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Abstract: Adult neurogenesis, involving the generation of functional neurons from adult neural stem
cells (NSCs), occurs constitutively in discrete brain regions such as hippocampus, sub-ventricular zone
(SVZ) and hypothalamus. The intrinsic structural plasticity of the neurogenic process allows the adult
brain to face the continuously changing external and internal environment and requires coordinated
interplay between all cell types within the specialized microenvironment of the neurogenic niche.
NSC-, neuronal- and glia-derived factors, originating locally, regulate the balance between quiescence
and self-renewal of NSC, their differentiation programs and the survival and integration of newborn
cells. Extracellular Vesicles (EVs) are emerging as important mediators of cell-to-cell communication,
representing an efficient way to transfer the biologically active cargos (nucleic acids, proteins, lipids)
by which they modulate the function of the recipient cells. Current knowledge of the physiological
role of EVs within adult neurogenic niches is rather limited. In this review, we will summarize and
discuss EV-based cross-talk within adult neurogenic niches and postulate how EVs might play a
critical role in the regulation of the neurogenic process.
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1. Introduction

It is now commonly accepted that discrete regions of the adult mammalian brain host neural stem
cells that divide in situ and give rise to new neurons, a phenomenon referred to as “adult neurogenesis”.

The two most characterized neurogenic niches are the subgranular zone (SGZ) of the hippocampal
dentate gyrus (DG), a brain region in which adult neurogenesis was confirmed in humans [1] and
the subventricular zone (SVZ) of the lateral ventricles, whose relevance in adult human physiology
is debated. Although SGZ and SVZ neural stem cells (NSCs) and neural progenitor cells (NPCs)
share many features at cellular and molecular levels, the route for adult-born neuron integration in
pre-existing neuronal circuits and their ultimate outcome in the two regions are distinctive. SVZ
neurogenesis involves neuroblast migration along the rostral migratory system (RMS) to the olfactory
bulb (OB), where they terminally differentiate into distinct types of olfactory neurons that are mainly
inhibitory neurons [2]. In the last decades, pivotal preclinical studies, especially in rodents, have
contributed to the idea that the integration of adult-born olfactory neurons facilitates continuous
adaptation to environmental olfactory cues [3]. Conversely, mature granule neurons that originate
from SGZ NSCs are excitatory neurons that are restricted to the granule cell layer (GCL), with minimal
migration. At present, newborn DG neurons are considered to be crucially involved in specific types
of hippocampal-dependent learning and memory, in stress and emotional responses [4,5]. Recently,
adult neurogenesis has also been identified in the hypothalamus [6,7]. Here, tanycytes, which line the
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walls of the infundibular recess of the third ventricle, have been suggested as putative hypothalamic
NSCs since they share the characteristics of SVZ and SGZ stem cells. In this region, adult-born neurons
are regarded of crucial importance for the regulation of metabolism, energy balance [8] and systemic
aging [9].

Regardless of the neurogenic region and the underlying complex functions, under physiological
conditions, each step of adult neurogenesis needs to be tightly controlled by both niche-derived
signals and by extrinsic environmental cues, which, together, ensure appropriate rates of NSC
proliferation, differentiation, migration, neurite extension and integration of newborn cells into
preexisting circuits [10,11]. This extensive modulation underlies the functional plasticity that is intrinsic
to the neurogenic process, by which the brain outcome can be optimized for the needs of a given
environment and/or experience.

It is generally accepted that a complete understanding of brain plasticity requires consideration of
glial cells in the overall picture, and adult neurogenesis intriguingly connects neuronal and glial biology.
Although all types of glial cells are directly or indirectly related to this process, astrocytes and microglia
take on a prominent and active role. Astrocytes provide the closest link between adult neurogenesis
and glial biology. In fact, several “astroglial” properties characterize NSCs in both neurogenic zones.
The additional presence of essential non-neurogenic astrocytes within adult niches is also crucial
for proper neurogenic process [12]. Astrocytes—which represent the most abundant cell type of the
neurogenic niche—have been largely described as key regulators of the neurogenic process [12–14].
In the adult niche, astrocytes physically interact with NSCs [15–17] and with both developmentally and
adult-born granule neurons [18]. In this context, they regulate NSC proliferation, differentiation and
the functional integration of newborn neurons into the pre-existing network. Astrocyte communication
with neurogenic niche cells also greatly depends on their paracrine activity. As one of the main
secretory cells of the CNS [19], astrocytes release a myriad of gliotransmitters, neuromodulators and
morphogens as well as metabolic, trophic and neuroprotective factors [13,14], by which they finely
and positively regulate multiple steps of the neurogenic process. On the other hand, astrocytes can
negatively modulate neurogenesis by both cell–cell contact and paracrine activity [17].

From being “silent” in healthy brain, microglia active role in adult neurogenesis has been
profoundly reassessed in recent years. Evidence indicates that activated microglia plays a Janus-faced
role in the context of adult neurogenesis, by favouring or counteracting NSC proliferation, differentiation
and survival of adult-born neurons. These actions are mediated by both direct contact and paracrine
mechanisms. For example, microglia have been shown to phagocyte newborn cells that undergo
apoptotic death in SGZ and SVZ, thus ensuring the homeostasis of the neurogenic process [20,21].
In addition, microglia act as antigen-presenting cells interacting with peripherally derived immune
cells. This interaction mainly occurs in the SVZ that is highly vascularized [22,23], thereby influencing
NSC final commitment toward neuronal or glial phenotypes depending on the different kinds of
activating T-cell stimuli (e.g., IL-4 or INF-y) [24]. On the other hand, microglia can influence adult
neurogenesis through secretion of proneurogenic and/or antineurogenic molecules, whose balance
determines the net outcome of adult-born neurons [25]. In particular, as the main driver of inflammatory
processes in the brain, cytokines released by microglia can dramatically affect adult neurogenesis [26].
Altogether, astrocyte and microglia plasticity—which is reflected by their ability to acquire an anti-
or pro-neurogenic phenotype—M1- and M2-states for microglia [27] and A1- and A2-states for
astrocytes [28]—make these cells crucial actors in influencing NSC as well as responding to the complex
and continuously changing neurogenic niche microenvironment.

An underestimated actor of the adult neurogenic niche is the neuronal component, which can
participate in the regulation of neurogenesis dynamics. Recent evidence indeed suggests a bidirectional
communication between developmentally and adult-born neurons [29,30]. Additionally, mature
neurons were proposed to modulate adult neurogenesis by sending chemical signals to NSC [31].
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2. Extracellular Vesicles

Biogenesis and Function

Extracellular Vesicles (EVs) are a heterogeneous population of membrane-bound entities that
are released by both eukaryotic and prokaryotic cells [32] and that, by transporting different types
of biomolecules, are key players in intercellular communication. Although much progress has been
made in recent years in dissecting the molecular mechanisms underlying cargo packaging in recipient
cells [33], further investigations are required to fully characterize the machineries and cellular pathways
that determine the ultimate function (signaling or disposal) of cargo sorting in EVs.

The generation of EVs requires the fine-tuning of several intracellular molecular machineries
and trafficking processes (as schematized in Figure 1). The best-characterized EVs are exosomes and
microvesicles (MVs). Although the biogenesis of exosomes and EVs occurs at distinct sites within the
cell, some common intracellular pathways and sorting machineries are involved in the generation
of both types of EVs, thus hindering the possibility of discriminating between the different vesicle
subpopulations [34].
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Figure 1. Schematic representation of extracellular vesicles’ (EV) biogenesis and release in the adult
neurogenic niche. Biogenesis of microvesicles (MVs) (brown background) involves molecular machineries
and membrane microdomains that promote the outward budding of the PM (1), followed by MV release
in the extracellular environment (2). Exosome biogenesis (blue background) occurs upon maturation
of early endosomes (EE) derived from the Golgi system (GS) into multivesicular endosomes (MVEs).
Alternatively, EE can undergo retrograde transport to GS (dashed arrows) or recycling back to the PM
(dashed arrows) (1). Exosomes are generated through membrane invagination of MVE (2), followed
by ILV formation (3). Once matured, MVEs can be targeted to lysosomes/autophagosomes for cargo
degradation (4), or be directed towards the PM (5). MVE fusion with PM (6) allows for exosome
extracellular release (7). Both MV and exosome interaction with recipient cells can influence steps of
the neurogenic process. [PM: plasma membrane; PS: phosphatidylserine; ILV: intraluminal vesicle;
OB: olfactory bulb; SVZ: subventricular zone; SGZ: subgranular zone; HYP: hypothalamus; LV: lateral
ventricle; RMS: rostral migratory system].
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Exosomes (30–100 nm) derive from the endosomal compartment. Their formation starts with
the generation of multivesicular endosomes (MVEs), spherical endosomes consisting of a limiting
membrane and intraluminal vesicles (ILVs). The formation of MVEs is orchestrated by a complex of
proteins called the endosomal sorting complex required for transport (ESCRT) which participates in
the channeling of molecules into ILVs as well as the budding and fission of ILVs within MVEs [35].
However, there is evidence that exosome formation can also occur in a ESCRT-independent process [36].
MVE docking at the plasma membrane (PM) is regulated by RABs, actin and SNARE proteins, which
finally promotes MVE fusion with PM and the release of the contained ILVs in the extracellular milieu
as exosomes.

Microvesicles (MVs) (50–1000 nm) originate directly from PM by an outward budding which
requires redistribution in lipid and protein composition and modifications in Ca2+ levels [37]. In MV
biogenesis, Ca2+-dependent enzymes such as aminophospholipid translocases (flippases and floppases),
scramblases and calpain drive the externalization of phosphatidylserine, which then drives changes in
local membrane curvature and restructuring of the underlying actin cytoskeleton. These events are
followed by the ATP-dependent fission process that leads to vesicle budding off from the PM and its
subsequent release in the extracellular space [38,39].

Once released into the extracellular environment EV docking on target cell is regulated by specific
interaction between membrane receptors on the recipient cell and EV enriched proteins. The uptake
mode of EVs may be dependent on cell type, its physiological state as well as on the molecular
composition at the PM of the target cell [40]. EVs can bound to the cell surface and initiate intracellular
signaling pathways, be internalized or directly fuse with PM [41]. If internalized, EVs can fuse with
the PM and release their contents into the cytoplasm of the recipient cell. Alternatively, EVs can target
the endosomal pathway of the receiving cell and be directed toward the lysosome for the degradation
of EV content to provide recipient cells with essential biological metabolites.

After interaction with target cells, EVs can elicit a variety of functional responses by delivering a
wide array of biologically active molecules. These include lipids, proteins and nucleic acids, mRNA
and other RNA species [(transfer RNA (tRNA), long non-coding RNA (lnRNA), micro RNA (miRNA),
small nuclear RNA (snRNA), small nucleolar RNA (snoRNA)], which can be translated into proteins
or regulate transcription in recipient cells, resulting in transient or persistent cellular phenotypic
changes [42,43]. In particular, increasing evidence suggests that the effect of EVs on target cells is
mainly dependent on the profile of intravesicular miRNA content [44]. By transferring miRNAs to
target cells, EVs are now recognized as active players in intercellular gene regulation [45] because of
their key natural roles in several cellular processes, including proliferation, differentiation, survival
and apoptosis [46].

To date (October 2020), according to the compendium of molecular data Vesiclepedia, a total of
349,988 proteins, 27,646 mRNAs, 10,520 miRNAs and 639 lipids have been detected in exosomes, MVs
and apoptotic bodies, suggesting a high degree of complexity in EV-mediated communication.

Importantly, the EV cargo is strictly dependent on the status of parental cells, making these
biological entities critical in transmitting both physiological and pathological signals.

EVs can support normal physiology by affecting stem cell maintenance [42], tissue repair [47],
immune response [48], and blood coagulation [49], lipid metabolism [50], synaptic plasticity [51].

Under pathological situations, EVs can transport disease-associated proteins [52], thus contributing
to propagate detrimental signals. Finally, since several molecular constituents in EVs have been found
to be associated with specific diseases and treatment responses, EVs may represent reliable biomarkers
which could serve as a diagnostic tool [53].

3. Extracellular Vesicles Generated in Adult Neurogenic Niches

The first publication of EVs released by neural cells was in 2004, when Février and colleagues
demonstrated that glial cell lines overexpressing a prion protein released EVs that were capable of
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transferring infectivity in vitro and in vivo [54]. This work paved the way for the study of EVs as new
tools exploited by neural cells for communicating with each other to guarantee normal brain function.

More recently, it has become increasingly evident that EVs may represent an additional key
component of intercellular neurogenic niche communication. NSCs, neurons and glia have all been
reported to release EVs that, in turn, can mediate a generalized cross-talk by niche components. In the
next paragraphs, we will summarize the current evidence on the emerging role of EV-based cross-talk
in the direct or indirect modulation of adult neurogenesis.

NSC-, neuron-, astrocyte- and microglia-derived EVs will be analyzed in terms of cargo content
and functional impact on neurogenesis. When data are available, we discussed the potential role of
this peculiar form of intercellular communication in affecting different steps—proliferation, survival,
fate specification, maturation and integration—of the complex cellular dynamics occurring in adult
neurogenic niches.

3.1. NSC-Derived Extracellular Vesicles

Endogenous adult NSC can generate EVs (NSC-EV).
A large array of studies have suggested that the exogenous administration of NSC-EVs in

relevant animal models of acute and chronic neurodegeneration can foster neuroprotection and
neuroplasticity [55–59]. Interestingly, these in vivo beneficial effects might largely depend on EV’s
intrinsic properties that contribute to re-creating an immune-permissive environment that promotes
brain repair and neurogenesis. Surprisingly, as of today, a much more limited number of studies have
directly focused on the molecular/functional characterization and on the endogenous role of NSC-EVs
on neuroplasticity and neurogenesis.

Based on this lack of knowledge, herein we reviewed the current direct and indirect knowledge of
how endogenous NSC-EVs may affect and modulate different cellular components of the adult niche.
Although more experimental efforts are required in this field, some interesting studies have opened
the way to an initial understanding of the endogenous NSC-EV cargo and function. The different
classes of pro-, anti-neurogenic and glia modulatory molecules found in EVs derived from NSCs are
summarized in Table 1.

Table 1. List of different classes of pro-, anti-neurogenic and glia modulatory molecules found in
extracellular vesicles derived from neural stem/progenitor cells-(NSC-EVs) and neurons (NDEs).

Class of Molecule Molecules Cellular Process/Molecular Target EV Type

Growth factors

Growth factor receptor
cysteine-rich domain,

EGF-like domain,
EGF-like

calcium-binding domain

↑ NSC proliferation by activating
the down-stream extracellular
signal-regulated kinase (ERK)

pathways [60]

NSC-EVs [60]

VEGF

↑ NSC proliferation in SGZ [61];
↑ survival and integration of

newborn neurons in the
forebrain [62]

NSC-EVs [63]

Proteins Flotillin, GAP43,
Cadherin 2 L1CAM

Regulate NSC proliferation and
neuronal differentiation [64] NDEs [64]

Cystatin C ↑ NSC proliferation by cooperating
with FGF-2 [65] NDEs [66]

Ndfip1 ↑ Removal of protein during
stress [67] NDEs [67]

Synaptotagmin 4
↑ Retrograde signaling in

pre-synaptic cells by releasing
Syt4-bound exosomes [68]

NDEs [68]
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Table 1. Cont.

Class of Molecule Molecules Cellular Process/Molecular Target EV Type

PRR7 ↑ Removal of excitatory synapses by
acting as a Wnt inhibitor [69] NDEs [69]

MAP1b ↑ synaptic transmission and
plasticity [70] NDEs [71]

Enzymes Asrgl1
↑ levels of aspartate/glutamate [72]

which regulate adult
neurogenesis [73,74]

NSC-EVs [72]

Cytokines INFγ
Regulate function of microglia and

astrocytes by activating Stat1 in
target cells [75,76]

NSC-EVs [77]

miRNAs miR-21a ↑ NSC proliferation by targeting
Sox2 and Stat3 [78] NSC-EVs [78]

miR-9
↓ NSC proliferation and ↑ neural

differentiation by targeting the stem
cell regulator TLX [79]

NSC-EVs [78]

miR-let-7b

↓ NSC proliferation and ↑ neural
differentiation by targeting the stem
cell regulator TLX and the cell cycle

regulator cyclin D1 [80]

NSC-EVs [78]

miR-124
miR-137

Regulate NSC
activation/proliferation, fate

specification and differentiation by
cooperatively targeting the

pro-apoptotic protein BCL2L13 [81]

NSC-EVs [82]

miR-let-7
Regulate microglia activation which
negatively affect NSC proliferation

in SVZ [83]
NSC-EVs [83]

miR-9, miR-let-7,
miR-26a, and miR-181c

Regulate microglia morphology and
physiology [84–87] NSC-EVs [83]

miR-34a

Regulate NSC proliferation and
morphology and function of

newborn neurons by interacting
with DCX [88]

Target genes linked to the regulation
of neuronal excitability,
mitochondria oxidative

phosphorylation, glycolysis, and
resting state functional

connectivity [89]

NDEs [89]

miR-124

↑ NSC neuronal differentiation
in SVZ [90]

↑ NSC neuronal differentiation in
SVZ by targeting SOX9 [91]

NDEs [92]

miR-124-3p

↑ GLT-1 expression in astrocytes [93]
which ↑ NSC differentiation

in vitro [94] and regulate synaptic
transmission [95]

NDEs [93]

miR-21-5p ↑M1 polarization in microglia [96] NDEs [96]

EGF: epidermal growth factor; VEGF: vascular endothelial growth factor; GAP43: growth-associated protein 43;
L1CAM: L1 cell adhesion molecule; Ndfip1: Nedd4 family-interacting protein 1; MAP1b: microtubule -associated
protein 1b; Proline-rich protein 7 (PRR7); Asrgl1: asparaginase-like protein 1; STAT1/3: signal transducer and
activator of transcription 1/3; INFγ: interferon-γ. ↑: increased; ↓: decreased.
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3.1.1. NSC-EVs: Effects on Adult NSC and Their Neuronal Progeny

The majority of studies addressing the physiological role of NSC-EVs in adult neurogenesis focused
on their miRNA content. MiRNAs are key regulators of the multistep process of adult neurogenesis in
adult SVZ and SGZ niches [97]. An insight into the complex and widespread action of NSC-EVs has
been provided by next-generation sequencing of the RNA contents of human NPC-EVs. These efforts
led to the identification of several exosomal miRNAs that were differently expressed compared to the
cells, with roles in neural regeneration, neuroprotection, aging and neural plasticity [98,99]. Potentially
interesting information on NSC-EV-associated miRNAs that may affect neurogenesis was also derived
by comparison between primary NPC-EV and EVs produced by NPC obtained by direct conversion of
somatic cells into induced NPC (iNPC). In vitro experiments showed that, unlike primary NPC-EVs,
iNPC-EVs had no proneurogenic effects, while both EVs had no effect on glial differentiation [78]. By
comparing the miRNA profile of primary NSC-EVs and iNSC-EVs, several differentially expressed
miRNAs were identified, with miR-21a being highly enriched in primary cell-derived exosomes.
Using miR-21a specific inhibitor and mimics, the authors demonstrated a key role of miR-21a in the
in vitro generation of newborn neurons. Gene ontology analysis identified Sox2 and Stat3, well known
regulators of NPC proliferation and differentiation [100,101], as some of the target genes downregulated
by miR-21a. Similarly, it has been suggested that miR-9 and miRlet-7b, which are upregulated and
downregulated, respectively, in NPC-EVs compared to iNPC-EVs, may affect NSC fate. In particular,
both miRNAs suppress expression of the orphan nuclear receptor TLX—a receptor known to maintain
adult NSCs of both DG and SVZ in an undifferentiated, proliferative state [102].

Altogether, these findings suggest that miRNAs associated to NSC-EVs may be involved both in
regulating stem cell quiescence/proliferation ratio and in cell-fate specification.

Modulation of NSC-EV miRNA cargo may also reflect how adult NSCs change their transcriptome
in order to rewire the hippocampal circuit network through pro-survival and cell fate signalling. It
has been found that upon treatment with kainic acid (KA), adult hippocampal NSCs upregulate the
expression of miR-124 and miR-137 [82], which are known to target the pro-apoptotic protein BCL2L13
cooperatively and to regulate NSC activation/proliferation, fate specification and differentiation [81]. A
few hours after KA insult, miR-137 was preferentially retained in the cellular fraction, whereas miR-124
was mostly sorted within NSC-EVs. At later times, NSC-EVs further increased their miR-124/miR-137
ratio, compared to parent cells. In consideration of its antiapoptotic function, the sorting of miR-124
in NSC-EVs may contribute to the maturation and survival of DG neurons, without affecting NSC
proliferation [103].

The protein cargos of NSC-EVs may also be physiologically relevant. Characterizations of EV
contents through proteomics analysis showed that NPC-EVs contained growth-factor-associated
proteins that were predicted to activate the downstream extracellular signal-regulated kinase (ERK)
pathways [60]. The treatment of NPCs with NSC-derived EVs was able to promote their proliferation
in vitro. Both adult mouse and human NSCs have been shown to transport metabolic enzymes via EVs.
Recently, Iraci and colleagues evaluated the ability of NSC-EVs to produce and consume metabolites [72].
Interestingly, asparagine was the highest consumed metabolite and aspartate/glutamate were the
major released metabolites. The enzyme asparaginase-like protein 1 (Asrgl1) was identified as being
responsible for EV-associated metabolic activity. The authors demonstrated that EVs do not acquire
such metabolic function de novo but that L-asparaginase activity is transferred from NSC. Altogether,
these data propose that EVs can function as independent metabolic units that are able to modify the
concentration of critical nutrients in the extracellular milieu of the niche. For example, aspartate,
released from NSC-EVs, may play a supportive role in cell bioenergetics in the neurogenic niche. Our
full understanding of the unexpected ability of NSC to propagate, via EVs, specific metabolic signals
to the surrounding cells in the neurogenic niche is just the beginning. Its key implications for the
modulation of the adult neurogenesis process await future investigation.

Not only may NSC-EVs influence the neurogenic microenvironment with their specific cargo, but
they may also affect it differently in a strictly context-dependent manner. It has been demonstrated
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that when NSCs are grown in cytokine-enriched media that may mimic a proinflammatory (Th1-like)
or anti-inflammatory (Th2-like) microenvironment, EV RNA and protein cargo sorting is significantly
modified [77].

3.1.2. NSC-EVs: Effects on Glial Cells

The miRNA content of NSC-EVs has also been proposed as the main driver of phenotypic changes
observed in recipient glial cells within the niche. By using both in vitro and in vivo models, it was
demonstrated that SVZ NSC-EVs acted as microglia morphogens by activating a transcriptional
program associated with immune and inflammatory responses [83]. RNA sequencing of NSC-EVs
identified four highly enriched miRNAs, miR-9, miR-let-7, miR-26a, and miR-181c, with key roles
in regulating microglia morphology and physiology [84–87]. Moreover miR-9 and miR-let-7 have
documented roles in the regulation of adult neurogenesis [97]. In particular, miR-let-7 was found to
recapitulate NPC-EV mediated increase in the number of CD11b+ microglia in the SVZ region as well
as cytokine release by microglia in vitro [83]. Moreover, the injection of conditioned media derived
from NPC-EV-treated microglia into the lateral ventricle reduced the proliferation of murine SVZ
NPC, suggesting a NPC-microglia cross-talk that ultimately generates a negative feedback loop onto
NPCs [83].

In addition to modulation, by miRNA delivery, of gene expression in target cells, NPC-EVs
have been found to transport mRNAs and proteins related to IFN-γ signaling pathway. Cossetti and
colleagues demonstrated that pro-inflammatory (Th1-like) stimulation of NPCs caused the release
of NPC-EV-bound IFN-γ capable of activating signaling pathways in recipient cells [77]. These
findings suggest the ability of EVs released by NSCs under inflammatory conditions to preferentially or
selectively target astrocytes and microglia, given the largely documented evidence of IFN-γ signaling
in both the cell types [75,76].

3.1.3. NSC-EVs: Endocrine Functions

Interestingly, the EVs released by endogenous NSC may not only exert a direct, local effect on
adult neurogenesis. NSC-EVs may also play a role as active physiological effectors in additional brain
and systemic functions. A particularly interesting example of the physiological relevance of NSC-EVs
at a more systemic level can be drawn from the adult neurogenic hypothalamic niche. Very elegant
studies by Cai and colleagues have suggested that the hypothalamus plays a critical role in systemic
aging [104]. The same authors also showed that in middle-aged mice there was a substantial loss
in Hypothalamic NSC (HytNSC), and that ablation of these cells or their in vivo replenishment by
transplantation resulted, respectively, in faster and slower ageing in mice [99].

Interestingly, HytNSC secreted exosomes that with their miRNA cargo contributed not only to
local modulation in the niche but also to a pool of CSF circulating miRNAs [99]. Such miRNAs were
heavily reduced in the CSF with aging. The effect of the direct release of EVs generated from postnatal
hypothalamic NSCs into the brain of middle-aged mice was examined. Mice that were treated in the
hypothalamic third ventricle with EVs derived from postnatal cultured HytNSCs displayed reduced
age-related changes, including improved locomotion, coordination, novel object recognition (NOR)
and sociality, in comparison to vehicle-treated mice. Intriguingly, the miRNA content of hypothalamic
NSC-EVs were reported to partially mediate the anti-aging effect of hypothalamic NSCs. Since
age-dependent loss of hypothalamic NSC correlates with aging-related physiological declines, the
overall concentration of specific miRNAs coming from hypothalamic NSC-EVs decreases considerably,
which may contribute to the process of aging. On the other hand, the transplantation of healthy
hypothalamic NSCs into the aging brain maintained the concentration of miRNAs at optimal levels
through the release of specific EVs, which leads to successful aging and lifespan extension. Interestingly,
when exosome secretion was inhibited in the hypothalamic NSCs of young mice through lentiviral
shRNA-mediated downregulation of Rab27a—a critical molecule involved in exosome secretion—such
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inhibition correlated with: i) downregulation of the age-specific pool of CSF miRNAs; ii) impairment
in several aspects of age-related physiology at 6 weeks post-injection [99].

Altogether, these data underlie an “endocrine” function of HytNSCs which can partially
control systemic and brain aging speed through NSC-EV miRNAs, rather than a local and
neurogenesis-restricted mechanism, as previously corroborated by studies correlating the decline in
adult neurogenesis with the advent of aging-associated disorders [105–107].

3.2. Neuron-Derived EVs in Neurogenic Niches

Neuron-derived EVs (NDEs) are increasingly gaining attention as a novel mechanism of cell-to-cell
communication, including inter-neuronal crosstalk. Indeed NDEs can selectively bind to other
neurons [108]. Based on these assumptions, within adult niches, NDEs can potentially contribute to
modulation of neurogenesis by acting on NSC and/or their neuronal progeny directly or indirectly, via
glial cells. Table 1 summarizes a list of pro-, anti-neurogenic and glia modulatory molecules associated
with EVs of neuronal origin.

3.2.1. NDE: Effects on NSC and Their Progeny

Several studies indicate that NDE release is regulated by cell depolarization, in an
activity-dependent manner [109–111]. NDEs have been suggested to have a role in synapse
elimination [69], the modulation of post-synaptic density and neuronal synaptic plasticity [71],
regulation of brain vasculature integrity [112], transport of trophic and pro-neurogenic proteins [66],
removal of proteins during stress [67], as well as receptor elimination at synapses undergoing plastic
changes [68]. Interestingly, a functionally interplay between adult-born and developmentally born
neurons has been described, including a bidirectional communication between developmentally and
adult-born neurons [29,30] and between mature neurons and NSC [31]. Potentially, NDEs produced in
neurogenic niches by both developmentally generated neurons and adult-born neuroblasts/neurons
may also affect the dynamics of the multi-step neurogenic process at different stages.

NDEs released by neurons have demonstrated to be critical for protein removal necessary for
neurite elongation [113], a critical step required for adult-generated neurons to become assembled into
functional networks. To investigate the role of NDEs in neural circuit development and neurogenesis,
Sharma and colleagues treated human primary neural cultures with EVs derived from human induced
pluripotent stem cell (hiPSC)-derived neurons [64]. The authors found that the treatment with
NDEs increased cell proliferation and neuronal fate in developing neural cultures. Neonatal mice
receiving NDEs injection into the lateral ventricles exhibited increased cell proliferation in the GCL
when compared to mice treated with NDEs previously digested with Proteinase K to cleave to EV
surface proteins.

Additional data suggesting the ability of NDEs to affect adult neurogenesis come, indirectly,
from the identity of some of their cargo components. One is Cystatin C [66], a cysteine proteinase
inhibitor which can act as an autocrine/paracrine cofactor that cooperates with fibroblast growth factor
2 (FGF-2) to support its mitogenic activity on adult NPCs both in vitro and in vivo [65]. miRNAs
detected in NDEs are also directly involved in regulating neuronal differentiation of NSC. For example,
one miRNA found in NDEs is miR-34a [89], which has been identified as a main regulator of DCX [88],
a microtubule-associated protein expressed by newly born postmitotic neuroblasts [114]. Another one
is miR-124 [92], expressed in DCX+ neuroblasts but not in early-stage SVZ NSC or transit amplifying
cells, and described as a neuronal fate determinant in the SVZ [90]. Cheng and colleagues suggested
that miR-124 controls the temporal progression of neurogenesis in the adult SVZ by downregulating
Sox9 [91]—a factor that regulates glial fate specification and controls the transcription of glial gene
networks in the CNS—to permit neuronal differentiation [115].
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3.2.2. NDE: Effects on Glial Cells

Although the limited number of studies describing the interaction between NDEs and glia
hinders a comprehensive interpretation of this cross-talk within the adult neurogenic niche, the
immunomodulatory potential of neuron-derived EVs may be relevant to a better understanding of
glia-mediated regulation of the neurogenic process. Men and colleagues demonstrated that NDEs
contain a subset of miRNAs that is distinct from the miRNA profile of parent cells [93]. Interestingly,
miR-124-3p, one of the miRNAs essential for cell commitment toward neurogenic lineage during
development [116] and highly expressed in NDEs, can be specifically transferred to astrocytes. In this
cell phenotype, miR-124-3p increased expression of the glutamate transporter GLT-1 through specific
inhibition of GLT-1-targeting miRNAs. GLT-1 is critical to proper synaptic transmission by maintaining
the extracellular glutamate below neurotoxic levels [95]. In addition, glutamate re-uptake via astrocytic
GLT-1 has been reported to stimulate neuronal lineage selection and inhibit glial commitment in
NSC-astrocyte co-cultures [94].

NDEs released by activated neurons have been found to promote microglia inflammatory
polarization (the so-called M1 state) through miR-21-5p [96] and up-regulate pro-phagocytic
complement component 3 (C3) gene [117]. Notably, complement signaling is crucial for
microglia-mediated synapse pruning, which may drive the integration of new neurons into pre-existing
circuits during adult neurogenesis [118]. Moreover, it has been demonstrated that NPCs and immature
neurons express receptors for complement fragments C3a and C5a (C3aR and C5aR) and that mice
lacking C3 signaling have reduced basal SVZ/SGZ neurogenesis compared to control mice [119].

3.3. Glia-Derived Extracellular Vesicles

Although the current knowledge on the role of glial-derived EVs in adult neurogenic niches
is limited, growing evidence suggest that these biological entities may be major players in the
communication of astrocytes and microglia with NSC and their progeny (for reviews, see [120,121]).
In the following paragraphs, we will discuss the potential role of EVs derived from astrocytes
[Astrocyte-Derived Extracellular Vesicles (ADEs)] and microglia [(Microglia-Derived Extracellular
vesicles (MDEs)] in regulating the adult neurogenic process. In particular, we posit that glia-derived EVs
may have a prominent role in regulating the dynamics in the neurogenic zones, based on their presence
in the ADEs and MDEs of biomolecules that have been functionally characterized as modulators of
adult neurogenesis (Table 2).

Table 2. List of different classes of pro- or anti-neurogenic molecules found in astrocyte-derived (ADEs)
and/or microglia-derived (MDEs) extracellular vesicles.

Class of Molecule Molecules Cellular Process/Molecular Target Glial EV Type

Growth Factor

FGF-2 ↑ NSC proliferation and differentiation in
SGZ and SVZ [122] ADEs [123]

VEGF
↑ NSC proliferation in SGZ [61];

↑ survival and integration of newborn
neurons in the forebrain [62]

ADEs [123]

Enzymes EAAT-1

↑ NSC differentiation, maturation and
integration of newly formed neurons in

synaptic network in SGZ and SVZ
through regulation of extracellular

glutamate [124] and
GABA [125,126] levels

ADEs [127]
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Table 2. Cont.

Class of Molecule Molecules Cellular Process/Molecular Target Glial EV Type

NTPDases

↓ NSC proliferation in SGZ and SVZ by
regulating nucleotide ATP and

adenosine levels [128]
↓ NSC proliferation in hippocampus [129]

and in vitro neuronal differentiation of
SVZ NSCs [130] through adenosine

production

ADEs [131]

CD13
↑ NSC proliferation, differentiation and
survival through regulation of cAMP

levels [132–135]
MDEs [136]

MCT-1 ↑ NSC survival of newly generated
neurons [137] MDEs [136]

Neuroprotectant
proteins Synapsins

↑ NSC proliferation and survival in
adult DG [138]

↑ synapse development [139],
neurotransmitter release [140], neurite

outgrowth after oxygen-glucose
deprivation (OGD)/oxidative stress [141]

ADEs [141]

HSP70

↑ expression of genes involved in
neuronal differentiation, synaptic activity,
regulation of neuronal synaptic plasticity

in Alzheimer’s disease [142]
↑ NSC proliferation, differentiation in DG
via enhanced CREB phosphorylation and

improve novel object recognition
in mice [143]

ADEs [144]

Neuroglobin
↑ NSC proliferation and differentiation in

SVZ via Wnt signaling in murine
stroke model [145]

ADEs [146]

Cytokines IL-1β

↓ neurogenesis in DG by reducing the
number of DCX+ cells [147]

↓ neurogenesis in DG by reducing the
number of Nestin+ cells [148]

↓ hippocampal NSC proliferation in vitro
via the nuclear factor-κB signaling

pathway [149]
↑ NSC proliferation and differentiation

through the activation of SAPK/JNK
pathway [150]

MDEs [151],
ADEs [152]

IL-6

↓ DG NSC proliferation in vitro [153]
↓ NSC proliferation, differentiation and

survival in DG [154]
↑ NSC self-renewal and maintenance

in SVZ [155]
↑ NSC proliferation and neuronal
maturation in SVZ and SGZ [156]

ADEs [157],
MDEs [158]

TNFα

↑ NSC proliferation and survival through
TNFR2 in vitro and in vivo [159]
↓ NSC proliferation and ↑ cell death

through TNFR1 in vitro and
in vivo [159,160]

MDEs [158]
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Table 2. Cont.

Class of Molecule Molecules Cellular Process/Molecular Target Glial EV Type

miRNAs miR-302
↑ NSC proliferation, differentiation,
survival through Cyclin D1/D2 and

Fgf15 [161]
ADEs [162]

miR-let-7d,
miR-let-7a

↓ NSC proliferation and ↑ neural
differentiation by targeting TLX receptor

gene [163]
↑ NSC dopaminergic differentiation in

olfactory bulb by PAX6 targeting
(miR-let-7a, [164])

ADEs [163]

miR-145 ↑ NSC differentiation through
Sox2-Lin28/let-7 signaling pathway [165] ADEs [163]

miR-146a-5p
↓ NSC neural specification and

synaptogenesis by targeting neuroligin 1
(Nlg1) and synaptotagmin 1 (Syt1) [166]

MDEs [167]

miR-9
↓ NSC proliferation, ↑ NSC neural

differentiation by targeting TLX
receptor [79]

ADEs [168]

miR-9, miR-124

↑NSC neural differentiation and dendritic
branching of differentiated neurons by

targeting the small GTP-binding protein
Rap2a [169]

ADEs [168],
MDEs [170]

miR-184 ↑ NSC proliferation, ↓ differentiation in
SGZ by targeting Numblike [171] ADEs [162]

miR-34a
↑ NSC proliferation, ↓ dendrite branching

and neuronal maturation by targeting
DCX [88]

ADEs [172],
MDEs [167]

miR-106b,
miR-93, miR-25

↑ NSC proliferation and differentiation
toward neuronal lineage in vitro through

insulin/IGF-FoxO pathway [173]
ADEs [162]

FGF-2: fibroblast growth factor 2; VEGF: vascular endothelial growth factor; EAAT-1: excitatory amino
acid transporter 1; NTPDases: nucleoside triphosphate diphosphohydrolases; CD13: aminopeptidase N;
MCT-1: Monocarboxylate transporter 1; CREB: cAMP response element-binding protein; HSP70: heat shock
protein 70; SAPK/JNK: stress-activated protein kinases (SAPK)/Jun amino-terminal kinases (JNK); TNFR1/2: tumor
necrosis factor receptor 1/2; IL-1β: interleukin-1β; IL-6: interleukin-6: TNFα: tumor necrosis factor α. ↑: increased;
↓: decreased.

3.3.1. EV-Associated Growth Factors

Several trophic factors have key roles in adult neurogenesis. Astrocytes have been found to
release EVs containing the fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor
(VEGF) [123], which have recognized roles in stimulating the proliferation and differentiation of NSCs
in both SVZ and SGZ niches [174,175]. Fibroblast growth factor receptor 1 (FGFR1) is essential for the
proliferation of NSCs in both adult neurogenic zones [122]. As far as VEGF is concerned, it exerts
direct mitogenic effects on NSC via VEGFR-2/Flk-1 receptor activation [176,177]. In addition, extensive
evidence supports VEGF’s crucial role in creating an angiogenic microenvironment that is permissive
for newborn neuron integration. Palmer and colleagues reported that about a third of the dividing
cells in the SGZ are endothelial precursors, which proliferate together with neural precursors, forming
clusters which show strong positivity for VEGF and its Flk-1 receptor [61]. Moreover, VEGF has been
shown to indirectly promote the neurogenic process by prompting endothelial cells to release BDNF
which, in turn, regulates the survival and integration of newborn neurons [62].
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3.3.2. EV-Associated Enzymes and Transporters

Astrocyte reuptake of extracellular glutamate through membrane excitatory aminoacid
transporters EAAT-1 and EAAT-2 is required for proper neurotransmission during normal brain
function [95]. In addition, glutamate levels and receptors are key players at later stages of neuronal
maturation in the hippocampus, when newly generated neurons are established in their final GCL
position and start receiving abundant glutamatergic afferents [124]. The discovery that astrocytes release
EVs containing EAAT-1 [127] suggests that these biological entities might serve as independent units
regulating adult-born neuron integration in neuronal network and synaptic transmission. In particular,
protein kinase C (PKC) activation in primary rat astrocyte cultures was found to cause a subcellular
re-distribution of EAAT-1 from plasma membrane to the endosomal compartment and finally an
enrichment in ADEs. In addition to EAAT-1, ADEs also contain α-Na/K-ATPase and glutamine
synthetase which are essential, respectively, for the electrochemical plasmalemmal Na+ gradient
required for amino-acid transport and for the conversion of glutamate into glutamine [127]. Based
on these observations, ADEs might serve a functional role in extracellular glutamate elimination and,
indirectly, they regulate levels of GABA, which is primarily synthesized from glutamate.

Purinergic signaling has been demonstrated to regulate adult neurogenesis in both SGZ and SVZ
regions [178,179]. By carrying active ecto-enzymes nucleoside triphosphate diphosphohydrolases
(NTPDases), which hydrolyze extracellular tri- and di-phosphate nucleotides to nucleoside
monophosphates [131], ADEs may also be involved in the regulation of the proliferation and
differentiation of adult NSCs. NTPDase2 has emerged as a main modulator of nucleotide signaling,
regulating ATP bioavailability in the neurogenic niche and its subsequent interaction with NSC P2Y
receptors. Indeed Gampe and colleagues demonstrated that, compared to wild-type mice, NSC
proliferation was increased in both the SVZ and DG of NTPDase2 knockout animals [128]. Using
pharmacological and genetic strategies, Cao and colleagues demonstrated that astrocytic ATP-mediated
purinergic signaling was necessary and sufficient to stimulate NSC proliferation both in vivo and
in vitro [180]. In line with this, adenosine, a metabolic product of ATP hydrolysis, was found to
negatively affect hippocampal NSC proliferation [129] and to inhibit, in vitro, neuronal differentiation
of SVZ NSCs via A1 receptor activation [130].

MDEs were found to carry active aminopeptidase CD13 [136]. This enzyme hydrolyzes leucine-
and methionine-enkephalins, thus regulating ligand bioavailability for opioid receptors, which have
been demonstrated to negatively regulate the proliferative and differentiative responses of adult
NSCs [133,135] as well as their progeny survival [134].

MDEs were also found to display the monocarboxylate transporter 1 (MCT-1), together with
enzymes necessary for anaerobic glycolysis or lactate production [136]. These observations suggest a
novel route for lactate release that may serve as a supplementary energy substrate for neurons during
synaptic activity. Interestingly, among the different mechanisms by which physical exercise enhances
hippocampal adult neurogenesis, lactate transport to the CNS has been recently proposed [137].
Intraperitoneal injections of lactate in mice correlate with an increased number of newly generated
neurons in the DG. Interestingly, lactate-induced increase in neurogenesis was not due to increased cell
proliferation or increased neuroblast differentiation, but rather to an increased survival rate of newly
generated mature neurons.

Overall, these studies suggest a potential role of ADEs and MDEs in finely regulating
gliotransmitters and metabolites availability in the adult neurogenic niche, which, in turn, may
affect proliferation, differentiation and survival rates of NSCs and their neuronal progeny.

3.3.3. EV-Associated Neuroprotective Proteins

Glial-derived EVs have been reported to transport molecules with neuroprotective and regenerative
activities. These molecules may also affect the rate of newborn neuron survival in the adult
neurogenic niche.
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ADEs were found to transport synapsins, phosphoproteins which have been shown to be released
by ADE lumen and mediate protective effects on neuronal cultures exposed to oxygen-glucose
deprivation (OGD) or oxidative stress [141]. Synapsins, well known for their role in synaptogenesis
and neuronal plasticity [140,181], are also involved in the proliferation and survival of NSCs in adult
DG [138].

Heat shock protein (HSP70), a molecular chaperone with documented neuroprotective function in
several acute and chronic neurodegenerative disorders [182–184], is released by astrocytes through
EVs [144]. Intraperitoneal administration of HSP70 improved novel object recognition in 8-week-old
mice. This behavioural effect correlated with increased cell proliferation and neuroblast differentiation
in the DG [143].

Neuroglobin (NGB) is a neuroprotective, anti-oxidant, anti-apoptotic, and anti-inflammatory
protein [185–187] specifically detected in ADEs [146]. The protein has been implicated in neurogenic
effects both in vitro and in vivo [145]. Lentivirus (Lv)-mediated overexpression of NGB in SVZ
NSCs resulted in increased cell proliferation and neuronal differentiation via Wnt signaling. In vivo,
intracerebroventricular (i.c.v.) injection of Lv expressing-NGB in a murine stroke model (MCAO)
increased PSA-NCAM+ neuroblasts and Tuj1+ immature neurons in the SVZ and peri-infarct cortex
compared to sham group [145].

3.3.4. EV-Associated Cytokines

Evidence of both the detrimental and beneficial consequences of neuroinflammation within
adult niches has been reported [188]. Such opposite effects can, at least in part, depend on different
receptor-mediated pathways. As an example, TNF has been reported to inhibit or stimulate hippocampal
neurogenesis via the activation of TNFR1 or TNFR2, respectively [159]. On the other hand, more
consistent data indicate that anti-inflammatory mediators, including IL-10 and IL-4, positively modulate
neurogenesis [189,190].

Although cytokines are generally thought to exert biologic influence as soluble molecules,
their release in an EV-encapsulated form has been documented in different in vitro and in vivo
biological systems [191]. For example, glial cells can release EVs which can carry TNF and IL-6 [158],
IL-1β [151,152] and IL-4 [192]. The mechanisms underlying the sorting of a given cytokine within
glia-derived EVs are strictly dependent on the nature of the stimulus and the cell type. ATP is a
potent inducer of EV release by glial cells. Bianco and colleagues found that upon ATP activation of
receptor P2X7 astrocytes released EVs containing IL-1β that were associated with lipid membrane
rearrangements induced by rapid activation of acid sphingomyelinase [152]. Similarly, the activation
of P2X7R in primary microglia by astrocyte-derived ATP caused the shedding of IL-1β-containing EVs
from microglia surface [151], thus suggesting similar molecular mechanisms underlying EV release in
response to the same stimulus.

In another study, astrocyte cultures were found to upregulate or downregulate inflammatory
cytokines, such as IL-1β, IL-6 and TNF-α upon treatment with MDEs derived from ATP-treated or
untreated microglia, respectively [193]. This suggests that EV content and activity reflects the functional
state of the parental cell.

In addition to being conveyed by EVs within adult niches, cytokines have also been shown to
dramatically modulate the proteomic signatures of both ADEs and MDEs, with diverse and profound
effects on the regulation of synaptic activity and/or neuroplasticity. Antonucci and colleagues found
that EVs derived from microglia treated with ATP enhanced spontaneous and evoked excitatory
transmission in hippocampal neurons, as indicated by the increase in miniature excitatory postsynaptic
current (mEPSC) frequency and amplitude of EPSCs [194]. In another study, quantitative mass
spectrometry analysis of EVs derived from primary human astrocytes treated with IL-1β (IL-1β-ADEs)
revealed 113 proteins that were uniquely expressed compared to ADEs derived from the control
counterpart (CTRL-ADEs) [195]. The treatment of murine primary neurons with IL-1β-ADEs reduced
neurite outgrowth and branching compared to CTRL-ADEs. Moreover, the analysis of neuronal firing
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by multi-electrode arrays evidenced that CTRL-ADEs accelerated neuronal maturation for firing, which
was counteracted by IL-1β-ADE treatment. The distinctive ability of EVs to modulate synaptic activity
might profoundly affect adult neurogenesis, by virtue of the critical role of inhibitory and excitatory
input received by neuroblasts and young maturing cells during this process (for a review, see [196]).

Finally, the proteomic signature of glial-derived EVs can affect their potential to act locally in
the neurogenic niche and/or propagate inflammatory signals outside the CNS, due to EV’s ability
to cross the blood brain barrier (BBB) and activate the peripheral immune system. The proteomic
profiling of ADEs derived from IL-10-treated primary rat cortical astrocytes identified a set of proteins
primarily involved in neurite outgrowth, dendritic branching, regulation of synaptic transmission, and
promoting neuronal survival, and therefore with potential positive effects on adult neurogenesis [197].
In contrast, IL-1β-ADEs were enriched with proteins that regulated peripheral immune response and
immune cell trafficking to the CNS. This is in line with a recent report demonstrating that after i.c.v.
injection, IL-1β-ADEs entered the peripheral circulatory system and induced up-regulation of liver
pro-inflammatory cytokines, that, in turn, caused leukocyte activation and transmigration into the
brain [198]. The ability of glial-derived EVs to activate peripheral immune cells deserves considerable
attention, in virtue of the large amount of studies demonstrating a pivotal role of the infiltrating
immune cells in the regulation of adult neurogenesis [199,200].

3.3.5. EV-Associated miRNAs

As previously discussed, a vast array of studies reported that miRNAs play key roles in regulating
NSC fate in the adult SVZ and SGZ [97]. Notably, several miRNAs have been detected in EVs derived
from astrocytes and microglia. Table 2 summarizes selected literature reports of miRNAs whose
presence in ADE and MDE has been demonstrated as well as their potential effect on different steps
and cellular types participating in adult neurogenesis. Interestingly, once again, miRNAs detected
in glia-derived EVs show a substantially distinct expression profile compared to their parental cells,
suggesting a unique repertoire of ADE- and MDE-associated miRNAs that might potentially contribute
to regulating adult neurogenesis under physiological conditions. Cooperation among miRNAs from
ADEs and MDEs for the modulation of adult neurogenesis can also be envisioned. ADE and MDE
miRNA cargos have been shown to be regulated by external stimuli, similarly to the extensive
modulation of adult neurogenesis in response to environmental conditions and experiences. In a recent
study, early exposure of mice (P21-60) to high-fat diet (HFD) was found to be associated with reduced
adult hippocampal neurogenesis, as suggested by decreased SGZ cell proliferation and a reduced
number of DCX+ neuroblasts in parallel with hippocampal inflammation [201]. In vitro stimulation of
primary microglia with palmitic acid (PA), the most common saturated fatty acid in western diets and
in HFD, could reproduce a pro-inflammatory phenotype. At least some of its negative in vitro effects on
primary neuronal cells were reproduced by EVs derived from PA-stimulated microglia [201]. Notably,
PA can also negatively affect the survival and neuronal differentiation of hippocampal NSC [202].

Future studies specifically addressing their role in the modulation of NSC proliferation and fate
specification are certainly needed to further understand the pleiotropic effects of glia-derived EVs
on neuroplasticity.

4. Conclusions and Future Perspectives

Extracellular vesicles represent a relatively new mechanism for intercellular communication,
allowing cells to exchange any type of biological molecules, ranging from proteins to nucleic acids
and lipids. The interaction of EVs with recipient cells can not only be specifically targeted but also
generate, in any given cell target, diverse effects, from activating signalling pathways to providing
trophic support, depending on the functional state of the secreting cell, the mode of interaction, and
the fate of the released EV.

In this review, we specifically focused on the potential role of EVs in the regulation of the adult
neurogenic niche. Although the field is still in its infancy, NSCs, neurons and glia have all been
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reported to release EVs that, in turn, can mediate a generalized and complex crosstalk among niche
components (Figure 2).
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Figure 2. Different layers of complexity in EV-based signalling within neurogenic niches. Schematic
representation of the potential impact of EVs generated by distinct cellular components of the niche
(NSCs, astrocytes, microglia, neurons) on key steps of the neurogenic process. The nature of the
pro- and anti-neurogenic EV-associated molecules is also summarized. Given their ability to cross
the blood-brain barrier, EVs derived from niche cells can also exert effects in periphery. Similarly,
peripherally generated EVs can reach the adult niche and potentially modulate neurogenesis. (EVs:
extracellular vesicles NSC-EVs: neural stem cell-derived EVs; NDEs: neuron-derived EVs; ADEs:
astrocyte-derived EVs; MDEs: microglia-derived EVs; BBB: Blood–Brain Barrier; GLT-1: glutamate
transporter 1; ↑: increased; ↓: decreased).

In recent years, EVs have been shown or proposed to actively influence the adult neurogenic process,
either directly, by regulating NSC quiescence/proliferation/differentiation, migration, maturation,
survival of neuroblasts and new-born neurons, or indirectly, for example via the modulation of the pro-
and/or anti-neurogenic properties of glial cells. Surprisingly, although the critical role of astrocytes
and microglia in the context of adult neurogenesis is well recognized, direct evidence concerning
the impact of astrocyte- and microglia-derived EVs on cellular dynamics within the adult niche is
still very fragmentary. Even more surprisingly, despite the vast array of studies using exogenous
administration of NSC-derived EVs as a therapeutic strategy in preclinical models of CNS disorders, a
much more limited amount of experimental efforts focused on the endogenous, physiological role of
EVs on neuroplasticity and neurogenesis.

Although we did not focus our attention on these aspects, of course, other niche cells, including
oligodendrocyte precursors and endothelial cells, which have been reported to release EVs capable
of modulating neuronal properties [203,204], may well contribute to adult neurogenesis modulation.
Similarly, given their ability to cross the BBB, EVs originating from cells located outside the brain can
reach the adult niche and should be included in the overall picture. Conversely, as some studies have
elegantly suggested, EVs produced in adult niches may have an impact systemically, for example on
physiological aging [99].
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Altogether, we believe that future work should better investigate the nature and the functional
role of critical pro- and anti-neurogenic factors carried by extracellular vesicles within niches. Such
studies have the potential not only to increase our current knowledge on the physiological role of
EVs in neuroplasticity and in aging, but they may disclose novel pathophysiological pathways in
CNS disorders. Since alterations of adult neurogenesis appear to be a common hallmark of different
neurodegenerative diseases [205], understanding which and how factors drive changes in the cargo
of EVs derived from niche cells could be useful for the design of early therapeutic interventions to
face aberrant neuroplasticity in these disorders. A constantly growing branch in the EV field is that
concerning their use as drug delivery system. In fact, in virtue of their natural cell-targeting abilities,
biodistribution profiles, pharmacokinetics, low immunogenicity and intrinsic ability to cross tissue
and cellular barriers, EVs are promising for therapeutic purposes targeting brain diseases. Pioneering
bioengineering studies have suggested that it is possible to obtain EVs loaded with the desired cargo
and functionalized with surface molecules of interest, to enhance cell targeting [206]. Last but not least,
new promising avenues regard EVs clinical use as biomarkers [53,207,208], since they can be easily
collected from blood, urine [209–211], and also CSF [212].
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