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A comprehensive approach to ‘Now’ in 
temporal relational databases: 
Semantics and Representation 

Luca Anselma, Luca Piovesan, Abdul Sattar, Bela Stantic, Paolo Terenziani  

Abstract—Now-related temporal data play an important role in many applications. Clifford et al.’s approach is a milestone to 

model the semantics of ‘now’ in temporal relational databases. Several relational representation models for now-related data 

have been presented; however, the semantics of such representations has not been explicitly studied. Additionally, the 

definition of a relational algebra to query now-related data is an open problem. We propose the first integrated approach that 

provides both a neat semantics for now-related data and a compact 1NF representation (data model and relational algebra) for 

them. Additionally, our approach also extends current approaches to consider (i) domains where it is not always possible to 

know when changes in the world are recorded in the database and (ii) now-related data with a bound on their persistency in the 

future. To do so, we explicitly model the notion of temporal indeterminacy in the future for now-related data. The properties of 

our approach are also analyzed both from a theoretical (semantic correctness and reducibility of the algebra) and from the 

experimental point of view. Experiments show that, despite our approach is a major extension to current temporal relational 

approaches, no significant overhead is added to deal with ‘now’. 

Index Terms— H.2.4.m Temporal databases, H.2.0.b Database design, modeling and management 

——————————   ◆   —————————— 

1 INTRODUCTION

EMPORAL data play an important role in many do-
mains and applications. In such contexts, data must 

be paired with the time when they occur (valid time) 
and/or when they are inserted/deleted in the database 
(transaction time). Starting from the 1980’s, there is a long 
tradition of approaches coping with time in relational da-
tabases (see, e.g., [1] and [2]). TSQL2 [3] has emerged 
from the “consensus” of many researchers on relational 
temporal databases (TDBs for short).  Globally, the ap-
proaches in the TDB literature cover different aspects:  
(1) the definition of the semantics of time in TDBs, in-

cluding data semantics and query semantics (usually 
expressed at the algebraic level). For instance, BCDM 
[4] is the semantic model underlying TSQL2 and sev-
eral other TDB approaches. 

(2) the definition of a representational model for temporal 
data. The basic non-temporal model is usually ex-
tended with new attributes to explicitly model time (e.g., 
four temporal attributes are added by TSQL2, to 
model start and end of both valid and transaction 
time). The meaning of the extended data model can 

be defined through its mapping to a semantic model 
(e..g., the function snapshot_to_conceptual in TSQL2, 
mapping TSQL2 relations into BCDM semantics). 

(3) The definition of algebrae and\or  query languages 
to operate on an extended representational model (as 
well as insertion\deletion operations). 

(4) The study of the properties of the algebrae (or query 
languages). Reducibility is important, to grant, e.g., in-
teroperability with non-temporal databases [3]. Also, 
the correctness of the algebrae operating on the repre-
sentational model with respect to the semantics 
should be proven (consider, e.g., [5]). 

(5) Last, but not least, the efficiency of many different 
implementations (often including indexing tech-
niques) has been experimentally evaluated. 

Despite the huge effort devoted in the area, several 
problems still have to be further studied. In this paper, we 
focus on the treatment of ‘now’ in TDBs to cope with data 
such as “John is in the Intensive Care Unit (ICU henceforth) 
from January 10 to now”. We call valid-time “now-related” 
those facts (tuples) starting in the past and still valid until 
the current time, as in John’s example. Analogously, we 
call transaction-time “now-related” those tuples that are 
still current in the database. Though SQL-92 already had 
the construct CURRENT_TIMESTAMP for use in queries, 
one cannot store it as a value in a SQL column (i.e., as a 
value for the ending time of a tuple). The user is forced to 
store a specific time, which is clearly problematic and 
prone to errors (see [6]). Several different approaches 
have been developed to overcome such a limitation. 
However, each approach focuses just on one (or few) of 
the (1) – (5) aspects mentioned above, while there is cur-
rently no comprehensive and integrated approach coher-
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ently facing all of them. Data semantics for now-related 
data has been studied by the milestone work by Clifford 
et al. [6]: many of the later works in TDBs have (explicitly 
or implicitly) assumed such a semantics as the basis of 
their approach. Notably, however, no algebra has been 
provided by Clifford et al.’s semantics. Concerning repre-
sentational models, several approaches have introduced a 
variable such as ‘now’ (other symbols have been used, 
e.g., “–”, “∞”, “@” and “until-changed”), as the ending 
time of now-related tuples, leading to the “variable” da-
tabases [7]. Variable databases require a significant depar-
ture from the “consensus” relational model and cannot be 
easily implemented on existing relational databases. Con-
cerning non-variable representations, the NULL, MIN, 
MAX [8] and POINT [9] model have been introduced. 
Such representational approaches adopt indexing tech-
niques to enhance efficiency, and are experimentally evalu-
ated and compared [8][9]. An algebra for such approaches 
have been recently proposed by Anselma et al. [10]. 
However, their data and query semantics has not been ex-
plicitly explored yet. Two common limitations of all the 
above semantic and representational approaches are that: 
(i) their treatment of now-related tuples is based on as-

sumptions on the “latency” of updates. Roughly speak-
ing, they assume that it is exactly known when the 
changes in the world are recorded into the database. This is 
a strong assumption that does not hold in general1. For 
instance, in [12], relations are classified on the basis of 
the interrelationships between changes in the real 
world and when such changes are recorded in the da-
tabase.  In the definition in [12], in general temporal 
relations «there are no restrictions on the interrelations of, 
or correlations between, the transaction and valid 
timestamps of an item». 

(ii) They cannot cope with the possibility of specifying an 
upper bound for the persistence of valid-time now-
related tuples in the future (henceforth, we call such 
tuples “now-bounded”). Explicitly coping with such is-
sue involves a deep extension to the model since it re-
quires a treatment also of the possible future times 
when a now-related tuple may hold.  

Regarding point (ii), consider, e.g., Example 1. 
Example 1. Tom was hospitalized in the Emergency De-
partment (ER) yesterday (on day 4), he is currently hospi-
talized today (on day 5), and the maximum stay in the ER 
is three days. 
Tom is certainly hospitalized in the ER on day 4 and 5, and 
possibly hospitalized in the ER tomorrow (on day 6). 

In this paper, we propose the first integrated approach 
coping with now-related data, which: 

- systematically takes into account all the aspects 
(1) – (5) mentioned above, and  

- overcomes the limitations (i) and (ii) of all current 
approaches. 

 

1 Indeed, the orthogonality of valid time and the time when data are in-
serted/deleted (transaction time) is one of the basic principles of bitem-
poral databases (see, e.g., TSQL2 [3] and BCDM [11]), and states that val-
id time and transaction time are independent of each other. This implies 
that, in the general case, no assumption can be done on when changes in 
the real (modelled) world are recorded in the database. 

In Section 2, we propose a new semantic model for now-
related data, which extends (see Property 1) Clifford et 
al.’s semantics of ‘now’ to overcome the limitations (i) 
and (ii). In Section 3, we then move towards a compact 
1NF representational data model (which does not adopt var-
iables) to implement the semantic model. We show its se-
mantics through a mapping to the semantic model. In Section 
4, we define algebraic (and update) operators on the repre-
sentational model, and study their correctness (with respect 
to the semantic model proposed in Section 2) and their 
reducibility. In Section 5, we propose an experimental 
evaluation of our representational approach. The experi-
ments clearly show that our approach does not add any 
significant overhead to the “ideal” (but not realistic) ap-
proach in which the exact ending time of now-relative da-
ta is known a priori. In Section 6, we discuss related 
works. Section 7 contains conclusions. 

Proofs and details are reported as supplementary ma-
terials. 

2 SEMANTICS OF NOW-RELATED DATA 

In this section we focus on the semantics of ‘now’ in TDBs, 
while in the rest of the paper we propose and analyze a 
representational model based on it. We interpret TDB seman-
tics as in [11], [13]. Also, our notion of TDB semantics is 
very close to the notion of extensional-level databases in 
[6]. As in such approaches, the semantic model is used to 
represent the meaning of (temporal) data in a neat and 
formal way, wholly abstracting from any representa-
tion\implementation issue. Such an abstract semantics can 
then be used as a formal specification for the development 
representational models. For the sake of completeness, in 
subsections 2.1 and 2.2 we provide some background 
about TDB semantics. Then we move to our original con-
tribution (Subsections 2.3 – 2.6). 

2.1 Background: temporal database semantics 

To introduce TDB semantics, we sketch BCDM (Bitem-
poral Conceptual Data Model) [11], a unifying and “con-
sensus” semantic model which has been developed to iso-
late the “core” semantics underlying TDB approaches, in-
cluding TSQL2 [3]. In BCDM, tuples are associated with 
valid time and transaction time. For time, a limited preci-
sion is assumed and the chronon is the basic time unit. The 
domain of chronons is totally ordered and isomorphic to 
a subset of the domain of natural numbers. The domain of 
valid times DVT is given as a set DVT={c1,…,ck} of chronons 
and the domain of transaction times DTT is given as 
DTT={c’1,…,c’j} (a distinguished symbol, “UC”–Until 
Changed– is added to deal with ‘now’ in transaction 
time). The schema of a BCDM relation R=(A1,...,An|T) 
consists of an arbitrary number of non-timestamp (explicit 
henceforth) attributes A1, …, An, encoding some fact, and 
of a timestamp attribute T with domain DTT×DVT. Thus, a 
tuple x=(v1,…,vn|tb) in a BCDM relation r(R) on the sche-
ma R consists of a number of attribute values associated 
with a set of bitemporal chronons cbl=(ch,c’i), with ch∈DTT 
and c’i∈DVT, to denote that the fact v1,…,vn is current (pre-
sent in the database) at the chronon ch and valid at the 
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chronon c’i. Valid-time only, transaction-time only and 
nontemporal tuples are special cases, in which either the 
transaction time, or the valid time, or both of them are not 
supported. As an example, we show the BCDM semantics 
of Example 2. 

Example 2. Bill has been hospitalized in the Cardiac 
Surgery department from day 16 to 31; the fact is inserted 
on (transaction time) day 18 and deleted on day 41.  

 {<Bill, Cardiac Surgery | {(18,16), (18,17), …, (18,31), 
(19,16), …,(19,31), …, (40,16), …, (40,31)}>} 

Query semantics is modeled by defining a temporal 
algebra. As in most TDB models, BCDM algebraic opera-
tors behave as standard non-temporal operators on the 
non-temporal attributes and apply set operators on the 
temporal component of tuples (see, e.g., [5]). Cartesian 
product involves the intersection of the temporal compo-
nents, projection and union involve their union, and dif-
ference their difference. This definition can be motivated 
by the sequenced semantics [14]: results should be valid 
independently at each point of time.  

Anselma, Snodgrass and Terenziani [5] have recently 
extended BCDM to cope with temporal indeterminacy (i.e., 
“don’t know exactly when” indeterminacy [15]). In their 
semantic model, disjunctive sets of chronons (called 
DTEs) are introduced, each one representing one of the 
alternative possible temporal scenarios. Consider, e.g., 
example 3, in which both the starting and the ending 
times are indeterminate: 

Example 3. John has been in ICU from 9 or 10 until 11 
or 12. 

Example 3 is modeled in [5] by a DTE representing the 
disjunction of four different sets of chonons, meaning that 
John has been hospitalized in ICU at {9,10,11}, or at 
{9,10,11,12}, or at {10,11}, or at {10,11,12}: 

{<John, ICU | {{9,10,11}, {9,10,11,12}, {10,11}, 
{10,11,12}}>} 

In [5] algebraic operators are defined as in BCDM. 
However, unlike BCDM, they operate on each alternative 
pair of sets of chonons, to take into account pairwise all 
the possible combinations of scenarios. For instance, in-
tersection is defined as follows: 

DA T DB = {A  B | A  DA  B  DB}. 

2.2 Background: Clifford et al.’s semantics of ‘now’ 

Clifford, Dyreson, Isakowitz, Jensen and Snodgrass [6] 
have provided an extended approach coping with the 
semantics of ‘now’ both in valid and transaction time. 
Their approach constitutes a milestone in the treatment of 
‘now’ in TDBs (see, e.g., the Encyclopedia entry [7]). Be-
sides the NOW variable, which is used both in valid and 
transaction time, Clifford et al. also introduce now-
relative variables NOW+ specifying a (positive or nega-
tive) span  with respect to NOW to model the fact that 
the specific tuple is updated in advance (in the case of 
>0) or with a delay (in the case of <0) of  time units 
with respect to the time in which the fact that the tuple 
models changes in the modeled world. Henceforth, we 
call latency such a span of time . 

In order to provide the semantics of NOW, NOW+ 
and NOW-related tuples, Clifford et al. explicitly intro-

duce a new type of time, the reference time (RT), «to repre-
sent the relationship between a temporal database and the “real 
world” time at which it is viewed» [6, p. 180]. Notice that RT 
is different from the transaction time and it is not bounded 
by the current time «This provides the ability to ask “hypo-
thetical now” queries, that is, from the perspective of a future 
valid time (i.e., ten years from now)» [6, p. 182]. The data se-
mantics is then provided through a mapping from varia-
ble-level databases to extensional-level databases, called ex-
tensionalization, and extensionalizations are relative to a 
specific RT. For the moment we simply assume RT=cnow. 
Roughly and intuitively speaking, in [6], NOW is a varia-
ble that assumes new values whenever time progresses. 
Consider, e.g., Example 4: 

Example 4. John is hospitalized in ICU from day 10 to 
NOW; the fact is inserted at day 10 and is still current. 

At reference time 11, the semantics of Example 4 is  
<John, ICU | {(10,10), (10,11), (11,10), (11,11)}>, and at 
time 12 it becomes <John, ICU | {(10,10), (10,11), (10,12), 
(11,10), (11,11), (11,12),(12,10),(12,11),(12,12)}>. 

The semantics of now-relative tuples is similar, except 
that the display  is considered. For instance, in case 
NOW-1 is used instead of NOW, the semantics of Exam-
ple 4 at reference time 12 is: <John, ICU | {(10,10), (10,11),  
(11,10), (11,11),(12,10),(12,11)}>. 

Note. The above examples highlight a very important issue: 
in Clifford et al.’s approach the semantics of NOW is a special 
case (with =0) of the semantics of NOW+.  

This means that Clifford et al.’s semantics for ‘now’ as-
sumes that the latency of TDB updates is exact and 
known: when some changes happen in the modelled 
world, they are recorded soon in the TDB (NOW variable; 
called punctuality assumption in [6]), or exactly  be-
fore/after the change (NOW+ variable). 

Clifford et al. do not devise any algebra coping with 
such a data model. Notably, Clifford et al. extended their 
model to cope also with temporally indeterminate tuples 
(as an independent phenomenon, not used to model the se-
mantics of NOW). Later on, in [16], Torp et al. have ex-
tended Clifford’s approach in order to cope with updates. 

2.3 Ratio for the proposal of an extended 
semantics for ‘now’ 

The starting points of our semantics for now-related tu-
ples are [11][6][5]. We extend Clifford et al.’s data model 
[6] to cope also with (1) “now-bounded” tuples and\or 
(2) unknown latency. 

Considering issue (1), we have already discussed the 
fact that the treatment of bounds for ‘now’ involves the 
explicit treatment of possible future times (see the discus-
sion about Example 1). Possible future valid times can be 
coped with by models dealing with temporal indetermina-
cy, like the one in [5]. For instance, considering the exam-
ple, we can state that the Tom’s transfer or discharge from 
the ER is temporally indeterminate since it can occur on 
day 5 or on day 6. Temporal indeterminacy is also a cue 
notion to cope with issue (2) above. Indeed, if latency is 
unknown, the valid time of now-related tuples depends 
only on the time when the now-related fact is asserted 
(henceforth called assertion time), and it is independent of 
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the value of NOW. To explain this apparently contradic-
tory point, let us consider an example focusing on valid 
time only. Consider the fact in Example 5, supposing that 
it has been asserted at time 14. 

Example 5. John is hospitalized in ICU from 10 to 
NOW (assertion time = 14). 

At time 14 (i.e., with cnow=14), we are certain that John 
has been in ICU in days 10, 11, 12, 13 and 14 (as in 
Clifford et al., we include the current value of NOW). 
Possibly, John may stay in ICU on day 15, on 16 and so 
on, but this is not certain. Then, let us look at the same 
information the day after (i.e., at cnow=15), supposing that 
no modification has been done to the TDB. Clearly, if la-
tency were known, the fact that the TDB has not been 
changed would provide us an additional piece of infor-
mation. For instance, with latency equal to zero, we could 
be certain that John is in ICU also on day 15 (as Clifford et 
al. clearly state and manage). However, if latency is un-
known, the fact that the TDB has not been changed does 
not provide any new knowledge. It could be the case that 
John has been discharged on day 15 and this fact has not 
been recorded yet (e.g., due to a long-term strike of data-
entry operators). Even, e.g., at cnow=25, the fact that the 
information about John is still present in the TDB does 
not convey any additional certain information (e.g., may-
be the long-term strike of operators is still going on): we 
still are only certain that John was in ICU on days 10, 11, 
12, 13 and 14 (and it is possible that John was still in ICU 
in the following days, and even in future days). 

As the above example shows, if no assumption can be 
made on when changes in the modelled world are rec-
orded in the TDB (i.e., if latency of updates is unknown), 
the meaning of valid-time now-related facts depends on 
the assertion time only and it is independent of the value 
of the variable NOW. As a matter of fact, the (intended) 
meaning of “the fact f holds from start to NOW”, asserted 
at time ta is that f holds at each chronon from start to ta, 
and it will end sometime in the future (i.e., some time af-
ter ta). In other words, the semantics of NOW with un-
known latency involves temporal indeterminacy in the 
future with respect to the assertion time ta.  

Definition 1 (informal). Assertion time. Assertion time 
is the time when the user expresses (i.e., utters, or writes, 
or communicate in some way) a given fact (tuple).2 

Notice that the time when a tuple is inserted in the da-
tabase (i.e., transaction time) may be different from the 
assertion time (in fact, the tuple may be inserted in the da-
tabase later than –but never before– the time when the 
fact is expressed). Also, assertion time is different from 
Clifford et al.’s reference time. For instance, the fact de-
scribed by Example 5 above, which is valid (valid time) 
from 10 to NOW, can be uttered by the user (assertion 
time) at time 14, physically inserted into the TDB (transac-
tion time) at time 15, and the database can then be in-
spected, e.g., at time 25 (reference time). Indeed, in our ap-
proach, if latency is unknown, assertion time is the maxi-
 

2 Also Johnston and Weis [17] have pointed out that, besides valid 

(called effective) time and transaction time, also assertion time should be 

considered. Their notion of assertion time is quite similar to ours. 
 

mum time until which now-related facts certainly hold: 
temporal indeterminacy starts after the assertion time.  

In the following, we provide a formal semantics cover-
ing such an intuition, based on the semantics in [5].  

2.4 Semantics of ‘now’ with unknown latency  

We start from the treatment of ‘now’ in valid time and 
then, in Section 2.5, we extend it to consider also transac-
tion time. 

Definition 2. Semantics of (valid-time) now-related 
tuples with unknown latency. Given a non-temporal tu-
ple f=(a1,…,an) in an instance r(R) of R(x1, ..., xh), with valid 
time starting at cs and that is now-related and is asserted 
at time NOW=ca (csca), the semantics of the relation  {f} 
({f} is the relation containing only the tuple f) at reference 
time ct (ctca) is 

{<a1,…,an|{{cs,…,ca}, {cs,…,ca+1}, …, {cs,…, cmax}}}, 
where, like in BCDM, the temporal domain TC is an or-
dered set of chronons {c1,…,cmax}; cmax is the greatest ele-
ment in TC.  
Notice that, since all the alternative sets contain the chro-
nons cs,…, ca, f certainly holds in such chronons. In the 
semantics, all the possible alternative endings of f in the 
future are explicitly modelled. Notably, the semantics of f 
depends on the assertion time ca (in the sense that the cer-
tain chronons span from cs to ca) but it is independent of 
the reference time ct (ct must follow the assertion time). 

For instance, if the latency is unknown, the semantics 
of Example 5 at any reference time ct (ct14) is 
{<John, ICU | {10,11,12,13,14}, {10,11,12,13,14,15}, …, 
{10,11,12,13,14,15, …,cmax}}. 

Since our semantic model explicitly deals with the 
temporal indeterminacy about the termination of now-
related tuples, it can easily accommodate the semantics of 
valid-time “now-bounded” tuples. As a matter of fact, the 
bound is simply an upper bound for the possible alterna-
tives in the future as shown in Definition 3. 
Definition 3. Semantics of now-bounded tuples. Given a 
non-temporal tuple f=(a1,…,an) in an instance r(R) of R(x1, 
..., xk), whose validity started at cs and that is now-related, 
is asserted at time NOW=ca, and has an upper bound 
cbTC (cscacb), the semantics of {f} at time ct (ct  ca) is 

{<a1,…,an|{{cs,…,ca}, {cs,…,ca+1},…, {cs,…, cb}}  
For instance, considering again Example 5, but supposing 
that ICU hospitalization cannot last more than 30 days 
(e.g., for an internal policy of the hospital), we have the 
following semantics (i.e., cb=39): 
{<John, ICU | {10,11,12,13,14}, {10,11,12,13,14,15}, …, 
{10,11,12,13,14,15, …,39}}. 

2.5 Semantics of ‘now’ with known latency and/or 
with Transaction Time  

In case the latency of updates is known, we basically 
maintain the semantics by Clifford et al. 
Definition 4. Semantics of (valid-time) now-related tu-
ples with known latency . Given a non-temporal tuple 
f=(a1,…,an) in an instance r(R) of R(x1, ..., xh), with valid 
time starting at cs and that is now-related and is asserted 
at time NOW=ca (csca), the semantics of the relation  {f} 
({f} is the relation containing only the tuple f) at time ct 
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(ct+ca) is 
{<a1, …, an|{{cs,…,ct+}, {cs,…,ct++1}, …, {cs,…,cmax}}}  

Notice that, as in Clifford et al.’s approach, in the case 
of known latency, the semantics depends on the time ct 
when the database is inspected (and it is independent of 
the assertion time). As in Clifford et al.’s approach, we 
have that <a1,…,an> certainly holds during the interval 
starting with cs and ending with ct+. On the other hand, 
we also explicitly model temporal indeterminacy in the 
future, i.e., the fact that <a1,…,an> can possibly persist un-
til cmax. Such an extension is crucial to model now-
bounded facts. For instance, Definition 4 above can be 
easily extended to cope with the case in which f has an 
upper bound b, by removing from the formula all the sets 
containing chronons greater or equal to b. 

By definition, transaction time is always determinate 
and cannot be in the future. We thus retain its semantics 
from Clifford et al.’s approach.  

Definition 5. Semantics of transaction-time tuples. 
Given a non-temporal tuple f=(a1,…,an) in an instance r(R) 
of R(x1, ..., xk), inserted at (transaction time) ci (ci  ca) and 
still current, the semantics of {f} at time ct (ct   ci) is 

{<a1,…,an|{ {ci, …, ct}}>). 
Finally, the semantics of bitemporal now-related tuples 

can be obtained as the composition of the semantics of 
transaction-time and of valid-time now-related tuples. As 
an example, we show the semantics of bitemporal now-
related and now-bounded tuples with known latency . 

Definition 6. Semantics of bitemporal now-related 
and now-bounded tuples with known latency . Given a 
non-temporal tuple f=(a1,…,an) in an instance r(R) of R(x1, 
..., xk), whose validity started at cs and that is now-related, 
is asserted at time NOW=ca, and has an upper-bound 
cbTC (cscacb), is inserted at (transaction time) ci (ci  ca) 
and is still current, with a known latency , the semantics 
of {f} at time ct (ct   ci) is 

{<a1, …, an|{{(ci,cs),…,(ci,ct+), …, (ct,cs),…,(ct,ct+)},  
{(ci,cs),…,(ci,ct++1), …, (ct,cs),…,(ct,ct++1)}, …,  
{(ci,cs),…,(ci, cb), …, (ct,cs),…,(ct, cb)}}}.  
Property 1 shows that, if we neglect the cases in which 

latency is ‘UNK’, and we consider only the “certain” part 
of valid time, our semantics for now-related tuples reduc-
es to Clifford et al.’s one. This is important to grant that 
our semantics is a consistent extension of Clifford et al.’s 
one, so that it is the theoretical basis to grant the interop-
erability of our approach with all the approaches based 
on Clifford et al.’s semantics (e.g., NULL, MIN, MAX, and 
POINT approaches).   

Property 1. For each non-temporal tuple f=(a1,…,an) 
whose valid time started at cs and that is now-related, as-
serted at time NOW=ca, inserted at (transaction time) ci (ci 
 ca) and still current, with known latency  and with an 
upper bound cb (cscacb), the semantics of {f} at a reference 
time t (t  ca) in our approach (indicated by Seman-
ticst(f,cs,ci,,cb)) is reducible via the Cert operator to its se-
mantics in Clifford et al. (indicated by SemanticsClif-

ford
t(f,cs,ci,,cb)), i.e.,  
Cert(Semanticst(f,cs,ci,,cb)) = SemanticsClifford

t(f,cs,ci,,cb) 
where Cert(<f|{1,…,k}>)=<f|>, with ={1…k} 

The proofs of this property and of the following ones are 

reported in the supplementary materials. 

2.6 Semantics of queries (algebra)  

As shown above, valid-time and/or transaction-time 
now-related tuples can be modelled in Anselma et al.’s 
approach [5] as a specific case of temporal indeterminacy. 
As a consequence, the temporal algebraic operators (trivi-
ally extended to consider also bitemporals) in such an ap-
proach can be adopted to query such kind of data.  

3 A REPRESENTATIONAL MODEL BASED ON THE 

SEMANTICS  

The above semantics of now-related data is expressive but 
it has several limitations from the implementation point 
of view. Our semantic data model is not 1NF and it is not 
compact at all. Additionally, relational algebraic opera-
tors like Cartesian product and difference must explicitly 
manage all possible combinations of alternative times, 
and this fact increases the time complexity of such opera-
tions. In this section, we propose a compact 1NF repre-
sentation data model and show its mapping over the 
above semantics (function Semt in Definition 8). Section 4 
proposes a new temporal algebra operating on the repre-
sentational model, and proves its correctness with respect 
to the semantics (Property 2). 

3.1 A 1NF representational data model  

In this subsection, we propose a compact 1NF representa-
tion for now-related tuples. Such a representation takes 
into account both (i) valid time and (ii) transaction time. 
For now-related valid time, it copes with the case in 
which (iii) the latency  of updates is a known constant 
value or (iv) it is unknown, and it also deals with (v) now-
bounded tuples. The definition of relations considering 
only transaction time, or only valid time is easier, and can 
be easily derived from Definition 7. 

Definition 7. Bitemporal pn-tuple and pn-relation 
(where “pn” stands for “possibly now-related”). Given a 
schema (A1, …, An) where each Ai represents a non-
temporal attribute on the domain Di, a bitemporal relation 
rpn is an instance of the schema (A1, …, An | TTs, TTe, VTs, 
VTa, VTe, ) defined over the domain  
D1  …  Dn  TC  TC  TC  TC  TC  (Z  {UNK,NR}). The 
constant ‘UNK’ stands for “unknown” and it is used for 
tuples with an unknown latency, while ‘NR’ stands for 
“not-relevant” and it is used for not valid-time now-
related tuples. A tuple x = (a1, …, an | ts, te, vs, va, ve, d)  rpn 
is termed a pn-tuple (possibly now-related tuple), while rpn 
is called pn-relation. In a pn-tuple it must hold that (i) ts  
te, (ii) vs < ve, (iii) vs  va  ve.  

Intuitively speaking, and considering a valid-time 
now-related tuple, vs represents the start of valid time, va 
the assertion time (plus 1, for technical reasons: in fact, we 
assume intervals closed to the left and open to the right) 
and ve the future bound for ‘now’ (plus 1; the value cmax is 
used in case no bound has to be modelled). , which may 
be either an integer number or the special values ‘UNK’ 
or ‘NR’, represents the latency of updates. Intuitively, 
considering tuples with unknown latency, the interval [vs, 
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va) includes the set of valid-time chronons in which the 
tuple is certainly valid, while the interval [va, ve) repre-
sents the set of chronons in which it possibly holds. On 
the other hand, in case  is an integer value d (i.e.,  is dif-
ferent from ‘UNK’ and ‘NR’), the certain chronons can 
extend past va to include also all chronons from vs to t+d, 
where t is the reference time. However, they can never 
exceed ve. 

As regards transaction time, ts represents the starting 
time (the time when a tuple is inserted) and ts the ending 
time (the time when a tuple is deleted). ts and te cannot be 
future times. As suggested in the POINT approach [18], 
we represent transaction-time now-related tuples (i.e., tu-
ples which are current in the database) by imposing te=ts 
(notice that there is no ambiguity in the representation, 
since we adopt the convention that all time intervals are 
closed to the left and open to the right).  

Notice that a tuple that is not valid-time now-related 
can be easily represented as a special case of the above 
representation in which va=ve (and with value ‘NR’ for the 
attribute ). Notice also that a tuple that is transaction-
time not now-related can be easily represented as a spe-
cial case of the above representation, in which ts<te. Thus, 
pn-relations can include heterogeneous types of tuples, in 
the sense that any of them, independently of the others, 
may be now-related as regards valid time and/or transac-
tion time, or not now-related at all. Moreover, valid-time 
now-related tuples in the same relations may have differ-
ent bounds and/or different latencies. For instance, Table 
1 contains three different types of tuples. The first row 
represents a standard (not now-related) tuple, represent-
ing the fact that Bill has been in the Cardiac Surgery Ward 
from 16 to 32 (certain valid time), and that the tuple has 
been inserted in the database at time 18 and deleted at 
time 42 (transaction time). The second row models a val-
id-time and transaction-time now-related tuple, not 
bounded, with a known latency. It represents the fact that 
at time 14 it was asserted (VTa contains the value of the 
assertion time plus 1) that John is in ICU from 10 to ‘now’, 
and that such a tuple has been inserted in the database at 
time 21, and it is still present in the database. Notably, la-
tency is -1, which means that, e.g., at reference time 30, 
we are certain that John was in ICU from 10 to 29 (see 
Definition 4). The third row represents a valid-time now-
related and now-bounded fact with unknown latency and 
still current in the database. The fact that Tom is in ER 
from 4 to ‘now’ has been asserted at time 4 and the upper 
bound for ‘now’ is 7 (e.g., to model the fact that the max-
imum stay in ER lasts three days). Since latency is un-
known, at reference time 5 (or any RT>5) we are only cer-
tain that Tom was in ER at time 4, while he might have 
been in ER at times 5 and 6.  

TABLE 1. Tabular representation of a pn-relation PWARD 

Patient Ward TTs TTe VTs VTa VTe Δ 

Bill 
Cardiac 

Surgery 
18 42 16 32 32 NR 

John ICU 21 21 10 15 cmax -1 

Tom ER 5 5 4 5 7 UNK 

 

Notice that the representation in Definition 7 is a com-
pact 1NF representation of the semantic concepts dis-
cussed in Section 2 above. Thus, we define the Semt func-
tion (where t stands for the chosen reference time, tTC), 
which maps a bitemporal pn-tuple into the equivalent 
bitemporal tuple in the semantic model.  

Definition 8. Semantics of bitemporal pn-tuple and 
pn-relation. Given a bitemporal pn-relation rpn which is 
an instance of the schema (A1, …, An | TTs, TTe, VTs, VTa, 
VTe, ) and given any pn-tuple x = (a1, …, an | ts, te, vs, va, 
ve, d)  rpn, the semantics Semt({x}) of the relation {x} at ref-
erence time t is defined as follows: 

Semt(x) = (a1, …, an |SemTTt(ts, te)  SemVTt(vs, va, ve, d)), 

SemTTt(ts, te) =  
(i) {{c  TC \ ts  c  t}}   (if ts=te) 
(ii) {{c  TC \ ts  c  min(t, te-1)}}  (if ts<te) 

SemVTt(vs, va, ve, d) =  
(iii) {{c  TC \ vs  c  min(max(t+d,va-1), ve-1)},  

{c  TC \ vs  c  min(max(t+d,va-1), ve-1)+1}, …,  
{c  TC \ vs  c  ve-1}}  (if dUNK) 

(iv) {{c  TC \ vs  c  va-1)}, {c  TC \ vs  c  va)}, …,  
{c  TC \ vs  c  ve-1}}  (if d=UNK) 

The semantics Semt(rpn) of a pn-relation rpn is the set re-
sulting from the application of Semt to each one of the pn-
tuples xpn rpn.  

The semantics of the temporal component of a pn-
tuple depends on the reference time t and it is given by 
the Cartesian product of the semantics of its transaction 
time, specified by the function SemTTt, and the semantics 
of its valid time, specified by the function SemVTt. This 
approach grants for the orthogonality of TT and VT, as in 
most TDBs approaches, including BCDM and Clifford et 
al.’s semantics (see also Property 1 above). 

The SemTTt function provides two cases: the transac-
tion time is now-related, i.e., the tuple is current in the 
TDB (point (i)). In this case we consider the chronons 
from the transaction-time start ts to the reference time t. 
On the other hand, if the transaction time is not now-
related, i.e., the tuple has been deleted (point (ii)), the 
chronons of the transaction time cannot be greater than 
the chronon of the time when the tuple has been deleted 
(minus 1 because the interval is open to the right). 

Also the SemVTt function provides two cases, depend-
ing on the latency of the tuple. If the latency is known 
(point (iii)) and has value d, the tuple certainly holds at all 
chronons from cs to t+d (or to va, in case va>t+d), but no 
longer than the bound ve–1 (see the discussion in Section 
3.2). Then, it possibly holds until  
ve–1. It is worth noticing that, if the tuple is not now-
related and thus va=ve, the definition gives a singleton set 
of alternatives with the chronons that start at vs and end 
at ve–1 and it does not depend on the value of the refer-
ence time t. 

If the latency is unknown (point (iv)), we cannot as-
sume any persistence after the assertion time (consider 
the discussion in Section 3.1). Since, independently of the 
latency, the valid times from vs to va–1 are certain, they are 
included in all the alternatives. On the other hand, the 
valid times from va to ve–1 are possible and they corre-
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spond to the other alternatives. Notice that, in such a case, 
the semantics is independent of the value of the reference 
time t. 

Notably, our representation is expressive enough to 
cope with all the different cases of now-related facts dis-
cussed in Section 2. As discussed in that section, our se-
mantics for now-related tuples is indeed an extension of 
Clifford et al.’s one (see Property 1). Thus our representa-
tion is, indeed, a representational model for Clifford et 
al.’s semantics of NOW, as well as for the extension we 
have proposed. This is a first advance with respect to the 
current literature. A second, major, one is our proposal of 
an algebra operating on such a compact representation, 
respecting (i.e., consistent with) the above semantics. 

4 ALGEBRAIC AND MANIPULATION OPERATIONS 

Our representational model is a compact 1NF imple-
mentation of the semantics in Section 2.4. In this section, 
we define new algebraic operators operating on such a 
representation. Our operators perform a “symbolic ma-
nipulation” on such a representation: the result is directly 
computed only on the basis of the compact representa-
tion, without resorting to its underlying semantics. This 
procedure is efficient since it only requires a symbolic 
manipulation of a compact representation, but demands a 
proof of correctness: we have to prove that the semantics 
of the output obtained through the symbolic manipula-
tion is the same that would be obtained (although much 
less efficiently) by operating at the semantic level through 
the algebra in Section 2.5. 

To operate on the representation in a correct way (but 
not resorting to a direct translation into the semantics, 
which would make our approach inefficient), we intro-
duce the function interprVTa. interprVTa takes in input the 
valid-time values of a pn-tuple and a reference time t and 
returns a chronon representing the end of the “certain” 
part of the valid time at the reference time t, as implied by 
the representation. 

Definition 9. InterprVTa. 
interprVTa(va,ve,d,t) 

 if (d = UNK or d = NR) then return va 
 else return min(max(t+d+1, va), ve)  

This is indeed an implementation of part of the seman-
tics in Definition 7. The returned value is respectively (i) 
the assertion time (va) if d=UNK or d=NR (notice that, in 
the case that the tuple is not now-related, va=ve); (ii) the 
reference time shifted by the latency (t+d) (or the asser-
tion time va if it is higher) if d is known. 

4.1 Temporal extension of Codd’s operators  

Now we provide our temporal extension to Codd’s rela-
tional algebra operators [19]. As, e.g., in BCDM and 
TSQL2, to grant reducibility, temporal extensions operate 
as Codd’s operators on the non-temporal attributes. Ad-
ditionally, as e.g., in TSQL2, non-temporal selection, pro-
jection and union do not directly operate on the start/end 
of valid and transaction time. The definition of such oper-
ators is reported in the following, for the sake of com-
pleteness. Notice that, as in Clifford, queries indicate the 

reference time. When not specified, the current time cnow is 
used as default value for it. 

Definition 10. Given two pn-relations 𝑟𝑝𝑛 and 𝑠𝑝𝑛, de-
fined over the schema (A1, …, An | TTs, TTe, VTs, VTa, 
VTe, ), and reference time t, the relational union, projec-
tion and selection are defined as follows (we denote with 
A the attributes A1, …, An). 

𝑟𝑝𝑛 ∪𝑡
𝑝𝑛

𝑠𝑝𝑛 = {𝑥 ∖ (𝑥 ∈ 𝑟𝑝𝑛 ∨ 𝑥 ∈ 𝑠𝑝𝑛)}  
𝜋𝑡   𝑋

𝑝𝑛 (𝑟𝑝𝑛) = {𝑥 ∖ ∃𝑥′ ∈ 𝑟𝑝𝑛 𝑥[𝑋] = 𝑥′[𝑋]} 
𝜎𝑡    𝑃

𝑝𝑛 (𝑟𝑝𝑛) = {𝑥 ∖ 𝑥 ∈ 𝑟𝑝𝑛 ∧ 𝑃(𝑥)}.  
Notably, as, e.g., in TSQL2 [3], the above operators do 

not modify the values of the temporal attributes. 
On the other hand, as, e.g., in BCDM and TSQL2, our 

Cartesian product performs the intersection of valid and 
transaction time.  

Definition 11. Cartesian product. Given two pn-
relations 𝑟𝑝𝑛 and 𝑠𝑝𝑛 defined on the schemas R: (A1, …, An 
| TTs, TTe, VTs, VTa, VTe, ) and S: (B1, …, Bm | TTs, TTe, 
VTs, VTa, VTe, ) respectively and a reference time t, the 
Cartesian product 𝑟𝑝𝑛  ×𝑡

𝑝𝑛
 𝑠𝑝𝑛 has schema (A1, …, An, B1, 

…, Bm | TTs, TTe, VTs, VTa, VTe, ) and it is defined as 
follows: 
rpn t

pn spn = {x \  x’rpn  x’’spn 
(x[A1, …, An]=x’[A1, …, An]  
x[B1, …, Bm]= x’’[B1, …, Bm]  
x[TTs]=max(x’[TTs], x’’[TTs])  
x[TTe]= 

(if (x’[TTs]x’[TTe]  x’’[TTs]x’’[TTe]) then    
 min(x’[TTe], x’’[TTe]) 
if (x’[TTs]=x’[TTe]  x’’[TTs]x’’[TTe]) then x’’[TTe]  
if (x’[TTs]x’[TTe]  x’’[TTs]=x’’[TTe]) then x’[TTe]  
if (x’[TTs]=x’[TTe]  x’’[TTs]=x’’[TTe]) then  
 max(x’[TTs],x’’[TTs]))  

x[VTs] = max(x’[VTs], x’’[VTs])  
t’a=interprVTa(x’[VTa, VTe, ], t)  
t”a=interprVTa(x’’[VTa, VTe, ], t)  
x[VTa]=max(min(t’a, t”a), x[VTs])   
x[VTe]=min(x’[VTe], x’’[VTe])  
x[]=(if (x[VTa]=x[VTe] then NR else UNK)  
x[TTs]x[TTe]  x[VTs]<x[VTe]))}.  

Cartesian product operates directly on the representa-
tion without resorting to the semantics. It manages the 
non-temporal attributes A1, …, An, B1, …, Bm in a standard 
way and, intuitively speaking, evaluates the intersection 
of the temporal parts of the paired tuples. Concerning 
transaction times, four cases are distinguished, depending 
on whether none, one or both the tuples are transaction-
time now-related, and following the POINT representa-
tion (e.g., the condition x’[TTs]x’[TTe] is used to ascer-
tain that x’ is not transaction-time now-related). On the 
other hand, concerning valid time, intersection is com-
puted by exploiting the interprVTa function and latency is 
set to UNK unless the result is not now-relative; in such a 
case the latency is not relevant.  

As in some approach to indeterminate time (see, e.g., 
[20]), we choose to propose two different algebraic opera-
tors for difference: the certain difference  
–t

pn_cert, and the possible difference –t
pn_poss. In the certain dif-

ference, we are interested only in certain results. A chro-
non is certainly in the result of difference if it is certain in 
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the minuend, and if it does not appear (neither as certain 
nor as possible) in the subtrahend. The certain difference 
uses the interprVTa function to determine the end of the 
certain part of the valid time. 

Definition 12. Certain difference. Given two pn-
relations 𝑟𝑝𝑛 and 𝑠𝑝𝑛 defined on the same schema R: (A1, 
…, An | TTs, TTe, VTs, VTa, VTe, ) and a reference time t, 
the cert_difference rpn –t

pn_nec spn has schema (A1, …, An | 
TTs, TTe, VTs, VTa, VTe, ) and it is defined as follows: 

rpn –t
pn_nec spn = {x \ x’rpn x’’spn 

(x’[A1, …, An]=x’’[A1, …, An]  x=x’)  
x’rpn !x’’1,…, x’’k spn 
(x’[A1, …, An]=x’’1[A1, …, An]=…=x’’k[A1, …, An]    
x[A1, …, An]=x’[A1, …, An]  
t’=interprVTa(x’[VTa, VTe,], t)  
x[T]  ({<x’[TTs],x’[TTe],x’[VTs],t’,t’,x’[]>} –* 
{<x’’1[TTs],x’’1[TTe],x’’1[VTs],x’’1[VTe],x’’1[VTe],x’’1[]>, 
…, <x’’k[TTs],x’’k[TTe],x’’k[VTs],x’’k[VTe],x’’k[VTe], 
x’’k[]>}))}. 
As already pointed out by the BCDM model, for each 

tuple xrpn , the times of all the tuples x1, …, xk  spn that 
are value-equivalent to it must be subtracted from the time 
of x.  The uniqueness operator ∃! is used to identify all 
and only the tuples x’’1,…, x’’k spn value-equivalent to x’. 
The operator –* repeatedly applies the binary difference 
operator to remove elements of the second set from each 
one of the elements in the first set. Since we are evaluat-
ing certain difference, we consider only the “certain” val-
id time for the minuend (so that the end of its valid time 
is interprVTa(x’[VTa,VTe,], t), and “possible” valid times 
for subtrahends (so that the end of their valid time is 
x’[VTe]). Each element has the form <ts,te,vs,va,ve,d>, where 
ve=va. The operation computes binary difference between 
two elements <t1s,t1e,v1s,v1e,v1e,d1> and 
<t2s,t2e,v2s,v2e,v2e,d2> as follows: 

(1) for transaction time, (i) it computes the difference 
between the two time intervals [t1s,t1e) and [t2s,t2e), 
considering that both intervals are represented us-
ing the POINT representation for ‘now’. Zero, one 
or two intervals (in the POINT representation) are 
provided as output. Let TT_diff_set be the set of 
such intervals. Moreover (ii) it computes the inter-
section between them. At most one intersection in-
terval is returned. Let TT_inters_set the set of such 
intervals; 

(2) for valid time, it computes the standard difference 
between the two time intervals [v1s,v1e) and 
[v2s,v2e). Zero, one, or two intervals are provided as 
output. Let VT_set be the set of such intervals; 

(3) for each interval [ts,te)TT_diff_set, it adds 
{<ts,te,v1s,v1e,v1e,NR>} to the set of results; 

(4) for each interval [ts,te)TT_inters_set and for each 
interval [vs,ve)VT_set, it adds {<ts,te,vs,ve,ve,NR>} to 
the set of results. 

A more detailed definition of –* and of binary differ-
ence is provided in the supplementary materials. The def-
inition of the possible difference (–t

pn_poss) is omitted since it 
is analogous to the definition of the certain difference. 
Notably, in the possible difference we want as output 

possible chronons, i.e., those chronons which are possible 
in the minuend, and are not certain in the subtrahend 
(possible chronons in the subtrahend are not considered 
by possible difference, since the subtrahend tuple may 
not hold in such chronons).   

4.2 Additional algebraic operations  

New operators, which are not an extension of Codd’s 
ones, can be introduced to cope with the temporal as-
pects. In particular, since we consider both “certain” and 
“possible” valid times for now-related tuples, it is worth 
introducing the to_poss and to_nec operators, which coerce 
pn-relations (which contain a certain degree of indeter-
minacy) into “standard” determinate-time relations. Such 
operators retain the transaction time, and set the valid 
time to the possible times (to_poss) or certain valid times 
(to_cert) of the tuple respectively, and are useful to en-
hance the integration between pn-relations and “stand-
ard” temporal relations.  

Definition 13. Given a pn-relation 𝑟𝑝𝑛 defined on the 
schema R: (A1, …, An | TTs, TTe, VTs, VTa, VTe, ) and a 
reference time t, to_posst(rpn) and to_nect(rpn) have schema 
(A1, …, An | TTs, TTe, VTs, VTe) and are defined as fol-
lows: 

to_posst(rpn)={x \ x’rpn (x[A1, …, An]=x’[A1, …, An]  
x[TTs]=x’[TTs]  x[TTe]=x’[TTe]  x[VTs]=x’[VTs]  
x[VTe]=x’[VTe])} 

to_certt(rpn)={x \ x’rpn (x[A1, …, An]=x’[A1, …, An]  
x[TTs]=x’[TTs]  x[TTe]=x’[TTe]  x[VTs]=x’[VTs]  
x[VTe]=interprVTa(x’[VTa,VTe,], t))}.  

For instance, considering Table 1 and RT=30, 
to_poss30(Table 1) = {<Bill, Cardiac Surgery | 
18,42,16,32>, <John, ICU | 21,21,10,cmax>, <Tom, ER | 
5,5,4,7>} and to_cert30(Table 1) = {<Bill, Cardiac Surgery | 
18,42,16,32>, <John, ICU | 21,21,10,29>, <Tom,ER | 
5,5,4,5>}. 

Additional operators, such as temporal selection, can 
be easily introduced.  

4.3 Examples of queries  

Let us consider the relation PWARD in Table 1 and the 
relation PSYMPT in Table 2 storing patients’ symptoms. 
In the following we provide some examples of queries, 
asked, e.g., at reference time 20 (see the subscript of all 
the algebraic operators). 
 

TABLE 2. The pn-relation PSYMPT 

Patient Symptom TTs TTe VTs VTa VTe Δ 

Bill chest pain 18 18 14 32 32 NR 

John headache 21 21 8 15 cmax -1 

Tom 
abdominal 

pain 
5 5 3 5 cmax UNK 

 
Q1) Which patients were in cardiac surgery while John 

was in ICU? 
20

pn
Patient(σ20

pn
Ward=Cardiac Surgery(PWARD) 20

pn 
20

pn
Ward(σ20

pn
Patient=John  Ward=ICU (PWARD))) 

Q2) When was Bill (certainly) in cardiac surgery while 
John was not in ICU? 
σ20

pn
Patient=Bill  Ward=Cardiac Surgery(PWARD) −20

𝑝𝑛_𝑐𝑒𝑟𝑡
 σ20

pn
 Patient=John  
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Ward=ICU(PWARD) 
Q3) What symptoms did John have while he was in 

ICU? 
20

pn
Symptom(σ20

pn
Patient=John(PSYMPT)) 20

pn σ20
pn

 Patient=John  

Ward=ICU(PWARD)) 
Q4) Did (possibly) John have headache while he was 

not in ICU, and when specifically? 
π20

pn
Patient(σ20

pn
Patient=John  Symptom=headache(PSYMPT)) −20

𝑝𝑛_𝑝𝑜𝑠𝑠
 

π20
pn

Patient(σ20
pn

 Patient=John  Ward=ICU(PWARD)) 
Q5) When was John (certainly) in ICU? 

to_cert20(σ20
pn

 Patient=John  Ward=ICU(PWARD)) 

4.4 Manipulation operations  

Here we define insertion and deletion manipulation op-
erations for our representation model (updates can be de-
fined on top of them). 

Definition 14. Insertion and deletion. Given a relation 
r, instance of the schema (A1, …, An | TTs, TTe, VTs, VTa, 
VTe, ), the insertion and the deletion of a tuple at time 
cnow in the relation r are defined as follows. 
insertpn(rpn, <a1, …, an>, vs, va, ve, d>) = 

rpn ∪ {<a1, …, an| cnow, cnow, vs, va, ve, d>}   
 
deletepn(rpn, <a1, …, an>, vs, va, ve) = 

rpn – {<a1, …, an| ts, te, vs, va, ve, d>} ∪ {<a1, …, an| ts, 
cnow, vs, va, ve, d>} 

(if ts,te,d (<a1, …, an| ts,te,vs,va,ve,d>rpn  ts= te))  

rpn  (otherwise)  
The insertpn function inserts a new tuple in the relation 

rpn. The new tuple, following the POINT representation, 
has the chronon cnow as both transaction time start and 
end. 
The deletepn function deletes an existing tuple from a rela-
tion rpn. This is done by changing its transaction-time end 
to cnow

 (provided that the tuple has not been deleted). 

4.5 Properties  

We can now analyze the theoretical properties of our al-
gebra. Two properties are of paramount importance in 
this context: correctness with respect to the semantics and 
reducibility. 

As regards correctness, it is worth noting that we have 
introduced a compact representation model to represent 
and query now-related data, based on the semantics in 
Section 2. All the algebraic relational operators defined on 
pn-relations perform symbolic manipulations, working at 
the representation level on pn-tuples (thus not resorting 
to their underlying semantics) and providing as a result 
pn-relations. This procedure, although efficient, requires 
a proof of correctness.  

Property 2. Correctness of pn-relational algebra. For 
each operator 𝑜𝑝𝑡

𝑝𝑛
 working on pn-relations, we have to 

prove that the semantics of the result of 𝑜𝑝𝑡
𝑝𝑛

 applied to 
pn-relations is equivalent to the corresponding operation 
performed at the semantic level. Formally speaking, for a 
binary operator, we have to prove that 

𝑆𝑒𝑚𝑡(𝑟𝑝𝑛 𝑜𝑝𝑡
𝑝𝑛

𝑠𝑝𝑛) = 𝑆𝑒𝑚𝑡(𝑟𝑝𝑛) 𝑜𝑝𝑟𝑒𝑓𝑆𝑒𝑚𝑡(𝑠𝑝𝑛) 
where 𝑜𝑝𝑟𝑒𝑓 is the semantic operator in the reference 

approach [5] equivalent to 𝑜𝑝𝑡
𝑝𝑛

 (the proof for unary op-
erators is similar).  

The algebraic operators that do not manipulate time 
(non-temporal selection, projection, union) are trivially 
correct. On the other hand, the correctness of our Carte-
sian product is proven by showing that, for each cTC,  

𝑆𝑒𝑚𝑡(𝑟𝑝𝑛 ×𝑡
𝑝𝑛

𝑠𝑝𝑛) = 𝑆𝑒𝑚𝑡(𝑟𝑝𝑛) ×𝑟𝑒𝑓 𝑆𝑒𝑚𝑡(𝑠𝑝𝑛) 
The difference is similar. 
The reducibility to the standard non-temporal algebra is 

widely recognized as a “must” for temporal algebras 
(since it supports. e.g., interoperability with pre-existent 
non-temporal databases; see e.g., [21][3]). We prove that 
our algebra is reducible to TSQL2’s one (notice that, in 
turn, TSQL2 is reducible to the standard non-temporal 
algebra). To prove reducibility, we first introduce the pn-
slice operator. 

Definition 15. pn-slice operator. Let rpn be a pn-
relation defined over the schema (A1, …, An | TTs, TTe, 
VTs, VTa, VTe, ) and t a reference time. The result of the 
pn-slice operator ρt

pn(rpn) is a standard TSQL2 relation 
over the schema (A1, …, An | Ts, Te, Vs, Ve), where Ts, Te, 
Vs and Ve are the attributes representing the start and end 
of the transaction and valid time, defined as follows: 
ρt

pn(rpn) = {x \  x’rpn   
(x[A1, …, An]=x’[A1, …, An]  
x[Vs] = x’[VTs]  x[Ve]=interprVTa(x’[VTa, VTe, ], t)   
x[Ts]=x’[TTs]  
x[Te]=(if x’[TTs]=x’[TTe] then UC 

if x’[TTs]≠x’[TTe] then x’[TTe]))}.  
The pn-slice operator, given a pn-relation and a refer-

ence time, removes the indeterminate part and retains on-
ly the certain part giving as a result a standard (possibly 
transaction-time now-related) TSQL2 relation. 

Property 3. Reducibility of pn-relational algebra to 
TSQL2 algebra. Pn-algebraic operators are reducible to 
TSQL2 valid-time algebraic operators, i.e., for each alge-
braic operator 𝑜𝑝𝑡

𝑝𝑛
 that extends a Codd’s operator to 

cope with our model – and indicating with 𝑜𝑝𝑇 the corre-
sponding TSQL2 relational operator – for each tTC and 
for each pair of pn-relations rpn and spn the following holds 
(the analogous holds for unary operators): 

ρt
pn(rpn  𝑜𝑝𝑡

𝑝𝑛
  spn) = ρt

pn(rpn)  𝑜𝑝𝑇 ρt
pn(spn).  

5 EXPERIMENTAL EVALUATION 

In this section, we first discuss our implementation and 
then we experimentally evaluate the performance of our 
temporal algebra.  

5.1 Implementation of algebraic operators 

We have developed a prototypical implementation of our 
approach using PL/SQL. As an example, we describe our 
implementation of Cartesian product between two pn-
relations r and s, given a reference time t. 

procedure CartesianNow 

Input: relation r with schema      

  R:(A1,…,An|TTs,TTe,VTs,VTa,VTe,), 

relation s with schema 

S:(B1,…Bm|TTs,TTe,VTs,VTa,VTe,), 

  reference time t 

Output: relation res of schema  
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RES:(A1,…An,B1,…Bm|TTs,TTe,VTs,VTa,

VTe,) 

1. cursor curs_r is select A1,…An, 

TTs,TTe,VTs,VTa,VTe, from r; 

2. cursor curs_s is select B1,…Bm, 

TTs,TTe,VTs,VTa,VTe, from s; 

3. open curs_r; 

4. loop 

5. fetch curs_r into a1,…an, 

tt1s,tt1e,vt1s,vt1a,vt1e,d1; 

6.  exit when curs_r%notfound; 

7.  open curs_s; 

8.  loop 

9.   fetch curs_s into b1,…bm,   

 tt2s,tt2e,vt2s,vt2a,vt2e,d2; 

10.   exit when curs_s%notfound; 

11.   vts := greatest(vt1s, vt2s); 

12.   vta := greatest(least(          

interprVTa(vt1a,vt1e,d1,t),  

interprVTa(vt2a,vt2e,d2,t)),vts); 

13.   vte := least(vt1e,vt2e); 

14.   tts := greatest(tt1s, tt2s); 

15.   if (tt1s <> tt1e and  

     tt2s <> tt2e) then  

16.    tte := least(tt1e,tt2e); 

17.   else if (tt1s = tt1e and                                                                                                                                              

 tt2s <> tt2e) then  

18.    tte := tt2e; 

19.   else if (tt1s <> tt1e and  

     tt2s = tt2e) then  

20.    tte := tt1e; 

21.   else if (tt1s = tt1e and  

     tt2s = tt2e) then  

22.    tte := tts; 

23.   if (vta = vte) then 

24.    d := 'NR'; 

25.   else 

26.    d := 'UNK';  

27.   if (tts ≤ tte and  

 vts < vte) then 

28.    insert into res (A1,…,An,B1,…Bm,  

      TTs,TTe,VTs,VTa,VTe,) values 
      (a1,…,an,b1,…bm,tts,tte,  

      vts,vta,vte,d); 

29.  end loop; 

30.  close curs_s; 

31. end loop; 

32. close curs_r; 

 
In the CartesianNow procedure above, for each pair of 

tuples x’ (belonging to r) and x’’ (belonging to s) the vari-

ables tts, tte, vts, vta, vte, d represent the temporal attrib-

utes of the resulting tuple. First, the algorithm evaluates 

the values of such variables accordingly to Definition 8 

(notice that, to perform temporal intersection, Cartesian-

Now uses the function interprVTa already described in 

Definition 9). Then, the algorithm checks whether the 

transaction-time and the valid time of the resulting tuple 

are not empty (i.e., tts ≤ tte and vts< vte). If so, it adds a 

new tuple with tts, tte, vts, vta, vte, d as temporal attrib-

utes and the original non-temporal attributes of x’ and x’’ 

as non-temporal attributes (as in Codd’s Cartesian prod-

uct) to the output relation res; otherwise, no tuple is add-

ed to the output.  

5.2 Indexing 

In our previous work [9] we have shown that spatial in-
dexing techniques are very efficient to address now-
related tuples in relational queries when they are mod-
eled with the POINT approach (the same approach that 
we followed in this paper to cope with transaction time). 
However, since the experiments for Cartesian product 
consider all tuples from both relations, indexing the rela-
tions would not bring benefits. Regarding difference, 
since it subtracts only value-equivalent tuples (consider-
ing, in our example, the attribute ‘Patient’), we could in-
dex the attribute ‘Patient’ with a B+-tree index. Notice 
that, since in the experiments about Cartesian product 
and difference no temporal selection operation is per-
formed on the temporal attributes, indexing on temporal 
attributes would not be useful to improve the experi-
mental results.  

5.3 Experimental evaluation 

We are not aware of any other algebra explicitly coping 
with now-related facts (except the POINT approach 
[10][18], which, however, is only partially based on 
Clifford et al.’s semantics; indeed, it does not explicitly 
provide any semantics for NOW). Therefore, we have 
chosen to compare the performance of our approach with 
an “ideal” (but not realistic) approach in which the exact 
ending time of now-relative data is known a priori. In 
such a context, only “standard” temporal tuples have to 
be managed, so that “classical” TSQL2 representation and 
algebraic operators can be used. To enhance the quality of 
the comparison, in our tests we implemented the TSQL2 
algebraic operators using the same algorithmic structure 
we adopted for our operators (e.g., using the nested loop 
structure for both Cartesian products). Of course, the 
“ideal” approach involves omniscience, which is not a re-
alistic assumption. However, it can be used to highlight 
what is the extra-effort we introduce to cope with ’now’ 
with respect to an ideal case in which no treatment for 
’now’ is required.  

In the following, we provide a detailed description of 
the context and modalities we adopted for our experi-
ments, discussing the setup, the data set types and sizes, 
the data distributions as well as the adopted measures 
and schemas. 

Setup of the experimental evaluation. All experi-
mental results are computed on a four 450 MHZ CPU—
SUN UltraSparc II processor machine, running Oracle 
10.2.0 RDBMS, with a database block size of 8K and SGA 
size of 500 MB. Due to the compatibility issues with our 
previous experiments and with previously developed 
work, we have chosen to run experiments on an older 
version of Oracle (version 10.2.0). However, our initial 
testing on Oracle 12c release 1 has shown that, when the 
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databases have the same startup parameters, the experi-
mental results for Cartesian product and difference are 
the same as on the 10.2.0 version, since in our experi-
ments we do not query temporal periods and we do not 
exploit the built-in support for Valid, Transaction, and 
Decision time that version 12.c offers. To ensure that the 
logical read of data already in SGA does not influence the 
results, we flushed the database buffer cache in SGA be-
fore every test. At the times of testing the database server 
did not have any other significant load. We used Oracle 
built-in methods for statistics collection, analytic SQL 
functions and the PL/SQL procedural runtime environ-
ment.  

Datasets: We considered different types of datasets 
(third column of Tables 3, 4 and 5). For the ideal approach 
we used a standard dataset of TSQL2-like bitemporal tu-
ples (with no now-related tuples); for our approach, in 
order to investigate different data options and their influ-
ence on performance, we considered five different types 
of datasets, specifically:  

(1) “not now” - without now-relative tuples,  
(2) “TT now” - where all tuples are transaction-time 

now-related, but not valid-time related, 
(3) “VT unk” - where all tuples are valid-time now-

related but no transaction-time related and with 
unknown latency,  

(4) “VT delta” - where all tuples are valid-time now-
related but no transaction-time related and with 
a known latency, and 

(5) “Mix” - consisting of a mixture of the different 
types of tuples. In particular, as regard valid 
time, 60% of the tuples are not now-related, 20% 
are now-related with unknown latency, and 20% 
are now-related with known latency; as regards 
transaction time, 40% are not now-related and 
60% are now-related. 

For difference, we generated the tuples in such a way 
that 10% of the tuples in the subtrahend relation is value-
equivalent to a tuple in the minuend relation.  

We also considered different sizes for the datasets (first 
column of the Tables). In particular, notice that the size of 
the datasets in the experiments on Cartesian product is 
relatively small and it has been limited to a maximum of 
3,000 tuples. This is due to the fact that, since Cartesian 
product pairwise combines tuples and has a quadratic 
complexity, it generates a large answer size (indeed, in 
the case of 3,000 tuples is up to 4,307,488 tuples). Howev-
er, we estimate that the CPU usage increases linearly with 
the answer size (see Table 3 and Figure 1). We obtained 
similar conclusions for difference when we performed 
experiments with bigger datasets, up to one million tu-
ples (see Table 4).  

For all the relations, we used a fixed value for the ref-
erence time (RT=300) and we distributed the values of the 
other temporal attributes (except for the  attribute) in the 
following way: 

1. “ideal” -  the distribution of TTe and VTe is a 
Gaussian distribution centered at RT = 300 with 
values ranging from 250 to 350 while the distribu-
tion of TTs and VTs is the following: TTs (VTs) are x 

units of time before TTe (VTe), where x is randomly 
distributed between 1 and 100. 

2. “not now” - we used exactly the same distributions 
as for the “ideal” approach. VTa is always equal to 
VTe and  is ‘NR’. 

3. “TT now”- for VTs, VTe and TTs we used the same 
distributions as the “ideal” approach. VTa is always 
equal to VTe and TTe is equal to TTs.  is ‘NR’. 

4. “VT unk”- for TTs and TTe we used the same dis-
tributions as the “ideal” approach. The distribution 
of VTa is a Gaussian distribution centered at RT = 
300 with values ranging from 250 to 350. VTs is x 
before VTa, where x is a random value between 1 
and 100. VTe is y after VTa, where y is a random 
value between 1 and 100.  is ‘UNK’. 

5. “VT delta” -  TTs, TTe, VTs, VTa and VTe are as in 
the “VT unk” approach. The distribution of  is a 
Gaussian distribution centered at 0 and ranging 
from -10 to +10. 

6. “mix” -  the different types of tuples are inserted in 
the relations, according to the proportions dis-
cussed above. Depending on the type of the tuple, 
its temporal attributes are valued according with 
the distributions discussed in (2)-(5). 

 
 
 
 
 
 
 
 
 

 

 

 

Figure 1. Linear increase in CPU usage as a factor of the 
answer size. 

 
Measures: In each execution, we have measured the an-
swer size (number of tuples), physical disk I/O and CPU 
time (units of computation; fourth, fifth and sixth col-
umns of Tables 3 and 4 respectively). 
Structure of the evaluation: The experimental evaluation 
is quite articulated, to consider the different aspects cov-
ered by our approach. We present comparisons regarding 
the most complex operations, i.e. Cartesian product and 
difference, which require quite complex operations on the 
temporal attributes (see Definitions 11 and 12). 
Schema of the temporal relations: The schema of the 
temporal relations in both the “ideal” approach and our 
approach simply consists of a non-temporal attribute plus 
the temporal ones, as shown in Tables 1 and 2.  

5.4 Results and Discussion 

The results of the experimental evaluations are shown 
in Table 3 (Cartesian product) and 4 (Certain difference, 
the results for possible difference are similar). Our ap-
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proach is indicated by ‘PN’ in column 2. For different da-
taset sizes (first column of Tables 3 and 4), we compare 
the “Ideal” approach and our approach (“PN” approach), 
considering Answer size, I/O and CPU time. 
 

TABLE 3. Cartesian product 
Dataset 
size 

Approach Dataset 
type 

Answer 
size 

I/O CPU 
time 

 

300 

Ideal - 20,810 11 158 

PN 

Not now 20,810 11 165 

VT unk 20,004 11 165 

TT now  43,710 11 260 

VT delta 23,620 11 189 

Mix 25,638 11 219 

1000 

Ideal - 216,660 13 1,562 

PN 

Not now 216,660 13 1,713 

VT unk 243,002 13 1,185 

TT now  460,816 13 3,360 

VT delta 230,686 13 1,829 

Mix 250,530 13 2,114 

 

3000 

Ideal - 2,170,998 28 15,242 

PN 

Not now 2,170,998 28 16,563 

VT unk 2,169,498 28 16,524 

TT now  4,307,724 28 26,932 

VT delta 2,166,994 28 16,715 

Mix 2,809,488 28 21,563 

 

Considering Cartesian product, Table 3 shows that our 
approach behaves like the “ideal” one as concerns the 
I/O. Some overhead is added to the CPU time, due to the 
growth of the answer size. For instance, if all tuples are 
current (“TT now” relations), the size of Cartesian prod-
uct increases since there are more intersections between 
bitemporal tuples. As a consequence, the answer size and 
the CPU usage of our approach is larger than the one of 
the “ideal” approach. In Figure 1 we show that the CPU 
usage linearly increases with the increase of answer size, 
in the ideal approach (“ideal”) and in our approach, both 
with the dataset without now-related tuples (“not”) and 
in the one with them (“now”). 

Results concerning certain difference are reported in 
Table 4 (organized as for Cartesian product). 
 

TABLE 4.  Certain difference 
Dataset 
size 

Ap-
proach 

Dataset type Answer 
Size 

I/O CPU 
Time 

10,000 

Ideal - 10,472 74 130 

PN 

Not now 10,472 74 132 

VT unk 10,604 74 160 

TT now  10,481 74 151 

VT delta 10,640 74 134 

Mix 10,571 74 134 

100,000 

Ideal - 104,725 714 1,172 

PN 

Not now 104,725 714 1,149 

VT unk 106,302 649 1,542 

TT now  104,407 667 1,149 

VT delta 105,894 682 1,191 

Mix 105,223 732 1,137 

1,000,000 

Ideal - 1,047,416 6,342 11,605 

PN 

Not now 1,047,416 6,337 11,486 

VT unk 1,063,418 6,480 13,308 

TT now  1,044,034 6,385 11,524 

VT delta 1,058,768 6,482 11,841 

Mix 1,054,418 6,383 11,515 

 

Also such results clearly indicate that our approach 
behaves like the “ideal” one.  There are some small varia-
tions with regard to the CPU time. However, a closer look 
can reveal that such variations are also caused by differ-
ent answer sizes, which are influenced by the actual data.   

6 Comparisons with related works  

Several approaches have faced the treatment of now-
related data in relational TDBs. Some recent approaches 
have provided coalescing [22], or have focused on index-
ing [23]–[25] or on timestamping [26], [27]. As stressed 
along this paper, the approach by Clifford et al. [6] is a 
milestone, since it first pointed out the semantics of ‘now’ 
in TDBs (see Section 2.2). The relationship between our 
semantics and Clifford et al.’s one has been already dis-
cussed throughout the paper. In particular, Property 1 
shows that, if we neglect the cases in which latency is 
‘UNK’, and we consider only the “certain” part of valid 
time, our semantics of now-related tuples reduces to 
Clifford et al.’s one. Thus, our approach extends Clifford 
et al.’s semantics considering also unknown latency and 
providing a relational algebra for the (semantic) data mod-
el. We also propose a representational implementation for 
both the data model and the algebra, experimentally prov-
ing its efficiency (with respect to the “ideal” approach)3. 
 

3
It is also worth pointing out that Clifford et al.’s semantics also 

models temporal indeterminacy not related to NOW. The “full” 
treatment of temporal indeterminacy sharply increases the com-
putational complexity of the approaches (see the complexity 
analysis in [5], which considers a wide family of alternative ap-
proaches). In our paper, we only focus on the treatment of now-
related data, thus we consider only the degree of indeterminacy 
strictly needed to cope with (the semantics of) NOW. In such a 
way, as widely discussed in Section 5, we have experimentally 
demonstrated that our approach roughly behaves like the “ideal” 
one, not adding any significant overhead to cope with now-
relative data (while a substantial increase of complexity would be 
required for a full treatment of temporal indeterminacy [5]). We 
have already proposed a work considering temporal indetermi-
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Several representational models to cope with ‘now’ in the 
relational context have been proposed. MIN, MAX and 
NULL approaches [8] support now-related tuples by rep-
resenting NOW as a special value for the valid-time end, 
i.e., the minimum chronon (MIN approach) and the max-
imum chronon (MAX approach) allowed by the database 
or the NULL value (NULL approach). In these approach-
es NOW does not receive any specific support in the que-
ry language: at query time the special value is replaced 
with the current time. More recently, the POINT ap-
proach has been proposed [18], which outperforms the 
MAX, MIN and NULL approaches. Even more recently, a 
relational algebra has been defined to fully support que-
rying NOW-related data (i.e., without resorting to the in-
stantiation to the current time) in all MAX, MIN, NULL 
and POINT approaches [10]. All such approaches are 
(implicitly) based on Clifford et al.’s semantics, assuming 
latency equal to zero.  

Considering the representational model (Section 3), 
our approach proposed the addition of two temporal at-
tributes (“VTa” and “”). While the former resembles the 
additional attributes used in [5] to distinguish between 
possible and certain times (although there are subtle dif-
ferences), the explicit treatment of latency (through the 
“” attribute) constitutes an original and innovative con-
tribution of our approach, leading to deep implications in 
the data semantics (consider, e.g. the differences between 
Definition 2 and Definition 4 in Section 3), as well as in 
the definition of algebraic operators (consider, e.g., the 
adoption of the “interprVTa” function in the definitions of 
Cartesian product and of difference). Notably, there is on-
ly one other relational algebra coping with ‘now’, the one 
we devised in [10] for the NULL, MIN, MAX and POINT 
approaches, and the new algebra proposed in this paper 
is radically different from it, due to its treatment of differ-
ent types of latencies. Specifically, the algebra in [10] is 
based on the notion of “binding” of the value of ‘now’ to 
the current time (taken as the reference time). On the oth-
er hand, no binding is used in the newly proposed alge-
bra, to support the possibility of coping also with the case 
in which latency is unknown (only the case of latency 
equal to zero was considered –although implicitly- in the 
previous algebra). The main “practical” differences be-
tween our approach and the above ones are graphically 
highlighted in Figure 2. In the figure, we consider a now-
related fact and we compare its valid time (transaction 
time is not shown, for the sake of readability) at different 
reference times in the different approaches. Notably, 
MAX, MIN, NUL, and POINT approaches only support 
the case in which latency is zero. Clifford et al. also sup-
ports different latencies (e.g., latency -2 in the figure), 
while our approach supports latency zero, latency differ-
ent from zero and also unknown latency, which is not 
supported by any other approach. Indeed, we stress that 
unknown latency constitutes the general case. Notably, 
our approach, differently from the others, also supports a 
future bound for ‘now’.  

 
nacy in general (see [5]) and in our future work we aim at inte-
grating both results. 

 

The other main innovative contribution of our ap-

proach is that we provide the only approach to ‘now’ in 
TDB that homogeneously takes into consideration all the 
different issues (1) - (5) mentioned in the introduction. 
Clifford et al. only focused on (1) (and partly on (2)), 
NULL, MIN, MAX and POINT approaches on (2), (4) and 
(5) only, though in a recent work [10] we have provided 
an algebra for the NULL, MIN, MAX and POINT ap-
proaches, covering also issue (3). 

Before ending, it is worth mentioning that also some 
commercial systems are starting to provide temporal 
support, based on TSQL2 seminal approach. For instance, 
Oracle database since version 12c supports valid time. 
However, it does not explicitly cope with now-related da-
ta, but it only allows users to set end and start valid times 
to NULL in order to represent facts valid at all time val-
ues [28]. 

7 CONCLUSIONS 

Now-related temporal data play an important role in many 
applications. In the area of temporal relational databases, 
several approaches have faced in isolation different issues 
concerning now-related data (see the introductory section 
and Section 6). In this work, we first propose a compre-
hensive approach, starting from the semantics, then mov-
ing towards a compact 1NF representation, and finally 
providing an experimental evaluation, considering both 
data model and algebraic and manipulation operators. 
The main advances with respect to the current approach-
es in literature are:  

(i) we first propose an integrated approach consider-
ing the different aspects (the approach is “deeply” 
integrated, since we also prove the correctness of 
our representation with respect to the semantics),  

(ii) we extend current approaches considering new 
phenomena. In particular, we also cope with cases 
in which there is a future bound for the validity of 
now-related tuples and, above all, with cases in 
which the latency of updates is unknown.  

(iii) we experimentally demonstrate that our represen-
tational approach does not add any significant 

Figure 2. Graphical representation for the fact “John stays 
in ICU from 1 to NOW. The fact is asserted at 1”. The certain 
valid times of the now-related example are represented at 
different reference times in the various approaches.  
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overhead to cope with now-relative data (roughly 
behaving like the “ideal” approach). 
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