodes inside the JT
clusters, and in particular the distribution of the so-called
interface nodes (the nodes having children in the next time
slice). The last factor combined with ∆ determines the
degree of approximation of the results.

Inference algorithms for CTBN exist (Nodelman et al.
(2002)), but they cannot deal with GCTBN. The GCTBN
inference is actually performed by exploiting the automatic
conversion of a GCTBN into a Generalized Stochastic Petri
Net (GSPN) (Codetta and Portinale (2013)). The results
of the query are computed through multiple transient
solutions of the GSPN. This is possible because GCTBN
and GSPN share the same stochastic process where states
can be “vanishing” or “tangible” (Sec. 2.3). The GSPN
analysis requires to generate its state space. To this end,
the reachability graph (RG) is generated: it expresses all
the possible markings (number of tokens inside places)
which are reachable from the initial marking through the
firing of timed or immediate transitions. Each marking
corresponds to a system state. By reducing the RG to con-
tain only tangible states, we actually obtain and analyze a
Continuous Time Markov Chains (CTMC) (Sahner et al.
(1996)). The GSPN-based inference returns exact results
thanks to the continuous time and the available solution
techniques for GSPN. The number of states determines the
computing time necessary to perform the GSPN analysis.
GSPN may suffer from a state space explosion; if so, GSPN
simulation can be applied instead of analysis.

6. CONCLUSION

GCTBN are at the best of our knowledge, the first attempt
trying to mix in the same BN, continuous-time delayed
nodes with standard chance nodes. The usefulness of this
kind of model has been discussed through a case study
from the reliability field. We have shown that GCTBN
can represent the same dependencies expressed by a DFT
model, with the additional possibility of performing an
evidence-based analysis assuming a continuous time di-
mension. The results obtained using GCTBN have been

successfully compared with those returned by DBN anal-
ysis (Bobbio et al. (2008)). Despite the fact that the case
study has dealt with binary variables, it is worth men-
tioning that GCTBN models are a natural framework for
multi-state components and systems; indeed, any discrete
number of states can be introduced for both delayed and
immediate variables.

Future works will concentrate on exploiting GCTBN for
addressing more complicate dependencies which have been
already investigated in the DBN framework (Portinale
et al. (2010)). At the moment, a DFT can be automatically
converted into DBN by means of Radyban (Portinale
et al. (2007)); we plan to implement a converter from DFT
to GCTBN. Finally, alternative inference algorithms, both
exact as well as approximate, are under investigation, in
order to provide alternatives to the compilation into GSPN
(Sec. 5.3), which is by now the only available method for
solving GCTBN.
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