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Abstract. While short read aligners, which predominantly use the FM-index, are able to easily index
one or a few human genomes, they do not scale well to indexing databases containing thousands of
genomes. To understand why, it helps to examine the main components of the FM-index in more de-
tail, which is a rank data structure over the Burrows-Wheeler Transform (BWT) of the string that will
allow us to find the interval in the string’s suffix array (SA) containing pointers to starting positions
of occurrences of a given pattern; second, a sample of the SA that — when used with the rank data
structure — allows us access the SA. The rank data structure can be kept small even for large genomic
databases, by run-length compressing the BWT, but until recently there was no means known to keep
the SA sample small without greatly slowing down access to the SA. Now that Gagie et al. (SODA
2018) have defined an SA sample that takes about the same space as the run-length compressed BWT
— we have the design for efficient FM-indexes of genomic databases but are faced with the problem of
building them. In 2018 we showed how to build the BWT of large genomic databases efficiently (WABI
2018) but the problem of building Gagie et al.’s SA sample efficiently was left open. We compare our
approach to state-of-the-art methods for constructing the SA sample, and demonstrate that it is the
fastest and most space-efficient method on highly repetitive genomic databases. Lastly, we apply our
method for indexing partial and whole human genomes, and show that it improves over Bowtie with
respect to both memory and time.

Availability: We note that the implementation of our methods can be found here: https://github.
com/alshai/r-index.
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1 Introduction

The FM-index, which is a compressed subsequence index based on Burrows Wheeler transform
(BWT), is the primary data structure majority of short read aligners — including Bowtie [19],
BWA [13] and SOAP2 [21]. These aligners build a FM-index based data structure of sequences
from a given genomic database, and then use the index to perform queries that find approximate
matches of sequences to the database. And while these methods can easily index one or a few
human genomes, they do not scale well to indexing the databases of thousands of genomes. This is
problematic in analysis of the data produced by consortium projects, which routinely have several
thousand genomes.

In this paper, we address this need by introducing and implementing an algorithm for efficiently
constructing the FM-index. This will allow for the FM-index construction to scale to larger sets
of genomes. To understand the challenge and solution behind our method, it helps to examine the
two principal components of the FM-index: first a rank data structure over the BWT of the string
that enables us to find the interval in the string’s suffix array (SA) containing pointers to starting
positions of occurrences of a given pattern (and, thus, compute how many such occurrences there
are); second, a sample of the SA that, when used with the rank data structure, allows us access
the SA (so we can list those starting positions). Searching with an FM-index can be summarized as
follows: starting with the empty suffix, for each proper suffix of the given pattern we use rank queries
at the ends of the BWT interval containing the characters immediately preceding occurrences of
that suffix in the string, to compute the interval containing the characters immediately preceding
occurrences of the suffix of length 1 greater; when we have the interval containing the characters
immediately preceding occurrences of the whole pattern, we use a SA sample to list the contexts of
the corresponding interval in the SA, which are the locations of those occurrences.

Although it is possible to use a compressed implementation of the rank data structure that does
not become much slower or larger even for thousands of genomes, the same cannot be said for the
SA sample. The product of the size and the access time must be at least linear in the length of the
string for the standard SA sample. This implies that the FM-index will become much slower and/or
much larger as the number of genomes in the databases grows significantly. This bottleneck has
forced researchers to consider variations of FM-indexes adapted for massive genomic datasets, such
as Valenzuela et al.’s pan-genomic index [33] or Garrison et al.’s variation graphs [7]. Some of these
proposals use elements of the FM-index, but all deviate in substantial ways from the description
above. Not only does this mean they lack the FM-index’s long and successful track record, it also
means they usually do not give us the BWT intervals for all the suffixes as we search (whose
lengths are the suffixes’ frequencies, and thus a tightening sequence of upper bounds on the whole
pattern’s frequency), nor even the final interval in the suffix array (which is an important input in
other string processing tasks).

Recently, Gagie, Navarro and Prezza [11] proposed a different approach to SA sampling, that
takes space proportional to that of the compressed rank data structure while still allowing reasonable
access times. While their result yields a potentially practical FM-index on massive databases, it
does not directly lead to a solution since the problem of how to efficiently construct the BWT and
SA sample remained open. In a direction toward to fully realizing the theoretical result of Gagie et
al. [11], Boucher et al. [2] showed how to build the BWT of large genomic databases efficiently. We
refer to this construction as prefix-free parsing. It takes as input string S, and in one-pass generates
a dictionary and a parse of S with the property that the BWT can be constructed from dictionary
and parse using workspace proportional to their total size and O(|S|) time. Yet, the resulting index
of Boucher et al. [2] has no SA sample, and therefore, only supports counting and not locating.



This makes this index not directly applicable to many bioinformatic applications, such as sequence
alignment.

Our contributions. In this paper, we present a solution for building the FM-index1 for very large
datasets by showing that we can build the BWT and Gagie et al.’s SA sample together in roughly
the same time and memory needed to construct the BWT alone. We note that this algorithm is
also based on prefix-free parsing. Thus, we begin by describing how to construct the BWT from
the prefix-free parse, and then show that it can be modified to build the SA sample in addition
to the BWT in roughly the same time and space. We implement this approach, and refer to the
resulting implementation as bigbwt. We compare it to state-of-the-art methods for constructing
the SA sample, and demonstrate that bigbwt currently the fastest and most space-efficient method
for constructing the SA sample on large genomic databases.

Next, we demonstrate the applicability of our method to short read alignment. In particular,
we compare the memory and time needed by our method to build an index for collections of
chromosome 19 with that of Bowtie. Through these experiments, we show that Bowtie was unable
to build indexes for our largest collections (500 or more) because it exhausted memory, whereas
our method was able to build indexes up to 1,000 chromosome 19s (and likely beyond). At 250
chromosome 19 sequences, the our method required only about 2% of the time and 6% the peak
memory of Bowtie’s. Lastly, we demonstrate that it is possible to index collections of whole human
genome assemblies with sub-linear scaling as the size of the collection grows.

Related work. The development of methods for building and the FM-index on large datasets
is closely related to the development short-read aligners for pan-genomics — an area where there
is growing interest [27, 5, 12]. Here, we briefly describe some previous approaches to this problem
and detail its connection to the work in this paper. We note that majority of pan-genomic aligners
requiring building the FM-index for a population of genomes and thus, can increase proficiency by
using the methods described in this paper.

GenomeMapper [27], the method of Danek et al. [5], and GCSA [29] represent the genomes in a
population as a graph, and then reduce the alignment problem to finding a path within the graph.
Hence, these methods require all possible paths to be identified, which is exponential in the worst
case. Some of these methods — such as the GCSA — use the FM-index to store and query the
graph and could capitalize on our approach by building the index in the manner described here.
Another set of approaches [24, 8, 12, 32] consider the reference pan-genome as the concatenation of
individual genomes and exploits redundancy by using a compressed index. The hybrid index [8]
operates on a Lempel-Ziv compression of the reference pan-genome. An input parameter M sets
the maximum length of reads that can be aligned; the parameter M has a large impact on the
final size of the index. For this reason, the hybrid index is suitable for short-read alignment only,
although there have been recent heuristic modifications to allow longer alignments [9]. In contrast,
the r-index, of which we provide an implementation in this work, has no such length limitation.
The most recent implementation of the hybrid index is CHIC [33]. Although CHIC has support for
counting multiple occurrences of a pattern within a genomic database, it is an expensive operation,
namely O(` log logn), where ` is the number of occurrences in the databases and n is the length
of the database. However, the r-index is capable of counting all occurrences of a pattern of length
m in O(m) time up to polylog factors. There are a number of other approaches building off the
hybrid index or similar ideas [5, 34]; for an extended discussion, we refer the reader to the survey
of Gagie and Puglisi [12].

Finally, a third set of approaches [14, 23] attempts to encode variants within a single reference
genome. BWBBLE by Huang et al. [14] follows this by supplementing the alphabet to indicate

1 With the SA sample of Gagie et al. [11], this index is termed the r-index.



if multiple variants occur at a single location. This approach does not support counting of the
number of variants matching a specific alignment; also, it suffers from memory blow-up when
larger structural variations occur.

2 Background

2.1 BWT and FM indexes

Consider a string S of length n from a totally ordered alphabet Σ, such that the last character of
S is lexicographically less than any other character in S. Let F be the list of S’s characters sorted
lexicographically by the suffixes starting at those characters, and let L be the list of S’s characters
sorted lexicographically by the suffixes starting immediately after those characters. The list L is
termed the Burrows-Wheeler Transform [3] of S and denoted BWT. If S[i] is in position p in F then
S[i−1] is in position p in L. Moreover, if S[i] = S[j] then S[i] and S[j] have the same relative order
in both lists; otherwise, their relative order in F is the same as their lexicographic order. This means
that if S[i] is in position p in L then, assuming arrays are indexed from 0 and≺ denotes lexicographic
precedence, in F it is in position ji = |{h : S[h] ≺ S[i]}| + |{h : L[h] = S[i], h ≤ p}| − 1. The
mapping i 7→ ji is termed the LF mapping. Finally, notice that the last character in S always
appears first in L. By repeated application of the LF mapping, we can invert the BWT, that is,
recover S from L. Formally, the suffix array SA of the string S is an array such that entry i is the
starting position in S of the ith largest suffix in lexicographical order. The above definition of the
BWT is equivalent to the following:

BWT[i] = S[(SA[i]− 1) mod n]. (1)

The BWT was introduced as an aid to data compression: it moves characters followed by similar
contexts together and thus makes many strings encountered in practice locally homogeneous and
easily compressible. Ferragina and Manzini [10] showed how the BWT may be used for indexing a
string S: given a pattern P of length m < n, find the number and location of all occurrences of P
within S. If we know the range BWT(S)[i..j] occupied by characters immediately preceding occur-
rences of a pattern Q in S, then we can compute the range BWT(S)[i′..j′] occupied by characters
immediately preceding occurrences of cQ in S, for any character c ∈ Σ, since

i′ = |{h : S[h] ≺ c}|+ |{h : S[h] = c, h < i}|
j′ = |{h : S[h] ≺ c}|+ |{h : S[h] = c, h ≤ j}| − 1 .

Notice j′ − i′ + 1 is the number of occurrences of cQ in S. The essential components of an FM-
index for S are, first, an array storing |{h : S[h] ≺ c}| for each character c and, second, a rank
data structure for BWT that quickly tells us how often any given character occurs up to any given
position2. To be able to locate the occurrences of patterns in S (in addition to just counting them),
the FM-index uses a sampled3 suffix array of S and a bit vector indicating the positions in BWT
of the characters preceding the sampled suffixes.

2.2 Prefix-free parsing

Next, we give an overview of prefix-free parsing, which produces a dictionary D and a parse P
by sliding a window of fixed width through the input string S. We refer the reader to Boucher

2 Given a sequence (string) S[1, n] over an alphabet Σ = {1, . . . , σ}, a character c ∈ Σ, and an integer i, rankc(S, i)
is the number of times that c appears in S[1, i].

3 Sampled means that only some fraction of entries of the suffix array are stored.



et al. [2] for the formal proofs and Section 3.1 for the algorithmic details. A rolling hash function
identifies when substrings are parsed into elements of a dictionary, which is a set of substrings of
S. Intuitively, for a repetitive string, the same dictionary phrases will be encountered frequently.

We now formally define the dictionary D and parse P. Given a string4 S of length n, window
size w ∈ N and modulus p ∈ N, we construct the dictionary D of substrings of S and the parse P as
follows. We let f be a hash function on strings of length w, and let T be the sequence of substrings
W = S[s, s+w−1] such that f(W ) = 0 mod p or W = S[0, w−1] or W = S[n−w+1, n], ordered
by initial position in S; let T = (W1 = S[s1, s1 + w − 1], . . . ,Wk = [sk, sk + w − 1]).By construction
the strings

S[s1, s2 + w − 1], S[s2, s3 + w − 1], . . . , S[sk−1, sk + w − 1]

form a parsing of S in which each pair of consecutive strings S[si, si+1+w−1] and S[si+1, si+2+w−1]
overlaps by exactly w characters. We define D = {S[si, si+1 +w−1] : 1 ≤ i < k}; that is, D consists
of the set of the unique substrings s of S such that |s| > w and the first and last w characters
of s form consecutive elements in T . If S has many repetitions we expect that |D| � k. With a
little abuse of notation we define the parsing P as the sequence of lexicographic ranks of substrings
in D: P = (rankD(S[si, si+1 + w − 1]))k−1

i=1 . The parse P indicates how S may be reconstructed
using elements of D. The dictionary D and parse P may be constructed in one pass over S in
O (n+ |D| log |D|) time if the hash function f can be computed in constant time.

2.3 r-index locating

Policriti and Prezza [26] showed that if we have stored SA[k] for each value k such that BWT[k] is
the beginning or end of a run (i.e., a maximal non-empty unary substring) in BWT, and we know
both the range BWT[i..j] occupied by characters immediately preceding occurrences of a pattern
Q in S and the starting position of one of those occurrences of Q, then when we compute the
range BWT[i′..j′] occupied by characters immediately preceding occurrences of cQ in S, we can
also compute the starting position of one of those occurrences of cQ. Bannai et al [1] then showed
that even if we have stored only SA[k] for each value k such that BWT[k] is the beginning of a run,
then as long as we know SA[i] we can compute SA[i′].

Gagie, Navarro and Prezza [11] showed that if we have stored in a predecessor data structure
SA[k] for each value k such that BWT[k] is the beginning of a run in BWT, with φ−1(SA[k]) =
SA[k+1] stored as satellite data, then given SA[h] we can compute SA[h+1] in O(log log n) time as
SA[h+1] = φ−1(pred(SA[h]))+SA[h]−pred(SA[h]) , where pred(·) is a query to the predecessor data
structure. Combined with Bannai et al.’s result, this means that while finding the range BWT[i..j]
occupied by characters immediately preceding occurrences of a pattern Q, we can also find SA[i]
and then report SA[i+ 1..j] in O((j − i) log log n)-time, that is, O(log log n)-time per occurrence.

Gagie et al. gave the name r-index to the index resulting from combining a rank data structure
over the run-length compressed BWT with their SA sample, and Bannai et al. used the same name
for their index. Since our index is an implementation of theirs, we keep this name; on the other
hand, we do not apply it to indexes based on run-length compressed BWTs that have standard SA
samples or no SA samples at all.

3 Methods

Here, we describe our algorithm for building the SA or the sampled SA from the prefix free parse
of a input string S, which is used to build the r-index. We first review the algorithm from [2] for

4 For technical reasons, the string S must terminate with w copies of lexicographically least $ symbol.



building the BWT of S from the prefix free parse. Next, we show how to modify this construction
to compute the SA or the sampled SA along with the BWT.

3.1 Construction of BWT from prefix-free parse

We assume we are given a prefix-free parse of S[1..n] with window size w consisting of a dictionary
D and a parse P. We represent the dictionary as a string D[1..`] = t1#t2# · · · td−1#td# where ti’s
are the dictionary phrases in lexicographic order and # is a unique separator. We assume we have
computed the SA of D, denoted by SAD[1..`] in the following, and the suffix array of P, denoted
BWTP , and the array Occ[1, d] such that Occ[i] stores the number of occurrences in the parse of
the dictionary phrase ti. These preliminary computations take O(|D|+ |P|) time.

By the properties of the prefix-free parsing, each suffix of S is prefixed by exactly one suffix α
of a dictionary phrase tj with |α| > w. We call α the representative prefix of the suffix S[i..n]. From
the uniqueness of the representative prefix we can partition S’s suffix array SA[1..n] into k ranges

[b1, e1], [b2, `2], [b3, `3], . . . , [bk, `k]

with b1 = 1, bi = ei + 1 for i = 2, . . . , k, and ek = n, such that for i = 1, . . . , k all suffixes

S[SA[bi]..n], S[SA[bi + 1]..n], . . . , S[SA[ei]..n]

have the same representative prefix αi. By construction α1 ≺ α2 ≺ · · · ≺ αk.
By construction, any suffix D[i..`] of the dictionary D is also prefixed by the suffix of a dictionary

phrase. For j = 1, . . . , `, let βj denote the longest prefix of D[SAD[j]..`] which is the suffix of a
phrase (i.e. D[SAD[j] + |βj |] = #). By construction the strings βj ’s are lexicographically sorted
β1 ≺ β2 ≺ · · · ≺ β`. Clearly, if we compute β1, . . . , β` and discard those such that |βj | ≤ w,
the remaining βj ’s will coincide with the representative prefixes αi’s. Since both βj ’s and αi’s
are lexicographically sorted, this procedure will generate the representative prefixes in the order
α1, α2, . . . , αk. We note that more than one βj can be equal to some αi since different dictionary
phrases can have the same suffix.

We scan SAD[1..`], compute β1, . . . β` and use these strings to find the representative prefixes.
As soon as we generate an αi we compute and output the portion BWT[bi, ei] corresponding to the
range [bi, ei] associated to αi. To implement the above strategy, assume there are exactly k entries
in SAD[1..`] prefixed by αi. This means that there are k distinct dictionary phrases ti1 , ti2 , . . . , tik
that end with αi. Hence, the range [bi, ei] contains zi = ei − bi + 1 =

∑k
h=1 Occ[ih] elements. To

compute BWT[bi, ei] we need to: 1) find the symbol immediately preceding each occurrence of αi

in S, and 2) find the lexicographic ordering of S’s suffixes prefixed by αi. We consider the latter
problem first.

Computing the lexicographic ordering of suffixes. For j = 1, . . . , zi consider the j-th occurrence
of αi in S and let ij denote the position in the parsing of S of the phrase ending with the j-th
occurrence of αi. In other words, P[ij ] is a dictionary phrase ending with αi and i1 < i2 < · · · < izi .
By the properties of BWTP the lexicographic ordering of S’s suffixes prefixed by αi coincides with
the ordering of the symbols P[ij ] in BWTP . In other words, P[ij ] precedes P[ih] in BWTP if and
only if S’s suffix prefixed by the j-th occurrence of αi is lexicographically smaller than S’s suffix
prefixed by the h-th occurrence of αi.

We could determine the desired lexicographic ordering by scanning BWTP and noticing which
entries coincide with one of the dictionary phrases ti1 , . . . , tik that end with αi but this would
clearly be inefficient. Instead, for each dictionary phrase ti we maintain an array ILi of length Occ[i]
containing the indexes j such that BWTP [j] = i. These sorts of “inverted lists” are computed at
the beginning of the algorithm and replace the BWTP which can be discarded.



Finding the symbol preceding αi. Given a representative prefix αi from SAD we retrieve the indexes
i1, . . . , ik of the dictionary phrases ti1 , . . . , tik that end with αi. Then, we retrieve the inverted lists
ILi1 , . . . ILik and we merge them obtaining the list of the zi positions y1 < y2 < · · · < yzi such
that BWTP [yj ] is a dictionary phrase ending with αi. Such list implicitly provides the lexicographic
order of S’s suffixes starting with αi.

To compute the BWT we need to retrieve the symbols preceding such occurrences of αi. If
αi is not a dictionary phrase, then αi is a proper suffix of the phrases ti1 , . . . , tik and the symbols
preceding αi in S are those preceding αi in ti1 , . . . , tik that we can retrieve fromD[1..`] and SAD[1..`].
If αi coincides with a dictionary phrase tj , then it cannot be a suffix of another phrase. Hence,
the symbols preceding αi in S are those preceding tj in S that we store at the beginning of the
algorithm in an auxiliary array PRj along with the inverted list ILj .

3.2 Construction of SA and SA sample along with the BWT

We now show how to modify the above algorithm so that, along with BWT, it computes the full
SA of S or the sampled SA consisting of the values SA[s1], . . . ,SA[sr] and SA[e1], . . . ,SA[er], where
r is the number of maximal non-empty runs in BWT and si and ei are the starting and ending
positions in BWT of the i-th such run, respectively. Note that if we compute the sampled SA the
actual output will consist of r start-run pairs 〈si,SA[si]〉 and r end-run pairs 〈ei,SA[ei]〉 since the
SA values alone are not enough for the construction of the r-index.

We solve both problems using the following strategy. Simultaneously to each entry BWT[j], we
compute the corresponding entry SA[j]. Then, if we need the sampled SA, we compare BWT[j − 1]
and BWT[j] and if they differ, we output the pair 〈j − 1, SA[j − 1]〉 among the end-runs and the
pair 〈j,SA[j]〉 among the start-runs. To compute the SA entries, we only need d additional arrays
EP1, . . .EPd (one for each dictionary phrase), where |EPi| = |ILi| = Occ[i], and EPi[j] contains the
ending position in S of the dictionary phrase which is in position ILi[j] of BWTP .

Recall that in the above algorithm for each occurrence of a representative prefix αi, we compute
the indexes i1, . . . , ik of the dictionary phrases ti1 , . . . , tik that end with αi. Then, we use the lists
ILi1 , . . . , ILik to retrieve the positions of all the occurrences of ti1 , . . . , tik in BWTP , thus establishing
the relative lexicographic order of the occurrences of the dictionary phrases ending with αi. To
compute the corresponding SA entries, we need the starting position in S of each occurrence of
αi. Since the ending position in S of the phrase with relative lexicographic rank ILih [j] is EPih [j],
the corresponding SA entry is EPih [j] − |αi| + 1. Hence, along with each BWT entry we obtain
the corresponding SA entry which is saved to the output file if the full SA is needed, or further
processed as described above if we need the sampled SA.

4 Time and memory usage for SA and SA sample construction

We compare the running time and memory usage of bigbwt5 with the following methods, which
represent the current state-of-the-art.

bwt2sa Once the BWT has been computed, the SA or SA sample may be computed by applying the
LF mapping to invert the BWT and the application of Eq. 1. Therefore, as a baseline, we
use bigbwt to construct the BWT only, as in Boucher et al. [2]; next, we load the BWT as a
Huffman-compressed string with access, rank, and select support to compute the LF mapping.
We step backwards through the BWT and compute the entries of the SA in non-consecutive
order. Finally, these entries are sorted in external memory to produce the SA or SA sample. This

5 Our implementation of the algorithm in Section 3, available here: https://gitlab.com/manzai/Big-BWT.



method may be parallelized when the input consists of multiple strings by stepping backwards
from the end of each string in parallel.

pSAscan A second baseline is to compute the SA directly from the input; for this computation, we
use the external-memory algorithm pSAscan [17], with available memory set to the memory
required by bigbwt on the specific input; with the ratio of memory to input size obtained from
bigbwt, pSAscan is the current state-of-the-art method to compute the SA. Once pSAscan has
computed the full SA, the SA sample may be constructed by loading the input text T into
memory, streaming the SA from the disk, and the application of Eq. 1 to detect run boundaries.
We denote this method of computing the SA sample by pSAscan+.

We compared the performance of all the methods on two datasets: (1) Salmonella genomes ob-
tained from GenomeTrakr [31]; and (2) chromosome 19 haplotypes derived from the 1000 Genomes
Project phase 3 data [4]. The Salmonella strains were downloaded from NCBI (NCBI BioProject
PRJNA183844) and preprocessed by assembling each individual sample with IDBA-UD [25] and
counting k-mers (k=32) using KMC [6]. We modified IDBA by setting kMaxShortSequence to 1024
per public advice from the author to accommodate the longer paired end reads that modern se-
quencers produce. We sorted the full set of samples by the size of their k-mer counts and selected
1,000 samples about the median. This avoids exceptionally short assemblies, which may be due to
low read coverage, and exceptionally long assemblies which may be due to contamination.

Next, we downloaded and preprocessed a collection of chromosome 19 haplotypes from 1000
Genomes Project. Chromosome 19 is 58 million base pairs in length and makes up around 1.9% of
the total human genome sequence. Each sequence was derived by using the bcftools consensus

tool to combine the haplotype-specific (maternal or paternal) variant calls for an individual in the
1KG project with the chr19 sequence in the GRCH37 human reference, producing a FASTA record
per sequence. All DNA characters besides A, C, G, T and N were removed from the sequences
before construction.

We performed all experiments in this section on a machine with Intel(R) Xeon(R) CPU E5-2680
v2 @ 2.80GHz and 324 GB RAM. We measured running time and peak memory footprint using
/usr/bin/time -v, with peak memory footprint captured by the Maximum resident set size

(kbytes) field and running time by the User Time and System Time field.

We witnessed that the running time of each method to construct the full SA is shown in Figs.
1(a) – 1(c). On both the Salmonella and chr19 datasets, bigbwt ran the fastest, often by more than
an order of magnitude. In Fig. 1(d), we show the peak memory usage of bigbwt as a function of
input size. Empirically, the peak memory usage was sublinear in input size, especially on the chr19
data, which exhibited a high degree of repetition. Despite the higher diversity of the Salmonella
genomes, bigbwt remained space-efficient and the fastest method for construction of the full SA.
Furthermore, we found qualitatively similar results for construction of the SA sample, shown in
Fig. 2. Similar to the results on full SA construction, bigbwt outperformed both baseline methods
and exhibited sublinear memory scaling on both types of databases.
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Fig. 1: Runtime and peak memory usage for construction of full SA.
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Fig. 2: Runtime and peak memory usage for construction of SA sample.

5 Application to many human genome sequences

We studied how the r-index scales to repetitive texts consisting of many similar genomic sequences.
Since an ultimate goal is to improve read alignment, we benchmark against Bowtie (version 1.2.2)
[19] . We ran Bowtie with the -v 0 and --norc options; -v 0 disables approximate matching, while
--norc causes Bowtie (like r-index) to perform the locate query with respect to the query sequence
only and not its reverse complement.

5.1 Indexing chromosome 19s

We performed our experiments on collections of one or more versions of chromosome 19. These
versions were obtained from 1000 Genomes Project haplotypes in the manner described in the
previous section. We used 10 collections of chromosome 19 haplotypes, containing 1, 2, 10, 30,
50, 100, 250, 500, and 1000 sequences, respectively. Each collection is a superset of the previous.
Again, all DNA characters besides A, C, G, T and N were removed from the sequences before
construction. All experiments in this section were ran on a Intel(R) Xeon(R) CPU E5-2680 v3 @
2.50GHz machine with 512GB memory. We measured running time and peak memory footprint as
described in the previous section.

First we constructed r-index and Bowtie indexes on successively larger chromosome 19 collec-
tions (Figure 3(a), 3(b)). The r-index’s peak memory is substantially smaller than Bowtie’s for
larger collections, and the gap grows with the collection size. At 250 chr19s, the r-index proce-
dure takes about 2% of the time and 6% the peak memory of Bowtie’s procedure. Bowtie fails to
construct collections of more than 250 sequences due to memory exhaustion.

Next, we compared the disk footprint of the index files produced by Bowtie and r-index (Figure
3(c)). The r-index currently stores only the forward strand of the sequence, while the Bowtie index
stores both the forward sequence and its reverse as needed by its double-indexing heuristic [19].
Since the heuristic is relevant only for approximate matching, we omit the reverse sequence in
these size comparisons. We also omit the 2-bit encoding of the original text (in the *.3.ebwt

and *.4.ebwt files) as these too are used only for approximate matching. Specifically, the Bowtie
index size was calculated by adding the sizes of the forward *.1.ebwt and *.2.ebwt files, which
contain the BWT, SA sample, and auxiliary data structures for the forward sequence. The size of
the r-index increased more slowly than Bowtie’s, though the r-index was larger for the smallest
collections. This is because, unlike Bowtie which samples a constant fraction of the SA elements
(every 32nd by default), the density of the r-index SA sample depends on the ratio n/r. When the
collection is small, n/r is small and more SA samples must be stored per base. At 250 sequences,
the r-index index takes 6% the space of the Bowtie index.

We then compared the speed of the locate query for r-index and Bowtie. We extracted 100,000
100-character substrings from the chr19 collection of size 1, which is also contained in all larger
collections. We queried these against both the Bowtie and r-indexes. We used the --max-hits
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Fig. 3: Scalability of r-index and bowtie indexes against chr19 haplotype collection size and total sequence length (megabases)
with respect to index construction time (seconds) (a), index construction peak memory (megabytes) (b), index disk space
(megabytes) (c), and locate time (seconds) of 100,000 100bp queries (d).

option for r-index and the -k option for Bowtie to set the maximum number of hits reported to
be equal to the collection size. The actual number of hits reported will often equal this number,
but could be smaller (if the substring differs between individuals due to genetic variation) or larger
(if the substring is from a repetitive portion of the genome). Since the source of the substrings is
present in all the collections, every query is guaranteed to match at least once. As seen in Figure
3(d), the r-index locate query was faster for the collection of 250 chr19s. No comparison was possible
for larger collections because Bowtie could not build the indexes.

5.2 Indexing whole human genomes

Lastly, we used r-index to index many human genomes at once. We repeated our measurements
for successively larger collections of (concatenated) genomes. Thus, we first evaluated a series of
haplotypes extracted from the 1000 Genomes Project [4] phase 3 callset (1KG). These collections
ranged from 1 up to 10 genomes. As the first genome, we selected the GRCh37 reference itself. For
the remaining 9, we used bcftools consensus to insert SNVs and other variants called by the
1000 Genomes Project for a single haplotype into the GRCh37 reference.

Second, we evaluated a series of whole-human genome assemblies from 6 different long-read
assembly projects (“LRA”). We selected GRCh37 reference as the first genome, so that the first
data point would coincide with that of the previous series. We then added long-read assemblies
from a Chinese genome assembly project [28], a Korean genome assembly project [16] a project
to assemble the well-studied NA12878 individual [15], a hydatidiform mole (known as CHM1)
assembly project [30] and the Celera human genome project [20]. Compared to the series with
only 1000 Genomes Project individuals, this series allowed us to measure scaling while capturing a
wider range of genetic variation between humans. This is important since de novo human assembly
projects regularly produce assemblies that differ from the human genome reference by megabases
of sequence (12 megabases in the case of the Chinese assembly [28]), likely due to prevalent but
hard-to-profile large-scale structural variation. Such variation was not comprehensively profiled in
the 1000 Genomes Project, which relied on short reads.

The 1KG and LRA series were evaluated twice, once on the forward genome sequences and once
on both the forward and reverse-complement sequences. This accounts for the fact that different de
novo assemblies make different decisions about how to orient contigs. The r-index method achieves
compression only with respect to the forward-oriented versions of the sequences indexed. That is,
if two contigs are reverse complements of each other but otherwise identical, r-index achieves less
compression than if their orientations matched. A more practical approach would be to index both
forward and reverse-complement sequences, as Bowtie 2 [18] and BWA [22] do.

We measured the peak memory footprint when indexing these collections (Figure 4). We ran
these experiments on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz system with 256GB memory.
Memory footprints for LRA grew more quickly than those for 1KG. This was expected due to the



Table 1: Sequence length and n/r statistic
with respect to number of whole genomes for
the first 6 collections in the 1000 Genomes
(1KG) and long-read assembly (LRA) series.

Sequence
# Genomes Length (MB) n/r

1KG LRA 1KG LRA
1 6,072 6,072 1.86 1.86
2 12,144 12,484 3.70 3.58
3 18,217 17,006 5.38 4.83
4 24,408 22,739 7.13 6.25
5 30,480 28,732 8.87 7.80
6 36,671 34,420 10.63 9.28
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Fig. 4: Peak index-building memory for r-index when index-
ing successively large collections of 1000-Genomes individuals
(1KG) and long-read whole-genome assemblies (LRA).

greater genetic diversity captured in the assemblies. This may also be due in part to the presence
of sequencing errors in the long-read assembles; long-read technologies are more prone to indel
errors than short-read technologies, for examples, and some may survive in the assemblies. Also as
expected, memory footprints for the LRA series that included both forward and reverse complement
sequences grew more slowly than when just the forward sequence was included. This is due to
sequences that differ only (or primarily) in their orientation between assemblies. All series exhibit
sublinear trends, highlighting the efficacy of r-index compression even when indexing genetically
diverse whole-genome assemblies. Indexing the forward and reverse complement strands of 10 1KG
individuals took about 6 hours and 20 minutes and the final index size was 36GB.

We also measured lengths and n/r ratios for each collection of whole genomes (Table 1). Con-
sistent with the memory-scaling results, we see that the n/r ratios are somewhat lower for the LRA
series than for the 1KG series, likely due to greater genetic diversity in the assemblies.

6 Conclusions and Future Work

We give an algorithm for building the SA and SA sample from the prefix-free parse of an input
string S, which fully completes the practical challenge of building the index proposed by Gagie et
al. [11]. This leads to a mechanism for building a complete index of large databases — which is the
linchpin in developing practical means for pan-genomics short read alignment. In fact, we apply
our method for indexing partial and whole human genomes, and show that it scales better than
Bowtie with respect to both memory and time. This allows for an index to be constructed for large
collections of chromosome 19s (500 or more); a task that is out of reach of Bowtie — as exceeded
our limit of 512 GB of memory.

Even though this work opens up doors to indexing large collections of genomes, it also highlights
problems that warrant further investigation. For example, there still remains a significant amount
of work in adapting the index to work well on large sets of sequence reads. This problem not only
requires the construction of the r-index but also an efficient means to update the index as new
datasets become available. Moreover, there is interest in supporting more sophisticated queries
than just pattern matching, which would allow for more complex searches of large databases.
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