
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID 1

A comprehensive approach to ‘Now’ in
temporal relational databases:
Semantics and Representation

Luca Anselma, Luca Piovesan, Abdul Sattar, Bela Stantic, Paolo Terenziani

Abstract—Now-related temporal data play an important role in many applications. Clifford et al.’s approach is a milestone to

model the semantics of ‘now’ in temporal relational databases. Several relational representation models for now-related data

have been presented; however, the semantics of such representations has not been explicitly studied. Additionally, the

definition of a relational algebra to query now-related data is an open problem. We propose the first integrated approach that

provides both a neat semantics for now-related data and a compact 1NF representation (data model and relational algebra) for

them. Additionally, our approach also extends current approaches to consider (i) domains where it is not always possible to

know when changes in the world are recorded in the database and (ii) now-related data with a bound on their persistency in the

future. To do so, we explicitly model the notion of temporal indeterminacy in the future for now-related data. The properties of

our approach are also analyzed both from a theoretical (semantic correctness and reducibility of the algebra) and from the

experimental point of view. Experiments show that, despite our approach is a major extension to current temporal relational

approaches, no significant overhead is added to deal with ‘now’.

Index Terms— H.2.4.m Temporal databases, H.2.0.b Database design, modeling and management

—————————— ◆ ——————————

1 INTRODUCTION

EMPORAL data play an important role in many do-
mains and applications. In such contexts, data must

be paired with the time when they occur (valid time)
and/or when they are inserted/deleted in the database
(transaction time). Starting from the 1980’s, there is a long
tradition of approaches coping with time in relational da-
tabases (see, e.g., [1] and [2]). TSQL2 [3] has emerged
from the “consensus” of many researchers on relational
temporal databases (TDBs for short). Globally, the ap-
proaches in the TDB literature cover different aspects:
(1) the definition of the semantics of time in TDBs, in-

cluding data semantics and query semantics (usually
expressed at the algebraic level). For instance, BCDM
[4] is the semantic model underlying TSQL2 and sev-
eral other TDB approaches.

(2) the definition of a representational model for temporal
data. The basic non-temporal model is usually ex-
tended with new attributes to explicitly model time (e.g.,
four temporal attributes are added by TSQL2, to
model start and end of both valid and transaction
time). The meaning of the extended data model can

be defined through its mapping to a semantic model
(e..g., the function snapshot_to_conceptual in TSQL2,
mapping TSQL2 relations into BCDM semantics).

(3) The definition of algebrae and\or query languages
to operate on an extended representational model (as
well as insertion\deletion operations).

(4) The study of the properties of the algebrae (or query
languages). Reducibility is important, to grant, e.g., in-
teroperability with non-temporal databases [3]. Also,
the correctness of the algebrae operating on the repre-
sentational model with respect to the semantics
should be proven (consider, e.g., [5]).

(5) Last, but not least, the efficiency of many different
implementations (often including indexing tech-
niques) has been experimentally evaluated.

Despite the huge effort devoted in the area, several
problems still have to be further studied. In this paper, we
focus on the treatment of ‘now’ in TDBs to cope with data
such as “John is in the Intensive Care Unit (ICU henceforth)
from January 10 to now”. We call valid-time “now-related”
those facts (tuples) starting in the past and still valid until
the current time, as in John’s example. Analogously, we
call transaction-time “now-related” those tuples that are
still current in the database. Though SQL-92 already had
the construct CURRENT_TIMESTAMP for use in queries,
one cannot store it as a value in a SQL column (i.e., as a
value for the ending time of a tuple). The user is forced to
store a specific time, which is clearly problematic and
prone to errors (see [6]). Several different approaches
have been developed to overcome such a limitation.
However, each approach focuses just on one (or few) of
the (1) – (5) aspects mentioned above, while there is cur-
rently no comprehensive and integrated approach coher-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

• L. Anselma is with the Dipartimento di Informatica, Università di Torino,
corso Svizzera 185, 10149 Torino, Italy. E-mail: anselma@di.unito.it.

• L. Piovesan is with the Dipartimento di Informatica, Università di Torino,
corso Svizzera 185, 10149 Torino, Italy. E-mail: piovesan@di.unito.it.

• A. Sattar is with the Institute for Integrated and Intelligent Systems, Na-
than campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111,
Australia. E-mail: a.sattar@griffith.edu.au.

• B. Stantic is with the Institute for Integrated and Intelligent Systems, Gold
Coast campus, Griffith University, Parklands Drive, Southport, Brisbane,
QLD 4222, Australia. E-mail: b.stantic@griffith.edu.au.

• P. Terenziani is with the Computer Science Institute, DISIT, Università
del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy.
E-mail: paolo.terenziani@uniupo.it.
Published in IEEE TKDE See https://doi.org/10.1109/TKDE.2016.2588490

T

mailto:paolo.terenziani@uniupo.it
https://doi.org/10.1109/TKDE.2016.2588490

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

ently facing all of them. Data semantics for now-related
data has been studied by the milestone work by Clifford
et al. [6]: many of the later works in TDBs have (explicitly
or implicitly) assumed such a semantics as the basis of
their approach. Notably, however, no algebra has been
provided by Clifford et al.’s semantics. Concerning repre-
sentational models, several approaches have introduced a
variable such as ‘now’ (other symbols have been used,
e.g., “–”, “∞”, “@” and “until-changed”), as the ending
time of now-related tuples, leading to the “variable” da-
tabases [7]. Variable databases require a significant depar-
ture from the “consensus” relational model and cannot be
easily implemented on existing relational databases. Con-
cerning non-variable representations, the NULL, MIN,
MAX [8] and POINT [9] model have been introduced.
Such representational approaches adopt indexing tech-
niques to enhance efficiency, and are experimentally evalu-
ated and compared [8][9]. An algebra for such approaches
have been recently proposed by Anselma et al. [10].
However, their data and query semantics has not been ex-
plicitly explored yet. Two common limitations of all the
above semantic and representational approaches are that:
(i) their treatment of now-related tuples is based on as-

sumptions on the “latency” of updates. Roughly speak-
ing, they assume that it is exactly known when the
changes in the world are recorded into the database. This is
a strong assumption that does not hold in general1. For
instance, in [12], relations are classified on the basis of
the interrelationships between changes in the real
world and when such changes are recorded in the da-
tabase. In the definition in [12], in general temporal
relations «there are no restrictions on the interrelations of,
or correlations between, the transaction and valid
timestamps of an item».

(ii) They cannot cope with the possibility of specifying an
upper bound for the persistence of valid-time now-
related tuples in the future (henceforth, we call such
tuples “now-bounded”). Explicitly coping with such is-
sue involves a deep extension to the model since it re-
quires a treatment also of the possible future times
when a now-related tuple may hold.

Regarding point (ii), consider, e.g., Example 1.
Example 1. Tom was hospitalized in the Emergency De-
partment (ER) yesterday (on day 4), he is currently hospi-
talized today (on day 5), and the maximum stay in the ER
is three days.
Tom is certainly hospitalized in the ER on day 4 and 5, and
possibly hospitalized in the ER tomorrow (on day 6).

In this paper, we propose the first integrated approach
coping with now-related data, which:

- systematically takes into account all the aspects
(1) – (5) mentioned above, and

- overcomes the limitations (i) and (ii) of all current
approaches.

1 Indeed, the orthogonality of valid time and the time when data are in-
serted/deleted (transaction time) is one of the basic principles of bitem-
poral databases (see, e.g., TSQL2 [3] and BCDM [11]), and states that val-
id time and transaction time are independent of each other. This implies
that, in the general case, no assumption can be done on when changes in
the real (modelled) world are recorded in the database.

In Section 2, we propose a new semantic model for now-
related data, which extends (see Property 1) Clifford et
al.’s semantics of ‘now’ to overcome the limitations (i)
and (ii). In Section 3, we then move towards a compact
1NF representational data model (which does not adopt var-
iables) to implement the semantic model. We show its se-
mantics through a mapping to the semantic model. In Section
4, we define algebraic (and update) operators on the repre-
sentational model, and study their correctness (with respect
to the semantic model proposed in Section 2) and their
reducibility. In Section 5, we propose an experimental
evaluation of our representational approach. The experi-
ments clearly show that our approach does not add any
significant overhead to the “ideal” (but not realistic) ap-
proach in which the exact ending time of now-relative da-
ta is known a priori. In Section 6, we discuss related
works. Section 7 contains conclusions.

Proofs and details are reported as supplementary ma-
terials.

2 SEMANTICS OF NOW-RELATED DATA

In this section we focus on the semantics of ‘now’ in TDBs,
while in the rest of the paper we propose and analyze a
representational model based on it. We interpret TDB seman-
tics as in [11], [13]. Also, our notion of TDB semantics is
very close to the notion of extensional-level databases in
[6]. As in such approaches, the semantic model is used to
represent the meaning of (temporal) data in a neat and
formal way, wholly abstracting from any representa-
tion\implementation issue. Such an abstract semantics can
then be used as a formal specification for the development
representational models. For the sake of completeness, in
subsections 2.1 and 2.2 we provide some background
about TDB semantics. Then we move to our original con-
tribution (Subsections 2.3 – 2.6).

2.1 Background: temporal database semantics

To introduce TDB semantics, we sketch BCDM (Bitem-
poral Conceptual Data Model) [11], a unifying and “con-
sensus” semantic model which has been developed to iso-
late the “core” semantics underlying TDB approaches, in-
cluding TSQL2 [3]. In BCDM, tuples are associated with
valid time and transaction time. For time, a limited preci-
sion is assumed and the chronon is the basic time unit. The
domain of chronons is totally ordered and isomorphic to
a subset of the domain of natural numbers. The domain of
valid times DVT is given as a set DVT={c1,…,ck} of chronons
and the domain of transaction times DTT is given as
DTT={c’1,…,c’j} (a distinguished symbol, “UC”–Until
Changed– is added to deal with ‘now’ in transaction
time). The schema of a BCDM relation R=(A1,...,An|T)
consists of an arbitrary number of non-timestamp (explicit
henceforth) attributes A1, …, An, encoding some fact, and
of a timestamp attribute T with domain DTT×DVT. Thus, a
tuple x=(v1,…,vn|tb) in a BCDM relation r(R) on the sche-
ma R consists of a number of attribute values associated
with a set of bitemporal chronons cbl=(ch,c’i), with ch∈DTT
and c’i∈DVT, to denote that the fact v1,…,vn is current (pre-
sent in the database) at the chronon ch and valid at the

ANSELMA ET AL.: NOW IN TEMPORAL RELATIONAL DATABASES 3

chronon c’i. Valid-time only, transaction-time only and
nontemporal tuples are special cases, in which either the
transaction time, or the valid time, or both of them are not
supported. As an example, we show the BCDM semantics
of Example 2.

Example 2. Bill has been hospitalized in the Cardiac
Surgery department from day 16 to 31; the fact is inserted
on (transaction time) day 18 and deleted on day 41.

 {<Bill, Cardiac Surgery | {(18,16), (18,17), …, (18,31),
(19,16), …,(19,31), …, (40,16), …, (40,31)}>}

Query semantics is modeled by defining a temporal
algebra. As in most TDB models, BCDM algebraic opera-
tors behave as standard non-temporal operators on the
non-temporal attributes and apply set operators on the
temporal component of tuples (see, e.g., [5]). Cartesian
product involves the intersection of the temporal compo-
nents, projection and union involve their union, and dif-
ference their difference. This definition can be motivated
by the sequenced semantics [14]: results should be valid
independently at each point of time.

Anselma, Snodgrass and Terenziani [5] have recently
extended BCDM to cope with temporal indeterminacy (i.e.,
“don’t know exactly when” indeterminacy [15]). In their
semantic model, disjunctive sets of chronons (called
DTEs) are introduced, each one representing one of the
alternative possible temporal scenarios. Consider, e.g.,
example 3, in which both the starting and the ending
times are indeterminate:

Example 3. John has been in ICU from 9 or 10 until 11
or 12.

Example 3 is modeled in [5] by a DTE representing the
disjunction of four different sets of chonons, meaning that
John has been hospitalized in ICU at {9,10,11}, or at
{9,10,11,12}, or at {10,11}, or at {10,11,12}:

{<John, ICU | {{9,10,11}, {9,10,11,12}, {10,11},
{10,11,12}}>}

In [5] algebraic operators are defined as in BCDM.
However, unlike BCDM, they operate on each alternative
pair of sets of chonons, to take into account pairwise all
the possible combinations of scenarios. For instance, in-
tersection is defined as follows:

DA T DB = {A  B | A  DA  B  DB}.

2.2 Background: Clifford et al.’s semantics of ‘now’

Clifford, Dyreson, Isakowitz, Jensen and Snodgrass [6]
have provided an extended approach coping with the
semantics of ‘now’ both in valid and transaction time.
Their approach constitutes a milestone in the treatment of
‘now’ in TDBs (see, e.g., the Encyclopedia entry [7]). Be-
sides the NOW variable, which is used both in valid and
transaction time, Clifford et al. also introduce now-
relative variables NOW+ specifying a (positive or nega-
tive) span  with respect to NOW to model the fact that
the specific tuple is updated in advance (in the case of
>0) or with a delay (in the case of <0) of  time units
with respect to the time in which the fact that the tuple
models changes in the modeled world. Henceforth, we
call latency such a span of time .

In order to provide the semantics of NOW, NOW+
and NOW-related tuples, Clifford et al. explicitly intro-

duce a new type of time, the reference time (RT), «to repre-
sent the relationship between a temporal database and the “real
world” time at which it is viewed» [6, p. 180]. Notice that RT
is different from the transaction time and it is not bounded
by the current time «This provides the ability to ask “hypo-
thetical now” queries, that is, from the perspective of a future
valid time (i.e., ten years from now)» [6, p. 182]. The data se-
mantics is then provided through a mapping from varia-
ble-level databases to extensional-level databases, called ex-
tensionalization, and extensionalizations are relative to a
specific RT. For the moment we simply assume RT=cnow.
Roughly and intuitively speaking, in [6], NOW is a varia-
ble that assumes new values whenever time progresses.
Consider, e.g., Example 4:

Example 4. John is hospitalized in ICU from day 10 to
NOW; the fact is inserted at day 10 and is still current.

At reference time 11, the semantics of Example 4 is
<John, ICU | {(10,10), (10,11), (11,10), (11,11)}>, and at
time 12 it becomes <John, ICU | {(10,10), (10,11), (10,12),
(11,10), (11,11), (11,12),(12,10),(12,11),(12,12)}>.

The semantics of now-relative tuples is similar, except
that the display  is considered. For instance, in case
NOW-1 is used instead of NOW, the semantics of Exam-
ple 4 at reference time 12 is: <John, ICU | {(10,10), (10,11),
(11,10), (11,11),(12,10),(12,11)}>.

Note. The above examples highlight a very important issue:
in Clifford et al.’s approach the semantics of NOW is a special
case (with =0) of the semantics of NOW+.

This means that Clifford et al.’s semantics for ‘now’ as-
sumes that the latency of TDB updates is exact and
known: when some changes happen in the modelled
world, they are recorded soon in the TDB (NOW variable;
called punctuality assumption in [6]), or exactly  be-
fore/after the change (NOW+ variable).

Clifford et al. do not devise any algebra coping with
such a data model. Notably, Clifford et al. extended their
model to cope also with temporally indeterminate tuples
(as an independent phenomenon, not used to model the se-
mantics of NOW). Later on, in [16], Torp et al. have ex-
tended Clifford’s approach in order to cope with updates.

2.3 Ratio for the proposal of an extended
semantics for ‘now’

The starting points of our semantics for now-related tu-
ples are [11][6][5]. We extend Clifford et al.’s data model
[6] to cope also with (1) “now-bounded” tuples and\or
(2) unknown latency.

Considering issue (1), we have already discussed the
fact that the treatment of bounds for ‘now’ involves the
explicit treatment of possible future times (see the discus-
sion about Example 1). Possible future valid times can be
coped with by models dealing with temporal indetermina-
cy, like the one in [5]. For instance, considering the exam-
ple, we can state that the Tom’s transfer or discharge from
the ER is temporally indeterminate since it can occur on
day 5 or on day 6. Temporal indeterminacy is also a cue
notion to cope with issue (2) above. Indeed, if latency is
unknown, the valid time of now-related tuples depends
only on the time when the now-related fact is asserted
(henceforth called assertion time), and it is independent of

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

the value of NOW. To explain this apparently contradic-
tory point, let us consider an example focusing on valid
time only. Consider the fact in Example 5, supposing that
it has been asserted at time 14.

Example 5. John is hospitalized in ICU from 10 to
NOW (assertion time = 14).

At time 14 (i.e., with cnow=14), we are certain that John
has been in ICU in days 10, 11, 12, 13 and 14 (as in
Clifford et al., we include the current value of NOW).
Possibly, John may stay in ICU on day 15, on 16 and so
on, but this is not certain. Then, let us look at the same
information the day after (i.e., at cnow=15), supposing that
no modification has been done to the TDB. Clearly, if la-
tency were known, the fact that the TDB has not been
changed would provide us an additional piece of infor-
mation. For instance, with latency equal to zero, we could
be certain that John is in ICU also on day 15 (as Clifford et
al. clearly state and manage). However, if latency is un-
known, the fact that the TDB has not been changed does
not provide any new knowledge. It could be the case that
John has been discharged on day 15 and this fact has not
been recorded yet (e.g., due to a long-term strike of data-
entry operators). Even, e.g., at cnow=25, the fact that the
information about John is still present in the TDB does
not convey any additional certain information (e.g., may-
be the long-term strike of operators is still going on): we
still are only certain that John was in ICU on days 10, 11,
12, 13 and 14 (and it is possible that John was still in ICU
in the following days, and even in future days).

As the above example shows, if no assumption can be
made on when changes in the modelled world are rec-
orded in the TDB (i.e., if latency of updates is unknown),
the meaning of valid-time now-related facts depends on
the assertion time only and it is independent of the value
of the variable NOW. As a matter of fact, the (intended)
meaning of “the fact f holds from start to NOW”, asserted
at time ta is that f holds at each chronon from start to ta,
and it will end sometime in the future (i.e., some time af-
ter ta). In other words, the semantics of NOW with un-
known latency involves temporal indeterminacy in the
future with respect to the assertion time ta.

Definition 1 (informal). Assertion time. Assertion time
is the time when the user expresses (i.e., utters, or writes,
or communicate in some way) a given fact (tuple).2

Notice that the time when a tuple is inserted in the da-
tabase (i.e., transaction time) may be different from the
assertion time (in fact, the tuple may be inserted in the da-
tabase later than –but never before– the time when the
fact is expressed). Also, assertion time is different from
Clifford et al.’s reference time. For instance, the fact de-
scribed by Example 5 above, which is valid (valid time)
from 10 to NOW, can be uttered by the user (assertion
time) at time 14, physically inserted into the TDB (transac-
tion time) at time 15, and the database can then be in-
spected, e.g., at time 25 (reference time). Indeed, in our ap-
proach, if latency is unknown, assertion time is the maxi-

2 Also Johnston and Weis [17] have pointed out that, besides valid

(called effective) time and transaction time, also assertion time should be

considered. Their notion of assertion time is quite similar to ours.

mum time until which now-related facts certainly hold:
temporal indeterminacy starts after the assertion time.

In the following, we provide a formal semantics cover-
ing such an intuition, based on the semantics in [5].

2.4 Semantics of ‘now’ with unknown latency

We start from the treatment of ‘now’ in valid time and
then, in Section 2.5, we extend it to consider also transac-
tion time.

Definition 2. Semantics of (valid-time) now-related
tuples with unknown latency. Given a non-temporal tu-
ple f=(a1,…,an) in an instance r(R) of R(x1, ..., xh), with valid
time starting at cs and that is now-related and is asserted
at time NOW=ca (csca), the semantics of the relation {f}
({f} is the relation containing only the tuple f) at reference
time ct (ctca) is

{<a1,…,an|{{cs,…,ca}, {cs,…,ca+1}, …, {cs,…, cmax}}},
where, like in BCDM, the temporal domain TC is an or-
dered set of chronons {c1,…,cmax}; cmax is the greatest ele-
ment in TC. 
Notice that, since all the alternative sets contain the chro-
nons cs,…, ca, f certainly holds in such chronons. In the
semantics, all the possible alternative endings of f in the
future are explicitly modelled. Notably, the semantics of f
depends on the assertion time ca (in the sense that the cer-
tain chronons span from cs to ca) but it is independent of
the reference time ct (ct must follow the assertion time).

For instance, if the latency is unknown, the semantics
of Example 5 at any reference time ct (ct14) is
{<John, ICU | {10,11,12,13,14}, {10,11,12,13,14,15}, …,
{10,11,12,13,14,15, …,cmax}}.

Since our semantic model explicitly deals with the
temporal indeterminacy about the termination of now-
related tuples, it can easily accommodate the semantics of
valid-time “now-bounded” tuples. As a matter of fact, the
bound is simply an upper bound for the possible alterna-
tives in the future as shown in Definition 3.
Definition 3. Semantics of now-bounded tuples. Given a
non-temporal tuple f=(a1,…,an) in an instance r(R) of R(x1,
..., xk), whose validity started at cs and that is now-related,
is asserted at time NOW=ca, and has an upper bound
cbTC (cscacb), the semantics of {f} at time ct (ct  ca) is

{<a1,…,an|{{cs,…,ca}, {cs,…,ca+1},…, {cs,…, cb}} 
For instance, considering again Example 5, but supposing
that ICU hospitalization cannot last more than 30 days
(e.g., for an internal policy of the hospital), we have the
following semantics (i.e., cb=39):
{<John, ICU | {10,11,12,13,14}, {10,11,12,13,14,15}, …,
{10,11,12,13,14,15, …,39}}.

2.5 Semantics of ‘now’ with known latency and/or
with Transaction Time

In case the latency of updates is known, we basically
maintain the semantics by Clifford et al.
Definition 4. Semantics of (valid-time) now-related tu-
ples with known latency . Given a non-temporal tuple
f=(a1,…,an) in an instance r(R) of R(x1, ..., xh), with valid
time starting at cs and that is now-related and is asserted
at time NOW=ca (csca), the semantics of the relation {f}
({f} is the relation containing only the tuple f) at time ct

ANSELMA ET AL.: NOW IN TEMPORAL RELATIONAL DATABASES 5

(ct+ca) is
{<a1, …, an|{{cs,…,ct+}, {cs,…,ct++1}, …, {cs,…,cmax}}} 

Notice that, as in Clifford et al.’s approach, in the case
of known latency, the semantics depends on the time ct
when the database is inspected (and it is independent of
the assertion time). As in Clifford et al.’s approach, we
have that <a1,…,an> certainly holds during the interval
starting with cs and ending with ct+. On the other hand,
we also explicitly model temporal indeterminacy in the
future, i.e., the fact that <a1,…,an> can possibly persist un-
til cmax. Such an extension is crucial to model now-
bounded facts. For instance, Definition 4 above can be
easily extended to cope with the case in which f has an
upper bound b, by removing from the formula all the sets
containing chronons greater or equal to b.

By definition, transaction time is always determinate
and cannot be in the future. We thus retain its semantics
from Clifford et al.’s approach.

Definition 5. Semantics of transaction-time tuples.
Given a non-temporal tuple f=(a1,…,an) in an instance r(R)
of R(x1, ..., xk), inserted at (transaction time) ci (ci  ca) and
still current, the semantics of {f} at time ct (ct  ci) is

{<a1,…,an|{ {ci, …, ct}}>).
Finally, the semantics of bitemporal now-related tuples

can be obtained as the composition of the semantics of
transaction-time and of valid-time now-related tuples. As
an example, we show the semantics of bitemporal now-
related and now-bounded tuples with known latency .

Definition 6. Semantics of bitemporal now-related
and now-bounded tuples with known latency . Given a
non-temporal tuple f=(a1,…,an) in an instance r(R) of R(x1,
..., xk), whose validity started at cs and that is now-related,
is asserted at time NOW=ca, and has an upper-bound
cbTC (cscacb), is inserted at (transaction time) ci (ci  ca)
and is still current, with a known latency , the semantics
of {f} at time ct (ct  ci) is

{<a1, …, an|{{(ci,cs),…,(ci,ct+), …, (ct,cs),…,(ct,ct+)},
{(ci,cs),…,(ci,ct++1), …, (ct,cs),…,(ct,ct++1)}, …,
{(ci,cs),…,(ci, cb), …, (ct,cs),…,(ct, cb)}}}. 
Property 1 shows that, if we neglect the cases in which

latency is ‘UNK’, and we consider only the “certain” part
of valid time, our semantics for now-related tuples reduc-
es to Clifford et al.’s one. This is important to grant that
our semantics is a consistent extension of Clifford et al.’s
one, so that it is the theoretical basis to grant the interop-
erability of our approach with all the approaches based
on Clifford et al.’s semantics (e.g., NULL, MIN, MAX, and
POINT approaches).

Property 1. For each non-temporal tuple f=(a1,…,an)
whose valid time started at cs and that is now-related, as-
serted at time NOW=ca, inserted at (transaction time) ci (ci
 ca) and still current, with known latency  and with an
upper bound cb (cscacb), the semantics of {f} at a reference
time t (t  ca) in our approach (indicated by Seman-
ticst(f,cs,ci,,cb)) is reducible via the Cert operator to its se-
mantics in Clifford et al. (indicated by SemanticsClif-

ford
t(f,cs,ci,,cb)), i.e.,
Cert(Semanticst(f,cs,ci,,cb)) = SemanticsClifford

t(f,cs,ci,,cb)
where Cert(<f|{1,…,k}>)=<f|>, with ={1…k}

The proofs of this property and of the following ones are

reported in the supplementary materials.

2.6 Semantics of queries (algebra)

As shown above, valid-time and/or transaction-time
now-related tuples can be modelled in Anselma et al.’s
approach [5] as a specific case of temporal indeterminacy.
As a consequence, the temporal algebraic operators (trivi-
ally extended to consider also bitemporals) in such an ap-
proach can be adopted to query such kind of data.

3 A REPRESENTATIONAL MODEL BASED ON THE

SEMANTICS

The above semantics of now-related data is expressive but
it has several limitations from the implementation point
of view. Our semantic data model is not 1NF and it is not
compact at all. Additionally, relational algebraic opera-
tors like Cartesian product and difference must explicitly
manage all possible combinations of alternative times,
and this fact increases the time complexity of such opera-
tions. In this section, we propose a compact 1NF repre-
sentation data model and show its mapping over the
above semantics (function Semt in Definition 8). Section 4
proposes a new temporal algebra operating on the repre-
sentational model, and proves its correctness with respect
to the semantics (Property 2).

3.1 A 1NF representational data model

In this subsection, we propose a compact 1NF representa-
tion for now-related tuples. Such a representation takes
into account both (i) valid time and (ii) transaction time.
For now-related valid time, it copes with the case in
which (iii) the latency  of updates is a known constant
value or (iv) it is unknown, and it also deals with (v) now-
bounded tuples. The definition of relations considering
only transaction time, or only valid time is easier, and can
be easily derived from Definition 7.

Definition 7. Bitemporal pn-tuple and pn-relation
(where “pn” stands for “possibly now-related”). Given a
schema (A1, …, An) where each Ai represents a non-
temporal attribute on the domain Di, a bitemporal relation
rpn is an instance of the schema (A1, …, An | TTs, TTe, VTs,
VTa, VTe, ) defined over the domain
D1  …  Dn  TC  TC  TC  TC  TC  (Z  {UNK,NR}). The
constant ‘UNK’ stands for “unknown” and it is used for
tuples with an unknown latency, while ‘NR’ stands for
“not-relevant” and it is used for not valid-time now-
related tuples. A tuple x = (a1, …, an | ts, te, vs, va, ve, d)  rpn
is termed a pn-tuple (possibly now-related tuple), while rpn
is called pn-relation. In a pn-tuple it must hold that (i) ts 
te, (ii) vs < ve, (iii) vs  va  ve. 

Intuitively speaking, and considering a valid-time
now-related tuple, vs represents the start of valid time, va
the assertion time (plus 1, for technical reasons: in fact, we
assume intervals closed to the left and open to the right)
and ve the future bound for ‘now’ (plus 1; the value cmax is
used in case no bound has to be modelled). , which may
be either an integer number or the special values ‘UNK’
or ‘NR’, represents the latency of updates. Intuitively,
considering tuples with unknown latency, the interval [vs,

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

va) includes the set of valid-time chronons in which the
tuple is certainly valid, while the interval [va, ve) repre-
sents the set of chronons in which it possibly holds. On
the other hand, in case  is an integer value d (i.e.,  is dif-
ferent from ‘UNK’ and ‘NR’), the certain chronons can
extend past va to include also all chronons from vs to t+d,
where t is the reference time. However, they can never
exceed ve.

As regards transaction time, ts represents the starting
time (the time when a tuple is inserted) and ts the ending
time (the time when a tuple is deleted). ts and te cannot be
future times. As suggested in the POINT approach [18],
we represent transaction-time now-related tuples (i.e., tu-
ples which are current in the database) by imposing te=ts
(notice that there is no ambiguity in the representation,
since we adopt the convention that all time intervals are
closed to the left and open to the right).

Notice that a tuple that is not valid-time now-related
can be easily represented as a special case of the above
representation in which va=ve (and with value ‘NR’ for the
attribute ). Notice also that a tuple that is transaction-
time not now-related can be easily represented as a spe-
cial case of the above representation, in which ts<te. Thus,
pn-relations can include heterogeneous types of tuples, in
the sense that any of them, independently of the others,
may be now-related as regards valid time and/or transac-
tion time, or not now-related at all. Moreover, valid-time
now-related tuples in the same relations may have differ-
ent bounds and/or different latencies. For instance, Table
1 contains three different types of tuples. The first row
represents a standard (not now-related) tuple, represent-
ing the fact that Bill has been in the Cardiac Surgery Ward
from 16 to 32 (certain valid time), and that the tuple has
been inserted in the database at time 18 and deleted at
time 42 (transaction time). The second row models a val-
id-time and transaction-time now-related tuple, not
bounded, with a known latency. It represents the fact that
at time 14 it was asserted (VTa contains the value of the
assertion time plus 1) that John is in ICU from 10 to ‘now’,
and that such a tuple has been inserted in the database at
time 21, and it is still present in the database. Notably, la-
tency is -1, which means that, e.g., at reference time 30,
we are certain that John was in ICU from 10 to 29 (see
Definition 4). The third row represents a valid-time now-
related and now-bounded fact with unknown latency and
still current in the database. The fact that Tom is in ER
from 4 to ‘now’ has been asserted at time 4 and the upper
bound for ‘now’ is 7 (e.g., to model the fact that the max-
imum stay in ER lasts three days). Since latency is un-
known, at reference time 5 (or any RT>5) we are only cer-
tain that Tom was in ER at time 4, while he might have
been in ER at times 5 and 6.

TABLE 1. Tabular representation of a pn-relation PWARD

Patient Ward TTs TTe VTs VTa VTe Δ

Bill
Cardiac

Surgery
18 42 16 32 32 NR

John ICU 21 21 10 15 cmax -1

Tom ER 5 5 4 5 7 UNK

Notice that the representation in Definition 7 is a com-
pact 1NF representation of the semantic concepts dis-
cussed in Section 2 above. Thus, we define the Semt func-
tion (where t stands for the chosen reference time, tTC),
which maps a bitemporal pn-tuple into the equivalent
bitemporal tuple in the semantic model.

Definition 8. Semantics of bitemporal pn-tuple and
pn-relation. Given a bitemporal pn-relation rpn which is
an instance of the schema (A1, …, An | TTs, TTe, VTs, VTa,
VTe, ) and given any pn-tuple x = (a1, …, an | ts, te, vs, va,
ve, d)  rpn, the semantics Semt({x}) of the relation {x} at ref-
erence time t is defined as follows:

Semt(x) = (a1, …, an |SemTTt(ts, te)  SemVTt(vs, va, ve, d)),

SemTTt(ts, te) =
(i) {{c  TC \ ts  c  t}} (if ts=te)
(ii) {{c  TC \ ts  c  min(t, te-1)}} (if ts<te)

SemVTt(vs, va, ve, d) =
(iii) {{c  TC \ vs  c  min(max(t+d,va-1), ve-1)},

{c  TC \ vs  c  min(max(t+d,va-1), ve-1)+1}, …,
{c  TC \ vs  c  ve-1}} (if dUNK)

(iv) {{c  TC \ vs  c  va-1)}, {c  TC \ vs  c  va)}, …,
{c  TC \ vs  c  ve-1}} (if d=UNK)

The semantics Semt(rpn) of a pn-relation rpn is the set re-
sulting from the application of Semt to each one of the pn-
tuples xpn rpn. 

The semantics of the temporal component of a pn-
tuple depends on the reference time t and it is given by
the Cartesian product of the semantics of its transaction
time, specified by the function SemTTt, and the semantics
of its valid time, specified by the function SemVTt. This
approach grants for the orthogonality of TT and VT, as in
most TDBs approaches, including BCDM and Clifford et
al.’s semantics (see also Property 1 above).

The SemTTt function provides two cases: the transac-
tion time is now-related, i.e., the tuple is current in the
TDB (point (i)). In this case we consider the chronons
from the transaction-time start ts to the reference time t.
On the other hand, if the transaction time is not now-
related, i.e., the tuple has been deleted (point (ii)), the
chronons of the transaction time cannot be greater than
the chronon of the time when the tuple has been deleted
(minus 1 because the interval is open to the right).

Also the SemVTt function provides two cases, depend-
ing on the latency of the tuple. If the latency is known
(point (iii)) and has value d, the tuple certainly holds at all
chronons from cs to t+d (or to va, in case va>t+d), but no
longer than the bound ve–1 (see the discussion in Section
3.2). Then, it possibly holds until
ve–1. It is worth noticing that, if the tuple is not now-
related and thus va=ve, the definition gives a singleton set
of alternatives with the chronons that start at vs and end
at ve–1 and it does not depend on the value of the refer-
ence time t.

If the latency is unknown (point (iv)), we cannot as-
sume any persistence after the assertion time (consider
the discussion in Section 3.1). Since, independently of the
latency, the valid times from vs to va–1 are certain, they are
included in all the alternatives. On the other hand, the
valid times from va to ve–1 are possible and they corre-

ANSELMA ET AL.: NOW IN TEMPORAL RELATIONAL DATABASES 7

spond to the other alternatives. Notice that, in such a case,
the semantics is independent of the value of the reference
time t.

Notably, our representation is expressive enough to
cope with all the different cases of now-related facts dis-
cussed in Section 2. As discussed in that section, our se-
mantics for now-related tuples is indeed an extension of
Clifford et al.’s one (see Property 1). Thus our representa-
tion is, indeed, a representational model for Clifford et
al.’s semantics of NOW, as well as for the extension we
have proposed. This is a first advance with respect to the
current literature. A second, major, one is our proposal of
an algebra operating on such a compact representation,
respecting (i.e., consistent with) the above semantics.

4 ALGEBRAIC AND MANIPULATION OPERATIONS

Our representational model is a compact 1NF imple-
mentation of the semantics in Section 2.4. In this section,
we define new algebraic operators operating on such a
representation. Our operators perform a “symbolic ma-
nipulation” on such a representation: the result is directly
computed only on the basis of the compact representa-
tion, without resorting to its underlying semantics. This
procedure is efficient since it only requires a symbolic
manipulation of a compact representation, but demands a
proof of correctness: we have to prove that the semantics
of the output obtained through the symbolic manipula-
tion is the same that would be obtained (although much
less efficiently) by operating at the semantic level through
the algebra in Section 2.5.

To operate on the representation in a correct way (but
not resorting to a direct translation into the semantics,
which would make our approach inefficient), we intro-
duce the function interprVTa. interprVTa takes in input the
valid-time values of a pn-tuple and a reference time t and
returns a chronon representing the end of the “certain”
part of the valid time at the reference time t, as implied by
the representation.

Definition 9. InterprVTa.
interprVTa(va,ve,d,t)

 if (d = UNK or d = NR) then return va
 else return min(max(t+d+1, va), ve) 

This is indeed an implementation of part of the seman-
tics in Definition 7. The returned value is respectively (i)
the assertion time (va) if d=UNK or d=NR (notice that, in
the case that the tuple is not now-related, va=ve); (ii) the
reference time shifted by the latency (t+d) (or the asser-
tion time va if it is higher) if d is known.

4.1 Temporal extension of Codd’s operators

Now we provide our temporal extension to Codd’s rela-
tional algebra operators [19]. As, e.g., in BCDM and
TSQL2, to grant reducibility, temporal extensions operate
as Codd’s operators on the non-temporal attributes. Ad-
ditionally, as e.g., in TSQL2, non-temporal selection, pro-
jection and union do not directly operate on the start/end
of valid and transaction time. The definition of such oper-
ators is reported in the following, for the sake of com-
pleteness. Notice that, as in Clifford, queries indicate the

reference time. When not specified, the current time cnow is
used as default value for it.

Definition 10. Given two pn-relations 𝑟𝑝𝑛 and 𝑠𝑝𝑛, de-
fined over the schema (A1, …, An | TTs, TTe, VTs, VTa,
VTe, ), and reference time t, the relational union, projec-
tion and selection are defined as follows (we denote with
A the attributes A1, …, An).

𝑟𝑝𝑛 ∪𝑡
𝑝𝑛

𝑠𝑝𝑛 = {𝑥 ∖ (𝑥 ∈ 𝑟𝑝𝑛 ∨ 𝑥 ∈ 𝑠𝑝𝑛)}
𝜋𝑡 𝑋

𝑝𝑛 (𝑟𝑝𝑛) = {𝑥 ∖ ∃𝑥′ ∈ 𝑟𝑝𝑛 𝑥[𝑋] = 𝑥′[𝑋]}
𝜎𝑡 𝑃

𝑝𝑛 (𝑟𝑝𝑛) = {𝑥 ∖ 𝑥 ∈ 𝑟𝑝𝑛 ∧ 𝑃(𝑥)}. 
Notably, as, e.g., in TSQL2 [3], the above operators do

not modify the values of the temporal attributes.
On the other hand, as, e.g., in BCDM and TSQL2, our

Cartesian product performs the intersection of valid and
transaction time.

Definition 11. Cartesian product. Given two pn-
relations 𝑟𝑝𝑛 and 𝑠𝑝𝑛 defined on the schemas R: (A1, …, An
| TTs, TTe, VTs, VTa, VTe, ) and S: (B1, …, Bm | TTs, TTe,
VTs, VTa, VTe, ) respectively and a reference time t, the
Cartesian product 𝑟𝑝𝑛 ×𝑡

𝑝𝑛
 𝑠𝑝𝑛 has schema (A1, …, An, B1,

…, Bm | TTs, TTe, VTs, VTa, VTe, ) and it is defined as
follows:
rpn t

pn spn = {x \  x’rpn  x’’spn
(x[A1, …, An]=x’[A1, …, An] 
x[B1, …, Bm]= x’’[B1, …, Bm] 
x[TTs]=max(x’[TTs], x’’[TTs]) 
x[TTe]=

(if (x’[TTs]x’[TTe]  x’’[TTs]x’’[TTe]) then
 min(x’[TTe], x’’[TTe])
if (x’[TTs]=x’[TTe]  x’’[TTs]x’’[TTe]) then x’’[TTe]
if (x’[TTs]x’[TTe]  x’’[TTs]=x’’[TTe]) then x’[TTe]
if (x’[TTs]=x’[TTe]  x’’[TTs]=x’’[TTe]) then
 max(x’[TTs],x’’[TTs])) 

x[VTs] = max(x’[VTs], x’’[VTs]) 
t’a=interprVTa(x’[VTa, VTe, ], t) 
t”a=interprVTa(x’’[VTa, VTe, ], t) 
x[VTa]=max(min(t’a, t”a), x[VTs]) 
x[VTe]=min(x’[VTe], x’’[VTe]) 
x[]=(if (x[VTa]=x[VTe] then NR else UNK) 
x[TTs]x[TTe]  x[VTs]<x[VTe]))}. 

Cartesian product operates directly on the representa-
tion without resorting to the semantics. It manages the
non-temporal attributes A1, …, An, B1, …, Bm in a standard
way and, intuitively speaking, evaluates the intersection
of the temporal parts of the paired tuples. Concerning
transaction times, four cases are distinguished, depending
on whether none, one or both the tuples are transaction-
time now-related, and following the POINT representa-
tion (e.g., the condition x’[TTs]x’[TTe] is used to ascer-
tain that x’ is not transaction-time now-related). On the
other hand, concerning valid time, intersection is com-
puted by exploiting the interprVTa function and latency is
set to UNK unless the result is not now-relative; in such a
case the latency is not relevant.

As in some approach to indeterminate time (see, e.g.,
[20]), we choose to propose two different algebraic opera-
tors for difference: the certain difference
–t

pn_cert, and the possible difference –t
pn_poss. In the certain dif-

ference, we are interested only in certain results. A chro-
non is certainly in the result of difference if it is certain in

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

the minuend, and if it does not appear (neither as certain
nor as possible) in the subtrahend. The certain difference
uses the interprVTa function to determine the end of the
certain part of the valid time.

Definition 12. Certain difference. Given two pn-
relations 𝑟𝑝𝑛 and 𝑠𝑝𝑛 defined on the same schema R: (A1,
…, An | TTs, TTe, VTs, VTa, VTe, ) and a reference time t,
the cert_difference rpn –t

pn_nec spn has schema (A1, …, An |
TTs, TTe, VTs, VTa, VTe, ) and it is defined as follows:

rpn –t
pn_nec spn = {x \ x’rpn x’’spn

(x’[A1, …, An]=x’’[A1, …, An]  x=x’) 
x’rpn !x’’1,…, x’’k spn
(x’[A1, …, An]=x’’1[A1, …, An]=…=x’’k[A1, …, An] 
x[A1, …, An]=x’[A1, …, An] 
t’=interprVTa(x’[VTa, VTe,], t) 
x[T]  ({<x’[TTs],x’[TTe],x’[VTs],t’,t’,x’[]>} –*
{<x’’1[TTs],x’’1[TTe],x’’1[VTs],x’’1[VTe],x’’1[VTe],x’’1[]>,
…, <x’’k[TTs],x’’k[TTe],x’’k[VTs],x’’k[VTe],x’’k[VTe],
x’’k[]>}))}.
As already pointed out by the BCDM model, for each

tuple xrpn , the times of all the tuples x1, …, xk  spn that
are value-equivalent to it must be subtracted from the time
of x. The uniqueness operator ∃! is used to identify all
and only the tuples x’’1,…, x’’k spn value-equivalent to x’.
The operator –* repeatedly applies the binary difference
operator to remove elements of the second set from each
one of the elements in the first set. Since we are evaluat-
ing certain difference, we consider only the “certain” val-
id time for the minuend (so that the end of its valid time
is interprVTa(x’[VTa,VTe,], t), and “possible” valid times
for subtrahends (so that the end of their valid time is
x’[VTe]). Each element has the form <ts,te,vs,va,ve,d>, where
ve=va. The operation computes binary difference between
two elements <t1s,t1e,v1s,v1e,v1e,d1> and
<t2s,t2e,v2s,v2e,v2e,d2> as follows:

(1) for transaction time, (i) it computes the difference
between the two time intervals [t1s,t1e) and [t2s,t2e),
considering that both intervals are represented us-
ing the POINT representation for ‘now’. Zero, one
or two intervals (in the POINT representation) are
provided as output. Let TT_diff_set be the set of
such intervals. Moreover (ii) it computes the inter-
section between them. At most one intersection in-
terval is returned. Let TT_inters_set the set of such
intervals;

(2) for valid time, it computes the standard difference
between the two time intervals [v1s,v1e) and
[v2s,v2e). Zero, one, or two intervals are provided as
output. Let VT_set be the set of such intervals;

(3) for each interval [ts,te)TT_diff_set, it adds
{<ts,te,v1s,v1e,v1e,NR>} to the set of results;

(4) for each interval [ts,te)TT_inters_set and for each
interval [vs,ve)VT_set, it adds {<ts,te,vs,ve,ve,NR>} to
the set of results.

A more detailed definition of –* and of binary differ-
ence is provided in the supplementary materials. The def-
inition of the possible difference (–t

pn_poss) is omitted since it
is analogous to the definition of the certain difference.
Notably, in the possible difference we want as output

possible chronons, i.e., those chronons which are possible
in the minuend, and are not certain in the subtrahend
(possible chronons in the subtrahend are not considered
by possible difference, since the subtrahend tuple may
not hold in such chronons).

4.2 Additional algebraic operations

New operators, which are not an extension of Codd’s
ones, can be introduced to cope with the temporal as-
pects. In particular, since we consider both “certain” and
“possible” valid times for now-related tuples, it is worth
introducing the to_poss and to_nec operators, which coerce
pn-relations (which contain a certain degree of indeter-
minacy) into “standard” determinate-time relations. Such
operators retain the transaction time, and set the valid
time to the possible times (to_poss) or certain valid times
(to_cert) of the tuple respectively, and are useful to en-
hance the integration between pn-relations and “stand-
ard” temporal relations.

Definition 13. Given a pn-relation 𝑟𝑝𝑛 defined on the
schema R: (A1, …, An | TTs, TTe, VTs, VTa, VTe, ) and a
reference time t, to_posst(rpn) and to_nect(rpn) have schema
(A1, …, An | TTs, TTe, VTs, VTe) and are defined as fol-
lows:

to_posst(rpn)={x \ x’rpn (x[A1, …, An]=x’[A1, …, An] 
x[TTs]=x’[TTs]  x[TTe]=x’[TTe]  x[VTs]=x’[VTs] 
x[VTe]=x’[VTe])}

to_certt(rpn)={x \ x’rpn (x[A1, …, An]=x’[A1, …, An] 
x[TTs]=x’[TTs]  x[TTe]=x’[TTe]  x[VTs]=x’[VTs] 
x[VTe]=interprVTa(x’[VTa,VTe,], t))}. 

For instance, considering Table 1 and RT=30,
to_poss30(Table 1) = {<Bill, Cardiac Surgery |
18,42,16,32>, <John, ICU | 21,21,10,cmax>, <Tom, ER |
5,5,4,7>} and to_cert30(Table 1) = {<Bill, Cardiac Surgery |
18,42,16,32>, <John, ICU | 21,21,10,29>, <Tom,ER |
5,5,4,5>}.

Additional operators, such as temporal selection, can
be easily introduced.

4.3 Examples of queries

Let us consider the relation PWARD in Table 1 and the
relation PSYMPT in Table 2 storing patients’ symptoms.
In the following we provide some examples of queries,
asked, e.g., at reference time 20 (see the subscript of all
the algebraic operators).

TABLE 2. The pn-relation PSYMPT

Patient Symptom TTs TTe VTs VTa VTe Δ

Bill chest pain 18 18 14 32 32 NR

John headache 21 21 8 15 cmax -1

Tom
abdominal

pain
5 5 3 5 cmax UNK

Q1) Which patients were in cardiac surgery while John

was in ICU?
20

pn
Patient(σ20

pn
Ward=Cardiac Surgery(PWARD) 20

pn
20

pn
Ward(σ20

pn
Patient=John  Ward=ICU (PWARD)))

Q2) When was Bill (certainly) in cardiac surgery while
John was not in ICU?
σ20

pn
Patient=Bill  Ward=Cardiac Surgery(PWARD) −20

𝑝𝑛_𝑐𝑒𝑟𝑡
 σ20

pn
 Patient=John 

ANSELMA ET AL.: NOW IN TEMPORAL RELATIONAL DATABASES 9

Ward=ICU(PWARD)
Q3) What symptoms did John have while he was in

ICU?
20

pn
Symptom(σ20

pn
Patient=John(PSYMPT)) 20

pn σ20
pn

 Patient=John 

Ward=ICU(PWARD))
Q4) Did (possibly) John have headache while he was

not in ICU, and when specifically?
π20

pn
Patient(σ20

pn
Patient=John  Symptom=headache(PSYMPT)) −20

𝑝𝑛_𝑝𝑜𝑠𝑠

π20
pn

Patient(σ20
pn

 Patient=John  Ward=ICU(PWARD))
Q5) When was John (certainly) in ICU?

to_cert20(σ20
pn

 Patient=John  Ward=ICU(PWARD))

4.4 Manipulation operations

Here we define insertion and deletion manipulation op-
erations for our representation model (updates can be de-
fined on top of them).

Definition 14. Insertion and deletion. Given a relation
r, instance of the schema (A1, …, An | TTs, TTe, VTs, VTa,
VTe, ), the insertion and the deletion of a tuple at time
cnow in the relation r are defined as follows.
insertpn(rpn, <a1, …, an>, vs, va, ve, d>) =

rpn ∪ {<a1, …, an| cnow, cnow, vs, va, ve, d>}

deletepn(rpn, <a1, …, an>, vs, va, ve) =

rpn – {<a1, …, an| ts, te, vs, va, ve, d>} ∪ {<a1, …, an| ts,
cnow, vs, va, ve, d>}

(if ts,te,d (<a1, …, an| ts,te,vs,va,ve,d>rpn  ts= te))

rpn (otherwise) 
The insertpn function inserts a new tuple in the relation

rpn. The new tuple, following the POINT representation,
has the chronon cnow as both transaction time start and
end.
The deletepn function deletes an existing tuple from a rela-
tion rpn. This is done by changing its transaction-time end
to cnow

 (provided that the tuple has not been deleted).

4.5 Properties

We can now analyze the theoretical properties of our al-
gebra. Two properties are of paramount importance in
this context: correctness with respect to the semantics and
reducibility.

As regards correctness, it is worth noting that we have
introduced a compact representation model to represent
and query now-related data, based on the semantics in
Section 2. All the algebraic relational operators defined on
pn-relations perform symbolic manipulations, working at
the representation level on pn-tuples (thus not resorting
to their underlying semantics) and providing as a result
pn-relations. This procedure, although efficient, requires
a proof of correctness.

Property 2. Correctness of pn-relational algebra. For
each operator 𝑜𝑝𝑡

𝑝𝑛
 working on pn-relations, we have to

prove that the semantics of the result of 𝑜𝑝𝑡
𝑝𝑛

 applied to
pn-relations is equivalent to the corresponding operation
performed at the semantic level. Formally speaking, for a
binary operator, we have to prove that

𝑆𝑒𝑚𝑡(𝑟𝑝𝑛 𝑜𝑝𝑡
𝑝𝑛

𝑠𝑝𝑛) = 𝑆𝑒𝑚𝑡(𝑟𝑝𝑛) 𝑜𝑝𝑟𝑒𝑓𝑆𝑒𝑚𝑡(𝑠𝑝𝑛)
where 𝑜𝑝𝑟𝑒𝑓 is the semantic operator in the reference

approach [5] equivalent to 𝑜𝑝𝑡
𝑝𝑛

 (the proof for unary op-
erators is similar). 

The algebraic operators that do not manipulate time
(non-temporal selection, projection, union) are trivially
correct. On the other hand, the correctness of our Carte-
sian product is proven by showing that, for each cTC,

𝑆𝑒𝑚𝑡(𝑟𝑝𝑛 ×𝑡
𝑝𝑛

𝑠𝑝𝑛) = 𝑆𝑒𝑚𝑡(𝑟𝑝𝑛) ×𝑟𝑒𝑓 𝑆𝑒𝑚𝑡(𝑠𝑝𝑛)
The difference is similar.
The reducibility to the standard non-temporal algebra is

widely recognized as a “must” for temporal algebras
(since it supports. e.g., interoperability with pre-existent
non-temporal databases; see e.g., [21][3]). We prove that
our algebra is reducible to TSQL2’s one (notice that, in
turn, TSQL2 is reducible to the standard non-temporal
algebra). To prove reducibility, we first introduce the pn-
slice operator.

Definition 15. pn-slice operator. Let rpn be a pn-
relation defined over the schema (A1, …, An | TTs, TTe,
VTs, VTa, VTe, ) and t a reference time. The result of the
pn-slice operator ρt

pn(rpn) is a standard TSQL2 relation
over the schema (A1, …, An | Ts, Te, Vs, Ve), where Ts, Te,
Vs and Ve are the attributes representing the start and end
of the transaction and valid time, defined as follows:
ρt

pn(rpn) = {x \  x’rpn
(x[A1, …, An]=x’[A1, …, An] 
x[Vs] = x’[VTs]  x[Ve]=interprVTa(x’[VTa, VTe, ], t) 
x[Ts]=x’[TTs] 
x[Te]=(if x’[TTs]=x’[TTe] then UC

if x’[TTs]≠x’[TTe] then x’[TTe]))}. 
The pn-slice operator, given a pn-relation and a refer-

ence time, removes the indeterminate part and retains on-
ly the certain part giving as a result a standard (possibly
transaction-time now-related) TSQL2 relation.

Property 3. Reducibility of pn-relational algebra to
TSQL2 algebra. Pn-algebraic operators are reducible to
TSQL2 valid-time algebraic operators, i.e., for each alge-
braic operator 𝑜𝑝𝑡

𝑝𝑛
 that extends a Codd’s operator to

cope with our model – and indicating with 𝑜𝑝𝑇 the corre-
sponding TSQL2 relational operator – for each tTC and
for each pair of pn-relations rpn and spn the following holds
(the analogous holds for unary operators):

ρt
pn(rpn 𝑜𝑝𝑡

𝑝𝑛
 spn) = ρt

pn(rpn) 𝑜𝑝𝑇 ρt
pn(spn). 

5 EXPERIMENTAL EVALUATION

In this section, we first discuss our implementation and
then we experimentally evaluate the performance of our
temporal algebra.

5.1 Implementation of algebraic operators

We have developed a prototypical implementation of our
approach using PL/SQL. As an example, we describe our
implementation of Cartesian product between two pn-
relations r and s, given a reference time t.

procedure CartesianNow

Input: relation r with schema

 R:(A1,…,An|TTs,TTe,VTs,VTa,VTe,),

relation s with schema

S:(B1,…Bm|TTs,TTe,VTs,VTa,VTe,),

 reference time t

Output: relation res of schema

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

RES:(A1,…An,B1,…Bm|TTs,TTe,VTs,VTa,

VTe,)

1. cursor curs_r is select A1,…An,

TTs,TTe,VTs,VTa,VTe, from r;

2. cursor curs_s is select B1,…Bm,

TTs,TTe,VTs,VTa,VTe, from s;

3. open curs_r;

4. loop

5. fetch curs_r into a1,…an,

tt1s,tt1e,vt1s,vt1a,vt1e,d1;

6. exit when curs_r%notfound;

7. open curs_s;

8. loop

9. fetch curs_s into b1,…bm,

 tt2s,tt2e,vt2s,vt2a,vt2e,d2;

10. exit when curs_s%notfound;

11. vts := greatest(vt1s, vt2s);

12. vta := greatest(least(

interprVTa(vt1a,vt1e,d1,t),

interprVTa(vt2a,vt2e,d2,t)),vts);

13. vte := least(vt1e,vt2e);

14. tts := greatest(tt1s, tt2s);

15. if (tt1s <> tt1e and

 tt2s <> tt2e) then

16. tte := least(tt1e,tt2e);

17. else if (tt1s = tt1e and

 tt2s <> tt2e) then

18. tte := tt2e;

19. else if (tt1s <> tt1e and

 tt2s = tt2e) then

20. tte := tt1e;

21. else if (tt1s = tt1e and

 tt2s = tt2e) then

22. tte := tts;

23. if (vta = vte) then

24. d := 'NR';

25. else

26. d := 'UNK';

27. if (tts ≤ tte and

 vts < vte) then

28. insert into res (A1,…,An,B1,…Bm,

 TTs,TTe,VTs,VTa,VTe,) values
 (a1,…,an,b1,…bm,tts,tte,

 vts,vta,vte,d);

29. end loop;

30. close curs_s;

31. end loop;

32. close curs_r;

In the CartesianNow procedure above, for each pair of

tuples x’ (belonging to r) and x’’ (belonging to s) the vari-

ables tts, tte, vts, vta, vte, d represent the temporal attrib-

utes of the resulting tuple. First, the algorithm evaluates

the values of such variables accordingly to Definition 8

(notice that, to perform temporal intersection, Cartesian-

Now uses the function interprVTa already described in

Definition 9). Then, the algorithm checks whether the

transaction-time and the valid time of the resulting tuple

are not empty (i.e., tts ≤ tte and vts< vte). If so, it adds a

new tuple with tts, tte, vts, vta, vte, d as temporal attrib-

utes and the original non-temporal attributes of x’ and x’’

as non-temporal attributes (as in Codd’s Cartesian prod-

uct) to the output relation res; otherwise, no tuple is add-

ed to the output.

5.2 Indexing

In our previous work [9] we have shown that spatial in-
dexing techniques are very efficient to address now-
related tuples in relational queries when they are mod-
eled with the POINT approach (the same approach that
we followed in this paper to cope with transaction time).
However, since the experiments for Cartesian product
consider all tuples from both relations, indexing the rela-
tions would not bring benefits. Regarding difference,
since it subtracts only value-equivalent tuples (consider-
ing, in our example, the attribute ‘Patient’), we could in-
dex the attribute ‘Patient’ with a B+-tree index. Notice
that, since in the experiments about Cartesian product
and difference no temporal selection operation is per-
formed on the temporal attributes, indexing on temporal
attributes would not be useful to improve the experi-
mental results.

5.3 Experimental evaluation

We are not aware of any other algebra explicitly coping
with now-related facts (except the POINT approach
[10][18], which, however, is only partially based on
Clifford et al.’s semantics; indeed, it does not explicitly
provide any semantics for NOW). Therefore, we have
chosen to compare the performance of our approach with
an “ideal” (but not realistic) approach in which the exact
ending time of now-relative data is known a priori. In
such a context, only “standard” temporal tuples have to
be managed, so that “classical” TSQL2 representation and
algebraic operators can be used. To enhance the quality of
the comparison, in our tests we implemented the TSQL2
algebraic operators using the same algorithmic structure
we adopted for our operators (e.g., using the nested loop
structure for both Cartesian products). Of course, the
“ideal” approach involves omniscience, which is not a re-
alistic assumption. However, it can be used to highlight
what is the extra-effort we introduce to cope with ’now’
with respect to an ideal case in which no treatment for
’now’ is required.

In the following, we provide a detailed description of
the context and modalities we adopted for our experi-
ments, discussing the setup, the data set types and sizes,
the data distributions as well as the adopted measures
and schemas.

Setup of the experimental evaluation. All experi-
mental results are computed on a four 450 MHZ CPU—
SUN UltraSparc II processor machine, running Oracle
10.2.0 RDBMS, with a database block size of 8K and SGA
size of 500 MB. Due to the compatibility issues with our
previous experiments and with previously developed
work, we have chosen to run experiments on an older
version of Oracle (version 10.2.0). However, our initial
testing on Oracle 12c release 1 has shown that, when the

ANSELMA ET AL.: NOW IN TEMPORAL RELATIONAL DATABASES 11

databases have the same startup parameters, the experi-
mental results for Cartesian product and difference are
the same as on the 10.2.0 version, since in our experi-
ments we do not query temporal periods and we do not
exploit the built-in support for Valid, Transaction, and
Decision time that version 12.c offers. To ensure that the
logical read of data already in SGA does not influence the
results, we flushed the database buffer cache in SGA be-
fore every test. At the times of testing the database server
did not have any other significant load. We used Oracle
built-in methods for statistics collection, analytic SQL
functions and the PL/SQL procedural runtime environ-
ment.

Datasets: We considered different types of datasets
(third column of Tables 3, 4 and 5). For the ideal approach
we used a standard dataset of TSQL2-like bitemporal tu-
ples (with no now-related tuples); for our approach, in
order to investigate different data options and their influ-
ence on performance, we considered five different types
of datasets, specifically:

(1) “not now” - without now-relative tuples,
(2) “TT now” - where all tuples are transaction-time

now-related, but not valid-time related,
(3) “VT unk” - where all tuples are valid-time now-

related but no transaction-time related and with
unknown latency,

(4) “VT delta” - where all tuples are valid-time now-
related but no transaction-time related and with
a known latency, and

(5) “Mix” - consisting of a mixture of the different
types of tuples. In particular, as regard valid
time, 60% of the tuples are not now-related, 20%
are now-related with unknown latency, and 20%
are now-related with known latency; as regards
transaction time, 40% are not now-related and
60% are now-related.

For difference, we generated the tuples in such a way
that 10% of the tuples in the subtrahend relation is value-
equivalent to a tuple in the minuend relation.

We also considered different sizes for the datasets (first
column of the Tables). In particular, notice that the size of
the datasets in the experiments on Cartesian product is
relatively small and it has been limited to a maximum of
3,000 tuples. This is due to the fact that, since Cartesian
product pairwise combines tuples and has a quadratic
complexity, it generates a large answer size (indeed, in
the case of 3,000 tuples is up to 4,307,488 tuples). Howev-
er, we estimate that the CPU usage increases linearly with
the answer size (see Table 3 and Figure 1). We obtained
similar conclusions for difference when we performed
experiments with bigger datasets, up to one million tu-
ples (see Table 4).

For all the relations, we used a fixed value for the ref-
erence time (RT=300) and we distributed the values of the
other temporal attributes (except for the  attribute) in the
following way:

1. “ideal” - the distribution of TTe and VTe is a
Gaussian distribution centered at RT = 300 with
values ranging from 250 to 350 while the distribu-
tion of TTs and VTs is the following: TTs (VTs) are x

units of time before TTe (VTe), where x is randomly
distributed between 1 and 100.

2. “not now” - we used exactly the same distributions
as for the “ideal” approach. VTa is always equal to
VTe and  is ‘NR’.

3. “TT now”- for VTs, VTe and TTs we used the same
distributions as the “ideal” approach. VTa is always
equal to VTe and TTe is equal to TTs.  is ‘NR’.

4. “VT unk”- for TTs and TTe we used the same dis-
tributions as the “ideal” approach. The distribution
of VTa is a Gaussian distribution centered at RT =
300 with values ranging from 250 to 350. VTs is x
before VTa, where x is a random value between 1
and 100. VTe is y after VTa, where y is a random
value between 1 and 100.  is ‘UNK’.

5. “VT delta” - TTs, TTe, VTs, VTa and VTe are as in
the “VT unk” approach. The distribution of  is a
Gaussian distribution centered at 0 and ranging
from -10 to +10.

6. “mix” - the different types of tuples are inserted in
the relations, according to the proportions dis-
cussed above. Depending on the type of the tuple,
its temporal attributes are valued according with
the distributions discussed in (2)-(5).

Figure 1. Linear increase in CPU usage as a factor of the
answer size.

Measures: In each execution, we have measured the an-
swer size (number of tuples), physical disk I/O and CPU
time (units of computation; fourth, fifth and sixth col-
umns of Tables 3 and 4 respectively).
Structure of the evaluation: The experimental evaluation
is quite articulated, to consider the different aspects cov-
ered by our approach. We present comparisons regarding
the most complex operations, i.e. Cartesian product and
difference, which require quite complex operations on the
temporal attributes (see Definitions 11 and 12).
Schema of the temporal relations: The schema of the
temporal relations in both the “ideal” approach and our
approach simply consists of a non-temporal attribute plus
the temporal ones, as shown in Tables 1 and 2.

5.4 Results and Discussion

The results of the experimental evaluations are shown
in Table 3 (Cartesian product) and 4 (Certain difference,
the results for possible difference are similar). Our ap-

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

proach is indicated by ‘PN’ in column 2. For different da-
taset sizes (first column of Tables 3 and 4), we compare
the “Ideal” approach and our approach (“PN” approach),
considering Answer size, I/O and CPU time.

TABLE 3. Cartesian product
Dataset
size

Approach Dataset
type

Answer
size

I/O CPU
time

300

Ideal - 20,810 11 158

PN

Not now 20,810 11 165

VT unk 20,004 11 165

TT now 43,710 11 260

VT delta 23,620 11 189

Mix 25,638 11 219

1000

Ideal - 216,660 13 1,562

PN

Not now 216,660 13 1,713

VT unk 243,002 13 1,185

TT now 460,816 13 3,360

VT delta 230,686 13 1,829

Mix 250,530 13 2,114

3000

Ideal - 2,170,998 28 15,242

PN

Not now 2,170,998 28 16,563

VT unk 2,169,498 28 16,524

TT now 4,307,724 28 26,932

VT delta 2,166,994 28 16,715

Mix 2,809,488 28 21,563

Considering Cartesian product, Table 3 shows that our
approach behaves like the “ideal” one as concerns the
I/O. Some overhead is added to the CPU time, due to the
growth of the answer size. For instance, if all tuples are
current (“TT now” relations), the size of Cartesian prod-
uct increases since there are more intersections between
bitemporal tuples. As a consequence, the answer size and
the CPU usage of our approach is larger than the one of
the “ideal” approach. In Figure 1 we show that the CPU
usage linearly increases with the increase of answer size,
in the ideal approach (“ideal”) and in our approach, both
with the dataset without now-related tuples (“not”) and
in the one with them (“now”).

Results concerning certain difference are reported in
Table 4 (organized as for Cartesian product).

TABLE 4. Certain difference
Dataset
size

Ap-
proach

Dataset type Answer
Size

I/O CPU
Time

10,000

Ideal - 10,472 74 130

PN

Not now 10,472 74 132

VT unk 10,604 74 160

TT now 10,481 74 151

VT delta 10,640 74 134

Mix 10,571 74 134

100,000

Ideal - 104,725 714 1,172

PN

Not now 104,725 714 1,149

VT unk 106,302 649 1,542

TT now 104,407 667 1,149

VT delta 105,894 682 1,191

Mix 105,223 732 1,137

1,000,000

Ideal - 1,047,416 6,342 11,605

PN

Not now 1,047,416 6,337 11,486

VT unk 1,063,418 6,480 13,308

TT now 1,044,034 6,385 11,524

VT delta 1,058,768 6,482 11,841

Mix 1,054,418 6,383 11,515

Also such results clearly indicate that our approach
behaves like the “ideal” one. There are some small varia-
tions with regard to the CPU time. However, a closer look
can reveal that such variations are also caused by differ-
ent answer sizes, which are influenced by the actual data.

6 Comparisons with related works

Several approaches have faced the treatment of now-
related data in relational TDBs. Some recent approaches
have provided coalescing [22], or have focused on index-
ing [23]–[25] or on timestamping [26], [27]. As stressed
along this paper, the approach by Clifford et al. [6] is a
milestone, since it first pointed out the semantics of ‘now’
in TDBs (see Section 2.2). The relationship between our
semantics and Clifford et al.’s one has been already dis-
cussed throughout the paper. In particular, Property 1
shows that, if we neglect the cases in which latency is
‘UNK’, and we consider only the “certain” part of valid
time, our semantics of now-related tuples reduces to
Clifford et al.’s one. Thus, our approach extends Clifford
et al.’s semantics considering also unknown latency and
providing a relational algebra for the (semantic) data mod-
el. We also propose a representational implementation for
both the data model and the algebra, experimentally prov-
ing its efficiency (with respect to the “ideal” approach)3.

3
It is also worth pointing out that Clifford et al.’s semantics also

models temporal indeterminacy not related to NOW. The “full”
treatment of temporal indeterminacy sharply increases the com-
putational complexity of the approaches (see the complexity
analysis in [5], which considers a wide family of alternative ap-
proaches). In our paper, we only focus on the treatment of now-
related data, thus we consider only the degree of indeterminacy
strictly needed to cope with (the semantics of) NOW. In such a
way, as widely discussed in Section 5, we have experimentally
demonstrated that our approach roughly behaves like the “ideal”
one, not adding any significant overhead to cope with now-
relative data (while a substantial increase of complexity would be
required for a full treatment of temporal indeterminacy [5]). We
have already proposed a work considering temporal indetermi-

ANSELMA ET AL.: NOW IN TEMPORAL RELATIONAL DATABASES 13

Several representational models to cope with ‘now’ in the
relational context have been proposed. MIN, MAX and
NULL approaches [8] support now-related tuples by rep-
resenting NOW as a special value for the valid-time end,
i.e., the minimum chronon (MIN approach) and the max-
imum chronon (MAX approach) allowed by the database
or the NULL value (NULL approach). In these approach-
es NOW does not receive any specific support in the que-
ry language: at query time the special value is replaced
with the current time. More recently, the POINT ap-
proach has been proposed [18], which outperforms the
MAX, MIN and NULL approaches. Even more recently, a
relational algebra has been defined to fully support que-
rying NOW-related data (i.e., without resorting to the in-
stantiation to the current time) in all MAX, MIN, NULL
and POINT approaches [10]. All such approaches are
(implicitly) based on Clifford et al.’s semantics, assuming
latency equal to zero.

Considering the representational model (Section 3),
our approach proposed the addition of two temporal at-
tributes (“VTa” and “”). While the former resembles the
additional attributes used in [5] to distinguish between
possible and certain times (although there are subtle dif-
ferences), the explicit treatment of latency (through the
“” attribute) constitutes an original and innovative con-
tribution of our approach, leading to deep implications in
the data semantics (consider, e.g. the differences between
Definition 2 and Definition 4 in Section 3), as well as in
the definition of algebraic operators (consider, e.g., the
adoption of the “interprVTa” function in the definitions of
Cartesian product and of difference). Notably, there is on-
ly one other relational algebra coping with ‘now’, the one
we devised in [10] for the NULL, MIN, MAX and POINT
approaches, and the new algebra proposed in this paper
is radically different from it, due to its treatment of differ-
ent types of latencies. Specifically, the algebra in [10] is
based on the notion of “binding” of the value of ‘now’ to
the current time (taken as the reference time). On the oth-
er hand, no binding is used in the newly proposed alge-
bra, to support the possibility of coping also with the case
in which latency is unknown (only the case of latency
equal to zero was considered –although implicitly- in the
previous algebra). The main “practical” differences be-
tween our approach and the above ones are graphically
highlighted in Figure 2. In the figure, we consider a now-
related fact and we compare its valid time (transaction
time is not shown, for the sake of readability) at different
reference times in the different approaches. Notably,
MAX, MIN, NUL, and POINT approaches only support
the case in which latency is zero. Clifford et al. also sup-
ports different latencies (e.g., latency -2 in the figure),
while our approach supports latency zero, latency differ-
ent from zero and also unknown latency, which is not
supported by any other approach. Indeed, we stress that
unknown latency constitutes the general case. Notably,
our approach, differently from the others, also supports a
future bound for ‘now’.

nacy in general (see [5]) and in our future work we aim at inte-
grating both results.

The other main innovative contribution of our ap-

proach is that we provide the only approach to ‘now’ in
TDB that homogeneously takes into consideration all the
different issues (1) - (5) mentioned in the introduction.
Clifford et al. only focused on (1) (and partly on (2)),
NULL, MIN, MAX and POINT approaches on (2), (4) and
(5) only, though in a recent work [10] we have provided
an algebra for the NULL, MIN, MAX and POINT ap-
proaches, covering also issue (3).

Before ending, it is worth mentioning that also some
commercial systems are starting to provide temporal
support, based on TSQL2 seminal approach. For instance,
Oracle database since version 12c supports valid time.
However, it does not explicitly cope with now-related da-
ta, but it only allows users to set end and start valid times
to NULL in order to represent facts valid at all time val-
ues [28].

7 CONCLUSIONS

Now-related temporal data play an important role in many
applications. In the area of temporal relational databases,
several approaches have faced in isolation different issues
concerning now-related data (see the introductory section
and Section 6). In this work, we first propose a compre-
hensive approach, starting from the semantics, then mov-
ing towards a compact 1NF representation, and finally
providing an experimental evaluation, considering both
data model and algebraic and manipulation operators.
The main advances with respect to the current approach-
es in literature are:

(i) we first propose an integrated approach consider-
ing the different aspects (the approach is “deeply”
integrated, since we also prove the correctness of
our representation with respect to the semantics),

(ii) we extend current approaches considering new
phenomena. In particular, we also cope with cases
in which there is a future bound for the validity of
now-related tuples and, above all, with cases in
which the latency of updates is unknown.

(iii) we experimentally demonstrate that our represen-
tational approach does not add any significant

Figure 2. Graphical representation for the fact “John stays
in ICU from 1 to NOW. The fact is asserted at 1”. The certain
valid times of the now-related example are represented at
different reference times in the various approaches.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

overhead to cope with now-relative data (roughly
behaving like the “ideal” approach).

REFERENCES

[1] L. Liu and M. T. Özsu, Eds., Encyclopedia of database systems.
Springer, 2009.

[2] Y. Wu, S. Jajodia, and X. S. Wang, “Temporal database bibli-
ography update,” in Temporal Databases: Research and Practice,
vol. 1399, O. Etzion, S. Jajodia, and S. Sripada, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 338–366.

[3] TSQL2 Language Design Committee, The TSQL2 temporal que-
ry language. Kluwer, 1995.

[4] C. S. Jensen and R. T. Snodgrass, “Semantics of Time-Varying
Information,” Inf. Syst., vol. 21, pp. 311–352, 1996.

[5] L. Anselma, P. Terenziani, and R. T. Snodgrass, “Valid-Time
Indeterminacy in Temporal Relational Databases: Semantics
and Representations,” IEEE Trans. Knowl. Data Eng., vol. 25,
no. 12, pp. 2880–2894, Dec. 2013.

[6] J. Clifford, T. Isakowitz, C. Dyreson, C. S. Jensen, and R. T.
Snodgrass, “On the Semantics of ‘Now’ in Databases,” ACM
Trans. Database Syst., vol. 22, pp. 171–214, 1997.

[7] C. E. Dyreson, C. S. Jensen, and R. T. Snodgrass, “Now in
Temporal Databases,” in Encyclopedia of Database Systems,
2009, pp. 1920–1924.

[8] K. Torp, C. S. Jensen, and M. H. Böhlen, “Layered Temporal
DBMS: Concepts and Techniques,” in Proceedings of the Fifth
International Conference on Database Systems for Advanced Appli-
cations (DASFAA), 1997, pp. 371–380.

[9] B. Stantic, A. Sattar, and P. Terenziani, “The POINT approach
to represent now in bitemporal databases,” J. Intell. Inf. Syst.,
vol. 32, no. 3, pp. 297–323, Jul. 2008.

[10] L. Anselma, B. Stantic, P. Terenziani, and A. Sattar, “Query-
ing now-relative data,” J. Intell. Inf. Syst., vol. 41, no. 2, pp.
285–311, Oct. 2013.

[11] C. S. Jensen and R. T. Snodgrass, “Semantics of Time-Varying
Information,” Inf. Syst., vol. 21, pp. 311–352, 1996.

[12] C. S. Jensen and R. Snodgrass, “Temporal specialization and
generalization,” IEEE Trans. Knowl. Data Eng., vol. 6, no. 6,
pp. 954–974, Dec. 1994.

[13] J. Chomicki and D. Toman, “Temporal Logic in Information
Systems,” in Logics for Databases and Information Systems (the
book grow out of the Dagstuhl Seminar 9529: Role of Logics in In-
formation Systems, 1995), 1998, pp. 31–70.

[14] J. Dunn, S. Davey, A. Descour, and R. T. Snodgrass, “Se-
quenced subset operators: definition and implementation,” in
Data Engineering, 2002. Proceedings. 18th International Confer-
ence on, 2002, pp. 81–92.

[15] C. Dyreson, “Temporal Indeterminacy,” in Encyclopedia of Da-
tabase Systems, L. Liu and M. T. Ozsu, Eds. Boston, MA:
Springer US, 2009, pp. 2973–2976.

[16] K. Torp, C. S. Jensen, and R. T. Snodgrass, “Modification se-
mantics in now-relative databases,” Inf. Syst., vol. 29, no. 8,
pp. 653–683, Dec. 2004.

[17] T. Johnston and R. Weis, Managing time in relational databases:
how to design, update and query temporal data. Amsterdam ; Bos-
ton: Morgan Kaufmann/Elsevier, 2010.

[18] B. Stantic, A. Sattar, and P. Terenziani, “The POINT approach
to represent now in bitemporal databases,” J. Intell. Inf. Syst.,
vol. 32, no. 3, pp. 297–323, Jul. 2008.

[19] E. F. Codd, “A relational model of data for large shared data
banks,” Commun. ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

[20] A. K. Das and M. A. Musen, “A temporal query system for
protocol-directed decision support,” Methods Inf. Med., vol.
33, no. 4, pp. 358–370, Oct. 1994.

[21] L. E. McKenzie Jr. and R. T. Snodgrass, “Evaluation of Rela-
tional Algebras Incorporating the Time Dimension in Data-
bases,” ACM Comput Surv, vol. 23, no. 4, pp. 501–543, Dec.
1991.

[22] C. E. Dyreson, “Temporal coalescing with now granularity,
and incomplete information,” 2003, p. 169.

[23] D. Lomet, M. Hong, R. Nehme, and R. Zhang, “Transaction
Time Indexing with Version Compression,” Proc VLDB En-
dow, vol. 1, no. 1, pp. 870–881, Aug. 2008.

[24] L.-V. Nguyen-Dinh, W. Aref, and M. Mokbel, “Spatio-
Temporal Access Methods: Part 2 (2003 - 2010),” Cyber Cent.
Publ., Jan. 2010.

[25] S. Saltenis and C. S. Jensen, “Indexing of now-relative spatio-
bitemporal data,” VLDB J. Int. J. Very Large Data Bases, vol. 11,
no. 1, pp. 1–16, Aug. 2002.

[26] C. S. Jensen and D. B. Lomet, “Transaction Timestamping in
(Temporal) Databases,” in VLDB 2001, Proceedings of 27th In-
ternational Conference on Very Large Data Bases, September 11-
14, 2001, Roma, Italy, 2001, pp. 441–450.

[27] K. Torp, C. S. Jensen, and R. T. Snodgrass, “Effective
timestamping in databases,” VLDB J. Int. J. Very Large Data
Bases, vol. 8, no. 3–4, pp. 267–288, Feb. 2000.

[28] “CREATE TABLE,” in Oracle database SQL Language Reference
12c Release 1, Oracle, 2015, p. 452.

Luca Anselma received the PhD degree in computer science from
Università degli Studi di Torino in 2006 and the Master’s Degree in
computer science in the same university in 2002. He is an assistant
professor of computer science at the Università di Torino, Italy. His
main research interests include the areas of temporal reasoning,
temporal databases and medical informatics. He is the author of
more than 40 papers in international journals, books, and interna-
tional refereed conferences.

Luca Piovesan received the PhD degree in computer science from
Università degli Studi di Torino in 2016. He obtained the Bachelor
Degree in Computer Science in 2010 and the Master’s Degree in
Computer Science 2012 at Università degli Studi di Torino. His re-
search interests are artificial intelligence (knowledge representation,
planning, decision support systems, temporal reasoning), medical
informatics and temporal databases.

Abdul Sattar is founding Director of the Institute for Integrated and
Intelligent Systems (IIIS), a research centre of excellence at Griffith
University established in 2003. He has been an academic staff
member at Griffith University since February 1992 as a lecturer
(1992-95), senior lecturer (1996-99), and professor (2000-present)
within the School of Information and Communication Technology.
He holds a BSc (Physics, Chemistry and Mathematics) and an MSc
(Physics) from the University of Rajasthan, India, an MPhil in Com-
puter and Systems Sciences from the Jawaharlal Nehru University,
India, and an MMath in Computer Science from the University of Wa-
terloo, Canada, and a PhD in Computer Science (with specialization
in Artificial Intelligence) from the University of Alberta, Canada. His
research interests include knowledge representation and reasoning,
constraint satisfaction, rational agents, propositional Satisfiability,
temporal reasoning, temporal databases, and bio-informatics. He
has supervised over 30 PhD graduates, and published over 200
technical papers in refereed conferences and journals in the field.

Bela Stantic is a Deputy Head of School of Information and Com-
munication Technology within the Griffith University. His area of re-
search is efficient management of complex data structures including
Big Data, Spatio-temporal and High dimensional data. He success-
fully applied his research interdisciplinary and published more than
90 peer-reviewed conference and journal papers. He presented
many invited and Keynotes talks and served on Program Commit-
tees of more than 100 conferences and was/is doing the editorial
duties of many Journals.

Paolo Terenziani received his Laurea degree in 1987 and his PhD
in computer science in 1993 from Università di Torino, Italy. He is full
professor in computer science with DiSIT, Institute of Computer Sci-
ence, Università del Piemonte Orientale “Amedeo Avogadro”, Ales-
sandria, Italy. His research interests include artificial intelligence
(knowledge representation and temporal reasoning), databases and
medical informatics. He has published more than 150 papers on
these topics in refereed journals and conference proceedings.

