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Abstract: The problem of jam formation during the discharge by gravity of granu-

lar material through a two-dimensional silo has a number of practical applications.

In many problems the estimation of the minimum outlet size which guarantees that

the time to the next jamming event is long enough is crucial. Assuming that the

time is modeled by an exponential distribution with two unknown parameters, this

goal translates to the optimal estimation of a non-linear transformation of the pa-

rameters. We obtain c-optimum experimental designs with that purpose, applying

the graphic Elfving method. Since the optimal designs depend on the nominal

values of the parameters, a sensitivity study is additionally provided. Finally, a

simulation study checks the performance of the approximations made, first with

the Fisher Information matrix, then with the linearization of the function to be

estimated. The results are useful for experimenting in a laboratory and translat-

ing then the results to a larger scenario. Apart from the application a general

methodology is developed in the paper for the problem of precise estimation of a

one-dimensional parametric transformation in a non-linear model.

Keywords: Elfving graphical procedure; Exponential probability model; Fisher

Information Matrix; Granular material; Linearization; Non-linear parameter trans-

formation.
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1 Introduction

Material in granular form appears in many contexts of applications, as in the phar-

maceutical, chemical, food, agricultural and mining industry (see Nedderman,

1992). During the discharge by gravity of this material through an outlet, if the

size of the outlet is not large enough, the formation of an arch at some point usu-

ally interrupts the flow, causing a jam. An arch is defined as a structure consisting

of particles which are mutually stabilized (Janda et al., 2008) until an external

input of energy breaks their blocking structure and restarts the flow until the next

jam happens.

The problem of jam formation during the discharge by gravity of granular

material through a two-dimensional silo has been studied in Janda et al. (2008),

Amo-Salas et al. (2016b) and Amo-Salas et al. (2016a). In particular, they fo-

cus on studying the waiting time that passes between two jamming events, which

depends on the outlet size, according to some model. This waiting time is also

related with the avalanche, that is the amount of material dropped between two

jamming events. In Amo-Salas et al. (2016b) and Amo-Salas et al. (2016a) the

optimal experimental designs to estimate the unknown parameters and to discrim-

inate between models are obtained.

There is a common interest in avoiding a jam at least during a specific period

of time. In fact, the event of breaking the arches may be dangerous, expensive

or just no affordable. Hence, the goal of this paper is the precise estimation of

the minimum outlet size necessary to guarantee that the expected time between

two jamming events will exceed a fixed time of interest. Assuming an exponen-

tial model as in Amo-Salas et al. (2016b), this goal determines the problem of

finding an optimal design to estimate a non-linear transformation of the unknown
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parameters.

When the inferential goal is the estimation of a linear combination of the un-

known parameters, a c-optimal design minimizes the variance of the maximum

likelihood estimator (classical references on optimal designs are, for instance,

Atkinson et al. (2007) and Pukelsheim (2006)). Elfving (1952) provided a graph-

ical method to determine c-optimal designs of a linear model on a compact ex-

perimental domain, based on the construction of a convex hull. This method is

not easy to use for more than two parameters, but López-Fidalgo and Rodrı́guez-

Dı́az (2004) provided an iterative procedure for more than two parameters based

on the graphical Elfving technique. For instance López-Fidalgo and Rodrı́guez-

Dı́az (2004) used successfully this procedure to compute c–optimal designs for

more than two parameters. Since the model considered is non-linear it is possi-

ble to determine a local c-optimal design by considering the Fisher Information

Matrix (FIM) for nonlinear models and a first–order linearization of the function

of the parameters to be estimated around some nominal values of the parameters.

Moreover, we adopt c-optimality for estimating a non-linear transformation of the

parameters by linearizing also this function.

The paper is organized as follows. Section 2 presents the problem, sets the

basic notation and explains our method in its generality. Section 3 contains the

results on c-optimal designs. Section 4 provides a sensitivity analysis. Section 5

contains a simulation study to check the validity of the approximations applied to

obtain the results. Section 6 concludes the paper. All the computations have been

done with Python 3.7. Codes are provided as supplementary material.
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2 Problem and general method

Consider the problem of falling of particles through a two-dimensional silo pre-

sented in Amo-Salas et al. (2016a) and Amo-Salas et al. (2016b) and introduced

in Section 1. Denoting by T the time between two jamming events and by φ the

size of the outlet at the bottom of the silo, let

E[T |φ ] = η(φ ;θθθ) (1)

be the mean time between two jamming events, where θθθ represents the unknown

model parameter. Following Amo-Salas et al. (2016a) and Amo-Salas et al. (2016b),

it is realistic to consider that T has an exponential distribution. In particular, given

the outlet size φ of the silo, which is a controlled variable, in the next Section we

will assume for the mean function (1) the model in (Amo-Salas et al., 2016a, eq.

(3)).

There is a common interest in avoiding a jam at least in a period of time.

Hence, our goal is the precise estimation of the minimum outlet size necessary to

guarantee that the expected time between two jamming events will be greater than

a fixed time T0 of interest:

E[T |φ ]≥ T0. (2)

If η(·, ·) is an invertible function, (2) becomes

φ ≥ g(T0,θθθ), (3)

for some inverse function g. Thus, we are interested in estimating g(T0,θθθ) which

is a non-linear function of the unknown model parameter. Since T0 is a fixed

constant from now on we denote it simply by g(θθθ).
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To this aim, assume that an experimenter can observe uncorrelated observa-

tions from n experiments,

ti = η(φi;θθθ)+ εi, i = 1, ...,n. (4)

Since φ is a controlled variable, the n experimental conditions φ1, ...,φn can be

chosen according to a design ξ , that is, a probability distribution on a domain

X = [a,b]:

ξ =

{
φ1 · · · φr
p1 · · · pr

}
,

with r ≤ n.

Observe that the model herein considered is non-linear and the errors εi have

non-constant variance:

Var(εi) = η(φi;θθθ)2

The FIM is defined by

M(ξ ,θθθ) =
∫
X

I(φ ,θθθ)dξ (φ),

where

I(φ ,θθθ) = −EY

[
∂ 2

∂θθθ
2 L (θθθ ; t,φ)

]
is a two by two matrix and L is the log-likelihood function. Since, for an expo-

nential model with mean (1), we have

L (θθθ ; t,φ) = log
(

1
η(φ ,θθθ)

exp− t
η(φ ,θθθ)

)
, (5)

it follows that the FIM of model (4) at one point φ is

I(φ ,θθθ) =
1

η2(φ ,θθθ)
∇η(φ ,θθθ)∇η(φ ,θθθ)T ,
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and

M(ξ ,θθθ) =
∫
X

1
η2(φ ,θθθ)

∇η(φ ,θθθ)∇η(φ ,θθθ)T dξ (φ), (6)

where the transpose is indicated with the superscript T and ∇ stands for the gra-

dient.

Equation (6) is also the FIM of the following linear gaussian and homoschedas-

tic model

ti = θθθ
T f (φi;θθθ

T )+ εi, (7)

with

f (φ ;θθθ) =
1

η(φ ,θθθ)
∇η(φ ,θθθ), (8)

Our goal is therefore to find an optimal design for precise estimation of g(θθθ),

that is, a design minimizing the variance of the maximum likelihood estimator

(MLE) of g(θθθ).

When the inferential goal of an experiment is an efficient estimation of a vec-

tor of unknown parameters θθθ , an optimal design maximizes a suitable functional

of the FIM, M(ξ ,θθθ), because its inverse is asymptotically proportional to the co-

variance matrix of the MLE θ̂θθ , which is asymptotically unbiased. Some classical

references on optimal designs are Fedorov (1972), Pzman (1986) and Atkinson

et al. (2007). An optimal design depends on the value of the unknown parameters

except in the case of linear models.

As mentioned above a c-optimal design ξ ∗c , minimizes the asymptotic variance

of a linear transformation cT θθθ of the unknown model parameters:

ξ
∗
c = argmin

ξ

cT M(ξ ;θθθ)−1c (9)

A very nice way to compute c-optimal designs, especially in two dimensions,

is the geometric Elfving procedure (see Elfving, 1952). Such procedure is con-

6



structed for estimating a linear transformation cT θθθ of the parameters given a linear

homoschedastic model T = θθθ
T f (φ)+ ε .

Remembering that the MLE estimator of g(θθθ) is g(θ̂θθ), let us approximate the

non-linear function g(···) using Taylor expansion around the true value θθθ t , so that

we can approximate g(θ̂θθ) with g(θθθ t)+∇g(θθθ t)(θ̂θθ−θθθ t). The variance of g(θ̂θθ) can

be then approximated by

∇g(θθθ t)
T M(ξ ,θθθ t)

−1
∇g(θθθ t) (10)

and a c-optimal design for model (4) is a design satisfying (9) with c = c(θθθ) given

by

c(θθθ) = ∇g(θθθ) (11)

Notice that two procedures of approximation by linearization have been adopted,

and that the c-optimum design satisfying (9) depends on the unknown parameters

both through the vector c and the FIM, M(ξ ,θθθ). Hence, a nominal value θθθ 0

guessing the true value θθθ t has to be chosen and the design obtained will be locally

optimum. Starting from the design space considered in Janda et al. (2008) and

the values obtained in Amo-Salas et al. (2016a), the procedure to obtain c-optimal

designs is developed in detail in the next section.

3 c-optimal designs

Assume that the time T between two jamming events is exponentially distributed

with mean

η(φ ;θθθ) =
1
C

exp(Lφ
2)−1, φ ∈X = [a,b], (12)

where θθθ
T = (C, L), as in (Amo-Salas et al., 2016a, eq. (3)).
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Our main goal is the efficient estimation of the minimal diameter φ ∈X for

which (2) holds. If the mean of T is given by (12), this means

η(φ ;θθθ) =
1
C

exp(Lφ
2)−1≥ T0, (13)

that is

φ ≥ g(θθθ) =

√
log(C(T0 +1))

L
. (14)

The extremes of the experimental domain X = [a,b] have to satisfy d < a <

b < φC, where d is the diameter of the granular material and φC is a nominal di-

ameter above which jamming is practically impossible. In theory there is not such

a value since there is always a chance of forming an arch, no matter how wide

the outlet is. But a practical limit can be assumed and even that value is a param-

eter of some models (see Amo-Salas et al., 2016a and Amo-Salas et al., 2016b).

Moreover, L > 0 since the time, and therefore η , between jams is increasing with

respect to φ ; and 0 < C < exp(Lφ 2) for any φ since η must be positive. This

does not mean constrained estimation, but just practical limits. The data will be

in charge of dealing with them. Following the method presented in Section 2, we

are obtaining here c-optimal designs for estimating the bound g(θθθ) given in (14).

Remark 1 An alternative goal could be the estimation of the minimal diameter

such that, for a given value α , P(T > T1) ≥ 1−α . However, for an exponential

model, this is equivalent to consider (14) with T0 =−T1/log(1−α) since

1−α ≤ P(T > T1) = exp(−T1/η(φ ;θθθ)) (15)

and then

η(φ ;θθθ) ≥ −T1

log(1−α)
. (16)
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For instance, for α = 0.05, T0 = 19.5T1. Thus, the problem is equivalent in terms

of estimation and designing and this is the relationship between both thresholds.

In this particular case the threshold for the probability is about 20 times the one

for the expectation.

The information matrix at a point φ for model (12) is

I(φ , θθθ) =
e2φ 2L

C(eφ 2 L−C)2

( 1
C

−φ 2

−φ 2 Cφ 4

)
. (17)

In order to apply the Elfving’s graphical method, we need to obtain the Elfving

locus, that is, the convex hull of the union of the curve defined by the regressors in

(7) and its reflection through the origin; the c-optimal design is then determined

by the crossing point between the line c and the boundary of the Elfving locus

(see López-Fidalgo and Rodrı́guez-Dı́az, 2004). The parametric equations that

represent the curve are obtained from (8), which becomes, when model (12) is

assumed, f (φ ,θθθ) = G(φ , θθθ)(1/C,−φ 2)T , where

G(φ , θθθ) =
eφ 2L

eφ 2L−C
. (18)

Hence, the parametric equations of f ([a,b]) are
x(φ) = G(φ , θθθ)/C,

y(φ) =−G(φ , θθθ)φ 2,

φ ∈ [a,b].
(19)

According to the experimental case considered in Janda et al. (2008), φ ∈

X = [1.53, 5.63] and the estimates obtained in Amo-Salas et al. (2016a) from

data will be used as nominal values of the parameters, that is, C0 = 0.671741

and L0 = 0.373098. Figure 1 represents the parametric curve (19), its reflection,
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and the Elfving locus A1A2A3A4 obtained in this case. It is worth observing that

the vertexes of the convex hull in Figure 1 are not tangential points of the curve

but outermost points of the curve. The vector c, defined as the gradient of g(θθθ)

Figure 1: Convex hull based on the estimates from Amo-Salas et al. (2016a).
Green sides represent the possible crossing points of ∇g(θθθ).

evaluated in the nominal values (C0,L0), is given by

c(θθθ)T =
1

2
√

L0

(
1

C0
√

log(C0(T0 +1))
,−
√

log(C0(T0 +1))
L0

)
; (20)

depending on the value of T0, c has a different angle and the line directed by ccc

crosses the convex hull in A1A2 or A2A3 (equivalently A3A4 or A1A4) (see Figure

2).

The following proposition provides the properties of the Elfving locus for any

values of the extremes of the experimental domain and for any possible choice of

the nominal values of the parameters, (C0,L0).

Proposition 1 Consider the curve (19) and its reflection through the origin. Let

A1,A2,A3,A4 be the outermost points: A1 = (−x(b),−y(b)), A2 = (x(a),y(a)),
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A3 = (x(b),y(b)), A4 = (−x(a),−y(a)).

Then, for any value of (C,L) such that 0 < C < exp(Lφ 2) and L > 0, the convex

hull of these curves is A1A2A3A4.

Proof 1 The main point is to prove that the curve (19) is always above the segment

A3A2 and below the A1A2. The reasoning will be organized in the following steps:

1. Observe that x(φ) > 0 and y(φ) < 0 for any φ ∈ [a, b] since L > 0 and

eφ 2L > C > 0 for any φ . Then, the curve (19) and the points A3,A2 are al-

ways in the fourth quadrant of the Cartesian plane, while its reflection and

the points A4,A1 are always in the second quadrant.

2. We have x′(φ)< 0 for any φ ∈ [a, b]; it follows that x(b)≤ x(φ)≤ x(a).

3. From the first equation of (19) we have G(φ , θθθ) =Cx(φ); moreover, by the

definition of G(φ ,θθθ),

φ
2 =

1
L

log
(

C2x
Cx−1

)
;

then plugging into the second equation of (19), we obtain the cartesian

equation of the curve:

y(x) =−C
L

x log
(

C2x
Cx−1

)
, x ∈ [x(b),x(a)]. (21)

4. Notice that y ∈ C 2([x(b),x(a)]) and that

y′′(x) =− C
Lx(Cx−1)2 < 0;

it follows that (21) is concave and therefore (19) is above the segment A3A2.
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5. In order to prove that (19) is below the segment A1A2 it is enough to prove

that the tangent to the curve in A2 is below A1A2 (which has a negative slope

m); this means that the slope of (21) in x = x(a) is greater than the slope of

A1A2.

We have

y′(x) =
C
L

(
1

Cx−1
− log

C2x
Cx−1

)
(22)

and then

y′(x)|x=x(a) =
C
L

(
1

G(a,θθθ)−1
− log

C G(a,θθθ)
G(a,θθθ)−1

)
=

C
L

(
ea2L−C

C
−a2L

)
=

1
L

ea2L−C
L
−a2C. (23)

At this point there are two cases:

(a) If C < ea2L/(1+ a2L) then y′(x)|x=x(a) > 0 and it is straightforward

that the slope of the curve is greater than the slope of A1A2. Note that

in this case we have y′(x)> 0 for any x ∈ [x(b),x(a)] (as in Figure 1).

(b) If ea2L/(1+a2L)<C < eφ 2L, then y′(x)|x=x(a) < 0 (as in Figure 3) and

we have to prove that

y′(x)|x=x(a) > m =−C
a2G(a,θθθ)+b2G(b,θθθ)

G(a,θθθ)+G(b,θθθ)
(24)

Since (23) can be written as

C
L

(
1

G(a,θθθ)−1
−a2L

)
,
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the inequality (24) is equivalent to

1
L

1
G(a,θθθ)−1

−a2 >−a2G(a,θθθ)+b2G(b,θθθ)
G(a,θθθ)+G(b,θθθ)

,

which gives
1
L

1
G(a,θθθ)−1

+
(b2−a2)G(b,θθθ)
G(a,θθθ)+G(b,θθθ)

> 0,

which is always satisfied since the left term is a sum of two positive quanti-

ties.

Denote by (xi,yi), i = 1, ...,4, the coordinates of the extremes Ai of the con-

vex hull stated in Proposition 1 and denote by φi the corresponding values of φ

in curve (19) or in its symmetric (from Proposition 1, φi can be equal to a or

equal to b). Next proposition gives the c-optimal designs obtained by the crossing

point between ccc = ∇g(θθθ) and the convex hull, according to the Elfving method,

depending on the fixed value T0.

Proposition 2 Depending on the fixed value of T0, the convex hull is crossed by

c(θθθ) through AiAi+1, where i = 1,2,3, and the c-optimal design is{
φi φi+1

1− pi pi

}
, with pi =

√
(Kx0− yi)

2 +(x0− xi)
2

(xi+1− xi)2 +(yi+1− yi)2 , (25)

where K = (∂g/∂L)/(∂g/∂C) and the coordinates of the crossing point P0 are

x0 =

yi−
yi+1− yi

xi+1− xi
xi

K− yi+1− yi

xi+1− xi

, y0 = Kx0. (26)

In particular, let

T0i =
1
C

exp
(
− yiL

xiC

)
−1,

then
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• for T0 ∈ (max(0, (1−C)/C), T02] the crossing point is in A1A2;

• for T0 ∈ (T02, T03] the crossing point is in A2A3;

• for T0 > T03 the crossing point is in A3A4.

Proof Observe that the lines that contain the segment AiAi+1 and c(θθθ) can be

respectively written as

y− yi =
yi+1− yi

xi+1− xi
(x− xi) and y = Kx,

hence the solution of the crossing point (26) follows straightforwardly.

From the Elfving method we have that if the crossing point P0 is in the side

AiAi+1, then the c-optimal design is given by (25) with pi = ‖AiP0‖/‖AiAi+1‖,

where ‖ · ‖ is the euclidean norm.

Finally, taking into account that c(θθθ) is given by (20); as log(C(T0 +1))> 0,

then

T0 >
1−C

C
.

Moreover, since ∂g/∂L < 0 and ∂g/∂C > 0, c(θθθ) always moves into the fourth

quadrant. As only the vertices A2 and A3 can be in the fourth quadrant, then

P0 = Ai, i = 2, 3, are the only two situations where the optimal design reduces to

one point. In such a case, yi/xi = K, and then

T0i =
e
− yiL

xiC

C
−1.
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Example 1 Let X = [1.53, 5.63], C0 = 0.671741, L0 = 0.373098 and T0 = 200,

then, according to Proposition 2, the convex hull is crossed by c(θθθ) in A2A3 and

the optimal design is

ξ
∗
c =

{
1.53 5.63

0.5526 0.4474

}
It is almost equally weighted as the D-optimal design. Figure 2 represents the

convex hull and ∇g(θθθ) in this example.

Figure 2: Location of the main points addressed in Proposition 2 for the nominal
values from Amo-Salas et al. (2016a) and T0 = 200.

Example 2 In the proof of Proposition 1 two situations are distinguished depend-

ing on whether point A2 is a maximum or not. One has been illustrated in Exam-

ple 1 and the second one is illustrated in this example. For L0 = 0.373098 and

φ ∈ [1.53, 5.63], a value of C in the interval (1.2784,2.395) must be chosen, say

C0 = 2.3. Here T0 = 2.

Figure 3 represents the convex hull and ∇g(θθθ) for T0 = 2 in this example
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Figure 3: Convex Hull when Proposition 1 (b) holds, for T0 = 2, C0 = 2.3 and L0
and experimental domain as in Amo-Salas et al. (2016a).

where A2 is not a maximum. Now, Proposition 2 holds, and then

ξ
∗
c =

{
1.53 5.63

0.2706 0.7294

}
It is interesting to stress that this design put more weight in the right extreme,

and therefore longer experimentation times are required, although the limit T0 is

much smaller than in the previous example.

4 Sensitivity study

Assume that T0 is a given value; the following steps describe the procedure to

perform a sensitivity study for the choice of the nominal values of the parameters.

Step 1: Consider φ ∈ [1.53, 5.63] and the nominal values (C0,L0). The c-

optimal design is obtained in Proposition 2,

ξ
(0)
c =

{
φ
(0)
i φ

(0)
i+1

1− p(0)i p(0)i

}
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Step 2: We consider a grid where the parameters C and L take potential actual

values (C∗,L∗) in a neighborhood of the nominal values (C0, L0). Thus we obtain

the c-optimal design

ξ
∗
c =

{
φ∗i φ∗i+1

1− p∗i p∗i

}
,

when the true values of the parameters is a pair (C∗,L∗) in the grid.

Step 3: For each (C∗, L∗) in the grid, the following values are obtained:

•

M1 = (1− p∗i )I(φ
∗
i ,C

∗, L∗)+ p∗i I(φ∗i+1,C
∗, L∗)

Var1(g) = ∇(g(C∗, L∗))T M−1
1 ∇(g(C∗, L∗))

• Consider the nominal values (C0, L0) where p(0)i and φ
(0)
i where ob-

tained in Step 1 and obtain

M0 = (1− p(0)i )I(φi0,C∗, L∗)+ p(0)i I(φi+1,0,C∗, L∗)

Var0(g) = ∇(g(C∗, L∗)T M−1
0 ∇g(C∗, L∗)

• Compute the relative efficiency given by Var1(g)/Var0(g) .

Example 3 From Proposition 2, three different situations can be distinguished

depending on the nominal values chosen for (C, L). In particular, when the nomi-

nal values (C0, L0) are as in the Example 1, T0 can be in the intervals (0.49, 2.57],

(2.57, 203603.03] or (203603.03, ∞). From here, we consider the following three

cases: T0 = 2, 200 and 300,000. The first one is too small to have a practical

interest, while the last one needs a diameter longer than those ones in the design

space. Thus, they are extreme cases, but interesting to be considered in this study.

Consider a grid of points (C∗, L∗) appropriate to detect sensitive changes in

the efficiencies. In Figures 4, 5 and 6 the efficiencies for the three cases considered

17



are shown. In all the three cases C∗ varies in the interval (C0−0.3,C0+0.3) while

L∗ varies in the interval (L0−0.15,L0+0.15) in cases 1 and 2 and in the interval

(L0−0.05,L0 +0.05) in case 3.

Observe that as we change C∗ and L∗ in the grid, also the three intervals

stated in Proposition 2 change. Since the value T0 is fixed, the crossing point can

be in a different segment AiAi+1 for (C0, L0) and the point of the grid (C∗, L∗).

For instance, in Figures 4 and 5, the largest decrement of the efficiency happens

for large values of C∗ combined with small values of L∗, and it can be checked

that they provide values of T02 smaller than 2 in the case 1 and T03 values smaller

or slightly larger than 200 in the case 2. Finally, in Figure 6, a smaller interval

is chosen to vary L∗ because dramatic changes of the efficiency are observed for

further values of L∗; indeed, T03 is also very sensitive to small changes in the

parameters. Now, the efficiency decreases when L∗ grows and C∗ decreases (top

left on Figure 6) and when L∗ decreases and C∗ grows (bottom right on the table).

These two situations correspond, respectively, with values of T03 much smaller or

much larger than 300,000. In other words, the cross points of the gradient with

the convex hull are far away from the cross point of (C0, L0) or in other segment.

We could say that, in the three cases, when both, L∗ and C∗, grow or decrease,

the efficiency is more stable; but changes of C∗ and L∗ in opposite directions make

the efficiency to reduce quicker.
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Figure 4: Efficiency values in each point of the grid for T0 = 2.

Figure 5: Efficiency values in each point of the grid for T0 = 200.
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Figure 6: Efficiency values in each point of the grid for T0 = 300,000.

5 Consistency of the linearization procedure

Observe that expressions (7) and (10) in Section 2 show the two linear approxi-

mation procedures that have been adopted to solve the problem. The main goal

of this section is to compare the a priori approximated variances and covariances

of the estimates with the empirical variances and covariances of the estimate ob-

tained by simulation. This is to have an insight of the accuracy of linearizing when

looking for c-optimal designs in non-linear models.

The simulations will be performed in the following steps:

Step 1: Consider the nominal values (C0, L0) and obtain the optimal design

(25) for a fixed value T0. Following the notation in Proposition 2, ni observations

are randomly allocated at φi and ni+1 = n−ni at φi+1.

Step 2: We obtain the MLEs of C, L and g(θθθ). As the responses follow an

exponential distribution with mean (12), we have ni responses from an exponential

distribution with parameter λi that are denoted by t(i)k , k = 1, · · · ,ni and ni+1 with

parameter λi+1, which are denoted by t(i+1)
k , k = 1, · · · ,ni+1 where
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λ j =
C

eLφ 2
j −C

, j = i, i+1. (27)

The likelihood function depends on the sample obtained, t, and the parameter

values C and L,

Ln = Ln(t, θ) = λ
ni
i e
−λi

ni

∑
k=1

t(i)k
λ

ni+1
i+1 e

−λi+1

ni+1

∑
k=1

t(i+1)
k

.

By solving the equations ∂Ln/∂C = 0 and ∂Ln/∂L = 0 we have that:

λ̂ j =
n j

n j

∑
k=1

t j
k

=
1

T j
; j = i, i+1

Solving this system of equations we finally obtain the MLEs of C and L:

Ĉ =

(
(1+T i+1)

φ 2
i

(1+T i)
φ 2

i+1

) 1
φ 2

i+1−φ 2
i , L̂ = log

(
(1+T i+1)

(1+T i)

) 1
φ 2

i+1−φ 2
i (28)

The MLE of g(θθθ) in (14) is given by g(θ̂θθ), where θ̂θθ
T
= (Ĉ, L̂).

Step 3: Step 2 is repeated m times obtaining three m-vectors, Ĉ, L̂, ĝ, which

contain, respectively, the MLEs of C, L and g(θθθ) computed at each step.

Step 4: To study the accuracy of the approximation, the covariance matrix

of θ̂θθ is approximated by the empirical covariance matrix of (ĈCC, L̂LL). Since the

MLE is asymptotically efficient, the covariance matrix of θ̂θθ should be similar

to the Frechet-Cramer-Rao bound for n sufficiently large. In the multiparameter

case, this bound is equal to ℑ = ∂Ψ/∂θθθ
T × I(φ , θθθ)∗∂ΨT/∂θ , where I(φ , θθθ) is

defined in (17) and Ψ(θθθ) = E(θ̂θθ).

Observe that (∂Ψ/∂θθθ)i j = ∂Ψi/∂ (θ j) = Cov(θ̂ j, ∂ log(Ln)/∂θ j)), where

Ln is the likelihood function. In order to approximate this matrix, in step 2 we
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will also obtain, in each run, the bidimensional vector:

∂ log(Ln)/(∂θθθ) =

(
∂ log(Ln)/∂C
∂ log(Ln)/∂L

)

=
i+1

∑
j=i

n j

∑
k=1


1

C0
+

1

eL0φ 2
j −C0

+
eL0φ 2

j

(eL0φ 2
j −C0)2

t( j)
k

−φ 2
j eL0φ 2

j

eL0φ 2
j −C0

[
1− C0

eL0φ 2
j −C0

t( j)
k

]
 (29)

then, we approximate (∂Ψ/(∂θθθ))i j with the corresponding sample covariance.

Example 4 Consider the setup of Example 1.

Step 1: Let C = 0.671741 and L = 0.373098 as in Janda et al. (2008), and

consider several values of T0 (see Table 1).

Step 2: We allocate randomly n = 1000 experimental points following the

optimal design obtained from Proposition 2. The MLE values of C, L and g(θθθ)

are obtained jointly with the pair of values of the vector (29) that we denote,

respectively, f(1)n and f(2)n .

Step 3: Step 2 is repeated m = 1000 times and the 1000-dimensional vectors

Ĉ, L̂, g(θ̂θθ), f1
n and f2

n are stored.

Step 4: Table 1 shows a high similitude between the target value g(θθθ) and

its MLE ĝ. Also, between the variance obtained with the simulated Cov(ĈCC, L̂LL)

denoted in the table as ˆVar(ĝ) and the variance obtained with ℑ, which is denoted

in the table as Var(ĝ). The numbers must be multiplied by 10−4.

Observe that for T0 = 0.5 nor the estimator, neither the variance are similar.

As T0 is in the interval (0.4887, ∞), values close to the boundary carry out a slower

convergence of the estimators. In Table 2 we study the approach for T0 = 0.5 of

g = 0.1426 and ĝ and Var[ĝ] and ˆVar[ĝ] for increasing values of the sample size

n.
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T0 < T02 T02 < T0 < T03 T0 > T03
T0 0.5 2 20 200 2000 2×104 2×105 3×105 6×106 108

g 0.14 1.37 2.66 3.62 4.39 5.05 5.63 5.72 6.38 6.95
ĝ 0.23 1.37 2.66 3.62 4.39 5.05 5.63 5.72 6.38 6.95
p 0.91 0.98 0.21 0.45 0.66 0.84 0.999 0.02 0.15 0.21

ˆVar(g)∗ 87 5.8 1.4 0.9 0.8 0.6 0.6 0.6 1.0 1.4
Var(ĝ)∗ 562 6.1 1.4 0.9 0.8 0.6 0.6 0.6 1.0 1.4
∗ The variances must be multiplied by 10−4

Table 1: Simulation performance for Example 1 for several values of T0

n 1000 5000 10000 100000 1000000
bias = ĝ−g 0.0874 0.0421 0.0218 0.0014 -0.0021

Var[ĝ]∗ 562.6 166.0 66.6 7.8 0.5
ˆVar[ĝ]∗ 87.3 44.8 25.5 7.6 0.6

∗ The variances must be multiplied by 10−4

Table 2: Accuracy of the approximations for different values of n, T0 = 0.5 and
nominal values C0 = 0.671741 and L0 = 0.373098

23



The decreasing rate is smaller for the bias than it is for the variance.

6 Conclusions

In this paper we consider the problem of estimating the parameters of a non-linear

model for the time between two jams in the emptying of a silo. This may be ap-

plied to a number of phenomena such as delivering some material on a mine on

a vertical tunnel. In most of the cases a jam might be rather dramatic involving

some expense procedure to break the jam. In the case of the mine some explosive

has to be use including risks and delays. Then a very important aim is to deter-

mine the diameter of the outlet, say φ , in order to guarantee a period of time long

enough. This could be considered as a specific expected time, say T0, or else a

specific probability of reaching a specific time without jams. This entails the es-

timation of a lower bound expressed as a non-linear function that depends on the

unknown parameters and T0. For both situations, expected time and probability,

give the same function of the parameters to be estimated tuning adequately the

three specific constants mentioned above. In order to obtain an analytical solution

of the problem, first we use the Fisher Information approximation for the covari-

ance matrix of the estimates of the paramateres. Then the non-linear lower bound,

which is the target for estimation, is linearized being the its gradient the c-vector

for c–optimality. A model with two parameters is chosen, and, so, the graphic

Elfving procedure to find the c-optimal design is used.

Propositions 1 and 2 establish, respectively, the main characteristics of the

convex hull depending on the parameter values and then an explicit expression for

the c-optimal design. Moreover, the latter indicates that the c-vector may intersect

the convex hull in three sides of the convex hull depending on three intervals where
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T0 can lie. The vertices produce c-optimal designs with only one–point designs,

otherwise two points are needed.

The vertices of the convex hull are critical points in the sensitivity analysis

since they indicate a change of the type of design. For this study a uniform grid

with values for the parameters around the nominal values was considered in order

to detect big changes in the efficiency. A dramatic loss of efficiency happens

when the parameter values considered in the grid produce a change of edge for

the the crossing point of the c-vector. A smaller decreasing is observed when the

crossing point moves away on the same edge of the convex hull. Both facts imply

a very important change of the weights of the c-optimal design in Proposition 2.

Besides this, for very large values of T0, the sensitivity of the design with respect

to the selection of the nominal values is large, in fact, a small change of one of the

parameters gives place to a dramatic decreasing of the efficiency, this is why the

sensitivity study requires a reduced scale on this parameter.

A simulation study is carried out to check the accuracy of the double proce-

dure to linearize the problem. So that, given the original non-linear model the

ML estimators are obtained in a simulation procedure with a large number n of

observations allocated in the c-optimal design, given a T0 value and usual nominal

values taken from the literature. Results show very close results, in general, the

approximation procedure produces slightly higher variances of the lower bound

for the silo outlet size than the simulated one. When T0 is close to its lower bound,

the convergence is slower and n must be enlarged.
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Suppementary material

All the computations have been done with Python 3.7. Codes are provided in two

files.
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tal designs in the flow rate of particles. Technometrics, 58(2):269–276, 2016b.

ISSN 0040-1706.

A. C. Atkinson, A. N. Donev, and R. D. Tobias. Optimum experimental designs,

with SAS, volume 34 of Oxford Statistical Science Series. Oxford University

Press, Oxford, 2007. ISBN 978-0-19-929660-6.

G. Elfving. Optimum allocation in linear regression theory. The Annals of Math-

ematical Statistics, 84(4):44002–1–44002–6, 1952.

26



V. Fedorov. Theory of Optimal Experiments. Acadimic Press, New York, 1972.

A. Janda, I. Zuriguel, A. GArcimartin, L. A. Pugnaloni, and D. Maza. Jamming

and critical outlet size in the discharge of a two-dimensional silo. Eurphysics

letters, 23:255–262, 2008.
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